
Unconventional Programming:

Programming Non-programmable

Systems

D I S S E R T A T I O N

zur Erlangung des akademischen Grades

doctor rerum naturalium (Dr. rer. nat.)

vorgelegt dem Rat der Fakultät für Mathematik und Informatik

der FRIEDRICH-SCHILLER-UNIVERSITÄT JENA

von Dipl. Bioinf. Gerd Grünert

geb. am 30.10.1981 in München

Gutachter:

1. Prof. Dr. Peter Dittrich, Jena

2. Dr. Klaus-Peter Zauner, Southampton

3. Prof. Dr. Wolfgang Weigand, Jena

Tag der öffentlichen Verteidigung: 09.12.2016

2

Summary

Unconventional and natural computing research offers controlled information modifi-

cation processes in uncommon media, for example on the molecular scale or in bacte-

ria colonies. Promising aspects of such systems are often the non-linear behavior and

the high connectivity of the involved information processing components in analogy

to neurons in the nervous system. Unfortunately, such properties make the system

behavior hard to understand, hard to predict and thus also hard to program with

common engineering principles like modularization and composition, leading to the

term of non-programmable systems. In contrast to many unconventional computing

works that are often focused on finding novel computing substrates and potential ap-

plications, unconventional programming approaches for such systems are the theme

of this thesis: How can new programming concepts open up new perspectives for

unconventional but hopefully also for traditional, digital computing systems?

Mostly based on a model of artificial wet chemical neurons, different unconven-

tional programming approaches from evolutionary algorithms, information theory,

self-organization and self-assembly are explored. A particular emphasis is given on

the problem of symbol encodings: Often there are multiple or even an unlimited

number of possibilities to encode information in the phase space of dynamical sys-

tems, e.g. spike frequencies or population coding in neural networks. But different

encodings will probably be differently useful, dependent on the system properties,

the information transformation task and the desired connectivity to other systems.

Hence methods are investigated that can evaluate, analyse as well as identify suitable

symbol encoding schemes.

3

4

Deutsche Zusammenfassung

Die Forschung aus dem Bereich der unkonventionellen und natürlichen Informations-

verarbeitungssysteme verspricht kontrollierbare Rechenprozesse in ungewöhnlichen

Medien zu realisieren, zum Beispiel auf der molekularen Ebene oder in Bakterien-

kolonien. Vielversprechende Eigenschaften dieser Systeme sind das nichtlineare Ver-

halten und der hohe Verknüpfungsgrad der beteiligten Komponenten in Analogie zu

Neuronen im Gehirn. Da aber Programmierung meist auf Prinzipien wie Modu-

larisierung, Kapselung und Vorhersagbarkeit beruht sind diese Systeme oft schwer-

bzw. unprogrammierbar. Im Gegensatz zu vielen Arbeiten über unkonventionelle

Rechensysteme soll in dieser Arbeit aber nicht hauptsächlich nach neuen rechnenden

Systemen und Anwendungen dieser gesucht werden. Stattdessen konzentriert sich

diese Dissertation auf unkonventionelle Programmieransätze, die sowohl für unkon-

ventionelle Computer als auch für herkommliche digitale Rechner neue Perspektiven

eröffnen sollen.

Hauptsächlich in Bezug auf ein Modell künstlicher chemischer Neuronen werden

Ansätze für unkonventionelle Programmierverfahren, basierend auf Evolutionären

Algorithmen, Informationstheorie und Selbstorganisation bis hin zur Selbstassem-

blierung untersucht. Ein spezielles Augenmerk liegt dabei auf dem Problem der Sym-

bolkodierung: Oft gibt es mehrere oder sogar unendlich viele Möglichkeiten, Informa-

tionen in den Zuständen eines komplexen dynamischen Systems zu kodieren. In Neu-

ronalen Netzen gibt es unter anderem die Spikefrequenz aber auch Populationskodes.

In Abhängigkeit von den weiteren Eigenschaften des Systems, beispielsweise von der

Informationsverarbeitungsaufgabe und dem gewünschten Eingabe-Ausgabeverhalten

5

dürften sich verschiedene Kodierungen als unterschiedlich nützlich erweisen. Daher

werden hier Methoden betrachtet um die verschiedene Symbolkodierungmethoden zu

evaluieren, zu analysieren und um nach neuen, geeigneten Kodierungen zu suchen.

6

Contents

1 Introduction 11

1.1 Motivation . 11

1.2 Conventional Programming . 15

1.3 Definition of Computation . 19

1.4 Unconventional Programming . 22

1.5 Summary . 26

2 Droplet Computers 29

2.1 Basic Properties of the Belousov-Zhabotinsky Medium 30

2.2 Hypothetical Droplet Types . 34

2.3 Exemplary Droplet System . 36

2.4 Modeling Excitable and Self-Exciting Droplets 41

2.4.1 Well-Stirred Ordinary Differential Equation Model 42

2.4.2 Reaction-Diffusion Partial Differential Equation Model 44

2.4.3 Cellular Automaton Models 45

2.4.4 Discrete-Event Model for BZ Droplets 46

2.5 Modeling of Sub-Excitable Droplets 55

2.6 Conclusions . 57

7

3 Evolution of Droplet Computers and Signals 61

3.1 Network - Symbol Co-Evolution . 62

3.1.1 Methods . 64

3.1.2 Results . 70

3.2 Self-Assembly of Droplet Computers 76

3.3 Discussion . 81

4 Information Theory Based Methods 83

4.1 Introduction . 84

4.1.1 Challenges . 84

4.1.2 Overview on this Chapter . 86

4.2 Methods . 87

4.2.1 Experimental Droplet System 87

4.2.2 Simulated Droplet System . 88

4.2.3 Information Theoretic Approach 89

4.3 Results . 96

4.3.1 Information Flow in an Experimental System 96

4.3.2 Hand-Designed Linear Classifier Network 99

4.3.3 Information Flow in an Evolved NOR Gate 105

4.3.4 Effect of Manipulating the Information Flow 105

4.4 Discussion . 108

5 Tautological Loops 113

5.1 Introduction to Tautological Loops 115

5.1.1 Naive Approach for Finding Appropriate Signals 116

5.1.2 Definition of Tautological Loops 117

8

5.1.3 Estimating Tauological Loop Quality 119

5.2 Systematic Screening for Tautological Loops 121

5.3 Implementation Fitness in the Tautological Loop 126

5.3.1 Mutual Information Based Fitness 126

5.3.2 Fitness based on Spike Frequency 128

5.4 Tautological Loops for Droplet Computers 128

5.5 Discussion . 138

6 Embodied Evolution 143

6.1 The Exact Set Cover Problem . 144

6.2 An Evolutionary Algorithm in Rule-Based Chemistry 146

6.2.1 Genotype and Phenotype . 146

6.2.2 Evaluation and Inheritance . 148

6.2.3 Differences to standard evolutionary algorithms 150

6.2.4 Simulation case study . 151

6.3 Discussion . 154

7 Programmed Self-Assembly in Biology 157

7.1 The Human Kinetochore Self-Assembly 158

7.2 Yeast Interphase Chromatin Conformation 160

8 Conclusions 167

Bibliography 173

Appendix A List of Incorporated Publications 193

Appendix B Ehrenwörtliche Erklärung 195

9

10

Chapter 1

Introduction

1.1 Motivation

“Programming non-programmable systems” might sound like “flying pigs” and “three

headed monkeys”, like complete nonsense. Similarly, “programming” a birch tree or a

tornado sounds absurd. But while no two birch trees and no two tornadoes look alike,

there is a fundamental difference: The ensemble of tornado shapes is constrained only

by the laws of physics and the local environment. But the ensemble of birch trees

that could grow from a seed is additionally constrained by its genetic information. So

if the range of possible shapes for those systems should be modified, altering the birch

tree should still be more feasible than modifying the tornado shapes, because there is

arbitrariness in the genomes of the former systems. Systems like tornadoes that can-

not be modified other than by changing the laws of physics are not considered in this

thesis and would neither be called programmable nor non-programmable. Nonethe-

less, the notion of “programming” still sounds absurd when considering genomes or

brains, because we lack appropriate engineering principles to modify the genetic ma-

terial or the brain connectivity in a predictable way. Hence these systems are called

non-programmable as compared to digital computers and mechanic systems that are

accessible to engineering principles. In this thesis, approaches towards opening also

11

12 CHAPTER 1. INTRODUCTION

non-programmable complex systems to means of guided modification, i.e. to pro-

gramming, are explored.

Conrad argues that there is a trade off principle between (effective) programmabil-

ity, computational efficiency and evolutionary adaptability [Con89, Con95b, Con95a].

This implies a difference between programmable and non-programmable systems. Ex-

amples for such non-programmable systems are biological organisms and the human

brain with its huge number of neurons and synaptic connections, the simulation of

which would currently require huge supercomputers with thousands of CPUs [Mar06].

To see the difference in programmability between brains and electronic computers,

the definition of programs and effective algorithms are instructive:

A program is “an expression of a computational method in a computer language”

[Knu73], where a “computational method” is used equivalently with the word algo-

rithm. So a program is an algorithm that is translated into a formalization that can

be understood by a machine. Probably one of the most central concepts in computer

science, the algorithm, dates back more than 2000 years, as for example Euclid’s Al-

gorithm, originating earlier than 300 BC [Knu69]. Still, different notions instead of

“algorithm” were used before the 1950s [Knu73]. The algorithm is further understood

as a “recipe, process, method, technique, procedure [or] routine” with the following

additional properties [Knu73, Rog87]:

discreteness The algorithm is composed from discrete instructions that can be followed step-

by-step.

finiteness Both in its run time and in its description, the algorithm is to be finite, i.e.,

the algorithm is supposed to terminate after a finite number of steps and it is

further supposed to be described by a finite number of instructions.

definiteness For each instruction of the algorithm, it ought to be indisputably clear what

this instructions means and which effects it has.

effectiveness Each of the instructions of the algorithm has to be practically, almost mechan-

ically, executable.

1.1. MOTIVATION 13

input / output Zero or more inputs can be supplied to the algorithm and one or more specified

values in the system will be interpreted as the output of the algorithm.

Comparing biological cells or brains to the definition of algorithms given above, these

systems typically do not follow such a clear “procedure” with several steps. Rather,

stochastic noise commonly leads to variations in repetitions of the same information

processing task. Also the purpose and effect of individual system components or

of their interactions is not clearly defined. For example, in cells, the response of

a set of signal transduction molecules to an external stimulus is a noise affected

process and thus the result will vary every time the operation is being observed

[Gil77]. Furthermore, there does not exist a precise algorithm for the signal processing

taking place in our brains. At most, such an algorithm might be indirectly defined

through the complex interactions of its components like different brain areas, tissues,

their connectivity and the complex developmental process. Hence, recalling that

programming means formalizing an algorithm, these natural information processing

systems are not effectively programmable in Conrad’s sense [Con95a], because there

is typically no obvious algorithm of the definition given above.

But nevertheless, also biological information processing in genomes, cells, tissues,

brains and whole organisms is highly organized. This makes it possible to find and

analyze some functional patterns and principles [Bou02, DL06, Ibr08]. Apparently

these systems are not purely self-organized by the physical properties of the systems

like a Bénard cell [Bod00], a tornado or the Belousov-Zhabotinsky reaction [Zai70].

Instead, there is a lot of organization, parameterization and arbitrariness involved

in natural information processing systems [Bar08, Gör11b, Gör13, Ibr13]. As Suzuki

states, the genetic information shapes, orchestrates, controls, constrains, guides, har-

nesses or instructs the complex system of interactions [Suz13]. Yet clearly, neither

every synapse and neuron of the brain nor every single signal receptor or kinase of

a cell is described individually. Instead, the description in the genome is given in a

compressed form, indirectly and in coordination with the environmental influences,

in the system’s own dynamics and in the developmental processes [Ste12]. Thus, the

14 CHAPTER 1. INTRODUCTION

“genetic program” is not an implementation of a discrete, finite, definite, determin-

istic and effective algorithm as defined above. But it shares the property of guiding

the information processing that happens in the system. Nonetheless, while we would

easily associate programming with computers, the notion of programming for most

people has an uncomfortable tinge to it when it is applied to evolution, brains or other

biological systems. Hence, the word programming will mostly be used in the sense

of coarsely specifying and guiding the form or function of an information processing

system here. This broad term includes both, using a formal algorithm that classical

electronic computers are programmed with but also manipulating a dynamical system

into a particular behavior, which can then be exploited for computation.

In this thesis, novel and unconventional programming paradigms are identified that

could be used to conceive, develop and specify “programs”; potentially for pro-

grammable as well as for non-programmable information processing systems. As

explored in the later chapters, these paradigms employ among others co-evolution

schemes in evolutionary algorithms, information theory as fitness functions as well as

self-organization and self-assembly processes as guiding principles. A further explana-

tion, why new and unconventional approaches are useful and what we understand un-

der the term “programming” will then be given in Section 1.2. One reason for investi-

gating novel programming paradigms is the hope to harness the computational capac-

ity of unconventional computing systems [Ada01, Ada06, Mat07, Teu08, Ste12] more

efficiently: their low energy consumption, their efficiency in other problem domains

and the possibility to compute in different media. Additionally, reusing these novel

computing paradigms for generating problem solutions in classical electronic com-

puters might be helpful to produce more efficient and more fault tolerant code. In

Section 1.3, a more explicit formulation for such information processing systems, i.e.,

for the term “computation” will be given.

When looking at unconventional [Ada01, Ada06, Mat07, Teu08, Ste12] and natural

computing systems [dC07, DC11] or biological information processing systems, these

systems can sometimes be transformed into formal computing systems like Turing

1.2. CONVENTIONAL PROGRAMMING 15

Machines [Tur36, Pău06, Gru11b]. Yet for naturally occurring information process-

ing systems like the brain, often we will not be able to find finite, definite and effective

descriptions for the processes that happen there, at least not if the full computational

potential of the systems is to be exploited. Thus, because unconventional comput-

ing systems are often similarly resistant to formal programming, searching for non-

standard programming paradigms in these fields seems promising. In unconventional

computing research, so far a lot of work has been focused on specialized applications

and in particular on novel computing substrates. But also unconventional program-

ming paradigms are investigated, as reviewed briefly in Section 1.4 and explained in

more detail in [Ban05, Ste12].

1.2 Conventional Programming

In classical programming, the human programmer understands the capabilities and

the potential of the computing environment and almost like an architect designs or

constructs a problem solutions from the building blocks the programming language

offers. This concept is satirized in the context of electronic circuit diagrams in Figure

1.1. For programming languages, such building blocks are mostly elementary data

manipulation operations like simple arithmetics or control structures like loops, con-

ditions, recursions or subroutines. Wing called this kind of human cognitive effort

“computational thinking”: “it is not trying to get humans to think like computers.

Computers are dull and boring; humans are clever and imaginative. We humans make

computers exciting.”[Win06]

A typical aspect of programming seems to be the prediction of the macroscopic effects

of microscopic program parts and from this, the construction of problem solutions

[Con95b, Mat07] as formulated by Zauner: “Programming is here equated with an

engineering approach in which mental conception precedes physical creation [...]. It

necessitates the possibility for the programmer to anticipate the actions of the avail-

able elementary operations. Only if the function of the elementary operations can

be foreseen by the programmer can a desired input-output map be implemented by

16 CHAPTER 1. INTRODUCTION

Figure 1.1: XKCD Comic strip on circuit diagrams by Randall Munroe (2010) from
https://xkcd.com/730/.

incrementally composing a program. Accordingly, the machine’s architecture has to

adhere to a fixed, finite user manual to facilitate programming. To achieve this,

numerous potential interactions among the components of the machine need to be

suppressed.”[Zau05a]

Thus, starting from an informal problem definition, the process of programming typ-

ically involves the intermediate steps of finding either informal problem solutions or

formal problem definitions and then the generation of a formal problem solution in a

https://xkcd.com/730/

1.2. CONVENTIONAL PROGRAMMING 17

informal problem
definition

informal problem
solution:

idea for the algorithm

formal problem
definition: f

fitness function

formal
problem
solution

program
pf

computer science
comput. thinking

programming

compiler

human effort,
mathematics

optimization

Figure 1.2: Classical vs. optimization approach to programming: In the classical
programming process (lower, solid edges), an informal problem definition is solved
by translating an informal problem solution, i.e., an idea for an algorithm, first to a
formalized solution into a programming language and then automatically to a pro-
gram pf . The process of developing ideas for an algorithm, “computational thinking”
[Win06], is typically supported by computer science knowledge that offers efficient
standard methods for many typical applications. Drawn as dashed lines in the up-
per part of the diagram, an optimization approach is indicated where a programmer
would first ignore solution strategies but focus on the formalization of the problem
definition, resulting for example in a fitness function for an evolutionary algorithm
[Fog66, Rec71, Sch75, Hol75, Koz89, Fog94, Bey02, Wei02, Eib08] or for other opti-
mization systems.

18 CHAPTER 1. INTRODUCTION

higher programming language that is further compiled to a machine-readable binary

code for a computer, as outlined in Figure 1.2. So in this thesis, conventional program-

ming implies that humans use engineering principles, like understanding predictable

systems, modularity, logic, composition and reasoning to first derive an informal prob-

lem solution strategy from the informal problem definition and then formalize this

solution until the digital computer can execute the solution. There are many scien-

tific results from computer science that suggest a set of potential building blocks for

arriving at solution strategies and there are various techniques for engineering formal-

izations of these strategies [Knu73, Knu69, DC11]. Typical design decisions are the

distinction between declarative and imperative programming paradigms and the use

of modern software engineering design principles that allow for code-reuse like pro-

cedures, object orientation, data-driven programming, generics or aspect orientation

as reviewed in [Har96, Kic97, Rob03, Mar10].

Even though it is sometimes claimed that computer science was a young discipline,

our digital computers are being programmed in “higher programming languages”

since the 1960s [Mar10], i.e. for around 50 years by now. But if we allow for a

broader interpretation of the notion of programming, already the design of Babbage’s

mechanical difference engines [Bab89, Roe09], the beginning of which lay in the 1830s,

could be considered programming in the sense of the definition given above: the

mechanics of the difference engine were used to implement an algorithm from a finite,

definite and effective set of components and their interactions. The Antikythera

Mechanism, a complex mechanic astronomical calendar, even dates back more than

2000 years [Car14].

Because of this “long history” of algorithmics, a wide knowledge is established about

the theoretical basis of algorithms, their worst case run times, their memory con-

sumptions, the theoretical limits of computability, etc. [Knu73]. But even with good

theoretical foundations, practically implementing these algorithms as programs is still

a hard job that needs to be done by experts with many years of learning and expe-

rience, and typically entails many failures before computing systems behave in the

1.3. DEFINITION OF COMPUTATION 19

way they are intended to [Smi94, Jen02, How03, Rob03]. Scientific methods for pro-

ducing secure and reliable code are for example static analysis [Cou77, Bes10], code

verification [Hoh02] and unit testing systems [Che02].

In an ideal world however, programming would be simple. Science-fiction visions, e.g.

in “star trek”, also commonly feature interactions with computers on a verbal level,

even though less ideal misconceptions there typically end in disaster. Approaches in

this direction might be knowledge engines like Wolfram Alpha, Apple’s Siri or IBM’s

Watson [Fer10, Jan12] system that process informal or even verbal requests. Nonethe-

less, this thesis aims lower than building the ultimate futuristic programming system.

But still, obviously, there is much space for improvements in recent programming

techniques. Hopefully studying novel programming paradigms, e.g. from uncon-

ventional computing and less rigorously defined information processing systems, will

help to increase the efficiency, robustness and flexibility of our computing systems

and simplify the process of programming them.

1.3 Definition of Computation

While the actual topic of this thesis is unconventional programming, the term com-

putation, which is tightly interwoven with programming, should be concretized be-

forehand in this section. Computation might classically be defined as the execution

of a formal algorithm, where computation is carried out error-free as a finite number

of definite, effective and discrete, “mechanical” manipulation steps over a finite set

of symbols [Knu73, Cop08]. For this thesis however, the notion of computation will

deviate from this typical view: Instead, the perspectives of Zauner [Zau05a], MacLen-

nan [Mac04], Suzuki [Suz13] or Lizier [Liz10] are adapted, who perceive computation

as a physical process that can be used or harnessed for solving information processing

problems. This concept is satirized in Figure 1.3. The definitions of the problems to

be solved vary slightly from author to author: For Zauner these problems are defined

as input-output mappings, for MacLennan the manipulation of abstract symbols,

20 CHAPTER 1. INTRODUCTION

Figure 1.3: SMBC Comic strip on computation: Drawing by Zach Weiner (2013)
from http://www.smbc-comics.com/?id=3054.

whereas for Lizier the information-theoretic view of transmitting, storing and manip-

ulating information is in the focus. Although the information-theoretic perspective

will be further studied in Chapter 4, throughout this thesis the term computation will

mostly be used in the sense of an abstract input-output mapping in combination with

its realization. The physical process that eventually fulfills the abstract computation

somehow happens in the real world and is typically noisy, continuous, asynchronously

updated and infinite. This real-world process will here be called the implementation

or synonymously the program pf . So, in contrast to Turing Machines, we will not

restrict our systems to using finite or discrete domains for the input, the output or

the internal states of the computing systems.

Let f : X → Y be an abstract function that maps an input x ∈ X to an output

y ∈ Y . This abstract function f defines the abstract computation and somehow

needs to be implemented in conventional or unconventional hardware as symbolized

http://www.smbc-comics.com/?id=3054

1.3. DEFINITION OF COMPUTATION 21

sin sout

x y

co(x)

pf (sin)

ab(sout)

f(x)

Figure 1.4: The concept of computation used in this thesis encompasses both, an
abstract function f : X → Y and its implementation in a complex system or program
pf : Sin → Sout. Implementation and program are used synonymously here. The
computing device maps an abstract input symbol x ∈ X in the form of a signal
sin ∈ Sin to an abstract output y ∈ Y in the form of an output signal sout ∈ Sout.
An abstraction function ab : Sout → Y and its analogue, the concretization function
co : X → Sin, are used to translate between the physical signals sin and sout and the
abstract values x and y.

in Figure 1.4. Throughout this work, I will use the notion of a program pf : Sin →
Sout in the sense of such an implementation for the abstract computation f . While

we now typically expect the computing machine to be independent of the actual

program in the sense of the Universal Turing Machine [Tur36], the program pf can as

well be hard-coded in the computing dynamical system, as it is often the case with

unconventional computing systems [Zau96]. Coarsely, programming is referred to in

its broadest sense, as specifying the desired functionality of a computing device in

contrast to the typically understood exact, algorithmic specification of digital data

manipulation. Still, while the abstract function f maps abstract symbols X to Y ,

the real-world computation pf produces an output signal sout ∈ Sout, given an input

signal Sin ∈ Sin. Thus, an abstraction function ab : Sout → Y and the related

concretization function co : X → Sin are needed to translate between the abstract

symbols and their correlating real-world signals. For example, in digital electronics,

voltages around +3.3 V might be translated to a logical 1 while voltages around 0 V

would be translated to a logical 0. In short, in this thesis, programming means the

derivation of the program pf , and, additionally, the abstraction and concretization

functions ab(x) and co(sout) for a given abstract function f . In the next section,

examples of unconventional programming approaches are discussed that might help

or guide the search for such implementations pf .

22 CHAPTER 1. INTRODUCTION

1.4 Unconventional Programming

Figure 1.5: XKCD Comic strip on programming by Randall Munroe (2008) from
https://xkcd.com/378/https://xkcd.com/378/.

In the following, a short overview on other unconventional programming and com-

puting concepts will be given to set them apart from typical programming techniques

that follow engineering principles, as satirized in Figure 1.5. Hopefully, these un-

conventional approaches allow for a more potent use of a medium’s computational

potential, e.g., for making possible a different set of abstract computations than tradi-

tional formalisms do: “The set of compressible maps is a small subset of the potential

input-output functions – most behaviors cannot be programmed.”[Zau05a]

Using Formal Problem Descriptions

Possibly on the borderline between conventional and unconventional programming

paradigms, approaches that make use of a formal problem definition like mathemati-

cal optimization, constraint based programming [Jaf87], linear programming or evo-

lutionary algorithms and genetic programming ([Fog66, Rec71, Sch75, Hol75, Koz89,

https://xkcd.com/378/https://xkcd.com/378/

1.4. UNCONVENTIONAL PROGRAMMING 23

Fog94, Bey02, Wei02, Eib08], Chapters 3 and 5) allow for the automatic generation

of more or less formalized but machine readable solutions: The formal problem so-

lutions here could be fitness functions, optimality criteria or constraints. Note that

evolutionary computation can also be implemented in a different medium as will

be demonstrated in the Chapter 6, resulting in a simulation of embodied evolution

[Wat02, Gru11b].

