5 research outputs found

    Cellular Automaton Belousov-Zhabotinsky Model for Binary Full Adder

    Get PDF
    © 2017 World Scientific Publishing Company. The continuous increment in the performance of classical computers has been driven to its limit. New ways are studied to avoid this oncoming bottleneck and many answers can be found. An example is the Belousov-Zhabotinsky (BZ) reaction which includes some fundamental and essential characteristics that attract chemists, biologists, and computer scientists. Interaction of excitation wave-fronts in BZ system, can be interpreted in terms of logical gates and applied in the design of unconventional hardware components. Logic gates and other more complicated components have been already proposed using different topologies and particular characteristics. In this study, the inherent parallelism and simplicity of Cellular Automata (CAs) modeling is combined with an Oregonator model of light-sensitive version of BZ reaction. The resulting parallel and computationally-inexpensive model has the ability to simulate a topology that can be considered as a one-bit full adder digital component towards the design of an Arithmetic Logic Unit (ALU)

    Design Of Dna Strand Displacement Based Circuits

    Get PDF
    DNA is the basic building block of any living organism. DNA is considered a popular candidate for future biological devices and circuits for solving genetic disorders and several other medical problems. With this objective in mind, this research aims at developing novel approaches for the design of DNA based circuits. There are many recent developments in the medical field such as the development of biological nanorobots, SMART drugs, and CRISPR-Cas9 technologies. There is a strong need for circuits that can work with these technologies and devices. DNA is considered a suitable candidate for designing such circuits because of the programmability of the DNA strands, small size, lightweight, known thermodynamics, higher parallelism, and exponentially reducing the cost of synthesizing techniques. The DNA strand displacement operation is useful in developing circuits with DNA strands. The circuit can be either a digital circuit, in which the logic high and logic low states of the DNA strand concentrations are considered as the signal, or it can be an analog circuit in which the concentration of the DNA strands itself will act as the signal. We developed novel approaches in this research for the design of digital, as well as analog circuits keeping in view of the number of DNA strands required for the circuit design. Towards this goal in the digital domain, we developed spatially localized DNA majority logic gates and an inverter logic gate that can be used with the existing seesaw based logic gates. The majority logic gates proposed in this research can considerably reduce the number of strands required in the design. The introduction of the logic inverter operation can translate the dual rail circuit architecture into a monorail architecture for the seesaw based logic circuits. It can also reduce the number of unique strands required for the design into approximately half. The reduction in the number of unique strands will consequently reduce the leakage reactions, circuit complexity, and cost associated with the DNA circuits. The real world biological inputs are analog in nature. If we can use those analog signals directly in the circuits, it can considerably reduce the resources required. Even though analog circuits are highly prone to noise, they are a perfect candidate for performing computations in the resource-limited environments, such as inside the cell. In the analog domain, we are developing a novel fuzzy inference engine using analog circuits such as the minimum gate, maximum gate, and fan-out gates. All the circuits discussed in this research were designed and tested in the Visual DSD software. The biological inputs are inherently fuzzy in nature, hence a fuzzy based system can play a vital role in future decision-making circuits. We hope that our research will be the first step towards realizing these larger goals. The ultimate aim of our research is to develop novel approaches for the design of circuits which can be used with the future biological devices to tackle many medical problems such as genetic disorders

    Zirconia based photocatalysts in degradation of selected herbicides

    Get PDF
    Hydrothermally synthesized zirconia nanopowders: pure and doped with Si4+ ions were spectroscopically characterized and used as photocatalysts for degradation of herbicides sulcotrione and fluroxypyr. Zirconia is wide band gap ceramic (Eg ~ 5 eV) however, synthesized nanopowders showed unexpected, modest absorbance in visible light range. That fact inspired photocatalytical degradation of herbicides with wide utilization, using solar irradiation (SI) in laboratory conditions. In the scope of this study, degradation of herbicides was only slightly achieved (irradiation time 2h).XV International Conference on Fundamental and Applied Aspects of Physical Chemistry : Proceedings. Vol. 1, September 20-24,2021, Belgrad

    Unconventional programming: non-programmable systems

    Get PDF
    Die Forschung aus dem Bereich der unkonventionellen und natürlichen Informationsverarbeitungssysteme verspricht kontrollierbare Rechenprozesse in ungewöhnlichen Medien zu realisieren, zum Beispiel auf der molekularen Ebene oder in Bakterienkolonien. Vielversprechende Eigenschaften dieser Systeme sind das nichtlineare Verhalten und der hohe Verknüpfungsgrad der beteiligten Komponenten in Analogie zu Neuronen im Gehirn. Da aber Programmierung meist auf Prinzipien wie Modularisierung, Kapselung und Vorhersagbarkeit beruht sind diese Systeme oft schwer- bzw. unprogrammierbar. Im Gegensatz zu vielen Arbeiten über unkonventionelle Rechensysteme soll in dieser Arbeit aber nicht hauptsächlich nach neuen rechnenden Systemen und Anwendungen dieser gesucht werden. Stattdessen konzentriert sich diese Dissertation auf unkonventionelle Programmieransätze, die sowohl für unkonventionelle Computer als auch für herkommliche digitale Rechner neue Perspektiven eröffnen sollen. Hauptsächlich in Bezug auf ein Modell künstlicher chemischer Neuronen werden Ansätze für unkonventionelle Programmierverfahren, basierend auf Evolutionären Algorithmen, Informationstheorie und Selbstorganisation bis hin zur Selbstassemblierung untersucht. Ein spezielles Augenmerk liegt dabei auf dem Problem der Symbolkodierung: Oft gibt es mehrere oder sogar unendlich viele Möglichkeiten, Informationen in den Zuständen eines komplexen dynamischen Systems zu kodieren. In Neuronalen Netzen gibt es unter anderem die Spikefrequenz aber auch Populationskodes. In Abhängigkeit von den weiteren Eigenschaften des Systems, beispielsweise von der Informationsverarbeitungsaufgabe und dem gewünschten Eingabe-Ausgabeverhalten dürften sich verschiedene Kodierungen als unterschiedlich nützlich erweisen. Daher werden hier Methoden betrachtet um die verschiedene Symbolkodierungmethoden zu evaluieren, zu analysieren und um nach neuen, geeigneten Kodierungen zu suchen.Unconventional and natural computing research offers controlled information modification processes in uncommon media, for example on the molecular scale or in bacteria colonies. Promising aspects of such systems are often the non-linear behavior and the high connectivity of the involved information processing components in analogy to neurons in the nervous system. Unfortunately, such properties make the system behavior hard to understand, hard to predict and thus also hard to program with common engineering principles like modularization and composition, leading to the term of non-programmable systems. In contrast to many unconventional computing works that are often focused on finding novel computing substrates and potential applications, unconventional programming approaches for such systems are the theme of this thesis: How can new programming concepts open up new perspectives for unconventional but hopefully also for traditional, digital computing systems? Mostly based on a model of artificial wet chemical neurons, different unconventional programming approaches from evolutionary algorithms, information theory, self-organization and self-assembly are explored. A particular emphasis is given on the problem of symbol encodings: Often there are multiple or even an unlimited number of possibilities to encode information in the phase space of dynamical systems, e.g. spike frequencies or population coding in neural networks. But different encodings will probably be differently useful, dependent on the system properties, the information transformation task and the desired connectivity to other systems. Hence methods are investigated that can evaluate, analyse as well as identify suitable symbol encoding schemes
    corecore