Example Driven Programming

The large field of machine learning is most prominently represented by example-

driven, supervised learning techniques [Kot07]: Here, neither the problem nor the

solution are formally defined. Only a set of learning test samples, which can even

contain mistakes, is supplied together with an expected solution. Although machine

learning is a well-established field of artificial intelligence, in our understanding of

programming as defined in the last section, machine learning and classification can

also be considered to be “programming”, such that they implement the function f

that maps high-dimensional inputs x ∈ X to a much smaller space of output classes

y ∈ Y . When the set Y of output classes is larger or more complex, various (symbolic)

regression techniques can be used that are similarly based on a large set of samples

and expected solutions. Another interesting combination of supervised learning and

complex dynamical systems are liquid state machines [Maa02, Maa04], echo state

networks [Jae01] or reservoir computing approaches [Luk09, Laz09, Ese14]. These

approaches seem especially useful for generating complex, time-dependent output

trajectories reacting on the input signals and might even have a biological neural

analogue in the cerebellum structure [Yam07]. Similar to evolutionary computation,

also machine learning techniques are not necessarily implemented on digital comput-

ers only. For example perceptron-like neural networks can also be implemented in

chemical media [Hje91, Ban13]. In contrast to supervised learning techniques, for

the class of reinforcement learning algorithms [Kae96], the information about the

expected solution is not present. Instead, only the guesses made by the system are

evaluated for their correctness. So while some problems are hard to express or to solve

24 CHAPTER 1. INTRODUCTION

in particular optimization or machine learning approaches [Min69, Wol97, Vap00], this

“programming” via machine learning can be very powerful and has already be studied

thoroughly [Kot07].

End-User Development

Another set of programming techniques are grouped together under the notion of

end-user development [Fis04, Rep06]. These techniques are not designed to be used

by computer experts, so only relatively informal methods are required to specify the

problem and to find a solution strategy. Prominent examples are programming by

example and programming by demonstration [Cyp93], where the user generates small

training data sets or shows the behavior that is then abstracted by the system. Ob-

viously, programming by example is overlapping with supervised machine learning

techniques. Typical environments for this kind of programming concepts are spread

sheet applications, visual programming systems [Gre96] like LabView or domain spe-

cific systems [Fow10].

Accessing and interlinking entries from large public databases by formulating the

correct queries to knowledge engines [Jan12] can be seen as an act of programming

as well, which was sought for in the “semantic web” [BL01] approaches, and has

recently been advanced by combining it with natural language processing capabilities

in products like Wolfram Alpha, Apple’s Siri or the electronic “Jeopardy!” quiz show

player “Watson” [Fer10].

Gap-Closing Techniques

As already discussed in Section 1.2, in classical computer programming, the program-

mer can envisage the macroscopic system behavior while writing microscopic instruc-

tions. In many unconventional computing systems [Ada01, Ada06, Mat07, Teu08,

Ste12], e.g. in molecular computing, it is much harder to bridge the gap between the

microscopic reaction rules and the macroscopic system behavior [Con95b, Zau05a,

1.4. UNCONVENTIONAL PROGRAMMING 25

Mat06a]. This offers a potential for novel analysis techniques that allow for the ob-

serving and understanding of dynamical systems from a different perspective and

thus eventually also might lead to a different programming paradigm: Changes in the

(typically implicit) system description are understood from different viewpoints, e.g.,

from the perspective of information dynamics [Sha48, Sch00, Wil10a, Wil10b, Liz10],

organization theory [Dit07, Mat06a, Mat07], surrogate models [Pfa01, Ong03, Sim04,

Cas10, Caw11], or by using genome parameters [Nic12]. This hopefully also leads to a

new understanding of the basic modifications that can channel the system’s behavior

into desirable directions [Ban05, Teu08, Ste12].

For the visual programming languages mentioned earlier, the two-dimensional space

only leads to a more convenient layout of the participating components of the work-

or data flow. Yet the two-dimensional space and geometry can also be used to build

an intuitive understanding of the macroscopic system behavior from the specified mi-

croscopic rules: For example amorphous computing or spatial computing paradigms

[Abe00, Gia05, Bea05, Bea11] typically aim at finding relatively simple or compact

conventional programs for a population of agents that lead to the desired emergent,

macroscopic effects. When the spatial medium has less intrinsic computational ca-

pabilities, collision computing approaches [Ada01, Ada05, DLC11, Hol11b] can still

exploit the geometric structure and compute Boolean logic or geometric problems,

like Voronoi diagrams [Ada11c].

Linked to the problem of experimental design, in surrogate modeling or approxima-

tion modeling, evolutionary algorithms and other optimization techniques are coupled

with a modeling framework to allow the optimizing system to simultaneously generate

a simpler model of the full-detail model or of the real system. In particular, when

real experiments are slow or expensive, the past experiments are reused to gener-

ate another (cheaper) model of the system. In the aforementioned micro to macro

problem, this technique can be used to predict the effect of changes in the program,

but also to scout for interesting experiments that would improve the surrogate model

[Pfa01, Ong03, Sim04, Cas10, Caw11].

Especially when adopting the information-centric view on computation (cf. [Sha48,

26 CHAPTER 1. INTRODUCTION

Sch00, Wil10a, Wil10b, Liz10]), information-theory can play an interesting role as a

symbol-encoding independent filter, so that the abstraction and concretization func-

tions from Figure 1.4 do not have to be known in advance. In this thesis, this approach

will further be studied in Chapters 4 and 5.

1.5 Summary

Throughout this thesis, unconventional methods for understanding and programming

untypical computing systems will be explored using artificial chemical droplets that

resemble biological neurons, which were designed in the NEUNEU EU project1. Net-

works of these droplets are introduced in Chapter 2, where models of this computing

architecture are reviewed and extended on different scales. A system of lipid covered

droplets containing reagents of the Belousov-Zhabotinsky (BZ) reaction is used in

experiments as model system to study the signal transmission dynamics of chemi-

cal computers and their modeling. A chemical medium in sub-excitable, excitable

or self-exciting (oscillating) regimes supports propagating excitation pulses. These

pulses can be used for information coding and processing. Models that can be ap-

plied to describe the time evolution of a medium composed of droplets are discussed:

a homogeneous differential equation model, a spatially extended partial differential

equation model and a cellular automaton model of the chemical reaction are reviewed.

Furthermore, a new high level modeling approach for the droplets is proposed, that

discretizes the chemical states and considers stochasticity in the transition functions.

It is demonstrated how the values of experimentally measured quantities like oscilla-

tion periods, diffusion coefficients and wave propagation speeds can be deduced from

the lower level models.

Throughout this thesis, a special emphasis will be on the importance of suitable signal

encodings for these systems. Obviously, different communication schemes between the

elements of information processing systems may vary in their effectiveness, depending

on the envisaged information processing task. Chapter 3 explores the idea of using

1project website: http://neu-n.eu

http://neu-n.eu

1.5. SUMMARY 27

co-evolution schemes to design droplet networks together with appropriate signal en-

codings to communicate with droplet computers for simple Boolean and classification

tasks. There, three different evolutionary set-ups are tested: Evolving network struc-

tures with fixed on/off rate coding signals, co-evolution of networks and signals, and

network evolution with fixed but pre-evolved signals.

Subsequently, Chapter 4 will present the use of information-theory based measures

to better understand the information flows in droplet networks but will also lead to

symbol-encoding independent metrics for the quality estimation of droplet networks.

The complex dynamics of unconventional computing devices like networks of droplets

filled with the self-exciting Belousov-Zhabotinsky (BZ) reaction can be hard to track

and to understand. Corresponding to recurrent neural networks, the flow of excita-

tions in the network is not limited to a single direction in the droplets. Especially when

unconventional computing systems are not engineered but evolved through genetic

algorithms, the actual process of computation will often be incomprehensible. Several

methods from Information Theory like Transfer Entropy, Information Dynamics, and

Information Decomposition offer approaches for observing and analyzing computing

systems on a higher level and allow for a better understanding of the involved data

transferring and manipulation operations. In this work we show how to discretize the

spike trains of BZ droplet networks and how to apply mutual information measures

on the time series data of both physical implementations as well as on simulations.

Afterwards, in Chapter 5, a new method for using a system’s own dynamics to find

suitable symbol encodings, using so-called Tautological Loops, is introduced and stud-

ied. Therefore, a network of potential implementations of a function is simulated or

built that feeds the calculated outputs back to other implementations of the same

function as input. Hence no external output has to be specified and the dynamics

can self-organize a state where suitable symbol encodings emerge that can be inter-

preted as well as produced by the function’s implementation. Next to theoretical

considerations about potential tautological loop architectures, the method is exem-

plified by finding a NOR gate built from the excitable droplets that will be introduced

in Chapter 2.

28 CHAPTER 1. INTRODUCTION

While the next Chapters will mainly focus on information processing systems built

from chemical droplets, the approaches introduced and described are not only meant

to be applicable by this small group of unconventional computers. Instead, the meth-

ods will be generalizable for diverse unconventional or non-programmable systems

and hopefully also lead to novel perspectives in programming and designing “conven-

tional” computing systems. In this spirit, some experiments not involving chemical

droplet systems were also conducted as explained in the later chapters: In Chapter

6), embodied evolution is simulated in silico in the form of an evolutionary algorithm

that is completely implemented in SRSim [Gru10], a simulator for spatially structured,

rule-based reaction systems. Then, in Chapter 7, the information processing perspec-

tive of biological, self-assembling structures like the Kinetochore [Tsc13, Gör13, Ibr13]

and the yeast interphase chromatin organization [Geh12] are studied. A short sum-

mary and some ideas for further research are finally given in Chapter 8.

Chapter 2

Droplet Computers

Through the following chapters of this thesis, a compartmentalized, excitable chem-

ical medium is used in experiment and simulation to demonstrate unconventional

programming approaches. In this chapter, which is largely based on the paper

[Gru13], we focus on modeling and simulation of this kind of medium, which can

be used for computation. Chemical computers [Ada01, Ada05, Szy10, Iga11, Bul13]

might be used in many fields of applications, ranging from controlling bio reactors

to designing smart drugs, as reviewed in [Dit01, Dit05, Zau05b]. A nonlinear chem-

ical medium, for example accommodating the Belousov-Zhabotinsky (BZ) reaction

[Zai70, Noy72, Fie72, Gyo90], can dissipate the chemical energy showing various types

of non equilibrium behavior like for example temporal oscillations or regular spatio-

temporal structures. The type of non equilibrium evolution can be controlled by the

initial concentrations of reagents used. A medium in the excitable regime, once it is

properly stimulated, shows one cycle of oscillations, but it does not spontaneously

enter a new oscillation cycle, but returns to the stable stationary state. Self-exciting

medium, in contrary, will start oscillating spontaneously. However, this medium can

still be used for information processing, since new oscillation cycles can also be trig-

gered externally before the self-excitation happens. A more complicated behavior is

shown by a sub-excitable medium, which is less excitable than the initially mentioned

excitable medium. This means that an excitation wave entering a droplet from one

29

30 CHAPTER 2. DROPLET COMPUTERS

direction will not spread in any direction but will keep a “memory” of the original di-

rection. Also, when two sub-excitable waves collide, the resulting wave can propagate

into a new direction, rendering this medium suitable for collision-based computing

[Ada02a, Ada04, Hol11a].

For the experiments presented here, the BZ medium is compartmentalized into small

droplets [Agh08, Szy11] that form when the solution of reagents is dripped into oil.

The compartments are stabilized against merging through lipid molecules that self-

assemble at the border between the aqueous and the oil phase. Where two droplets

meet, a lipid double layer membrane can be formed that still allows chemical reagents

to pass through and to trigger an excitation in the neighboring droplet. Excitation

waves can be transmitted through droplets but can also interfere with one another,

dependent on their timing and on the chemical properties of the droplets and the

medium within. Hence, droplets arranged in a network form a potential chemical

computer [Gor03, Szy11, Ada11c, Ada11d, Hol11b]. An experimental implementation

of such a droplet system is shown in Figure 2.1.

Based on a small experimental system of four droplets, we are giving an overview on

the simulation techniques to describe and understand the behavior of different kinds

of excitable media on different scales. After a short review of ordinary and partial

differential equation and cellular automaton models, we introduce an event-based

model that can be used to simulate a droplet network on large spatial and temporal

scales. This droplet model will frequently be used throughout this thesis.

2.1 Basic Properties of the Belousov-Zhabotinsky

Medium

At the proper concentrations of reagents the chemical Belousov-Zhabotinsky (BZ)

medium can oscillate or can be triggered into an excitation.

In our experiments such medium was made by mixing the right amounts of water

solutions of sulfuric acid, sodium bromate, malonic acid, potassium bromide and

2.1. BASIC PROPERTIES OF THE BELOUSOV-ZHABOTINSKY MEDIUM 31

Figure 2.1: Experimental droplet system made from manually aligned droplets of a
Belousov-Zhabotinsky medium. Time progression is shown from top left to bottom
right. In the the bright red state, the medium is resting and transparent/white. Ex-
citation waves propagating between droplets can be observed. Even though droplets
remained relatively stable, a merger between the central two droplets is shown in the
third frame. Pictures by Josephine Corsi (2011), Southampton.

32 CHAPTER 2. DROPLET COMPUTERS

ferroin [Gor12]. However, the resulting process is rather complicated: It has even

been modeled using 26 chemical species and 80 reactions [Gyo90], so some kind of

simplification is necessary for the practical use of the reaction models. We will first

summarize those aspects of the BZ-reaction that we will focus on in this work.

Most obviously, the BZ system visually indicates its state [Fie72, Gre78, Ger90,

Ada10]. A chemical redox indicator like ferroin can provide information on the phase

of the reaction system by switching from red to blue when a high concentration of re-

duced catalyst is outweighed by oxidized catalyst. Therefore the state of BZ-medium

can be measured optically as the intensity of blue or red components on the color

image of the medium.

These phases, as visualized in Figure 2.2, show up under well-stirred conditions or

with spatial resolution. Beginning in the responsive phase when the medium looks

red, it can be triggered into an excitation or self-excite, displaying an almost imme-

diate change from red to blue color. When the fast change occurs, the medium is in

the excited phase shortly and becomes refractory directly afterwards. In the refrac-

tory phase the medium is unresponsive against further stimulation. Then the system

recovers its red color relatively slow and becomes ready for the next oscillation cycle.

Once the BZ medium can be excited again, either by the excitation in the neighbor-

hood or through external influences, we shall refer to the medium as responsive here.

Dependent on the type of medium, the responsive phase can be quite stable and last

until some perturbation occurs. In case of the self-exciting BZ mixture, in contrast,

the responsive phase is instable such that a new oscillation cycle is started after the

system was responsive for some time.

Excited droplets can influence their neighbors, but these can only react with a new

excitation if they are in the responsive phase. When a droplet is excited, we assume

its oscillation cannot be influenced by neighboring excited droplets. But even when a

droplet triggers its neighbor into a new oscillation, there will be some delay between

the excitation of one and the next droplet, since the BZ waves will first have to cover

some distance from one BZ compartment through the membrane and into the other

droplet.

2.1. BASIC PROPERTIES OF THE BELOUSOV-ZHABOTINSKY MEDIUM 33

Figure 2.2: Abstract BZ Reaction cycle for self-exciting and excitable media. The
complex Belousov-Zhabotinsky reaction can coarsely be described as a cyclic change
of the state of the medium on the left side. For the excitable medium, the system
can wait for external stimuli very long without going through a cycle by itself. The
distribution functions α(t), β(t), γ(t) and ψ(t) describe the probability distributions
for changing from one system state to another after staying there for time t.

34 CHAPTER 2. DROPLET COMPUTERS

We analyze the system states in different areas of an exemplary BZ system of four

linearly arranged droplets in Section 2.3 and estimate their oscillation periods and

wave propagation speeds. Even though a chemical reaction is an inherently stochastic

process and subject to randomness at the molecular level, due to a large number of

molecules involved in the experiments, the excitation periods of the droplets appear

to be quite reliable. Nevertheless, there are qualitative changes happening in the

medium that are beyond the scope of our modeling, e.g. the continuous degradation

of the medium and the concomitant increase of the oscillation periods. Furthermore,

spiral waves [Win72, Gre78] form and disappear, maybe due to gas bubbles or spatial

changes in the droplet structure. Though our models do not cover the genesis of

these phenomena, we were able to describe the situation once the special conditions

are established.

2.2 Hypothetical Droplet Types

Like specialized electronic components on a circuit board, we suggest to utilize a

variety of specialized droplet types. The typical droplets, that we were describing

so far and that we are considering in this work’s experiments and models, can be

characterized as Or droplets: when we consider droplet “crossroads”, where a droplet

is connected to three or four other droplets, a signal arriving on one lane will spread

out in all other directions as long as the other droplets are responsive. Nonetheless,

we will introduce some hypothetical droplet types that can be of use when designing

more complex droplet computers as pointed out in the Outlook Section 2.6.

Or The standard droplets as we are describing them in Sections 2.3 and 2.4. These

droplets distribute incoming excitations to all other adjacent and responsive

droplets. If there are two inputs to a droplet of this type, both inputs can

equally lead to an excitation, such that the droplet behaves like a logical “And”.

High Activity A droplet that is filled with quickly oscillating, self-excitatory medium might

be used to supply a droplet network with continuous signals, e.g. acting as

2.2. HYPOTHETICAL DROPLET TYPES 35

pacemaker or timing signal. It is possible to manufacture this kind through a

different BZ medium composition or by externally influencing the droplet, for

example via optical stimulation.

And Droplets that can be stimulated by two or more synchronously arriving excita-

tion waves, but not by a single one, might be build from droplets that contain

less excitable BZ mixture. It is an open question, dependent on the further ex-

ploration of the droplets in laboratory experiments, how much synchronization

between the two input signals is necessary to allow an activation of the And

droplet.

Diode Another possibly valuable droplet type can propagate signals solely in a single

direction while blocking signals arriving from the other direction. It could thus

help to insulate some parts of a droplet network from the influences of other

substructures and in general to have more control over the range of system

dynamics. A chemical implementation can be achieved using diode membrane

channels [Mag09], through differently sized droplets [Ste98, Szy11] and probably

also with a different media composition.

Repeater To solve potential timing problems of the And droplets, we assume that we can

manufacture a repeater droplet that will, once activated, repeat an excitation

signal for longer than the typically short excited phase. This can be realized

through droplets with different sizes [Ste98] or medium compositions [Gor11a],

resulting in different oscillation periods.

Inhibition A droplet that, once activated, inhibits its adjacent droplets might prove ex-

tremely helpful. One could argue that the oscillation in the inhibitory droplet

might consume the substrate of its neighbor droplets or that it might throw its

neighbors into the refractory state, bypassing the excited state. Even though

this type of droplet might be hard to produce, we will still consider the impli-

cations of the theoretical existence of such a droplet.

36 CHAPTER 2. DROPLET COMPUTERS

species concentration
sulfuric acid 0.6 M
sodium bromate (NaBrO3) 0.45 M
malonic acid 0.35 M
potassium bromide (KBr) 0.06 M
ferroin 1.7 mM

Table 2.1: Composition of the BZ medium.

2.3 Exemplary Droplet System

We describe our modeling approaches by a system that consists of four stacked

droplets of different sizes as displayed in Figure 2.3a. The initial concentrations

of reagents are summarized in Table 2.1. For such concentrations the BZ-medium

oscillates. The largest diameter of the droplets is approximately 10−3 m and the

length of the droplet chain is approximately 6 ∗ 10−3 m. Though the droplets in this

system change their form slightly over time, the general structure and the droplets’

linear arrangement stays constant over the experimental time of approx. 48 minutes

or 2880 s (Supplementary movie1).

We reduced the description of coupled droplets to the observation of the time evolution

of the phase at selected points located close to the droplet centers. The state of the

medium is defined as the intensity of the blue channel video signal averaged over a

10 by 10 pixel rectangle around the selected points marked in Figure 2.3a. The blue

color component of the video and thus the concentration of the oxidized catalyst over

time is displayed in Figure 2.3b for the position d3 only and in Figure 2.3c for all

positions but over a smaller time interval. Probably due to impurities and due to the

small size of the lowest droplet, we could not extract reliable oscillation data for the

position d1.

From the observations of the state of medium, we measured the oscillation periods that

are displayed in Figure 2.4. The oscillation periods are determined by approximately

overlaying a “threshold line” centrally over each of the oscillation plots analogous to

1http://www.chemicalneuronalnet.uni-jena.de/Results/Project+Media.html

http://www.chemicalneuronalnet.uni-jena.de/Results/Project+Media.html

2.3. EXEMPLARY DROPLET SYSTEM 37

(a) droplet system

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0.32

 0.34

 0 500 1000 1500 2000 2500 3000

v
id

e
o
 b

lu
e
 c

h
a
n
n
e
l
in

te
n
s
it
y

time [s]

d3
fitted threshold

(b) position d3

 0.22

 0.24

 0.26

 0.28

 0.3

 0.32

 0.34

 0.36

 0.38

 1970 1980 1990 2000 2010 2020 2030

v
id

e
o
 b

lu
e
 c

h
a
n
n
e
l
in

te
n
s
it
y

time [s]

d2
d3
d4
d5
d6

(c) all droplets

Figure 2.3: Droplet system and extracted oscillation data. a) Different positions
along the droplet system are marked with the symbols d1 till d6. b) The phase at the
position d3 is plotted over the whole experimental time. Additionally, a green line
indicates the threshold that will later be used to extract oscillation periods from this
data. Vertical black lines show the interval that is represented in Figure c). c) The
intensities at the positions d2 till d6 are plotted over a small time window. Due to
impurities and the small size of droplet d1, we could not extract excitation data here.

38 CHAPTER 2. DROPLET COMPUTERS

the green line displayed in Figure 2.3b. Then the interval between the times when

the threshold line is crossed upwards gives the oscillation periods for each position as

displayed in Figure 2.4. In this figure, the main accumulation of oscillation periods

increase linearly over the whole experimental time, starting from about 5 s and in-

creasing to ca. 15 s after 3000 s. Some outlying points originated from the noise in

the video data as seen in Figure 2.3c which leads to some positions being identified

as rising oscillation flanks mistakenly. Likewise, some actually rising flanks may not

be found, resulting in longer oscillation periods in the plot.

In a similar way, we calculate the interval between oscillations at neighboring positions

to estimate the delay of the excitation wave between these positions as displayed in

Figure 2.5. The time delay for the wave propagation is not equal between all positions

pairs. Nonetheless, this does not imply that the wave travels through the medium

at different speeds. Instead, the positions are not exactly the same distances apart.

Additionally, crossing the lipid membrane, e.g. between the positions (d1,d2), (d3,d4)

or (d4,d5), does take the excitation wave longer than travelling the same distance

inside a droplet, e.g. between the positions (d2,d3) or (d5,d6).

The system is observed for 2880 s, counting around 300 oscillations during this time.

The system’s oscillation periods are increasing almost linearly over the experiment

as shown in Figure 2.4. Nevertheless, we are using constant oscillation periods in all

modeling scopes here even though we are working at incorporating the dynamically

changing system behavior. Since the system showed a rich variety of different behav-

iors around the time tm = 1000 s, we chose this time for the modeling in the next

section.

The lowest and smallest droplet at position d1 with a diameter of about 0.6 mm oscil-

lates the fastest and, for most of the time, controls the oscillations in the remaining

system. Another interesting behavior of the observed droplets is a phase of slower

self-excitation of the top droplet at positions d5 and d6 in a time window between

simulation time 300 s and 800 s. In this phase, the top droplet self-excites with an

oscillation period that is longer by a factor of about 2, compared to the oscillations

induced by the lowest droplet at position d1. There is also a short abnormal phase

2.3. EXEMPLARY DROPLET SYSTEM 39

 0

 5

 10

 15

 20

 25

 0 500 1000 1500 2000 2500 3000

o
s
c
ill

a
ti
o

n
 p

e
ri
o

d
 [

s
]

time [s]

position d2
position d3
position d4

Figure 2.4: Oscillation periods extracted from experimental video. For simplicity,
only positions d2, d3 and d4 are shown in this plot. Generally, the oscillation periods
increase over the experiment, following an approximately linear regime. A large
cluster of oscillation periods is found on the line linearly climbing from 5 up to 15 s
(second auxiliary line). These oscillations are results of trigger waves originated at
position d1. Most of the time, as can be observed in supplementary video 1, these
waves spread out and dominate the whole system. A second cluster of oscillations on
the line from 10 up to 25 s is mostly observed in the first half of the experiment (first
auxiliary line). Here droplets self-excite because of broken influence of position d1,
supplying an estimate for the self-oscillation periods of droplets. Oscillation periods
plotted below the lowest auxiliary line are most likely due to measurement and data
extraction errors, such that two successive oscillations would often add up to elements
on the main accumulations. As an exception, around the time 1200 s, a spiral wave
pattern emerges close to position d3 and leads to faster oscillations at position d2 and
d3. Since these waves arrive with a high frequency, the BZ solution at the lipid bilayer
between positions d3 and d4 does not have enough time to recover. Hence only every
second wave can be transmitted over the gap between the droplets. Partially this
long time between two oscillations already leads to self-excitations.

40 CHAPTER 2. DROPLET COMPUTERS

 0

 5

 10

 15

 20

 25

 0 500 1000 1500 2000 2500 3000

s
ig

n
a

l
ru

n
ti
m

e
 [

s
]

time [s]

(a) positions d2 and d3

 0

 5

 10

 15

 20

 25

 0 500 1000 1500 2000 2500 3000

s
ig

n
a

l
ru

n
ti
m

e
 [

s
]

time [s]

(b) positions d3 and d4

 0

 5

 10

 15

 20

 25

 0 500 1000 1500 2000 2500 3000

s
ig

n
a

l
ru

n
ti
m

e
 [

s
]

time [s]

(c) positions d4 and d5

 0

 5

 10

 15

 20

 25

 0 500 1000 1500 2000 2500 3000

s
ig

n
a

l
ru

n
ti
m

e
 [

s
]

time [s]

(d) positions d5 and d6

Figure 2.5: Signal propagation times, extracted from video data in Figure 2.3. The
red crosses indicate the time delays between excitation of one droplet position and
the following position. The green lines are fitted along the main aggregation of signal
propagation times around 10 s and is used to parameterize the delay times of the
discrete-event model in Section 2.4.4. The aggregations of delay times around 10 s are
caused by a single excitation wave passing the system in forward direction, i.e. from
di to di+1. The other two major aggregations, which are increasing and decreasing
over the experimental time, are caused by waves that pass position di before or after
the wave that is considered for position di+1. While the wave propagation speed stays
approximately constant over the experiment, the delay between two successive waves
at two distinct positions changes with the oscillation frequency over the experiment,
leading to the increasing and decreasing secondary aggregations in the plots. In the
time window between times 1000 s and 1500 s, the direction of the waves is partially
inverted, leading to a change in the measured time delays as well. Furthermore, there
are some delays marked far-off the main aggregations, which are mostly a result of
mistakes at identifying the rising flanks of the oscillation due to noise.

2.4. MODELING EXCITABLE AND SELF-EXCITING DROPLETS 41

system property observation
time frame

position fitted function

trigger-wave from d1 period 200 .. 2880 s d1 .. d6
9

2000
t+ 3.5 s

self-excitation period 500 .. 1500 s d2 .. d6
9

2000
t+ 10.25 s

refractory time, lipid bilayer 1200 s d3, d4
9

2000
t+ 2 s

oscillation period, spiral wave 1230 s d3, d2
9

2000
t+ 1 s

Table 2.2: Summary of the functions that are fitted based on Figure 2.4. The fit
of the trigger waves’ oscillation period, which control the system most of the time,
is obvious. Fitting the self-excitation times that can be observed between times 500
till 1500 s is harder because of the smaller number of samples and a large variance
therein. Choosing a linear function with the same slope as the trigger-wave function
leads to an acceptable fit, at least in the small time window that the self-oscillations
appear in. For the remaining parameters, the refractory times of droplet centers,
droplet borders and the oscillation times of spiral waves, there is basically just one
point along the time axis available. So following the previous two functions, we
assumed the same slope again here. Nonetheless, for modeling the system behavior
around time t = 1000 s, the error should be relatively small because the underlying
observations are made close to this time as well.

between the times 1050 s and 1250 s when a spiral forms in the lower middle droplet

and leads to an oscillation period that is reduced by a factor of approximately 0.7,

compared to the triggered oscillations. While these fast oscillations propagate into

the lowest droplet after some time, they do not cross the membrane to position d4

and above. These observations allow us to characterize the behavior of the droplets

as summarized in Table 2.2.

2.4 Modeling Excitable and Self-Exciting Droplets

For model building, there are typically versatile approaches available that influence

model characteristics like the level of detail, the accuracy, the simplicity, computabil-

ity and other features. Differential equation approaches are often based on first princi-

ples, highly detailed but mostly also computationally demanding. They are probably

best suited for understanding the behavior of the BZ reaction, especially when hap-

pening under uncommon conditions like inside a lipid membrane with its side effects.

42 CHAPTER 2. DROPLET COMPUTERS

This understanding is the basis for optimizing the chemical composition of medium,

oil and lipids to produce a desired behavior.

But for figuring out which kinds of behavior could actually be of use to perform

some kind of computation, faster and larger models including hundreds and more

droplets become necessary. This is for example the case with cellular automaton or

event-based simulation models of droplets that are simplified to use discrete states

instead of continuous concentrations. In an even more abstract sense we will also

need modeling techniques, such as high level programming languages to describe the

function of complex droplet networks. We will give a short outlook into this direction

in Section 2.6.

Naturally, the further one of these modeling viewpoints is apart from the first princi-

ples of the system, the harder will it be to obtain the necessary parameters. Ideally,

we would like experiments and first principle models to parameterize the models on

the next abstraction level. In contrast here, some of the higher level properties such

as oscillation periods and wave propagation velocities can be observed directly in the

experiment.

2.4.1 Well-Stirred Ordinary Differential Equation Model

Brusselator- and Oregonator-like [Pri68, Noy72, Fie72] models based on ordinary

differential equations are commonly used to describe the time evolution of a per-

fectly stirred BZ-medium. We are using variations of such models by Szymanski

and Gorecki, that allow obtaining the necessary system parameters directly from the

experimentally used concentrations [Szy11, Gor11a, Gor12]. In the simplified two

variable interpretation, the model describes the dynamics of one activating chemical

species x and one inhibiting chemical species z. They correspond to bromous acid

(HBrO2) and ferroin (Fe(phen)3+3) concentrations, respectively. It reads as follows:

∂x

∂t
= ϵ1h0Nx− ϵ2h0x

2 − 2αϵ1MK


1

β
+ q

1

h0

z

1− z


x− µN

x+ µN
(2.1)

2.4. MODELING EXCITABLE AND SELF-EXCITING DROPLETS 43

∂z

∂t
=
h0N

C
x− α

KM

Ch0

z

1− z
(2.2)

The necessary model parameters are h0: the Hammett acidity function of the solution

and the concentrations of K : KBr, M : CH2(COOH)2, N : NaBrO3 and the catalyst

C : [Fe(phen2+
3)] + [Fe(phen3+

3)] as listed in Table 2.1. Further fixed parameters are

µ = 1.6 ∗ 10−5, α = 2.6 ∗ 10−4, ϵ1 = 1200, ϵ2 = 6700, β = 1000 and q = 0.51.

The oscillation cycle, cf. Figure 2.2, starts the excited phase with a moderate concen-

tration of the activator x and a low concentration of the inhibitor z. Then the amount

of inhibitor and activator rise rapidly and lead to a negative second derivative dx
dt

for

the activator equation until x will finally drop back to its initial low value. From this

point on, we call the BZ solution refractory with a low activator concentration and

high but slowly decreasing inhibitor concentration z.

Now, if there was a small inflow of activator into the system, the BZ mixture could not

be triggered into the next oscillation because the high inhibitor concentration would

quickly degrade the activator. But when the inhibitor concentration z drops below a

critical value, an inflow of activator x will not be degraded fast enough and the BZ

mixture can be triggered into a new oscillation cycle. We define the responsive phase

such that it begins when a specific activator inflow is sufficient to trigger the next

excitation in the BZ mixture and lasts until the next excited state begins. Clearly,

the begin of the responsive state and thus the threshold for the concentration of the

inhibitor z depends on the amount of activator that flows into the system. This inflow

would typically stem from an arriving excitation wave when considering spatially

inhomogeneous BZ mixtures. Hence it is not possible to describe this point without a

characterization of the membrane boundaries or the diffusion coefficients. In contrast,

when using partial differential equations and appropriate diffusion coefficients in the

next section, the inflow of activator from an arriving excitation wave is defined.

Dependent on the BZ system characteristics, the next responsive phase can last in-

finitely in the case of the excitable medium. Alternatively, the inhibitor can, in

self-excitable medium, drop so low that the next excitation wave is triggered reliably

after a certain interval.

44 CHAPTER 2. DROPLET COMPUTERS

2.4.2 Reaction-Diffusion Partial Differential Equation Model

For describing the spatial and temporal propagation of excitation waves in addition to

the well-stirred dynamics of the BZ system, we need to include space. In the simplest

form, this can be done by adding the Laplacian term into differential equation (2.1)

of system variable x that is supposed to diffuse [Gor11a, Gor12], arriving at equation

(2.3). We consider the molecules represented by system variable z to be larger, leading

to diffusion on a slower timescale that will be ignored here. This change introduces

the diffusion coefficient Dx of species x as new parameter, resulting in the equations:

∂x

∂t
= ϵ1h0Nx− ϵ2h0x

2 − 2αϵ1MK


1

β
+ q

1

h0

z

1− z


x− µN

x+ µN
+Dx △ x (2.3)

∂z

∂t
=
h0N

C
x− α

KM

Ch0

z

1− z
(2.4)

The partial differential equation models of BZ droplets proved their value for investi-

gating the interaction between two droplets [Gor12] and, in a slightly modified form,

for designing circuits or logic gates of about ten droplets for sub-excitable medium as

we will show in Section 2.5.

Many parameters, such as diffusion coefficients for different species or at different lo-

cations in the droplet, might be hardly observable. Here, parameter fitting approaches

are a practical way of deducing knowledge about the system from macroscopic proper-

ties like wave propagation velocities or oscillation periods [Gor12]. On the downside,

these parameter fitting methods are indirect and results are not guaranteed to be

unique.

However, the spatial expansion of the ordinary differential equation model of the

last section is not straightforward. Causes are the immense computational efforts of

the simulation, numerical instabilities, diffusion properties through the lipid bilayer

that have to be determined in addition to coefficients in the medium and boundary

conditions at the droplet borders. For example in supplementary movie 1, the waves’

2.4. MODELING EXCITABLE AND SELF-EXCITING DROPLETS 45

passage over droplet borders and the resulting wave delay can be observed. Also, close

to the droplet borders the BZ reaction can be inhibited [Ste98], whereas we assume

a spatially homogeneous BZ medium in equations (2.3) and (2.4). Computations can

be sped up using graphics card acceleration with CUDA [Jan10] and by specialized

simulation techniques [Bar91]. Nonetheless, the numerical integration of such a partial

differential equation system is computationally expensive and will mostly be used for

small systems, considering few excitation waves.

2.4.3 Cellular Automaton Models

The problems of complex parameter sets and high computational expenses can at

least partially be resolved in cellular automata [vN66, Wol83]. In this case, more

phenomenological, ad hoc models are built, which rely on less unobservable param-

eters, but also less on first principles but rather on the observable properties of the

system. Space is mostly discretized into a regular grid. Also time and cell states are

discrete and update rules describe how each cell’s state is calculated from the cell and

its neighborhood’s previous state. The discretization usually uses a varying number of

states that fall into the classes of excited, refractory and resting or responsive phases.

Examples for such automaton models could be four state systems [Gre78] or three

state automaton models [Ada01, Ada10, Hüt12] that were already used to simulate

systems of large droplet numbers.

Generally, cellular automata do not necessarily produce the same behavior for differ-

ent spatial lattices [Shi03]. For instance, when simulated in two or three dimensions,

the earlier cellular automaton models did not correctly reproduce the curvature that

is observed in the real BZ medium. Also they did not account for the dispersion

relation, meaning that the medium is less excitable shortly after being excited and

thus transmits excitation waves slower. These effects were captured in more recent

simulations [Ger90, Bar91].

Even though there are approaches of timed automata [Alu94], there is another chal-

lenge when modeling using cellular automata: the typically fixed time steps pose ad-

ditional constraints in contrast to the irregular proportions between different phases

46 CHAPTER 2. DROPLET COMPUTERS

in the BZ system. This means that either the temporal resolution of the phases is

coarse or that a large number of states has to be used for each phase to generate the

observed timing fractions.

2.4.4 Discrete-Event Model for BZ Droplets

To follow the efficient simulation approach of cellular automata while including the

possibility for exact timing, we propose a discrete-event based modeling and simu-

lation approach [Fis01]. The parameterization of this model is relatively simple and

can be derived from principal observations of the excitable medium. Furthermore,

many droplet system can be simulated efficiently, i.e. many hundred excitations of

systems of about 100 droplets can be simulated in less than a second. It uses coarse

grained space and few discrete droplet states but continuous time. These states are

the excited, the refractory and the responsive phase as introduced in Section 2.1 and

as used by most cellular automaton approaches. Either deterministic or stochastic

state transition functions can be applied, though we will only demonstrate determin-

istic state transitions in this work. We define the state transition behavior of the

droplets with the following mathematic functions:

• α(τ) Probability density function for the transition time from responsive state to

the excited state. Hence this parameter describes the inclination of the system

to self-excite.

• β(τ) Probability density function for the transition time from excited to the

refractory phase. Hence the length of the excited phase.

• γ(τ) Probability density function for the transition time from refractory to

responsive phase. Hence the length of the refractory phase.

• ψ(τ ′) Probability density function for the transmission time of a signal from

one excited droplet to another responsive droplet taking the time τ ′.

For these functions, τ is the time since entering the current state. For the transmission

of excitation waves, in contrast, τ ′ is the time needed to propagate the excitation from

2.4. MODELING EXCITABLE AND SELF-EXCITING DROPLETS 47

one droplet to another. The basic condition for transmission is that one droplet is

excited while the other one is responsive. But since the spreading of waves takes some

time, a delay τ ′ is sampled from the distribution function ψ(τ ′). So if one droplet is

excited between the times t1 and t2, it can trigger an excitation in an adjacent droplet

if this is responsive between t1 + τ ′ and t2 + τ ′.

Simulations

From an initial state of the system, all following events are sampled using the distri-

bution functions α(τ), β(τ), γ(τ) and ψ(τ ′). The times for these events are organized

in a priority queue so that only changing droplets’ states contributes to computational

costs. At each simulation step, the earliest next event from the event list is selected,

removed, verified and then executed by modifying the simulation data structure.

Subsequently, all possible events for the modified droplet are inserted into the event

queue. Events have to be verified to check if the situation of the droplet they concern

has not changed in the time between issuing the event and the current simulation

time. An event belonging to a droplet can for example become outdated if another

droplet triggers it into an early excitation or if it is stimulated from outside the system

to input data or to simulate noise. Therefore, less active or inactive parts of droplet

networks do not require high computational efforts. The computational complexity

of simulating a network of n droplets for a time t scales with O(t · n · log(n)). The

factor n is due to the increase in the number of events with more droplets while the

logarithmic factor results from modifying the priority queue. Our simulation software

can be freely downloaded from the website2.

Representation of Droplet Networks

Generally for our simulation system, an arbitrary graph structure can be used to

define the connections between different droplets. This graph does not need to have

a two or three dimensional embedding, such that we are free to explore arbitrary

2www.neu-n.eu

48 CHAPTER 2. DROPLET COMPUTERS

droplet network topologies.

For us, in analogy to an undirected graph G = (V,E) which is defined by the tuple

of its vertices and edges, a droplet network N = (D,E) is defined by the tuple

of its droplets D = {d1, .., dn} and its connectivities or edges E ⊆ D × D. Each

droplet di can be one of the droplet types as defined in Section 2.2: di ∈ D =

{dNorm, dLowEx, dSlow, dIn, dOut}.

In simulation as well as in laboratory experiments, droplets will many times be ar-

ranged in two-dimensional m × n grids, such that a matrix-like description of the

droplet network becomes convenient:

N =


d1,1 d1,2 · · · d1,n

d2,1 d2,2 · · · d2,n
...

...
. . .

...

dm,1 dm,2 · · · dm,n


This description implies that adjacent droplets in either a Moore- or Von Neumann

neighborhood are considered to be connected without explicitly mentioning the edges,

i.e. di,j is connected to another droplet dk,l iff |i− k|+ |j− l| ≤ 1 for a von Neumann

neighborhood or iff |i− k| ≤ 1 ∧ |j − l| ≤ 1 for a Moore neighborhood.

Spatial Discretization

An intuitive discretization of space might be to choose one discrete droplet per po-

sition in Figure 2.3a, i.e. six droplets, such that the larger droplets are divided into

smaller sub-compartments. In this case, this approach would not reproduce the ob-

served wave dynamics:

Observing the experimental system in Section 2.3, the time required for excitation

waves to pass from one position di to an adjacent one di+1 is in the same order of

magnitude as the oscillation period. More importantly, the wave propagation time is

larger than the refractory period of about seven seconds. This means, the actually

2.4. MODELING EXCITABLE AND SELF-EXCITING DROPLETS 49

travelling excitation waves can be hidden in the signal transmission times of the dis-

crete model. Then, an excitation wave can pass from one sub-compartment to another

via the signal transmission delay, even if there is another excitation wave moving in

the opposite direction, which would actually annihilate the first wave in the real or

differential equation systems. Furthermore, cyclic oscillations can form between two

sub-compartments when two abstract oscillations move in opposite directions without

canceling each other out. By subdividing droplets into smaller sub-compartments, we

can choose the spatial discretization so fine that the signal propagation time τ ′ be-

comes smaller than half of the smallest refractory period. This resolves the problem:

Any excitation started from sub-compartment di at time t0 will not arrive at sub-

compartment di+1 before t0 + τ ′. When sub-compartment di+1 is now sending out an

opposed excitation at t0+ τ
′− ϵ, shortly before the first wave hits, di+1 will clearly be

refractory. The opposed wave will hit the first sub-compartment di at the earliest at

time t0+2τ ′−ϵ, which is still before the first sub-compartment di leaves the refractory

state again.

So we divided the positions up into few smaller sub-compartments, such that the

wave propagation times for the smaller compartments are shorter than half of the

refractory times as displayed in Figure 2.6. Hence we represent the real system of

four droplets with a system of 33 discrete sub-compartments. Each of the positions

from Figure 2.3a is replaced by a set of four to six sub-compartments for the gradual

signal transmission, another two to represent the signal transmission properties of

the lipid bilayer and one more sub-compartment to record the excitations at the

centers of d1 till d6. The lipid bilayer representing sub-compartment are shared by

two adjacent positions and are replaced by sub-compartment of higher excitability in

the case of the contact region between positions (d2, d3) and (d5, d6), where no bilayer

is present in the experiment. For the sub-compartment representing medium, we

used a refractory time of six seconds, while using seven seconds for the lipid bilayer

representing sub-compartment.

50 CHAPTER 2. DROPLET COMPUTERS

Figure 2.6: Mapping from the physical droplet system into the model composed
of sub-compartments. While the upper part of the figure represents the physical
droplet system as displayed in Figure 2.3, the lower part represents the discretization
into homogeneous and discrete sub-compartments. Here, the white compartments
represent the actual BZ medium between the observed positions and simulate the
gradual propagation of excitation waves. The colored compartments are not delaying
the wave propagation but are used for varying excitabilities and for observation. We
use the blue sub-compartments to represent the droplet borders with their potentially
higher excitability threshold that can lead to trigger waves spreading through the
medium but not propagating over the lipid bilayers as observed in Section 2.3. The
red droplets are the analogues to the blue droplets, representing the medium at the
center of the large droplets. Green droplets represent the positions d1 ... d6 and are
introduced into the model for observing the states at these positions.

2.4. MODELING EXCITABLE AND SELF-EXCITING DROPLETS 51

Discrete-Event Model Instances

To demonstrate the capability of the discrete-event model to reproduce the qualitative

system behavior, we show the two most prominent behaviors of the BZ droplet system

presented in Section 2.3. To instantiate the discrete-event model in this case, we need

to provide the distribution functions α(τ), β(τ), γ(τ) and ψ(τ ′). In consistence with

the differential equation models introduced before, we will only use deterministic

transition functions by using the Dirac delta function δ(τ − τ0). The τ0 values will

then be chosen as the timing parameters that are known from the experiments (c.f.

Section 2.3) or could be determined from the ordinary differential equation models. In

spite of the deterministic functions chosen here, it would also be possible to sample the

phase transition times for example from Normal distributions, which would require

the variances as further parameters though. We know that the concentration of the

activating species HBrO2 is noticeably high only for a very short period of time from

the ordinary differential equation modeling in Section 2.4.1. Hence we simplify the

excited phase to a single point in time, switching from the responsive to the excited

and to the refractory behavior instantly by setting β(τ) = δ(τ − 0). The transition

functions for the discrete-event model sub-compartments as we are using them here

are summarized in Table 2.3.

First, we simulate the dominance of the trigger waves, generated at position d1 around

experimental time 1000 s, over the remaining system in Figure 2.7. In simulation

and approximately also in the real system, all signals are oscillations with the same

periodicity as d1 but with a shifted phase.

As second instance of the discrete model, displayed in Figure 2.8, we decrease the self-

excitation period of position d3 down to 6.7 s. This value is close to the oscillation

periods observed between experimental times 1000 and 1200 s when a spiral wave

dominates position d2 and d3. Furthermore, the oscillation frequency is below the 7

s refractory period that we chose for lipid-bilayer droplets, resulting in blocking at

least every second trigger wave. It means that the dominance of the trigger waves

from position d1 is interrupted for positions d4 till d6. Instead these upper droplets

are controlled by every second spiral wave that can pass into the third droplet at

52 CHAPTER 2. DROPLET COMPUTERS

Parameter τ0 in δ(τ − τ0) for distribution:
α(τ) β(τ) γ(τ) ψ(τ)

length of phase: responsive excited refractory transmission
d1 0 s 0 s 8 s 0 s
d2, d3, d5, d6 9 s 0 s 6 s 0 s
d3 normal 9 s 0 s 6 s 0 s
d3 spiral 0.7 s 0 s 6 s 0 s
lipid bilayer droplet 8 s 0 s 7 s 0 s
medium d1 - d2 0 s 0 s 6 s 10

4
s

medium d2 - d3 9 s 0 s 6 s 11.2
4

s
medium d3 - d4 9 s 0 s 6 s 12.8

6
s

medium d4 - d5 9 s 0 s 6 s 11.75
4

s
medium d5 - d6 9 s 0 s 6 s 9.8

4
s

Table 2.3: Parameters for the discrete-event model used in the shown simulations.
δ(τ−τ0) denotes the Dirac delta function. The parameters are estimated from analyz-
ing the experimental data and from ordinary differential equation modeling. Param-
eters for droplet d1 are chosen with a zero responsive time since we only know that
it triggers excitations every eight seconds, but not if it would be possible to excite it
earlier. For the signal transmission times, fractions of four and six are chosen, because
the experimental droplets are subdivided into four or six smaller sub-compartments
droplets, to reduce the otherwise large signal transmission delay. For the transmission
time between position d1 and d2, we chose 10 s since no measurements were avail-
able here. Membrane sub-compartments and the lipid bilayer sub-compartments are
parameterized with different fractions between refractory and responsive time: The
lipid bilayer area seems less excitable since trigger waves that propagated through
the medium could not pass over the droplet borders in the experiments.

2.4. MODELING EXCITABLE AND SELF-EXCITING DROPLETS 53

 0

 0.5

 1

 1.5

 2

 2.5

 950 960 970 980 990 1000 1010

d
is

c
re

te
 s

ta
te

s
 [

0
,1

,2
]

/
b

lu
e

 c
h

a
n

n
e

l
in

te
n

s
it
y

time [s]

sim d2
measured d2

sim d5
measured d5

Figure 2.7: Comparison of the discrete model simulation for excitable droplets with
the experimental system in positions d2 and d5 (cf.Fig. 2.3a). The data reflects the
predominant control of the trigger waves generated by the first droplet at position
d1. The time axis for the experimental data is shifted with the function t′ = (t− 5 s)
to fit the curves of the discrete-event simulation. Furthermore, the experimental blue
channel intensity is scaled to fit the interval (0, 2) that is used by the discrete-event
simulator to indicate the states responsive, refractory and excited with 0, 1 and 2
respectively. No further scaling of the time-axis was applied.

54 CHAPTER 2. DROPLET COMPUTERS

 0

 0.5

 1

 1.5

 2

 2.5

 1150 1160 1170 1180 1190 1200 1210

d
is

c
re

te
 s

ta
te

s
 [

0
,1

,2
]

/
b

lu
e

 c
h

a
n

n
e

l
in

te
n

s
it
y

time [s]

sim d2
measured d2

sim d5
measured d5

Figure 2.8: Comparison of the same simulation and experimental data as in the
previous figure, but now at a later time-interval showing the effect of faster spiral
waves in positions d2 and d3 on the remaining system. Since the system is modeled
at time 1000 s but the related system behavior is found around time 1200 s, the time
axis for the experimental data is rescaled with the function t′ = (t ∗ 0.95 + 57.5)
to compensate for the lower oscillation frequency at this slightly later time of the
experiment.

2.5. MODELING OF SUB-EXCITABLE DROPLETS 55

position d4. If the period of the spiral waves was a bit longer, every second wave

would not have arrived fast enough to stop positions d4 till d6 from self-excitation.

This effect can be observed in the video (Supplementary file 1) around time 1300,

when self-excitation appears in the upper droplets.

2.5 Modeling of Sub-Excitable Droplets

Also sub-excitable BZ droplets were modeled using partial differential equations to

design small networks implementing logic and arithmetic functions that could later

be used as building blocks for larger systems [Hol11a]. Because the droplets explained

here are experimentally realized as light projected in the shape of circles, they are

referred to as discs in this section.

Logically symbolic waves are able to traverse the network modulated by interaction

with pathways and other waves. The disc interior can be exploited for free space

collision style reactions [Ada02b] where the pore loci and efficiency can compartmen-

talize the resulting reaction [Ada11b]. Circuits have been created from logical sub

assemblies in orthogonal and hexagonal networks [Hol11a, Ada11b]. The functional

density can be increased when including more variations in relative disc size, pore

efficiency and connection angles [Hol11a].

Disc designs have been simulated on a two variable version of the Oregonator model [Noy72]

as a model of the BZ reaction [Zai70, Zha73] adapted for photo-sensitive modulation

of the Ru-catalyzed reaction [Kuh86] similar to the partial differential equation system

described in Section 2.4.2 Use of a photo-sensitive adapted version of the Oregona-

tor model permits a simple migration from simulation to experiment. Circuit de-

signs from the simulation can be projected directly onto an actual photo-sensitive BZ

medium [Hol11b]. Numerical simulations are achieved by integrating the equations

using the Euler-ADI3 method [Pre92].

Contrasting previous logic gates and composite circuits designs using the BZ sub-

strate, for example [Tót95, Ste96, Mot99, Gor09], Figure 2.9 presents an example for

3Alternating direction implicit method.

56 CHAPTER 2. DROPLET COMPUTERS

logic elements that can be created using nothing other than interconnected BZ discs.

Wave fragment flow is represented by a series of superimposed time lapse images (un-

less stated otherwise). To improve clarity, only the activator wave front progression

is recorded.

Next to logical AND, NAND and NOT gates, both for adaptive behavior in natural

and synthetic computation is memory. It allows animals and machines to build an

internal state independent from the current external world state. We present an

example 1 bit volatile read write memory cell constructed entirely with BZ discs.

Independent but similar to previous designs [Mot99, Mot01] in so much that the

existence or absence of a rotating wave represents the setting or resetting of 1 bit of

information.

When two BZ waves progress in opposite directions around an enclosed channel, loop

or ring of connected discs, then at some point the two opposing wave fronts will meet

and are always mutually annihilated. Nevertheless, if a unidirectional wave can be

inserted into the loop then that wave front will rotate around the loop indefinitely4.

Furthermore the rotating wave can be terminated by the injection of another asyn-

chronous wave rotating in the opposite direction. Opposing inputs into a loop are

analogous to a memory set or reset. Reading the state of the cell without changing

the state can be achieved by connecting another output node where a stream of pulses

can be directed to modulate other circuits [Gor03] (Figure 2.9).

The loop and a unidirectional gate (diode) are the two key constructions of this type

of memory cell. Unidirectional gates in BZ media have previously been created by

exploiting asymmetric geometries or chemistry on either side of a barrier [Agl96]. An

alternative design is possible however using discs connected with different apertures.

The operation relies on the relationship between the wave expansion and the angle

of the connection. Fine control of the wave beam would in theory allow other angles

of connectivity [Ada11a] and other functions.

4For as long as the chemical reagents can sustain the reaction.

2.6. CONCLUSIONS 57

(a) (b)

Figure 2.9: Memory cell with additional diodes on the cell inputs. Two additional
angled diode junctions are added to each of the input discs (a & b). This prevents
a reverse wave flow back down either of the inputs. An example output disc is also
connected (top left). (a) Wave insertion at (top right) a input node results in a
persistent counter-clockwise wave. Reverse wave flow down the opposing (bottom)
input is blocked by an angled diode junction. (b) Simultaneous a & b inputs produce
one output pulse c and annihilate wave rotation. Figures by Julian Holley (2011),
Bristol.

2.6 Conclusions

In this chapter, a summary on current techniques of modeling compartmentalized

excitable media was presented and exemplified with lipid covered droplets of Belousov-

Zhabotinsky BZ medium swimming in oil. The techniques are accompanied by an

experimental system of four droplets and the analysis of their behavior over a time

period of about 48 minutes, during which we registered about 300 oscillations waves.

Starting from a non-spatial ordinary differential equation model, a spatial perspective

is reviewed in the partial differential equation models. Then, spatial and temporal

discretization to speed up simulation studies using cellular automata is discussed.

Finally, in the Sections 2.4.4, an event-based model is proposed to achieve higher

timing precision while preserving the efficiency for the investigation of large systems.

Even though we show the qualitative reproduction of the systems behavior with the

58 CHAPTER 2. DROPLET COMPUTERS

discrete-event model, there are some effects that are not yet covered by this approach.

Most obviously, the real-world oscillation periods are increasing over the experimental

times up to a factor of about three. This is neither covered by the differential equations

nor by the discrete droplet models. While we are currently working on extending the

differential equation systems to include this effect, it might in principle be easier to

reproduce this effect in the more phenomenological event-based systems by adding the

global time t as another parameter, such that the probability distribution functions

look like α(t, τ), β(t, τ), γ(t, τ) and ψ(t, τ ′). Furthermore, the dispersion relation

[Kee86, Ger90] is another currently neglected effect, meaning that excitation waves

move faster when the medium had more time to recover after the previous excitation.

Here partial differential equation approaches already capture this effect but it would

also be possible to have a signal transmission function ψ(τ ′) that would consider the

droplets excitation history.

Observing the experimental data of Figure 2.3c, it becomes clear that a certain level of

noise is part of the system, even though some quantum of the noise will also be due to

the camera and digitization process. So we expect some uncertainty about the length

of the oscillation period [Ali97], about the length of its phases, about the amplitudes,

about the geometries of droplets, about the excitability of droplets and about the

connectivity between droplets. These effects are probably rather troublesome prop-

erties of the system that will make the design of robustly working droplet computers

more challenging. Consequently, a useful model of computing droplet systems will

have to consider random perturbations. Though we do not show how to estimate the

correct noise levels from the experiments here, especially the discrete models allow a

parameterization of the transition functions, e.g. by representing the fluctuations as

Gaussian probability density functions instead of the Dirac delta function.

The research on computing droplet systems should eventually lead to non-Boolean

computing and information processing systems. But for both, unconventional as

well as conventional computing approaches, the droplet models from this chapter

constitute a foundation on which further experiments are built. Even though networks

of conventional binary logic gates like in Section 2.5 and in the following Chapters

2.6. CONCLUSIONS 59

(a) Network Schematic (b) Network Simulation

Figure 2.10: A counting droplet network as design and in simulation. Dependent on
the number of stimulated inputs, four different outputs will be excited maximally,
representing the sum of the stimulated channels. a) Schematic of the droplet circuit
using Or, High Activity and the postulated And, Repeater, Diode and Inhibition
droplet types. b) The three dimensional implementation of the network design is
shown with red droplets denoting responsive medium, while the white and blue tones
represent the excited and refractory states.

might not be the ideal application for droplet based computing, the simplicity of

writing down binary logic formulas might lead to some important applications such

as smart drugs, which could already benefit from implementing even simple logics as

hypothesized in Chapter 3.

As a simple example of a larger sized droplet system using binary logic, the “input

counter” network is shown in Figure 2.10. It encodes inputs and outputs to and

from the network through the absence or presence of excitations. It discriminates be-

tween zero, one, two or three inputs that are stimulated independently. In response,

it should always stimulate exactly one out of four possible output lanes maximally,

dependent on the number of activated inputs. The connectivity of the network is

displayed in Figure 2.10a and leads to the 3d structure of the network that is dis-

played in Figure 2.10b when fed into the simulator. Noticeably the schematic graph

uses droplet connections that cross over, effectively necessitating a three dimensional

implementation of the droplet system that we cannot yet produce experimentally.

60 CHAPTER 2. DROPLET COMPUTERS

Chapter 3

Evolution of Droplet Computers

and Signals

In this chapter, evolutionary algorithms [Fog66, Rec71, Sch75, Hol75, Koz89, Fog94,

Bey02, Wei02, Eib08] are considered as a mechanism to generate droplet network

designs as well as to infer adequate symbol representations when building logic gates

or pattern discriminators from droplet networks. Given an optimization problem,

an evolutionary algorithm selects good individuals in a population of solutions that

changes over time via genetic operators. Starting from a randomly generated popu-

lation and guided by the fitness function, after several generations, the evolutionary

algorithm returns an approximating solution to the problem. The use of evolutionary

algorithms to design logic gates and circuits has been studied in various contexts,

e.g., in the context of genetic programming [Koz89], evolvable hardware [Mil00a] and

Cartesian genetic programming (CGP, [Mil00b]). For generating artificial neural net-

works, evolutionary computation was already used to find suitable parameters and

structures [Fog90, Bee92, Cli93, Yao97]. Also in the context of excitable media, 2D

cellular automata have been evolved to fulfill binary logic fitness functions [Sto08].

These two dimensional designs are related to the mostly planar droplet network graph

structures that can so far be generated in laboratory experiments, as reviewed in

Chapter 2.

61

62 CHAPTER 3. EVOLUTION OF DROPLET COMPUTERS AND SIGNALS

Here, it is not the aim to generate a single droplet network design that could act as

a universal computer, solving any kind of computable problem. Instead, it appears

feasible and useful to build droplet devices that compute results for particular problem

instances in the sense of Zauner’s anti-universal machines [Zau96]. Nonetheless, given

a problem instance, input data needs to be specified in some way. This could either

happen through the initial state of the droplet system or during the run time, most

probably through external stimulation of certain droplets. As outlined in Chapter 1 in

Figure 1.4, it is an important design decision which encoding, i.e. which abstraction

and concretization function, is used to feed inputs into the droplet network. Most

probably the optimal encoding will depend on a number of factors like the type of

task, the number of used symbols, parameters of the computing substrate, the applied

quality measure, and how much computation can be done outside the droplet network

to generate and to interpret the encoding. Finding the symbol encoding together with

a suitable droplet network will be the focus of the following Section 3.1 that coarsely

follows the publications [Gru12, Esc13]. Then, the later Section 3.2 will summarize

finding an implicit generative encoding [Hor01] for the physical design of a droplet

network with a fixed input encoding, resulting from Alexandra K. Diem’s Master’s

thesis [Die12a].

3.1 Network - Symbol Co-Evolution

Several evolutionary computation approaches are investigated as a mechanism to

“program” networks of excitable chemical droplets. For this kind of system, a task

is assigned while concentrating on the characteristics of the signals representing the

input and output symbols. Given a Boolean function as target functionality, 2D

networks composed of 10×10 droplets were considered in our simulations. Three dif-

ferent set-ups were tested: Evolving network structures with fixed on/off rate coding

signals, co-evolution of networks and signals, and network evolution with fixed but

pre-evolved signals. Evolutionary computation served in this work not only for de-

signing droplet networks and input signals but also to estimate the quality of a symbol

3.1. NETWORK - SYMBOL CO-EVOLUTION 63

representation: It is assumed that a signal leading to faster evolution of a successful

network for a given task is better suited for the droplet computing infrastructure.

Results show that complicated functions like XOR can evolve using only rate coding

and simple droplet types, while other functions involving negations like the NAND

or the XNOR function evolved slower using rate coding. Furthermore, symbol rep-

resentations were discovered that performed better than the straight forward on/off

rate coding signals for the XNOR and AND Boolean functions. To conclude, this

approach is suitable for the exploration of signal encoding in networks of excitable

droplets.

While it is clearly possible to rebuild basic and combined logical gates in excitable

chemical media [Hol11b], this might not necessarily use the capabilities of unconven-

tional computers to their greatest extent [Gen12, Ste12]. Nonetheless, in this section,

we will evolve droplet networks fulfilling basic logical functions because of their sim-

plicity while exploring the impact of different input symbol encodings. So the focus

is not mainly on the evolved functionality but rather on the varying difficulty of the

evolution process. Additionally we also investigate the symbol representation in order

to discover an adequate and efficient interpretation for them.

Since we cannot influence the amplitude of the excitation spikes, a list of times at

which we excite particular droplets should contain all the information that is available

to the computing droplet system. Nonetheless, different features of this list of excita-

tions might be of more or less importance. From neuroscience we know for example

the coding techniques rate coding, population coding and temporal coding [Bro04].

In the case of rate coding, the (averaged) oscillation frequency is used to distinguish

different meanings while the exact timing of the spikes would be ignored. Population

coding on the other hand would mean that the activity of different sub-populations

of droplets denoted different meanings. For temporal coding, the precise timing dif-

ferences between excitation spikes are utilized as information carrier. These coding

schemes might be candidates for excitable droplets as well.

64 CHAPTER 3. EVOLUTION OF DROPLET COMPUTERS AND SIGNALS

3.1.1 Methods

Self-Exciting Droplets

In this study we use the droplet simulation model that was explained in Section

2.4.4 with the following parameters: normal droplets dNorm as well as input and

output droplets are modeled with an expected oscillation period of 16 s, which is

composed of 10 s responsive time τres, 1 s excited time τex and 5 s refractory time

τref . Signal propagation delays τprop are 1 s. The exact timing parameters for each

phase are sampled using normal distributions with a standard deviation of 0.05 s

around the mean values given before. Less excitable droplets dLowEx use the same

timing distributions but require at least two adjacent droplets to be excited at the

same time to trigger an excitation.

We also use variations of the model for less excitable droplet types, such that at

least two concurrent excitations are necessary to trigger a droplet into an earlier

excitation. Furthermore, to allow for a richer dynamic behavior, we decided to include

one more droplet type that would oscillate slower. The different oscillation period

can be achieved by differently composed BZ mixtures. In this case, all timing mean

values as well as the standard deviations are multiplied by an arbitrary factor of 3
2
.

Droplet Networks

We perform in silico experiments of droplet networks in a 10 × 10 grid of simulated

droplets that are connected in a Moore neighborhood of radius one, such that all

directly adjacent cells can excite each other as explained in Section 2.4.4. These

geometric properties of the networks were chosen based on the size of networks that

can presumably be achieved experimentally by our collaboration partners in the near

future. Up to four different kinds of cells are used, which represent empty cells, normal

droplets, droplets of lower excitability and droplets with longer oscillation periods.

Furthermore, there are two fixed input droplets and two fixed output droplets defined

on the network grid. They can be used to dynamically feed a stream of excitations

into and out of the droplet network. The positions of the input and output droplets

3.1. NETWORK - SYMBOL CO-EVOLUTION 65

are fixed to arbitrary values, coarsely in the middle of the left and right hand sides

of the grid, as visualized in Figure 3.1 (a).

Signal Encoding

When representing binary signals by rate coding, we stimulate droplets as much

as possible for a symbol ’1’ and not at all for a symbol ’0’. When droplets are

maximally stimulated, the oscillation time will be τex + τref = 6 s. Normal droplets

that are left alone do not stop oscillating but their frequencies are lower with periods

of τex + τref + τres = 16 s.

To allow more complex symbol representations, we use a timing pattern that deter-

mines which input droplet is stimulated from the outside at which times as visualized

in Figure 3.1 (b). We divide the length T of the stimulation pattern up into m small

intervals {I1...Im}, each of the length △t = T
m
. Hence, interval Ij is defined between

the times (j−1) ·∆t and j ·∆t. Considering a single droplet only, we define a pattern

S(1) as a Boolean vector, which states if the droplet is stimulated in the interval Ij or

not. To describe meaningful symbols, ∆t should be small in comparison to a droplet’s

oscillation period, resulting in a fine temporal resolution. Meanwhile, the total length

T of the symbol should probably be long in comparison to the droplet’s oscillation to

allow symbols to consist of more than a single excitation.

S(1) = (aI1 , aI2 , ..., aIm)

ai ∈ {0, 1}, S(1) ∈ {0, 1}m, m ·∆t = T

Because typically more than one input will be used, multiple droplets will have to

be stimulated, e.g., both inputs for an XOR gate. Furthermore, thinking about

population coding, a single symbol like a logical ’1’ could affect multiple droplets with

individual stimulation patterns. In contrast, for the sake of redundancy, a common

stimulation pattern might be supplied to multiple droplets. Here we use the notion of

the droplet channel ci to signify a set of droplets that receives the same stimulation

pattern Sci
(1). Two droplet channels ci and cj could now either be used as components

66 CHAPTER 3. EVOLUTION OF DROPLET COMPUTERS AND SIGNALS

(a) Droplet Network (b) Input Symbol Representation

Figure 3.1: Illustration of network- and symbol individuals used in the evolutionary
algorithm: (a) Rendering of an evolved 10×10 droplet network instance. Each square
represents a droplet on a two dimensional array. Not all positions of the array are
filled with droplets. Horizontally, diagonally and dark gray circles represent normal,
less excitable and long period droplets, respectively. The input droplets (di1, di2)
and output droplets (do1, do2) on arbitrarily fixed positions are indicated by arrows.
Touching droplets can excite each other, defining the connectivity for the droplet
simulation. (b) Example of two symbols that evolved together with a network instance
to realize the XOR function. The lower row of the image represents symbol ’0’ while
the upper row represents symbol ’1’. Time advances left to right over 100 frames
with a time step of 0.5 s, leading to a total length of 50 s per symbol. The input
droplets are stimulated only in the intervals that are represented by black vertical
bars and are left alone where the white vertical bars are rendered. The symbols are
fed into the droplet network repeatedly, recapitulating the stimulation pattern every
50 s. At least three oscillation cycles are completed per symbol repetition because
the simulated droplets’ self-excitation periods are around 16 s. Since droplets are
modeled with refractory times, not every white stimulation bar will actually lead to
an excitation in the droplet but can as well be disregarded in the droplets refractory
phases, especially when two excitations follow each other closely.

3.1. NETWORK - SYMBOL CO-EVOLUTION 67

Input
Task 0 0 0 1 1 0 1 1

Expected
Output
õcp

Identity 0 0 0 1 1 0 1 1
OR 0 1 1 1
AND 0 0 0 1
NAND 1 1 1 0
XOR 0 1 1 0
XNOR 1 0 0 1
Half-adder 0 0 1 0 1 0 0 1

Table 3.1: Boolean functions that were used as fitness criteria in evolution. Two
input and up to two output channels were used.

of a single symbol or as independent inputs. Nonetheless, in the experiments shown

in this work, a symbol will only consist of a single droplet channel.

For stimulation patterns that are composed of many channels C = {c1, c2, ..., c|C|},
we can extend the pattern definition S(1) to an array S(|C|) that stores the activation

state aci,Ij of each channel ci ∈ C for each interval Ij:

S(|C|) =


ac1,I1 ac1,I2 · · · ac1,Im

ac2,I1 ac2,I2 · · · ac2,Im
...

...
. . .

...

ac|C|,I1 ac|C|,I2 · · · ac|C|,Im



Task Definition

To evaluate the quality of a droplet network and of different symbol encodings, we

define Boolean functions that should be fulfilled in terms of their truth tables. As

displayed in Table 3.1, we tested seven different functions with up to two input and

output channels.

68 CHAPTER 3. EVOLUTION OF DROPLET COMPUTERS AND SIGNALS

Fitness Evaluation

Ultimately, the aim of these experiments is to find symbols that can be used by the

network internally as input as well as for output. But to evaluate the fitness of a

droplet network for binary operations using arbitrary symbols, a metric that deter-

mines the similarity between an input symbol and a recorded output excitation stream

would be necessary. As discussed later in Section 3.3, choosing an appropriate metric

is not trivial. Consequently, we are evolving complex symbol representations to feed

into the network but we do not yet expect the network to reproduce these complicated

symbols as outputs. Instead we use simple rate coding for the outputs: high activity

is interpreted as symbol ’1’ and low activity as symbol ’0’. Here again, as for the rate

coding input, high activity means droplets are entering the next oscillation cycle very

shortly after leaving the refractory phase, resulting in a high spike frequency. Low

activity, in contrast, means that droplets are rarely triggered into early excitations

by their neighbors and mostly self-excite, resulting in a low spike frequency.

The evaluation is divided into distinct phases p by assigning each combination of

input symbols to one phase, resulting in four phases for two binary inputs. Then,

for each phase, we analyze the output droplet channels, i.e., the activity on the

designated output droplets, for their similarity to an expected output: for each phase

p, the system is simulated with the appropriate input signals for a fixed time and

the number of received excitations at the droplets of output channel c are stored in

ocp. We denote the maximal and minimal counted peak numbers as omax and omin.

The symbol that is expected at the output droplets for the channel-phase pair (c, p)

is referenced as õcp ∈ {0, 1} instead.

The final fitness F is influenced by two different aspects, F1 and F2, of the output

behavior. First, the normed difference between highly activated and less activated

channel-phase pairs should be maximized to allow some kind of discrimination. We

define the difference between the maximum and minimum peak numbers divided by

the maximum peak number as F1. F1 is zero if all peak numbers are equal and at

most one when the minimum value is zero. Second, the truth table should be fulfilled,

leading to a function F2. Here, the worst case channel-phase pair defines the overall

3.1. NETWORK - SYMBOL CO-EVOLUTION 69

fitness. Each channel-phase pair peak number should lie as close as possible to the

minimum or maximum peak number, dependent on the expected output õcp. Finally,

if a minimum discriminability is exceeded and also the Boolean function is fulfilled,

the distance between minimum and maximum rates should further be expanded.

F =


F1 if F1 < 0.2

F2 + 1.0 if F1 ≥ 0.2 and F2 < 0.9

F1 + 2.0 if F1 ≥ 0.2 and F2 ≥ 0.9

(3.1)

F1 =
omax − omin

omax

(3.2)

F2 = min
c,p

1− ocp−omin

omax−omin
if õcp = 0

ocp−omin

omax−omin
if õcp = 1

(3.3)

Experimental Set-Up

(a) Symbol ’0’ (b) Symbol ’1’

Figure 3.2: Evolutionary trajectory of two symbol representations over 250 genera-
tions co-evolution with a droplet network. The y-axis denotes the evolutionary gen-
eration while the x-axis represents the stimulation interval for each fitness evaluation
similar to the signal plot in Figure 3.1(b). The regularities that can be observed along
the x-axis in both graphics are not evolved regularities but result from the repetition
of the pattern: As the pattern of 100 intervals is fed into the simulator during fitness
evaluation in a repeated manner, three repetitions of the input signal are plotted over
300 time frames.

70 CHAPTER 3. EVOLUTION OF DROPLET COMPUTERS AND SIGNALS

We employed an evolution strategy of the type (8/2, 30) − ES, meaning a comma

strategy with 8 parents and 30 children, running for 250 generations where the parents

of each generation are discarded. Two parents are recombined to produce each child.

The best symbol representation of each generation of a single experiment is displayed

in Figure 3.2. For each experiment, we ran a batch of 50 evolutionary optimizations

to build mean values. In total, we conducted 35 experiments for all the combinations

of the seven target functions from Table 3.1 and the five experimental variations:

Network only evolution with three or four droplet types, network and signal co-

evolution with three or four droplet types and network only evolution with pre-evolved

symbol representations. The symbol representation for the pre-evolved signals was

taken from the co-evolution experiment that achieved the best fitness. Using four

droplet types means using empty droplets, normal droplets, less excitable droplets

and long period droplets, while the latter is discarded for the three droplet type

experiments.

For mutating the droplet network, the probability of switching an arbitrary position

is 0.05. When using four droplet types, the probabilities for changing to an empty

cell, to a normal droplet, to a low-excitability droplet and to a long-period droplet are

0.4, 0.4, 0.1 and 0.1 respectively. For the runs without the long period droplet type,

the remaining probabilities read 4
9
, 4

9
and 1

9
. Single point crossover recombination is

applied with an uniformly chosen position in the row-by-row linearized representation

of the droplet network. For the input signal, the probability of switching an arbitrary

position is 0.025. When a mutation occurs, the probability for generating a ’1’ is 0.1

while a ’0’ is generated with probability 0.9. Single point crossover recombination is

applied with an uniformly chosen position.

3.1.2 Results

Small droplet systems of up to 100 droplets were arranged by means of evolutionary

algorithms to satisfy the Boolean functions Identity, OR, AND, NAND, XOR, XNOR

and half-adder. Based on differentially fast fitness increase, some target functions are

easier to evolve than others (cf. Figure 3.3). As observed in [Ada09], the reason for

3.1. NETWORK - SYMBOL CO-EVOLUTION 71

(a) Network only Evolution (b) Network and Signal Co-evolution

Figure 3.3: Average fitness of population’s best individual over 50 experiments for
evolving different target functions from Table 3.1. Error bars indicate the standard
error of the mean. Generally, all fitness values are lower for the signal and network
co-evolution because of the higher dimensional search space. Exceptions are those
functions that benefit from a simple swapping of rate coding signals, i.e. the NAND
and XNOR functions.

this is partially the different problem complexity and partially the properties of the

computing substrate that favor and disfavor certain kinds of tasks. In the case of our

droplet computing, using rate coding only, the OR and AND functions evolve fastest,

followed by Identity, XOR, the half-adder, the XNOR, and the NAND function.

Nonetheless, there is a strong qualitative transition between the XOR and the half-

adder function. The mediocre fitness of the XOR network is based on the some few

evolution runs that produced high fitness XOR networks and many non-functional

ones. The XNOR and NAND evolutions using rate coding as well as the half-adder

with any coding on the other side did not lead to a single evolution run producing a

functional network.

Despite these difficulties, even a complicated function like XOR was evolved, even

for single channel rate coding signal inputs, albeit not as fast as a simple OR or

AND function (cf. Figure 3.4). Interestingly, the identity function, meaning a mere

connection between both inputs and outputs, is not a simple task compared to AND

or XOR when co-evolving input signals (cf. Figure 3.3). Apparently co-evolving

networks and symbol representations for the identity function is almost as hard as

72 CHAPTER 3. EVOLUTION OF DROPLET COMPUTERS AND SIGNALS

evolving the half-adder. While using rate coding, in contrast, the identity function

evolved faster than the XOR function. Evolution with and without the third droplet

type with long oscillation periods did not significantly change the speed or final quality

of the evolution process.

A network successfully implementing the half-adder functionality did not evolve in

our experiments so far. The reason for this is most probably the difficulty of crossing

over two connections in the two dimensional lattice of droplets. A half-adder network

could be implemented by an XOR gate together with an AND gate, each of which

evolved comparatively easy. But to construct the half-adder from the two gates, both

inputs would have to be available to each of the gates. Thus at least one of the input

signals would need to cross over another one. While we do not exclude the possibility

of a signal crossing over another one given a suitable construction of a droplet system

and a fitting symbol encoding, we did not observe such a system in our experiments.

At least when trying to evolve a rate coding identity function with two inputs and

two outputs while crossing over the outputs, the fitness dropped dramatically, such

that no satisfying solution has evolved.

Shown in Figure 3.5, at least in the case of the AND and XNOR functions, pre-

evolved signals exist (cf. Figure 3.6) that are clearly leading to a faster evolution of

droplet networks than simple rate coding. Here droplet networks and signals were

originally co-evolved. Then, one of the best evolved symbol representations was used

consistently through a full network-only evolution run.

The evolved symbols look similar (cf. Figure 3.6 (a)) to rate coding signals but

most probably allow for a better synchronization of arriving spikes. While a single

activation peak remained for the ’0’ symbol, it had no obvious influence on the fitness

of the symbol. The synchronization of spikes seems to be important considering

that a low excitability droplet is only activated by other droplets, when two spikes

arrive in a narrow time window. The length of the window used in our experiments

was one second. So while a constant activation, using rate coding symbols, leads

to the highest frequency of spikes in the input droplets, the phase of both input

droplet oscillations can randomly drift and is dependent on the initial conditions.

3.1. NETWORK - SYMBOL CO-EVOLUTION 73

& - & & -

& & & &

& - - - & - & -

- 0 - & & & & - -

- & - & ?

- & & - - -

& 0 & & & & &

& & & & & - -

- - - - - & & -

- & - & &

(a) Input 0,0

& - & & -

& & & &

& - - - & - & -

- 1 - & & & & - -

- & - & ?

- & & - - -

& 0 & & & & &

& & & & & - -

- - - - - & & -

- & - & &

(b) Input 0,1

& - & & -

& & & &

& - - - & - & -

- 0 - & & & & - -

- & - & ?

- & & - - -

& 1 & & & & &

& & & & & - -

- - - - - & & -

- & - & &

(c) Input 1,0

& - & & -

& & & &

& - - - & - & -

- 1 - & & & & - -

- & - & ?

- & & - - -

& 1 & & & & &

& & & & & - -

- - - - - & & -

- & - & &

(d) Input 1,1

Figure 3.4: Activity plot of an evolved XOR network using different stimulations at
the red input droplets on the left side of the network. The nodes in the network
represent input droplets (red), output droplets (blue), normal droplets (gray) and
less excitable droplets (green). The arrows in the picture describe the impact of other
droplets for the excitations of each droplet. While a strong loop arrow on top of
a droplet means that the droplet mostly self-excited, an arrow from a neighboring
droplet means that it was excited by this neighbor many times. While an input of
(0,1) or (1,0) leads to a cyclic propagation of pulses through the network in either
clockwise or counter-clockwise direction, no excitation at all (0,0) or full stimulation
(1,1) results in pulses that propagate from the left to the right. The cyclic propagation
results in a higher total spike rate arriving at the blue output droplet as thinner self-
excitation loop on top of the output droplet can be observed. Hence, the droplet
network fulfills the function of an XOR gate when used with rate coding inputs.

74 CHAPTER 3. EVOLUTION OF DROPLET COMPUTERS AND SIGNALS

Figure 3.5: Average fitness of populations’ best individual over 50 experiments for
evolving the AND function using rate coding, co-evolution and pre-evolved symbol
representation. Error bars indicate the standard error of the mean. For the rate
coding and co-evolution experiments, two curves are plotted: The corresponding
simulations ran with and without the long period droplet types, but no significant
difference was observed.

3.1. NETWORK - SYMBOL CO-EVOLUTION 75

(a) Evolved AND Symbols (b) Evolved XNOR Symbols

Figure 3.6: Evolved symbol representations for the AND and the XNOR functions
that performed better than rate coding. (a) While the AND symbol looks very similar
to rate coding symbols, there is one peak included for symbol ’0’ that might serve as a
helper for synchronization. (b) For the XNOR signals, both symbols are represented
by a series of about 30 seconds activation followed by ca. 20 s rest. The difference
between both symbol representations could be either in the shift of the active phases
of about 10-20 s or in the exact pattern of each signal.

When using a slightly lower activation rate instead, the phases of both input droplets

are controlled by the stimulation, leading to a higher number of concurrent spikes

arriving at low excitability droplets. This, in turn, leads to a higher influence of the

low excitability droplets on further droplets in the network. We tested an evolved

droplet network and stimulated it with a rate coding symbol, a co-evolved symbol

and with an additionally engineered symbol. The engineered symbol includes no

stimulated at all for symbol ’0’ and regular spike every seven seconds for symbol ’1’.

With this spike pattern, the engineered symbol reaches very similar input and output

average spike rates compared to the evolved symbol. The measured spike frequencies

are summarized in Table 3.2.

A further extreme rise in evolution efficiency was observed for the NAND function.

However, this is most probably only due to a crosswise substitution of the signals for

symbols ’0’ and ’1’, such that the problem is reduced to a rate coded OR function.

Functions that involve a mapping from symbol ’0’ to low activity like the XNOR,

and NAND functions seemed more difficult with pure rate coding. This problem

76 CHAPTER 3. EVOLUTION OF DROPLET COMPUTERS AND SIGNALS

Average Spike Frequency [spikes/second]
Rate Coding Evolved Symbol Engineered Symbol

Symbol ’0’ Input
Droplet

0.067 0.067 0.067

Symbol ’1’ Input
Droplet

0.167 0.140 0.143

Supposedly
Active Output
Droplet

0.086 0.139 0.138

Supposedly In-
active Output
Droplet

0.064 - 0.067 0.64 0.064 - 0.066

Table 3.2: Summary of the spike frequencies measured in an evolved AND network
when stimulated with rate coding, evolved and an engineered symbol input. The
engineered symbol did not produce any stimulation for symbol ’0’ and a regular spike
pattern of a spike every seven seconds for symbol ’1’.

of inverting signals should easily be resolved when using multi-channel symbol rep-

resentations that would supply a high and a low activity channel for each symbol.

Problems that did not benefit significantly from pre-evolved symbol representations

were the OR, the XOR, the Identity function and the half-adder. Nonetheless, the

pre-evolved symbols never led to worse evolution trajectories in our experiments.

3.2 Self-Assembly of Droplet Computers

Using the architecture of computing droplets that was introduced in Chapter 2 and

the idea of DNA single strands attached to lipid vesicles to mediate the vesicles’

interactions [Had10], we studied how to derive simple self-assembly programs pfc

for computing droplet networks via evolutionary algorithms [Fog66, Rec71, Sch75,

Hol75, Koz89, Fog94, Bey02, Wei02, Eib08]. Here we use an implicit encoding of

the droplet networks that should combine the potential advantages of generative

encodings [Hor01] with the long-term objective of finding computing structures that

can self-assemble without external help that would place specific droplets in specific

3.2. SELF-ASSEMBLY OF DROPLET COMPUTERS 77

positions. Most parts of these results were generated in the scope of the Alexandra

K. Diem’s Master’s thesis [Die12a] and presented at the ECCS conference [Die12b].

Following the notation from Section 1.3 in Figure 1.4, the abstract computation fc

that should be realized here is a classification task of a real-valued input vector from

R8 to a binary malign/benign state. Training and verification data is taken from the

“Breast Cancer Wisconsin” data set of the Proben1 benchmark problem set [Pre94].

Such a computation fc will be implemented by first assembling a two dimensional

network of computing droplets following an evolved set of rules, by then simulating

the resulting droplet network in our simulation environment DropSim as explained

in Section 2.4.4 and by finally interpreting the activity in a particular droplet as the

frequency coded output. The implementation of the computation, pfc , is specified by

the set of droplet types, their quantities and the list of possible interactions. Hence

the assembly step is tightly interwoven with the actual signal processing function of

the network.

The assembly of a network N is conducted on an m × m rectangular grid, where

m = 20, from a given set of droplets D and the empty droplet dϵ as explained in

Section 2.4.4. This leads to the huge search space of |D + 1|400 possible networks.

N ∈ (D ∪ dϵ)(20×20)

An instance of these networks is chosen by “growing” a network from a random seed

droplet d0 ∈ D and by then successively adding adjacent droplets di from D. The

assembly is controlled by an evolved table of rules A ∈ {0, 1}|D|×|D|, where Aij = 1

iff droplet type di can attach to droplet type dj. Because Aij = Aji, the size of the

genotype is then 1
2
|D| (|D| + 1). An exemplary instance of a set of assembly rules

and the resulting droplet network is shown in Table 3.3 and Figure 3.7. Please note

that, even if Aij = 0, the final graph may contain adjacent droplet types di and dj, if

other droplets in the proximity lead to the attachment of di or dj.

After the assembly, the grid of droplets is simulated in our droplet simulation en-

vironment DropSim as explained in Section 2.4.4. Stimulation patterns from the

78 CHAPTER 3. EVOLUTION OF DROPLET COMPUTERS AND SIGNALS

Figure 3.7: Example of a set of assembly rules and the resulting grown network
structure. The Arrows indicate the typical flow of excitations from one droplet to
another. Gray loops indicate that a droplet was self-excited before another excitation
from an adjacent droplet triggered it. The thickness of the arrays and loops indicates
the probabilities for each type excitation.

3.2. SELF-ASSEMBLY OF DROPLET COMPUTERS 79

dNorm dDirA dDirB dLowEx dIn0 dIn2 dIn2

dNorm 0 1 1 1 1 1 1
dDirA 1 0 0 0 0 0
dDirB 0 0 0 0 0
dLowEx 0 0 0 0
dIn0 0 0 0
dIn1 0 0
dIn2 0

Table 3.3: Assembly rules for an exemplary individual. The different droplet types
fulfill the following functions. CON: connector droplet, simple forwarding of signals,
DIR: one-way forwarding of signals (direction A or B), AND: forwarding of signals
only if two signals arrive at the same time, IN: input droplets (types 0, 1, 2).

Proben1 data set are fed into the system and the system’s final fitness is evaluated

dependent on the rate-coded proximity to the expected output of the classification

task. Out of the nine inputs, the third, fourth and seventh were selected by principal

component analysis [Jol02] to reduce the number of input droplets. For reading out

the results, instead of fixing a particular droplet type or position in the grid as the

output, we evaluate each droplet for being a potential output node. The averaged

fitness of the fittest node is then reported as the final network fitness. Similar to the

fitness function from Section 3.1.1, each node’s fitness is evaluated by counting the

number of spikes per simulation in comparison to the other input cases. The fitness

then is the fraction of input cases that can be correctly classified using a threshold

spike frequency oth.

From the experiments we learned that networks can be assembled that are relatively

fit to calculate our classification task fc with an accuracy of ca. 72% as shown in

Figure 3.8. The winning network is relatively small when compared to many other

networks on the 20× 20 grid as shown in Figure 3.7. Furthermore, a given genotype,

i.e. a set of assembly rules, is not guaranteed in our approach to generate fit network

instances only. Further experiments will have to show the fitness distribution of grown

networks for a given set of assembly rules.

80 CHAPTER 3. EVOLUTION OF DROPLET COMPUTERS AND SIGNALS

(a) The assembled
network.

(b) Spike activity time course. (c) Average spike frequency.

Figure 3.8: Best evolved and assembled network design for the cancer data set: In
panel (a), the assembled network is displayed together with the arrows indicating the
predominant direction of signal propagation. Differently colored droplets indicated
different chemical compositions as explained in Section 2.2. The top right yellow
droplet is used as the output droplet for the next panels. Panel (b) shows the spike
activity time courses of different simulation experiments using different stimulation
patterns from the malign (green) as well from the benign (red) classes. Summing up
the the spike activity for each experiment, the average spike frequency histogram for
both output classes is shown in Panel (c).

fr < 0.16 fr ≥ 0.16 Σ
benign 869 (TN) 251 (FP) 1120
malign 172 (FN) 258 (TP) 430

Σ 1041 509 1550

Table 3.4: Confusion Matrix showing the true and false positives and negatives de-
pendent on the average spike frequency fr. fr < 0.16 is interpreted as a malign signal
(positives), fr ≥ 0.16 as a benign signal (negatives). This results in an accuracy of
0.72, a sensitivity of 0.6, a specificity of 0.77 and a precision of 0.5. We calculated
the accuracy as (TP+TN)/(TP+TN+FN+FP), the sensitivity as TP / (TP+FN),
the specificity as TN / (FP+TN) and the precision as TP / (TP+FP) .

3.3. DISCUSSION 81

3.3 Discussion

In this chapter, the evolutionary design of droplet networks and appropriate signal

encodings was exemplified. To this end, droplet networks were evolved that show the

functionality of Boolean AND, OR, NAND, XOR, XNOR and Identity gates, while

the evolution of a complete half-adder network did not succeed. We demonstrated,

that the evolution of some of the functions, i.e., XNOR and NAND networks, is only

possible when symbol encodings are co-evolved together with the network topology.

We showed that the suitable co-evolved symbols, as compared to naive rate-coding

symbols, simplify the task of finding a droplet network structure for Boolean gates,

especially in the case of an AND network.

Besides designing droplet network structures and symbol encodings, evolutionary

algorithms also served another purpose in this work: To some extent, evolutionary

algorithms also offer a measure of complexity, telling us whether a problem is simple

or hard to solve [Ada09]. Or, given two distinct symbol encodings, which of them

makes searching for a solving network structure easier.

A straight forward construction of two adequate symbols, representing ’0’ and ’1’,

might be to maximize the distance between them. The problem here is to define the

distance metric that would heavily influence the result of the maximization. Ideally

these experiments would only depend on the properties of the computing substrate

itself and not on arbitrary definitions that are put in from the outside. But most

metrics like the Hamming distance or the spike train similarity measures from neu-

roscience research [Dau09] seem sensible but artificial with respect to the computing

droplet substrate. A meaningful alternative would be to run a nested evolution of a

droplet network simulation as distance metric - the easier it is to evolve a network

that discriminates both signals, the larger the distance between both symbols. Still,

the computational efforts for a single evaluation of this kind of fitness function were

immense. This led us to the different approach of co-evolving signals and droplet

networks for simple binary problems at first. In Chapter 4 then, information theory

will be proposed as useful metric for distinguishable symbol encodings.

82 CHAPTER 3. EVOLUTION OF DROPLET COMPUTERS AND SIGNALS

Even though simple logic functions were evolved here, the automatic construction of

larger, more complex systems might be hard, especially when fitness functions cannot

provide enough gradient for the optimization algorithm to follow. The “multi-step”

fitness functions that we used in Equation 3.1 tries to focus on different aspects

of generating the network functions at different times, dependent on how close to

perfect the solution is. Additionally, since it is not generally possible to find all

non-dominated solution candidates by mapping multiple fitness criteria onto a single

scalar value, using Pareto optimization for future experiments might be an option

[Sch85, Zit04].

Generally the influence of the droplet network dimensions should be interesting - es-

pecially how few droplets can generate the sought-after behavior, what number of

droplet species are essential, is there a preferential length for droplet signal patterns

and how many input channels should be used per symbol? Also the aspect of ro-

bustness has not yet been in the focus of this chapter: Even with multiple simulation

runs per individual, we could not completely eliminate the possibility that in some

evolution runs high fitness scores were achieved accidentally, which could then not be

sustained under different initial conditions and with noise.

Chapter 4

Information Theory Based

Methods

In this chapter, general methods are presented that can be used to explore the infor-

mation transformation process of a computing substrate, for example of a medium

composed of oscillating self-exciting droplets as introduced in Chapter 2. Networks of

Belousov-Zhabotinsky (BZ) droplets seem especially interesting as chemical reaction-

diffusion computers because their time evolution is qualitatively similar to neural

network activity. Moreover, such networks can be self-generated in microfluidic re-

actors. However, it is hard to track and to understand the function performed by a

medium composed of droplets due to its complex dynamics. Corresponding to recur-

rent neural networks, the flow of excitations in a network of droplets is not limited

to a single direction and spreads throughout the whole medium. In this chapter, the

operation performed by droplet systems is analyzed by monitoring the information

flow as explained in [Gru14] and [Giz16]. This is achieved by measuring mutual in-

formation and time delayed mutual information of the discretized time evolution of

individual droplets. To link the model with reality, experimental results are used to

estimate the parameters of droplet interactions. For example, an evolutionary gen-

erated droplet structure is investigated that operates as a NOR gate. The presented

methods can be applied to networks composed of at least hundreds of droplets.

83

84 CHAPTER 4. INFORMATION THEORY BASED METHODS

4.1 Introduction

Using the interactions between droplets, encoding information in excitation pulses,

classical Boolean gate logic can be constructed in experiment and simulation [Ada02a,

Hol11a, Hol11b], but also non-Boolean, e.g. graph-theory based [Ada11c] applica-

tions are being explored in the context of unconventional computing [Ada01, Gor05,

Ste12, Ban13]. Most of these information processing devices were constructed using

a bottom-up approach by a human designer and can in principle be assembled in mi-

crofluidic reactors [Thu13]. On the other hand, various networks of BZ droplets can

be generated by evolutionary algorithms [Fog66, Rec71, Sch75, Hol75, Koz89, Fog94,

Bey02, Wei02, Eib08] following a chosen fitness function, but then their information

processing regime is not known [Esc13]. The methods described in this article can be

used to predict the information processing potential of a given droplet structure or

to suggest a structure that is more suitable for a specific task.

Due to the similarities between real and artificial neurons, we also resort to established

analysis techniques known from neuroscience [Bor99, Bro04, Qui09, Vid11, Wib11]

and other fields involving complex networks, e.g. atmosphere chemistry [Sol04],

ecosystems [Sug12] or biological signaling networks [Pah08] to understand the reason

for their computational efficiency and their modes of operation. In return, any in-

novation in understanding either of these systems might also be applied in the other

complex networks related domains.

4.1.1 Challenges

Typically the dynamics of a possibly recurrent network with a vast amount of inter-

connected components are quite rich and complex [Maa02, Dit05]. This implies, that

our common, intuitive, modular, engineering perspective of the system will not be

successful any more [Ste12, Zau05b].

In contrast to human-engineered artifacts, in biological systems not even the purpose

of a particular system is known, even less the process and function how such a purpose

is realized. In biological systems, a network function is determined by evolution and

4.1. INTRODUCTION 85

cognitive learning. In both cases this function is hidden in the network geometry and

the interactions between its elements. In order to understand the system behavior

we require a set of filters that show and highlight different aspects of the systems.

Dynamical systems theory [Jet89, Wil10a] is one of these filters.

From a different perspective, computation equals at least for a deterministic pro-

cess “information destruction” as the data processing inequality [Lat09] in informa-

tion theory suggests. An algorithm pf that transforms the signals Sin, representing

the abstract inputs X, to the outputs Sout cannot generate new information that

was not already present in the input data: I(X,Sin) ≥ I(X, pf (Sin)), where I is

the mutual information between two variables. Consequently, computing might es-

sentially be information destruction [Lan61, Ben82, Zau05a]. Hence, another use-

ful filter for understanding computation that should be elaborated in this chapter

is information theory and information dynamics, for identifying the key compo-

nents of information processing: information transmission, modification and storage

[Sha48, Sch00, Per05, Liz08, Wil10a, Wil10b, Ros14]. While finding the places in the

network where information storage is exploited to produce results certainly is of key

importance, this concept is not in the scope of this chapter. Instead, the focus is on

information transmission and information modification here.

One further problem of unknown dynamic systems is to fix the symbol encoding

[Fri14, Sha14] when the systems should be used for computation: Different kinds of

symbol encodings can be more or less useful for information modification, storage

and transmission operations in a particular system [Esc13, Gor14]. For example in

case of Boolean operations in networks of BZ droplets, it sounds natural to assign

a high spike frequency to the symbol ’1’ and a low spike frequency to the symbol

’0’ [Gor14]. Such information coding is simple and straightforward but the other

encoding strategies, like exploiting more subtle differences in the time delay between

two neighboring droplets or the activity patterns of a whole set of droplets can be more

efficient. Nonetheless information theory allows to track information by abstracting

away the particular encoding.

Furthermore, when measuring the dependency between any two droplets, the general

86 CHAPTER 4. INFORMATION THEORY BASED METHODS

problem arises to distinguish between correlation that is generated because droplets

are independently oscillating with the same frequency but without influencing each

other, and on the other side, those droplets that are correlated because they are

actively influencing each other’s dynamics. Using simple mutual information, we

would still measure a strong statistical dependency between unconnected droplets

of the same frequency. As a trivial solution, we can combine measurements of many

experiments with different initial conditions, such that a fixed phase shift dependency

is broken. But especially in the case of chemical laboratory experiments, some of them

are hardly repeatable. Also, the mutual information is still a symmetric value, such

that we cannot determine the direction of the influence. For these reasons, we will

use time-delayed mutual information [Fra86, Per05, Jin10] instead to determine the

direction and time delay of the propagating signals, as explained in Section 4.2.3. An

alternative would be to use transfer entropy [Sch00, Sta08, Wib11], that is measured

when the past observations of a single variable do not suffice to explain its future

trajectory and when, thus, a second variable’s influence is required.

4.1.2 Overview on this Chapter

In this chapter, we show how to analyze an experimental five droplet system as well as

simulated droplet systems in the order of magnitude of 100 droplets by following the

information flow. This means on the one hand the information that is directly trans-

mitted from one droplet to another by looking at the time-delayed mutual information

between spike patterns in both droplets. On the other hand, we can investigate the

mutual information between spike patterns in particular droplets and external val-

ues like specific input classes, their combinations as well as expected outputs of a

computation.

In particular with the latter approach, we show how to highlight the synergy between

different inputs with the mutual information to the expected output of a computation.

Typically some positions in the droplet network start showing more information about

the output than all their neighbors that supply this droplet with signals. In this case,

information is combined and the synergy of the sources is exploited for computation.

4.2. METHODS 87

4.2 Methods

The video data from experimental observations as well as simulation records can be

analyzed with a unified information theory based analysis method. Our basic assump-

tion is, that the times of spikes contain all information on the droplet activity, i.e. the

amplitude of the spike and the behavior of the chemical medium between the spikes is

irrelevant and abstracted away. Thus we extract the spike times from the video data

of chemical experiments and, analogously, remove all remaining information that is

available from simulation experiments except for the spike times.

To begin with, we will describe our chemical experimentation setup in the next Sec-

tion, then our simulation of droplets and then the information theory based analysis

method.

4.2.1 Experimental Droplet System

In the experiments, performed in cooperation with Konrad Gizynski and Prof. Jerzy

Gorecki, we used commercially available analytical grade reagents without further

purification. The concentrations of BZ reagents were: 0.3 M sulfuric acid (H2SO4),

0.375 M sodium bromate (NaBrO3), 0.125 M malonic acid (CH2(COOH)2) and 0.04

M potassium bromide (KBr). In the experiment we used a mixture of catalysts.

The bathoferroin ([Fe(batho)3]), which concentration was 0.0015M played the major

catalytic role. To make the medium photosensitive a small amount of ruthenium

complex (Ru(bpy)3Cl2) (0.00021M) was added.

We controlled oscillations in the droplets by illumination with blue LEDs connected

to a PC. Plastic optical fibers (1.5 mm diameter) attached to the diodes allowed

to illuminate each droplet individually. Light emitting fiber tips were positioned

centrally below the corresponding droplets to limit the amount of light transferred to

their neighbors. The experimental system is drawn schematically in Figure 4.1. The

light intensity was adapted during the experiments to obtain required frequency of

oscillations for the droplets.

88 CHAPTER 4. INFORMATION THEORY BASED METHODS

Figure 4.1: The experimental setup of PC controlled diodes emitting blue light (λ=462
nm), which is transferred to each droplet separately through optical fibers. The il-
lumination is used to slow down the BZ oscillation in the droplets up to the point
where no oscillation occurs. Furthermore, the illumination can be used to set the
oscillation phase of droplets and thus also to synchronize multiple droplets. A snap-
shot showing droplets in a Petri dish is shown on the right. Drawing and Picture by
Konrad Gizynski and Jerzy Gorecki (2014), Warsaw. [Gru14, Giz16]

Blue light interacts with the ruthenium complex and produces Br– ions that inhibit

the BZ reaction. As a result, at a low illumination level the oscillation period is longer

than in a dark medium and at high illumination the oscillations are suppressed.

4.2.2 Simulated Droplet System

For the in silico studies of droplet systems, we used the stochastic, continuous time,

discrete event simulation system described in Ref. [Gru13]. In this approach, the

behavior of the chemical droplets is structured into the three phases denoted the

excited, the refractory and the responsive phase. Only in the very short excited phase,

a droplet can influence its neighbors if they are in the responsive phase. In this work

we restrict the influence to the nearest 4 neighbors on a square lattice. A signal

propagation delay is included to account for the speed of the BZ wave expansion. In

simulations we typically used oscillating droplets with period 16 s (displayed in red).

4.2. METHODS 89

For these droplets excited, refractory and responsive phases were 1, 5 and 10 s long

respectively. Beside of these normal droplets we considered slow and fast oscillating

droplets marked with brown color and letters (s) and (f) with periods 12.8 and 20

seconds. Moreover the studied networks included less excitable droplets (green ones),

marked with ‘&‘ that can be triggered only by two concurrent excitations at their

neighbors.

When considering a complex and interacting system of droplets, we will refer to

individual droplets as di, and to the whole droplet system as D = (d1, d2, ..., dw).

Because a two-dimensional structure will probably be reproduced earlier in laboratory

experimental setups, we will typically use planar graph structures for the droplets

networks here.

4.2.3 Information Theoretic Approach

Symbol Representation

Our basic assumption for measuring the droplet network information transmission

is that all information on the dynamics of the droplet system D is present in the

sequence of spike times. Therefore, for a given droplet system D, the dynamics can

be represented by a set of times Tsd = {t1, t2, ..., tn} for each droplet d ∈ D when

it becomes excited. We assume that, the amplitude and the exact shape of the

excitations can be neglected.

For the measurement of information, we partition the continuous-timed spike train

data into discrete symbols [Str98] as shown in Figure 4.2. Let us select the time

discretization length ∆t and define a series of m = ⌈tn/∆t⌉ time frames F1, F2, ..., Fm,

where Fi = [(i − 1) · ∆t, i · ∆t], for i = 1, 2, ...,m. For a given droplet d the binary

number aFi
is defined as

aFi
=

1, if ∃ tj ∈ Tsd such that tj ∈ Fi

0, otherwise
(4.1)

90 CHAPTER 4. INFORMATION THEORY BASED METHODS

Figure 4.2: Time discretization and extraction of spike patterns from an exemplary
spike train using the frame size ∆t = 40 s and pattern length l = 4. Diagram by
Konrad Gizynski (2014), Warsaw. [Gru14, Giz16].

Now we convert the continuous spike train Tsd of a droplet d into a binary sequence of

either zeroes or ones, resulting in the discretized spike train Sd = (aF1 , aF2 , ..., aFm) ∈
S = {0, 1}m.

Then, from whole discretized spike train Sd with m frames, we generate the patterns

Pi ∈ {0, 1}l of the pattern length l << m. The multiset of discrete patterns for

droplet d, Pd = {P1, P2, ..., Pm−l+1}, is acquired by sliding a window of length l along

Sd, resulting in m − l + 1 discrete spike patterns. The spike pattern Pi ∈ Pd is

generated from the time frames Fi, Fi+1, ..., Fi+l−1 as Pi = (aFi
, aFi+1

, · · · , aFi+l−1
).

For our information theoretic approach, we consider the spike patterns Pi to be the

basic symbols. That means we estimate the probability distribution over all the pat-

terns appearing in experiment or simulation as well as the joint distributions of the

patterns together with different external inputs or expected outputs of the compu-

tations. From a whole recorded or simulated spike train we estimate the probability

distribution p(Pi) for all possible spike patterns Pi ∈ Pd. For the pattern length l

4.2. METHODS 91

there are in principle 2l different patterns, but only a small subset of all possible spike

patterns do actually appear: given that ∆t is small in comparison to the oscillation

period of the droplets, most time frames aFi
are zero.

In this article, spike patterns are composed from the excitations of a single droplet

d only. But we can trivially generalize the concept of spike patterns to any subset

A ⊆ D. The corresponding spike patterns for the subset A would then be generated

by building a new discretized spike train SA, such that each time frame Fi would not

point to a single value a
(d)
Fi

∈ {0, 1} for a single droplet d but to a binary number for

all the droplets in A, leading to the vector a
(A)
Fi

∈ {0, 1}|A|.

Spike Train Entropy

For a given discretization raster ∆t and for a pattern length l, the entropy of a

discretized spike train for a droplet d can be measured by the standard Shannon

entropy formulation [Sha48] over the distribution of spike patterns found in the spike

train:

H(Pd) = −

Pi∈Pd

p(Pi) log2 p(Pi) (4.2)

Clearly, this value does not only depend on the complexity of the spike train, but also

on the chosen length of the spike pattern [Dim00] l, on the ∆t and on the number of

simultaneously observed droplets k. So for example, when reducing the ∆t or when

increasing the pattern length l the entropy of the observed patterns increases due to

the higher number of possible patterns.

Spike Train Mutual Information

As mutual information is widely used as an indicator for correlation, it also qualifies as

a natural candidate for finding dependencies between the spike trains of two droplets

in a network. The common mutual information formulation

I(Pa : Pb) =

Pi∈Pa


Pj∈Pb

p(Pi, Pj) log2 (
p(Pi, Pj)

p(Pi)p(Pj)
) (4.3)

92 CHAPTER 4. INFORMATION THEORY BASED METHODS

or equivalently

I(Pa : Pb) = H(Pa) +H(Pb)−H(Pa,Pb) (4.4)

can directly be applied to two different spike pattern distributions Pa and Pb, where

a, b ⊆ D refer to different subsets of droplets in the network D. Here, the joint

entropy H(Pa,Pb) refers to the probability distribution of both patterns Pi ∈ Pa and

Pj ∈ Pb occurring at the same time.

H(Pa,Pb) = −

Pi∈Pa


Pj∈Pb

p(Pi, Pj) log2 p(Pi, Pj) (4.5)

The symmetric value I(Pa : Pb) gives the average number of bits that are known

about the spike pattern from Pa by knowing the corresponding spike pattern from Pb

at the same time.

Time-Delayed Mutual Information

Excitation waves require time to travel from one part of the droplet system to another,

so no droplet can influence another one without a time delay. In principle, excitation

waves can travel in either direction if the direction is not explicitly enforced [Szy11].

Here we assume that the signal propagation direction is mostly fixed for a specific

stimulation situation, and thus also the time delay between the spike patterns in a

pair of two droplets becomes constant. We calculate the mutual information between

the spike patterns at droplet da for all times t and the spike patterns of another

droplet db at times t+ τ∆t for a limited range of τ values by the formula:

IτTD(Pa : Pb) =H(Pa) +H(Pb)

−H(Pa(t),Pb(t+ τ∆t)) (4.6)

and call it the time-delayed mutual information [Fra86, Per05, Jin10]. Here,H(Pa(t),Pb(t+

τ∆t)) is the entropy of the joint, but time shifted, spike trains.

Assuming that one droplet is maximally influencing another droplet at a specific time

delay, we use the time-delayed mutual information to estimate the mutual information

4.2. METHODS 93

between two droplets and their time delay at the same time. At a time delay τ ′, when

the time-delayed mutual information is maximal, the interaction between the droplets

should be strongest. Formally, we note this assumption as:

I ′TD(Pa : Pb) = maxτ IτTD(Pa : Pb)

τ ′ = argmaxτ IτTD(Pa : Pb)
(4.7)

Note that also time-delayed mutual information is a statistical value, such that a

maximum in the mutual information at a particular time delay does not exclude

information transmissions at other time delays, even in opposite directions.

Information Between Spike Trains and External Values

Instead of correlating the behavior of a specific droplet to another droplet’s spike

pattern, we can also compare it to external values such as the input class or the

expected output class. We use the term input/output class here to distinguish the

symbol from its representation as a specific spike pattern: In this case we calculate

the mutual information of a spike pattern with the abstract input/output symbol

only. For example, when considering a pattern recognition task where low, average

and high chemical concentrations are sensed, there is no necessity of encoding a low

chemical concentration in a low frequency spike signal. Instead, the low concentration

could be encoded as high frequency or more complex spike patterns could be used,

maybe even keeping the average spike frequency constant [Esc13].

A problem definition for a function with a finite number of input cases i ∈ {1, 2, .., p},
can be given in the form of a table, where the expected output values are listed for

each input case i. An example is shown in Table 4.1 for the NOR function. Here we

denote each input or output row j of the table as an i/o-channel. Not distinguishing

between input and expected output symbols here, we might be interested in the

mutual information between any combination of them and the spike patterns found

in particular droplets. In the following, we use the symbol γ for a combination of rows

from the function definition table. For the function with two inputs and one output

94 CHAPTER 4. INFORMATION THEORY BASED METHODS

i1 i2 o1
case1 0 0 1
case2 0 1 0
case3 1 0 0
case4 1 1 0

Table 4.1: Inputs i1 and i2 vs. output o1 symbols for the four input cases of the
Boolean NOR function.

as defined in Table 4.1, γ is a subset of the inputs i1,i2 and the expected output

o1: γ ⊆ {i1, i2, o1}. Not distinguishing between inputs and expected outputs is then

useful because we can use the same formalism to analyze the mutual information of

spike trains with different input channels, output channels or combinations thereof.

To calculate the mutual information with the combination of i/o channels γ, we

first have to select an input distribution, i.e., which input cases are selected with

which probability. A uniform distribution might be most informative here because it

excludes correlation between different input channels that might be present in some

data sets. Nonetheless, in the case of the machine learning data sets from Section

4.3.2, we used the original input distribution of the data for convenience. For any

droplet d in the network, the mutual information with the combination of i/o channels

γ is then calculated as:

I(Pd : γ) = H(Pd) +H(γ)−H(Pd, γ) (4.8)

This implies, that the droplet system is observed or simulated for all the input cases

i. The joint entropy H(Pd, γ) between the input/output channel combination γ and a

spike pattern P ∈ Pd can be generated by concatenating the appropriate input/output

symbol γ to each spike pattern P . An exemplary analysis of the mutual information

values of a noise-free Boolean NOR gate is shown in Figure 4.3.

Studying simple Boolean gates in Table 4.2, we can see that the mutual information

between an input channel i1 and the output of the computation I(i1 : o1) can be

equal to 0 for example in the case of the XOR function, or can be equal to H(i1)

in the case of the NOT function. Furthermore, in the case of the OR or NOR

4.2. METHODS 95

Figure 4.3: Exemplary mutual information diagram of a Boolean NOR gate like it
will later be used to analyse larger droplet networks. The size of the circle sectors for
each input and output channel of the gate indicates the mutual information of the i/o
patterns Pio in the channels i1, i2 and o1 with different reference channel combinations
γ, divided by the maximum mutual information for this γ. Here, the i/o patterns
of a mathematically perfect, noise-free NOR gate are used. Three different reference
i/o channel combinations γ are shown: γ1 = {i1} in red, γ2 = {i1, i2} in green and
γ3 = {o1}. In other words, red circle sectors indicate the mutual information with
the first input channel, green sectors indicate the mutual information with both input
channels combined and blue sectors indicate the mutual information with the output
symbol. Interestingly for γ3 = {o1} (blue), the 0.31 bit of information that are present
in each input channel about the output symbol do not add up to the final 0.81 bit of
entropy in the output. Instead, only the combination of both inputs allows the exact
prediction of the gate output. In a more extreme case, for the XOR gate, a single
input value would not hold any information on the output value, without knowing
the other input value. Furthermore, the mutual information for γ2 = {i1, i2} (green)
illustrates the view of computation as information destruction, where only 0.81 bit
remain of the initial 2 bits of input information.

96 CHAPTER 4. INFORMATION THEORY BASED METHODS

H(i1) H(i1, i2) H(o1) H(i1, o1) I(i1 : o1)
ID 1 - 1 1 1
NOT 1 - 1 1 1
AND 1 2 ∼0.81 1.5 ∼0.31
OR 1 2 ∼0.81 1.5 ∼0.31
NOR 1 2 ∼0.81 1.5 ∼0.31
XOR 1 2 1 2 0

Table 4.2: Entropies and mutual informations of input and output tuples for typical
deterministic Boolean functions, measured in bits. ID here represents the identity
function, having the same information characteristics as the NOT function. Some
further properties are H(i1) = H(i2) and I(i1 : i2) = 0 by definition for two input
functions with equally distributed and independent Boolean input cases. H(i1, i2) =
H(i1, i2, o1), because all the information about the output is already present in the
input. This also implies I(i1, i2 : o1) = H(o1), if the output is at all dependent on the
input.

functions, even though there is information about the output present in each of the

single inputs already, this information does not sum up to the entropy in the output.

Hence, a synergy between the input channels is exploited for computing the output

by combining both inputs. In the extreme example of the XOR function this becomes

obvious: It is not possible to make any judgment about the output, if only a single

inputs is known.

4.3 Results

4.3.1 Information Flow in an Experimental System

The experiment discussed below was conducted as described in Section 4.2.1. From

the total recorded time evolution of five droplets of length 4505 s, we considered the

data from the time interval [1585 s, 4505 s] because only after 1585 s the initiation

procedure was completed.

The frames from the considered interval were extracted at one frame per second.

This produced a video stream of 2920 video frames. To observe the time evolution

4.3. RESULTS 97

of oscillations in the droplets d1 till d5, arranged in a linear chain as shown in Figure

4.4, we cut the series of frames along the bright line and obtained the space-time plot

presented in Figure 4.4(b).

Bright, periodic stripes correspond to the high level of the oxidized form of bathofer-

roin and they mark the moments at which the excitations occurred. We identified 28

excitations for the droplets d1 and d4, 27 excitations for d2 and d3 and 29 excitations

for d5. The minimum observed oscillation period was 63 seconds and it increased to

190 seconds when the medium was nearly depleted.

In the initial part of the experiment the droplets d1, d3 and d5 oscillate spontaneously

as marked schematically with the white, curved lines. Self-excitation chemical waves

are initiated close to the geometrical center of a droplet and travel outwards. Initiation

at the center is related to the high concentration of activator there. Activator diffuses

to the organic phase through the lipid layer and its concentration near the boundary

is lower. When the wave reaches the connection to a neighboring droplet that is in

the excitable state then the activation occurs. In that case we observe a directional

wave visible as inclined stripes on the space-time plot, with the initiation center at

the connection point.

During the time-span of the experiment we illuminated droplets d3, d4 and d5 with a

low light intensity. As the result, the oscillation period in non-illuminated droplets d1

and d2 is shorter. After the time t = 2800s, waves originating from droplet d1 spread

out through the droplet chain, effectively controlling the oscillations of the remaining

droplets. Then, at time t = 2905s, we turned on the illumination of droplet d1,

leading to slower oscillations in that droplet. This illumination was applied until time

t = 3506 s and next it was switched off. It changed the dynamics in the investigated

network: The droplet d3 started to take control over the oscillations of the network

till the end of the illumination but was superseded by droplet d1 afterwards. We

used this changing dynamics as a source of entropy in the droplet chain and follow

the information flow from the illuminated droplets by means of time-delayed mutual

information.

For each pair of adjacent droplets, we calculated the time-delayed mutual information,

98 CHAPTER 4. INFORMATION THEORY BASED METHODS

Figure 4.4: Dynamics of the experimental droplet system. (a) A snapshot of a cou-
pled, five droplets chain observed in experiments. (b) A space-time plot obtained by
cutting the series of frames along the bright line drawn in the first panel. The slightly
curved lines, drawn above arrows, schematically represent the shape of the wave front
that is characteristic for self-excitations. The dashed line, below the arrow, indicates
a part of the experiment when the activation sequence of excitations 1→2→3→4→5
was observed. The black rectangle at the time axis marks the time interval for which
the intensity of green color at the geometrical centers of the droplets as a function of
time are plotted in Figure (c). The distance between the maxima in a selected droplet
determines the period of oscillations, whereas maxima for two different droplets indi-
cate the time shift between forced oscillations. The arrow (at Figure (c)) marks the
moment (t=2862 s) at which illumination was applied to droplet d1. The illumina-
tion was terminated at t=3484 s. Pictures and diagram by Konrad Gizynski (2014),
Warsaw. [Gru14, Giz16]

4.3. RESULTS 99

Figure 4.5: Schematic illustration of the five droplets from Figure 4.4(a) and the
measurement of time-delayed mutual information for l = 30 and ∆t = 3s. The
droplets d3, d4 and d5 are illuminated with low intensity light and their period of
self-excitations is longer than the one for d1 or d2. Droplet d1 is controlled by the
LED. Droplet d2 is probably also influenced by illumination of droplet d1. Hence
droplets d1 and d2 control the remaining part of the droplet system. The arrows
indicate that we measured a time-delayed mutual information with the ideal delay in
frames displayed above each arrow. We measured the strongest time-delayed mutual
information between droplets d3 and d4 with a time delay of 6 frames, corresponding
to 18 s.

resulting in the directions and time delays displayed in Figure 4.5. For the pattern

length l = 30 frames and frame length ∆t = 3s we obtained entropy values of about

4.8 bits per droplet and maximal mutual information values I ′TD between 1.98 (d2 to

d3) and 2.87 (d3 to d4) bits. These measures support the observation that information

is transferred from the entropy source, the illuminated droplet d1, to the droplets on

the right.

Nonetheless, about 30 observed excitations do hardly suffice to build a probability

distribution of spike patterns, in particular, when the oscillation times are constantly

and continuously changing as the medium is aging in this example. Since the medium

is changing in a similar way for all droplets in the system, a correlation between each

droplet’s behavior might be measured. But because this correlation should be similar

for all delay values, the maximum of the information over the different time delay

values should still be a useful indicator for the actual interaction.

4.3.2 Hand-Designed Linear Classifier Network

From the point of view of information theory, real droplet experiments cover a small

number of oscillations. In the future, we plan to use microfluidic devices which should

improve reproducibility of the experiments, though. Here, further studies are carried

100 CHAPTER 4. INFORMATION THEORY BASED METHODS

out in simulation. First we will introduce and analyze a hand-designed linear classifier

network design and next we discuss an evolved binary NOR gate. Then we will show

how the information flow measures can support studying the function of network

components.

A simple linear classifying network was hand-built in simulation for classifying sam-

ples from the Proben1 [Pre94] data set. Each data record from the cancer subset is

a 10 elements vector {i1, i2, ..., i9, o} where the first 9 values, {i1, i2, ..., i9} belong to

the set {k · 0.1; k = 0, ..., 10} while the last value is the binary output class: either

benign or malign. Of the 699 samples, 458 are from the benign class, while 241 are for

the malign case. The output class entropy is ∼ 0.93 bits. For the same data set, we

already presented the evolution of a generative network description [Die12b]. But in

contrast here, we hand-designed the network with the rationale of selecting three out

of the nine input signals for which the mutual information to the expected output

class has the maximum. We found that the inputs i1, i2 and i6 combined, jointly

show a mutual information to the output class of ∼ 0.92 bits. First we combine the

two inputs with the highest joint mutual information, i2 and i6, and then combine

the result with the input i1. These three inputs are fed into the droplet network

as analogue, rate coded signals, where the value 0.1 corresponds to the lowest spike

frequency, very close to self-excitation, while 0.9 corresponds to a very high spike

frequency, very close to the highest possible spike rate.

According to Figure 4.6(a), most of the samples of class 1 are in one sector of the

input values, so a linear classification symbolized by the black line allows a correct

classification level of 94%. The droplet network design shown in Figure 4.6(b) per-

forms this task when used with an ideal, external threshold function to a similar level

of typically more than 90%, as show in Figure 4.7.

When applying random stimulation patterns at all three input nodes as entropy

sources, we can follow precisely the propagation of time-delayed mutual information,

droplet by droplet, from the inputs i1, i2 and i6 to the central less excitable nodes

and towards the output node o1 in Figure 4.6(b). Analogously, when observing the

4.3. RESULTS 101

Figure 4.6: Test cases and hand-designed droplet network for the classification of
the Proben1, cancer data set. (a) Scatterplot of the input variables i2 and i6. To
simplify the visualization, a uniform random number between 0 and 0.05 is added to
the discrete input coordinates i2 and i6. Obviously a relatively accurate classification
can already be achieved by a linear combination of i2 and i6 as indicated by the
black line i6 = −1.52

1.27
i2 +

1.24
1.27

. (b) Droplet network design for classification, showing
the information flow when randomly stimulated at the input nodes i1, i2 and i6.
Spike train discretization with ∆t = 0.5s and a pattern length of l = 45 frames
was used. The maximum entropy per droplet was 9.88 bits, the minimum 5.33 bits.
The maximum time-delayed mutual information was between 1.49 and 8.78 bits.
Differently colored circles represent different droplet types as described in Section
4.2.2.

102 CHAPTER 4. INFORMATION THEORY BASED METHODS

Figure 4.7: Output spike frequency of the droplet network. The 241 malign cases
(red) typically result in a much lower spike output frequency than the 458 benign
cases.

mutual information with the external input symbols, we can follow the input infor-

mation of each channel individually in Figure 4.8. Also, we see that the information

about the input symbols is decaying on its way to the central rows of less excitable

droplets (green). Another aspect of these plots is, that, for example in Figure 4.8(a),

the information about i1 is not zero at the other input nodes i2 and i6. The reason

here is, that there is already mutual information between the different input symbols

in the data set.

Surprisingly, when considering Figure 4.8(d), the mutual information between the

spike patterns and the expected output declines when moving from either input along

the droplet network towards the output droplet. That means, while a lot of informa-

tion about the correct outcome of an experiment is present in the inputs initially, this

information seems to be lost throughout the network. Nonetheless, the classification

using a simple threshold function at the output works relatively well. The reason for

this apparent loss of the information about the result towards the end of the compu-

tation lies in the considered time frame of the spike patterns: The threshold function

4.3. RESULTS 103

Figure 4.8: Mutual information between each droplet’s spike train and the external
input or expected output symbols, i.e. with input i1 (a), input i2 (b), input i6 (c)
and with the expected output o1 (d). Spike train discretization with ∆t = 0.5s and
a pattern length l of 45 frames. We measured spike pattern entropies per droplet
between 5.4 and 9.7 bits. Entropy of the external inputs i1, i2, i6 and the expected
output o1 were 3.0 bits, 2.3 bits, 2.0 bits and 0.92 bits, respectively. These external
entropy values were used as reference for the per-droplet pie charts displayed. The
colored fraction of the pie chart corresponds to the mutual information between this
droplet’s spike train and the external reference symbol, such that a full pie chart
would indicate the maximal possible mutual information between the spike patterns
and the external input/output. Different colors indicate different droplet types as
explained in Figure 4.6(b).

104 CHAPTER 4. INFORMATION THEORY BASED METHODS

Figure 4.9: Using another spike train discretization, the mutual information with
the expected output can be increased. Here, instead of using the distribution of all
possible spike patterns, we only averaged the number of spikes in a window of 200 s
and distinguished 10 different bins. Except for the discretization, this plot in analogy
to Figure 4.8(d).

works on the averaged spike frequency over the whole experiment of 4000 s while our

spike patterns only covered 22.5 seconds. But it is difficult to estimate the probability

distribution of all possible spike patterns for patterns larger than 50 frames in this

case. For estimating an average of the spike frequency over 200 seconds, 400 frames

would be necessary at a frame length of ∆t = 0.5 s. To measure the mutual informa-

tion with the 200 seconds averaged spike frequency, we discretize the spike range of

appearing spike frequencies into 10 different classes and build the probability distri-

bution on the abundance of these classes instead. When using this average spike rate

as discretization scheme instead for the mutual information measurement as shown

in Figure 4.9, we observe an increase of the mutual information with the expected

output class towards the output droplets.

4.3. RESULTS 105

4.3.3 Information Flow in an Evolved NOR Gate

Information flow analysis can be used to understand the function of a droplet network

obtained, for example, as the result of an evolutionary algorithm. In this example,

a NOR gate was evolved in simulation as a variation of our experiments described in

Ref. [Esc13], forming the design shown in Figure 4.10. Using trivial rate coding, the

NOR function implies that for a high frequency stimulation on either or both input

channels, a low frequency should appear on the output droplet, while a low frequency

on both input channels should lead to a high frequency output as shown in Figure 4.11.

From the time-delayed mutual information diagram, shown in Figure 4.10(a), the

network’s mode of operation can hardly be deduced. When observing the information

flow in dependence of the inputs or the expected output (cf. Figures 4.10(b-d)), it

becomes obvious that a very good output of the computation is accumulated in the

top left &1-droplet, very close to the input i1. Furthermore, wherever the actual

computation takes place, the result has to be transferred to the output droplet o1.

Along the way, some of the information may get lost again. When directly reading

the signal from the top left droplet instead, the noise level in the rate coded result of

the computation is actually reduced.

This leads to our assumption about the network function, that the actual computa-

tion, the modification of information both dependently on inputs i1 and i2 happens in

droplet &1. The long trail of “full” droplets in Figure 4.10(c) on the other hand only

transfers the information from input i2 to the “computing center” &1, but also relays

the result of the computation back to the output droplet o1. In the next section, we

will further investigate this assumption.

4.3.4 Effect of Manipulating the Information Flow

Mutual information analysis between spike patterns and inputs or expected outputs

can also be used to better understand the function of particular droplets in the net-

work by doing mutation or deletion experiments. Here we investigate the thesis that

the computation of the NOR network is happening in the top left &1-droplet as

106 CHAPTER 4. INFORMATION THEORY BASED METHODS

Figure 4.10: Droplet network designed by evolutionary algorithms to calculate the
binary NOR function. Differently colored circles represent different droplet types
as described in Section 4.2.2. The basic network setup including the information
transmission using time-delayed mutual information is displayed in Panel (a). Arrows
indicate the direction of the time-delayed mutual information between neighboring
droplets. The pie charts depict the mutual information with the input i1 (b), the
input i2 (c) and the expected output o1 (d). Spike trains are discretized with a frame
size ∆t = 1s and l = 35 frames. The displayed sizes of the droplets indicate the
entropies of the spike trains which were between 5.4 and 9.5 bits. The entropies of
the external inputs i1 (b), i2 (c) and the expected outputs o1 (d) were 1 bit, 1 bit
and 0.81 bits, respectively. In analogy to Figure 4.8, these Entropy values were used
as reference for the per-droplet pie charts displayed, such that a full pie chart would
indicate the maximal possible mutual information between the spike patterns and the
external input/output.

4.3. RESULTS 107

Figure 4.11: Output spike frequency of the NOR-gate droplet network. For each in-
put case, 200 replications of the experiment were simulated. The input cases 00 that
should be answered with symbols 1 can be distinguished by their higher spike frequen-
cies from all the other spike symbols that result in lower spike frequencies. Selecting
the threshold between low and high frequencies at 0.1, we obtained {185,200,180,200}
out of 200 correct results for the input cases {00,01,10,11}, respectively. It means
that the overall probability of a correct answer was ca. 95%, which is pretty high
considering the stochastic character of the event simulator used.

Figure 4.12: Effect of modifications on the information flow of the network design
from Figure 4.10. (a) Mutual Information between spike trains and expected output
symbol o1 for modified droplet &1. (b) Mutual Information between spike trains and
external input symbol i2 for deleted droplet d1.

108 CHAPTER 4. INFORMATION THEORY BASED METHODS

implied by the high mutual information to the expected output, shown in Figure

4.10(d).

To investigate this, we first exchange droplet &1 by a normal droplet. This leads

to a globally spread mutual information with the expected output, shown in Figure

4.12(a). But this also leads to an inversion of the spike frequency for each input case,

i.e. the whole network acts as an OR gate instead of a NOR gate. Note that an OR

gate can produce the complete 0.8 bits of mutual information with the expected NOR

output, because the inversion of the signal encoding does not destroy information.

Nonetheless, building an OR gate from droplets is far simpler than a NOR gate

[Esc13]. Hence the &1 droplet is necessary for the correct network function.

In another experiment, we removed droplet d1 from Figure 4.10(a), because it is

distant from the possibly important center of computation &1. Then, the output

mutual information is reduced in almost all nodes of the networks. In particular in

the top left &1 droplet, the output mutual information is reduced to almost half its

original value. The reason here is probably the perturbed information flow from input

i2 to the computing center &1 that becomes obvious when comparing Figures 4.10(c)

and 4.12(b). Because the information from input i2 does not arrive at the droplet

&1 where it should be combined with input i1, the synergy of the inputs cannot be

exploited in the modified network.

4.4 Discussion

In this chapter, we presented a general approach that can be used to design and un-

derstand a structure of interacting neuron-like objects that perform a specific informa-

tion processing task. Our investigation of information flows differs from conventional

computer science methods, where the execution of a computer program is typically

studied from the perspective of runtime and memory complexity. Instead, the mea-

surement of the propagation of information between droplets is based on information

theory and can be applied to different media and different types of coding. The

principle advantage of this approach for understanding the droplet system’s activity

4.4. DISCUSSION 109

is that the method is independent of a particular symbol encoding scheme [Str98].

This becomes more important when considering the possibility of improving the total

droplet network performance by mixing different symbol encoding schemes to solve

each subtask in an individual, optimal encoding scheme. Thus, methods based on

information theory can be seen as tools helping to optimally exploit the capabilities

of the computing medium. In this chapter we first theoretically described how to

analyse such networks of computing components. Then we demonstrated the appli-

cation of this analysis technique on a real experimental model system of five droplets

as well as on simulations of larger classification and NOR-gate networks. Finally, for

the NOR gate, we also showed how the information flow analysis helps understanding

the network function in combination with targeted modifications and deletions.

Open Problems

By observing the distribution of spike patterns of length l, we are estimating the

average reduction in uncertainty about either another droplet’s spike pattern or about

external values. But due to limited experiment length (real droplets are depleted after

20 - 100 excitations), due to limited experiment reproducibility and due to limited

computational resources, it will not be possible for arbitrary long spike patterns to

estimate their probability. When we enlarge the spike pattern length l by one, the

number of possible patterns 2l doubles even though not all spike patterns will actually

appear because of comparatively long refractory times. In the presented examples, it

was possible to reconstruct the information flow in the experiments and simulations

albeit using naive sampling of the appearing patterns. But for example in Section

4.3.2, we observed a case where the practical pattern length was not sufficiently

long to capture the mutual information with the computed output as seen in Figure

4.8(d). Only when we switched to another method of discretizing the spike trains, by

taking the average spike frequency over a long time period, we observed the mutual

information with the expected output in Figure 4.9. Other methods for calculating

correction terms for the limited sampling and for alternatives to discretization schemes

can be found in Refs. [Pan96, Str98, Rou99, Nem04, Kra04].

110 CHAPTER 4. INFORMATION THEORY BASED METHODS

Another problem of using time-delayed mutual information but also of transfer en-

tropy is the assumption that the cause and effect relationship, and thus also the time

delay between two droplets, would be constant in a droplet network. This might not

always be true, as we see for example in the case of an XOR network that the direc-

tion of signal propagation is changing with changing input patterns [Esc13]. Mutual

information between spike trains and external symbols should not be affected by this

effect so much, because it does not matter what generates the spike patterns in a

droplet or in a set of droplets.

Furthermore, due to the energy consumption of the BZ medium and the non-equilibrium

dynamics, its composition as well as its oscillation dynamics are constantly changing

over the course of the experiment. On the one hand, this complicates the sampling of

all possible spike patterns because it might be hard to repeat a particular situation,

on the other hand it might produce the “symptoms” of correlations between all the

droplets in the system, even though they are not really coupled by wave propagations.

But a droplet’s past is not sufficient to predict the varying next oscillation pattern,

which might lead to an erroneously measured transfer entropy.

Generally, when calculating the mutual information between spike trains, it can hap-

pen that a correlation between physically disconnected droplets is observed. One

reason for this effect is that in an experiment droplets have similar periods so once

the initial conditions are fixed, one droplet’s state can be predicted from the time evo-

lution of another unconnected droplet. Another reason is, as seen in Figure 4.8, that

already the supplied input cases might show some correlation. To determine causality

in the spike patterns, we use time-delayed mutual information here as explained in

Section 4.2.3. In further experiments it can be useful to combine the spike patterns of

multiple experiments or to use transfer entropy [Sch00, Sta08, Wib11] instead. When

calculating the time-delayed mutual information, instead of only plotting the time

delay at the maximum mutual information as presented in Figures 4.5 or 4.6(b), it

might be more useful to investigate the complete diagram of mutual information vs.

time delay. Such a plot would show if an expressed peak in the mutual information

actually exists at a particular time delay.

4.4. DISCUSSION 111

Combined Spike Patterns

Even though we considered only the spike trains of single droplets in the presented

examples, the information of an input signal or of intermediate computations might

be spread over multiple droplets. In that case, only the combined spike trains of

many droplets would reproduce the complete information. Our framework for spike

pattern entropy and mutual information is readily suited to capture this kind of

information from aggregated droplets as mentioned in Section 4.2.3, even though it

becomes harder to sample the distribution of spike patterns then.

Mutual Information Based Fitness Functions

Instead of only using the information flows to understand present droplet networks,

information theory can also aid in the design of unconventional computing systems,

e.g., as a fitness function in evolutionary computation. We demonstrated the feasi-

bility of our method by evolving binary in-silico droplet classifiers for three machine

learning data sets with different levels of difficulty in [Giz16]. Notably, our approach

does not require to pre-specify how the output signal should be interpreted. This is

achieved by a fitness function that measures the mutual information I(Po, o) between

the output droplet’s spike patterns Po and the desired output class o. In other words,

this mutual information, and hence the fitness value, can be interpreted as the reduc-

tion of uncertainty about the output class when seeing a particular spike pattern or

spike number.

When allowing very complex output patterns, the computing droplet system can be-

come simpler and export more of the actual computation to the observer interpreting

the output signal: In the extreme case, all inputs are just mapped into the output

spike pattern without doing any information modification. By continuously changing

the possible complexity of the spike patterns, i.e. the number of considered time

frames, we might continuously increase the amount of computation that has to be

done in the network itself. Furthermore, to reduce the variability in output pat-

terns Po for an expected output o, we can introduce a set of further fitness functions

112 CHAPTER 4. INFORMATION THEORY BASED METHODS

fo = I(Po, io) to be minimized, where io is the set of all input cases that lead to the

same output o: io = {i|f(xi) = o}.

Conclusion

By following the information flow in unconventional computing systems which are

for example built from BZ droplets, we gain a deeper understanding of the processes

that are actually happening while abstracting away some physical peculiarities and

properties of the system. So a very similar kind of analysis should be possible in other

non-BZ systems, given a suitable discretization of the used signals. Considering the

mutual information of spike trains with external inputs or with expected output val-

ues, we have shown that we can identify those droplets that fulfill important functions

in the network. We hope that this kind of analysis will in future also allow a different

concept for designing, specifying and synthesizing blueprints of unconventional com-

puting systems, based on the desired information flows. For more complex tasks, we

can identify possible intermediate results for the computation, positions where infor-

mation needs to be joined or lost necessarily. Then, instead of using evolution with

an unbiased mutation operator to design droplet systems, we can also use evolution-

inspired systems [Zha14] that are biased on where to apply mutations, similar to a

tinkerer that does not know the effect of his actions in detail but has an idea about

where the information flow is impaired.

Chapter 5

Tautological Loops

Figure 5.1: Real-world implementation of a tautological loop using an MM74HC00N
IC that combines four NAND gates, assembled by Peter Dittrich.

As explained in the introduction, in Section 1.3, next to the pure information pro-

cessing system that transforms input signals to output signals, we also need the

113

114 CHAPTER 5. TAUTOLOGICAL LOOPS

abstraction ab and concretization co functions that translate between the abstract in-

put/output symbols x ∈ X and the practical input output signals s ∈ S. We refer to

this mapping between symbols and signals as the symbol representation. Throughout

this thesis, it has always been a central issue, that particular symbol representations

might be more or less useful for particular computing systems and for particular in-

formation transformation tasks. Hence the problem of finding information processing

systems becomes even more complex, while at the same time a suitable symbol en-

codings for this system has to be found that allows to efficieciently use the computing

resources. In Chapter 3 we used evolutionary algorithms to co-evolve symbol encod-

ings with the computing system. Later, in Chapter 4, we used information theory to

detach the symbol encoding from the actual information processing task.

As an alternative approach here, Egbert [Egb13] proposes to use Tautological Loops or

RERUN networks (Re-entrant Recurrent networks of Repeated UNits) that make use

of putative implementations’ system dynamics to find abstraction- and concretization

functions between the abstract symbols X and the signals S. Given that the inputs

and outputs of a computation are using the same abstract set of symbols X, networks

are constructed of multiple instances p
(i)
f of gates that are connected in such a way,

that all input signals for the gates are taken from the output signals of other instances

in the same network. An electronic implementation of such a network is shown in

Figure 5.1. Ideally, neither pre-defined inputs nor outputs to the whole systems

need to be specified or interpreted. Starting from a randomly chosen initial state

of the network, we expect the system dynamics to settle in an attractor where the

signals between gate instances adopt useful values that might be used to represent

the abstract values from X. In this Chapter, we will elaborate conditions for this to

actually happen, investigate suitable tautological loop network designs and describe

a proof of concept using the exemplary droplet computing systems introduced in

Chapter 2.

5.1. INTRODUCTION TO TAUTOLOGICAL LOOPS 115

symbol meaning
f abstract function that is to be computed
pf practical implementation of the abstract function f as a program,

electronic circuit, gate or dynamical system
x, y ∈ X abstract symbols
s, o ∈ S signals that can be used in practical computations

s
(i)
j j-th input signal to the i-th gate, j ∈ {1, .., k}
o
(i)
j j-th output signal of the i-th gate, j ∈ {1, .., l}
k number of inputs to each gate
l number of outputs to each gate
m number of gates in the Tautological Loop

Table 5.1: List of mathematical symbols that are used in this chapter.

5.1 Introduction to Tautological Loops

Given an abstract, deterministic function f : Xk → X l, |X| ∈ N that maps k input

elements to l output elements of a finite setX, we are searching for an implementation

or gate pf : Sk → Sl, that maps k input signals to l output signals. But to actually

implement the function, the abstract set of input / output symbols x ∈ X needs

to be concretized into a set of signals s ∈ S which is not necessarily finite, as for

example an electric voltage. This is done by an abstraction function ab : S → X

and the related concretization function co : X → S, as explained in Figure 5.2. As

we showed in Section 3.1, finding this abstraction and the set of usable signals S is

equally challenging. Instead of testing every symbol to signal mapping or using prior

knowledge for the choice of signals, we use the systems own dynamics instead. By

connection all the systems’ outputs to its own inputs, we expect the system dynamics,

under specific conditions, to settle in an attractor that exhibits useful signals s that

can be used in the abstraction/concretization function. Because we will use many

mathematical symbols in this chapter, a list of the used letters is given in Table 5.1.

116 CHAPTER 5. TAUTOLOGICAL LOOPS

5.1.1 Naive Approach for Finding Appropriate Signals

Following a naive approach, for each putative implementation pf of the function f , we

would have to test all mappings ab from every possible abstract value x ∈ X to every

possible signal si ∈ S, which becomes especially hard in the case of infinitely sized

signal domains. Clearly, the result of the abstract computation should match the

result of the implementation when transformed by the abstraction and concretization

functions. But additionally, no two different abstract symbols should be mapped

to the same signal. Nonetheless, two different signals might be used to encode the

same abstract symbol, e.g., two very similar but different voltages might in digital

electronics both be used for a logical zero.

∀(x1, ..., xk) ∈ Xk : f(x1, ..., xk) = ab(pf (coi(x1, ..., xk)))

∀x, y ∈ X, x ̸= y : ab−1
i (x) ̸= ab−1

i (y)

Here, with the abstraction and concretization functions of a list of arguments, e.g.

ab(x1, ..., xk), we denote their component-wise application: ab(x1, ..., xk) = (ab(x1), ..., ab(xk))

and analogously for co(s1, ..., sl).

Sk Sl

Xk X l

co(x)

pf

ab(s)

f

Figure 5.2: Computation diagram: To find an actual implementation pf for an ab-
stract function f , also the symbol encoding needs to be fixed, in the form of congretiza-
tion co and abstraction ab functions that translate between the abstract symbols X
and the signals S. The tautological loop approach allows the self-organization of the
symbol encoding from the dynamics of the implementation pf . Here we assume that
the inputs and outputs to the abstract function f both use the same set of symbols
X, albeit a different length of the inputs Xk and the outputs X l is possible.

5.1. INTRODUCTION TO TAUTOLOGICAL LOOPS 117

5.1.2 Definition of Tautological Loops

We define a tautological loop as a directed graph where each of them nodes represents

an equivalent implementation p
(i)
f or gate and each directed edge is the connection of a

gate’s output with another gate’s input. Each gate p
(i)
f has k inputs {s(i)1 , s

(i)
2 , . . . , s

(i)
k }

and l outputs {o(i)1 , o
(i)
2 , .., o

(i)
l }. Both the inputs si and the outputs oj are elements

from the same set S, such that the output signals of gates can be used as inputs as

well. We can easily represent this kind of network by a matrix NTL = (rij)
m×k, where

rij is the output o
(u)
v of another gate p

(u)
f that is then used as the j-th input s

(i)
j of

gate p
(i)
f (..., o

(u)
v , ...), such that s

(i)
j = o

(u)
v .

NTL =



s1 s2 sk

p
(1)
f r11 r12 . . . r1k

p
(2)
f r21 r22 . . . r2k

...
...

. . .
...

p
(m)
f rm1 rm2 . . . rmk


Hence, each row p

(i)
f (ri1, ri2, . . . , rik) in the matrix represents the list of inputs sup-

plied to gate p
(i)
f that are taken from the other gates’ outputs. Examples for this

representation are given in Figure 5.3.

By using this matrix description of the network, each input of each gate p
(i)
f is au-

tomatically connected to exactly one other gate’s output. Additionally, at least one

output(s) of each gate p
(i)
f in the system should be used at least once in the tautolog-

ical loop NTL, thus:

∀i ∈ {1, ..,m} : ∃(a, b, c) : rab = o(i)c

Or, alternatively, if all outputs of each gate should be used, the condition would read:

∀(i, j) ∈ {1, ..,m} × {1, .., l} : ∃(a, b) : rab = o
(i)
j

Potentially, tautological loops might lead to better results if they are (i) connected

networks and if (ii) no output of a gate is used as its own input (self-loops). Further

118 CHAPTER 5. TAUTOLOGICAL LOOPS

 s1
p
(1)
f o

(2)
1

p
(2)
f o

(1)
1


(a) Network
NTL−NOT

(b) Graph representation of
NTL−NOT



s1 s2
p
(1)
f o

(2)
1 o

(3)
1

p
(2)
f o

(4)
1 o

(1)
1

p
(3)
f o

(1)
1 o

(4)
1

p
(4)
f o

(1)
1 o

(1)
1


(c) Network
NTL−NAND

(d) Graph representation of
NTL−NAND

Figure 5.3: Tautological loop networks in matrix (a,c) and graph (b,d) description
that show stable states for the NOT (a,b) and for the NAND (c,d) function. The
node names in panels (b,d) contain the Boolean value of the solving output state for
each gate. The color of an arrow entering a gate indicates which of both inputs is
connected to the source: red and blue arrows correspond to the inputs s1 and s2,
while thick brown arrows indicate that both inputs are taken from that source.

5.1. INTRODUCTION TO TAUTOLOGICAL LOOPS 119

(a) Network N1226,
favorable state

(b) Network N1226,
unfavorable state

Figure 5.4: The tautological loop N1226 for NAND and NOR gates has two different
stable states, displayed in subfigures a) and b). Only the configuration in subfigure a)
leads to a favorable state, where all input configurations are shown The configuration
in panel b), on the other hand, is stable but not useful as a tautological loop because
not all input configurations are exemplified. In this case, pf4 but pf3 are both presented
with the same input pattern {T, T}.

studies will have to show the effect of these demands.

5.1.3 Estimating Tauological Loop Quality

Now that we have defined the networks, the major property of tautological loops is

that their dynamics should be able to settle in an attractor, such that we can observe

the final signals and use them in the abstraction and concretization functions. But

before we can use the networks for this purpose, first we have to find suitable network

topologies. As exemplified in Figure 5.4, not all network topologies are equally useful,

for example because additional, unfavorable stable states can emerge in the network.

Instead of the gate implementations p
(i)
f , we assemble the tautological loop from

identical instances f (i) of the original function f here. When the network will be

applied for finding signal encodings later, more complex attractors will probably be

found, e.g. oscillations might be part of a valid voltage signal. But in the space of

abstract symbols X, the abstract computation f is supposed to be deterministic, such

that the result of a computation y = f(x) should always be the same output y for a

120 CHAPTER 5. TAUTOLOGICAL LOOPS

given input vector x. So for the following theoretical considerations, we will stay with

fixed point attractors to find valid tautological loop architectures. To this aim, we

first choose the trivial gate implementations pf to be exactly the abstract functions

pf = f . Consequently, the space of signals S becomes the space of abstract symbols

X. Now we can search and investigate network topologies that support fixed point

attractors and later use these topologies to design computing gate / signal pairs that

work together nicely, even if the attractors in the tautological loop are more complex

then.

Let x(i) = (x
(i)
1 , x

(i)
2 , . . . , x

(i)
k) ∈ Xk be the list of the current symbols that are used as

parameters to the function y(i) = f (i)(x(i)). To define the state of the tautological loop,

we denote the current output of the function f (i) as y(i) = (y
(i)
1 , y

(i)
2 , . . . , x

(i)
l) ∈ X l.

x(i) is assembled according to the tautological loop topology NTL from the list of

current output symbols y(∗) in the network. Hence the state of the whole network is

defined by the list of all functions’ current outputs y(∗) = (y(1), ..., y(m)) ∈ X l·m. Then

the network state y(∗) is in a fixed point attractor iff ∀i ∈ {1, ..,m} : y(i) = f (i)(x(i)),
such that no output symbol is changing any more.

Obviously, having attractors alone is not sufficient, as for example if f was a Boolean

AND function, setting all signals to false would also constitute a fixed point at-

tractor. But, if it was our task to design an electronic AND gate, this “all false”

attractor would not be useful (i) because not all values from X are present in the

attractor, thus we could not “harvest” the observed signals as a template for our ab-

straction/concretization function ab and (ii) because we could not be sure if the the

designed gate would be working under all possible input conditions from Xk. Conse-

quently we require the network template NTLT to exhibit attractors that contain all

possible input situations from Xk.


i∈{1,..,m}

{x(i)} = Xk (5.1)

And additionally, when the tautological loop NTLT is in a fixed point attractor y(∗),

5.2. SYSTEMATIC SCREENING FOR TAUTOLOGICAL LOOPS 121

we require its current output values y
(i)
j to cover all possible symbols from X.


(i,j)∈{1,..,m}×{1,..,l}

{y(i)j } = X (5.2)

Equation (5.1) already covers equation (5.2), because generating all possible input

combinations already requires having all possible elements from X present in the

system.

Furthermore, if there is an attractor y(∗) that covers all input situations, we expect

tautological loop to work the better, the fewer other attractors y′(∗) there are that

do not cover all input situations. The reasoning is, the more inappropriate attractors

there are in the network template using the functions f , the more inappropriate

attractors will we find in the network of actual implementations pf .

Further studies might show if the size of the basins of attraction are of importance.

Intuitively, a large basin of attraction for a suitable attractor might lead to faster

convergence and more robust solutions when actual implementations pf are used in

the tautological loop.

5.2 Systematic Screening for Tautological Loops

In this section, we will consider only binary Boolean functions with exactly two inputs

and one output to compose tautological loops of exactly four gates. For this kind of

networks, we can enumerate all possible network structures and estimate how many

of them are suitable as tautological loops in the sense that they (i) use all of the

gates’ outputs, that they (ii) have stable states and that they (iii) have at least one

stable state in which each gate of the network is presented a unique input pattern,

i.e. such that all input situations are exemplified.

As explained in Section 5.1.2, we represent potential tautological loop networks NTLi

as a matrix, which displays for each input of each gate the connected source, that is,

122 CHAPTER 5. TAUTOLOGICAL LOOPS

which other droplet’s output is used as the source for this input:

NTLi =



s0 s1

p
(0)
f o(c0) o(c1)

p
(1)
f o(c2) o(c3)

p
(2)
f o(c4) o(c5)

p
(3)
f o(c6) o(c7)

 , cj ∈ {0, 1, 2, 3}

As a short form, we only save the indices cj as an 8-tuple

Ni = (c0, c1, ..., c7),

where cj ∈ {0, 1, 2, 3}. A value cj describes the (j mod 2)-th input source of node

⌊j/2⌋ to be connected to the output of node p
(cj)
f . Thus, both inputs s0 and s1

to each gate are considered independently, because some gates g exist, for which

fg(s0, s1) ̸= fg(s1, s0). This results in 48 = 65536 different networks. To quickly

discriminate networks, we will identify network Ni = (c0, c1, ..., c7) by its sequential

number i, where i depends on the network description by the formula:

i =
7

j=0

cj · 4j

Among these networks, there are many isomorphic networks that are identical except

for exchanged indices of the nodes. When ignoring the numbering order of the nodes

in the network, 3122 canonical networks remain.

In the following, we will independently consider those networks with- and without

self-loops, i.e., gates that use the output of their computation as their own input. Of

the 3122 canonical networks, 1980 with- and 337 without self-loops make use of all

generated values, so that each calculated value is also fed back into the network. Then,

dependent on the chosen Boolean function for the gates, the candidate networks are

filtered for showing at least one stable state, for covering all input situations in those

stable states and finally for having a minimal number of stable stats. Networks with

5.2. SYSTEMATIC SCREENING FOR TAUTOLOGICAL LOOPS 123

(a) Network N966 (b) Network N969 (c) Network N8171

Figure 5.5: Tautological loops suitable for finding NAND gates that can be con-
structed without self-loops. All three networks are essentially the same, when allow-
ing to exchange the inputs a and b to the Boolean function NAND(a, b). The node
names contain the Boolean value of the solving output state for each gate. The color
of an arrow entering a gate indicates which of both inputs is connected to the source:
red and blue arrows correspond to the inputs a and b, while thick brown arrows
indicate that both inputs are taken from that source.

a minimal number of stable states, appear more useful, because here the dynamics

can easier settle into a particular envisaged stable state.

From the ’minStable’ row of Table 5.2, we observe that only for the NAND and NOR

gates, tautological loops can be found that show only a single stable state. When

searching for tautological loops for other gate types, every network will have two or

more stable states, such that the system’s dynamic behavior can end up in a stable

state that is not a solution because not all input situations are covered.

In Figure 5.5, we show all the network designs that can realize the NOR network

topology without using self-loops. All three networks are very similar except for

the assignment of inputs A and B. When allowing self-loops, the following network

topologies appear as additional solution candidates for NOR gates, shown in Figure

5.6. An overview of exemplary tautological loops for all 14 non-trivial two-input

Boolean gates is given in Figure 5.7.

124 CHAPTER 5. TAUTOLOGICAL LOOPS

(a) Network N331 (b) Network N583 (c) Network N591

(d) Network N709 (e) Network N710 (f) Network N711

Figure 5.6: More tautological loops suitable for finding NAND gates, now allowing
self-loops as well. The arrows are named and colored as in Figure 5.5. Networks
that are equal when allowing to exchange the inputs a and b for some of the gates
NAND(a, b) are omitted.

5.2. SYSTEMATIC SCREENING FOR TAUTOLOGICAL LOOPS 125

(a) G1 0001b,
AND, N6016

(b) G2 0010b, N364 (c) G3 0011b, N423

(d) G4 0100b, N1171 (e) G5 0101b, N1197 (f)G6 0110b, XOR,
N437

(g) G7 0111b, OR,
N6016

(h) G8 1000b,
NOR, N966

(i) G9 1001b,
XNOR, N437

(j) G10 1010b, N941

(k) G11 1011b, N364 (l) G12 1100b, N485

(m) G13 1101b, NAND, N1171 (n) G14 1110b,
N966

Figure 5.7: Exemplary tautological loops for Boolean two-input gates Gi where i is
the binary encoded output of the Boolean function for the inputs 00, 01, 10, and 11.

126 CHAPTER 5. TAUTOLOGICAL LOOPS

5.3 Implementation Fitness in the Tautological Loop

Once a valid tautological loop template is found using the original, abstract function

f as described in the last section, the network can be observed or simulated with

a putative implementation pf and the signals at the appropriate network edges can

be harvested to generate the concretization and abstraction functions co and ab as

displayed in Figure 5.2.

But first it might be necessary to evaluate if (i) a gate implementation pf is fulfilling

its purpose and (ii) if the tautological loop network actually settled in an attractor

such that the present signals bear any meaning. For simplicity, we assume here that

each gate p
(i)
f produces exactly one output signal s(i), such that l = 1 and we can

omit the index of the gate’s output. The general requirement for a set of signals s(∗)

in the tautological loop network is that two signals s(i) and s(j) are distinguishable iff

the appropriate abstract symbols x(i) and x(j) in the tautological loop template are

different.

∀(i, j) ∈ {1, ...,m}2, i ̸= j : s(i) = s(j) if x(i) = x(j)

s(i) ̸= s(j) if x(i) ̸= x(j)

Hence, there are two different fitness criteria, which are probably best treated using

multi-criteria optimization techniques [Sch85, Zit04]. On the one hand, the gates in

the network that are assigned different abstract symbols should be different. On the

other hand, the gates that that are supposed to produce similar outputs should not

be distinguishable.

5.3.1 Mutual Information Based Fitness

In order not to bias the selection of appropriate signal candidates by a particular

spike-train similarity metric, we propose to use information theory as explained in

Chapter 4. To this aim, we record the signal distributions Ps(i) at the output of each

gate p
(i)
f from simulation or experiment. Distinguishing supposedly different symbols

5.3. IMPLEMENTATION FITNESS IN THE TAUTOLOGICAL LOOP 127

is achieved by measuring the mutual information between signal distribution and

symbol distribution:

qIpos = I(Ps(i) ,Px(i)), i ∈ {1, ..,m} (5.3)

For the other part of the fitness function, being unable to distinguish supposedly

similar output symbols, we also suggest an information theoretic formulation: If, for

any fixed abstract output symbol ỹ ∈ X, there are multiple gates {p(a)f |f (a)(x) =

y(a) = ỹ, a ∈ {1, . . . ,m}} in the network that produce this output symbol ỹ according

to the tautological loop design NTL, we measure the mutual information between

the gate id a and the signal patterns found at these gates. In other words, if the

gates’ output signals contain information on the specific position a in the network,

this would contradict the claim that the signals represent the same abstract symbol

ỹ. Hence we have at most |X| penalizing terms, one for each ỹ ∈ X:

qIneg−ỹ
= I(Ps(a) ,Pa), a ∈ {i|y(i) = ỹ} (5.4)

Instead of using Pareto-optimization [Sch85, Zit04], a simple final fitness function can

just combine the different fitness criteria qpos and qneg−ỹ in a linear combination to a

single value q using a weighting factor ω:

qI = ω qIpos −

ỹ∈X

qIneg−ỹ
(5.5)

Assuming that the signals S in the network are a lot more noisy and complex than

the abstract symbols X, we can also use the entropy H(Py(i)) as upper bound for

the mutual information and thus as a way of normalizing the fitness values to, e.g., a

maximum of 1.

It might pose a problem for this approach, if multiple suitable fixed point attrac-

tors for the tautological loop NTL are found. Sampling the tautological loop with

its implementations might be irritating here, when different initial conditions lead

to different attractors that can not trivially be distinguished in the formulation of

128 CHAPTER 5. TAUTOLOGICAL LOOPS

Equations (5.3) and (5.4). Then signals that should be similar might be different if

taken from different attractors and vice versa, signals that should be different might

be similar if taken from different attractors. Here it might be a solution to first clas-

sify the samples of the dynamics for its attractor and then to calculate the fitness

function for each attractor individually.

5.3.2 Fitness based on Spike Frequency

As a simpler alternative, we can compare the spike frequencies C(i) that are measured

at the different outputs of the gate instances pfi in the tautological loop.

First, the differences in spike numbers between instances that are supposed to produce

different signals are summed up:

qCpos =


(i,j)∈{1,...,m}2, i̸=j, x(i) ̸=x(j)

|C(i) − C(j)| (5.6)

Then the negative impact of the differences between instances that are supposed to

produce imilar signals are summed up:

qCneg =


(i,j)∈{1,...,m}2, i̸=j, x(i)=x(j)

|C(i) − C(j)| (5.7)

Finally, a linear combination of the positive and negative spike number differences

with the factor ω can be used as the final fitness:

qC = qCpos − ωqCneg (5.8)

5.4 Tautological Loops for Droplet Computers

To demonstrate that the tautological loop method can be used to design NAND-gates

in more complex non-linear systems, we used the method to identify configurations of

simulated droplet-computers (cf. Chapter 2) that can operate as NAND-gates. For

5.4. TAUTOLOGICAL LOOPS FOR DROPLET COMPUTERS 129

the simulation, we use the event-based simulation system ’DropSim’, that abstracts

complex chemical processes to only the three states excited, refractory and responsive

and allows for very fast simulations of large droplet systems, as also explained in

Chapter 2 and in [Gru13]. Nonetheless, evolution of particular Boolean gates, espe-

cially of NAND and NOR gates is not trivial in this system as discussed in Chapter

3.

For the evolution of a NAND gate from simulated BZ droplets, we used planar designs

in a 5x5 grid where each horizontally and vertically adjacent droplet is connected.

The normal droplets in simulation stayed excited for one second, were refractory for

five seconds and then self-excited after 10 seconds if not externally triggered. The

signal propagation delay from one droplet to the next was one second. For each of

these values, a normal distributed noise term of the standard deviation 0.05 s is added

for each event, such that the simulation becomes non-deterministic.

Similar to the evolution experiments in Chapter 3, the mutation function can ex-

change each of the 25 positions in the grid with four different droplet types, including

no droplet. The remaining three droplet types were a normal droplet as described

above, a slightly faster oscillating droplet with 0.8 times the original period and a

less excitable droplet that requires two concurrent excitation at its neighbors to be

triggered into an excitation. The probability for exchanging a droplet position in the

grid was 0.05 per position.

Evolutionary studies were conducted in a 50-fold multi-start approach, where each

evolution run consisted of 500 generations. For each run, a population of 10 parents

was selected by truncation selection from 37 children and 3 random immigrants.

Single point cross over was used for recombination.

To evaluate the fitness of a droplet network individual, we connected four instances of

the individual in a tautological loop as proposed in our first initial tautological loop

design from Figure 5.4 (a). As a fitness function, we used the mutual information

based fitness formulation from Equation (5.5) of the last section. Because the resulting

networks were not completely suitable for combination to a half-adder system, we also

tried the fitness formulation from Equation (5.8). Because of the stochastic nature of

130 CHAPTER 5. TAUTOLOGICAL LOOPS

(a) Mutual information based fitness
evaluation.

(b) Spike-frequency based fitness
evaluation.

Figure 5.8: Distribution of final fitness values for 50 independent evolution runs using
(a) the mutual information based fitness evaluation from Equation (5.5) and (b) the
spike-frequency based fitness evaluation from Equation (5.8).

droplet simulations, we repeated 10 instances of the droplet simulation process, each

of which returned one mutual information value qi from Equations (5.5) or (5.8).

Then, the final fitness qf is the averaged fitness q over the ten repetitions minus 1
10

of the standard deviation to penalize strong differences between repetitions of the

experiment:

qf = q − 1

10

 1

10

10
i=1

(q − qi)2

Additionally to the evolved part of the network, we added ’diode droplets’ [Szy11] at

the connections between the instances that allow the signal propagation to proceed

only in the direction that is symbolized by the arrows in Figure 5.5.

Results for Mutual Information based Fitness Evaluation

The distribution of the final fitness values for the 50 independent evolution runs are

shown in Figure 5.8 (a), exhibiting that only a small fraction of the evolution runs

end up in the optimal fitness range. The best individual in the final generation of

the best evolution run is shown in Figure 5.9 (a). The evolution dynamics of this run

are shown in Figure 5.10 (a), where it becomes obvious that even with the averaging,

5.4. TAUTOLOGICAL LOOPS FOR DROPLET COMPUTERS 131

(a) Mutual information based fitness
evaluation.

(b) Spike-frequency based fitness
evaluation.

Figure 5.9: Evolved droplet network realizing the NAND function using (a) the
mutual information based fitness evaluation from Equation (5.5) and (b) the spike-
frequency based fitness evaluation from Equation (5.8). Blue droplets are the inputs
(left) and outputs (right), red droplets are normal droplets, brown droplets are faster
(f) and slower (s) oscillating droplets, green droplets (&) are less excitable.

there is a strong stochastic influence in the fitness evaluation.

For the droplet network instance from Figure 5.9 (a) and for all switching processes

between different input combinations, we plotted the network behavior in terms of

spike frequency for an exemplary single simulation instance as well as averaged over

100 simulation runs in Figure 5.11. Looking at the individual spike patterns in Figure

5.12, very regular spike patterns are found such that we conclude that the system

actually settles in a frequency coding regime. From the properties of the output

droplets, a range of spike frequencies between 0.06 and 0.16 spikes per second would

be possible. Within this range, when applying a threshold value of 0.08 spikes per

second and when interpreting a low spike frequency (ca. 0.065) as a logical ’0’ and

a high spike frequency (ca. 0.095) as a logical ’1’, the droplet network behaves as a

NAND gate.

Then, to further evaluate the utility of the evolved droplet network, we connected

multiple instances of the evolved NAND gate to a half-adder as illustrated in Figure

5.13. While a single gate instance seems to function adequately, the droplet net-

work that was evolved using the mutual-information fitness function did not produce

132 CHAPTER 5. TAUTOLOGICAL LOOPS

(a) Mutual information based fitness evaluation.

(b) Spike-frequency based fitness evaluation.

Figure 5.10: Best (red) and average (green) fitness per generation from the best of
the 50 indepentant evolution runs using (a) the mutual information based fitness
evaluation from Equation (5.5) and (b) the spike-frequency based fitness evaluation
from Equation (5.8). The average of the best individual of the final generation of
each of the 50 runs is plotted in blue with errorbars indicating the relatively large
standard deviation.

5.4. TAUTOLOGICAL LOOPS FOR DROPLET COMPUTERS 133

Figure 5.11: Input and output frequency of the evolved NAND network using the
mutual information fitness function for all four input configurations, averaged over
100 runs. Each stimulation pattern (indicated in the top two plots of the figure)
is applied for 5000 seconds. We interpret a high oscillation frequency (more than
0.08 spikes/second) as a logical one and a low oscillation frequency (less than 0.08
spikes/second) as a logical zero. The blue, dashed line in the NAND plot indicates an
externally applied threshold function that can be used to distinguish a high from a
low frequency. The gray peaks in the lower two plots indicate the error of the NAND
output as the distance of the output frequency from the blue threshold line, if the
signal is on the wrong side. While the third plot shows the average behavior of the
100 simulation runs, the lowest plot shows an arbitrary single trajectory, showing that
especially the slow switching processes from state (11) and (10) to state (01) happen
instantly when they happen but only after some time. This leads to an averaged
signal that slowly climbs from a low to a high spike frequency in these cases.

134 CHAPTER 5. TAUTOLOGICAL LOOPS

(a) Mutual information based fitness evaluation.

(b) Spike-frequency based fitness evaluation.

Figure 5.12: Emergent symbol encodings that were produced in the tautological loop,
evolved with (a) the mutual information based fitness evaluation from Equation (5.5)
and (b) the spike-frequency based fitness evaluation from Equation (5.8). Only a
small but representative time interval is shown here. A black vertical bar indicates
an excited droplet at this time. The emergent spike patterns do not vary strongly
over time, such that effectively rate coding symbols appeared. The rates in the
unit ’spikes per second’ for the symbols zero and one are approximately 0.065 and
0.095, respectively, for the mutual information fitness function (a) and 0.14 and 0.06,
respectively, for the spike-frequency fitness function.

5.4. TAUTOLOGICAL LOOPS FOR DROPLET COMPUTERS 135

Figure 5.13: Half-adder assembled from the evolved NAND gates. Round nodes
represent input and outputs to the network while rectangles represent independent
instances of the evolved NAND gate. Similar to the earlier tautological loop networks,
the inputs to each gates are symbolized by the colors red and blue.

observable results on all output channels for the half-adder: The Sum/And output

channels stays at the output value of ’1’ for all input combinations. Nonetheless,

the Carry/XOR output channel produces a useful output. The different switching

processes between all input combinations are shown in Figure 5.14. Most probably,

the poor switching behavior of the Sum/And channel is due to an amplification of

stochastic variations in the output signals of each individual NAND gate, where espe-

cially switching from input combination (1:1) to (0:1) and from (1:0) to (0:1) seemed

slow and error-prone as observed in Figure 5.11.

Results for Spike-Frequency based Fitness Evaluation

Because the composition of a hald-adder network from our evolved NAND gates,

using the mutual information fitness function, did not produce satisfactory output

signals, we additionally tested evolving a gate with the alternative, spike-frequency

based fitness formulation from Equation (5.8). This resulted in the distribution of

final fitness values displayed in Figure 5.8 (b). The droplet network shown in Figure

5.9 (b) is one of the final individuals of the evolution run with the highest maximum

fitness. The evolution dynamics of this run are shown in Figure 5.10 (b), where it

becomes obvious that similar to the mutual information fitness function, there is a

strong stochastic influence in the fitness evaluation and that the fitness typically does

136 CHAPTER 5. TAUTOLOGICAL LOOPS

Figure 5.14: Input and output frequency of the half-adder network constructed from
the mutual information fitness evolved NAND gate for all four input configurations,
averaged over 100 runs. Each stimulation pattern is applied for 5000 seconds. We
interpret a high oscillation frequency (more than 0.08 spikes/second) as a logical zero
and a low oscillation frequency (less than 0.08 spikes/second) as a logical one. The
gray peaks in the lower two plots indicate the error of the output: It indicates the
distance of the output frequency from the blue threshold line, if the signal is on its
wrong side. The third plot with the output of the Sum/And function exhibits large
error values, not seeming to show anything else but a high output frequency, while the
Carry/Xor function output appears almost as good as the output of a single NAND
gate in Figure 5.11.

5.4. TAUTOLOGICAL LOOPS FOR DROPLET COMPUTERS 137

Figure 5.15: Output frequency of the evolved NAND network for all four input con-
figurations, averaged over 100 runs. Each stimulation pattern (indicated on top of
the figure) is applied for 5000 seconds. We interpret a high oscillation frequency
(more than 0.10 spikes/second) as a logical zero and a low oscillation frequency (less
than 0.10 spikes/second) as a logical one. The blue, dashed line in the NAND plots
indicate an externally applied threshold function that can be used to distinguish a
high from a low frequency. The gray peaks in the lower plots indicate the error of
the NAND output, i.e., the distance of the output frequency from the blue threshold
line if the signal is on the wrong side.

not increase continuously but takes almost discrete jumps to higher fitness values.

For all switching processes between different input combinations, we plotted the net-

work behavior for an exemplary single simulation run as well as averaged over 100

simulation runs in Figure 5.15. When applying a threshold value of 0.10 spikes per

second, which is higher than the 0.08 spikes per second in the mutual information

fitness case, the network behaves like a correct NAND gate. Again, using the spike-

frequency based fitness, we tried connecting multiple instances of the evolved NAND

gate to a half-adder as illustrated in Figure 5.13. Here, both output channels for the

Sum/And as well as for the Carry/Xor signal produce useful output frequencies as

shown in Figure 5.16. Nonetheless, in the simulated 5000 s per input configuration,

it took the half-adder network longer on average to move the output spike frequency

138 CHAPTER 5. TAUTOLOGICAL LOOPS

Figure 5.16: Output frequency of the half-adder network constructed from the evolved
NAND gate for all four input configurations, averaged over 100 runs. Each stimulation
pattern is applied for 5000 seconds. We interpret a high oscillation frequency (more
than 0.10 spikes/second) as a logical zero and a low oscillation frequency (less than
0.10 spikes/second) as a logical one. The gray peaks in the lower two plots indicate
the error of the output as the distance of the output frequency from the blue threshold
line, if the signal is on its wrong side. On average, when measured at the end of each
phase, e.g. 4900 seconds after each input change, all ouputs behave correctly like a
half-adder.

towards the desired region. This implies that it will not trivially be possible to build

arbitrarily large logical systems from these NAND gate.

5.5 Discussion

In this Chapter we presented the concept of tautological loops or RERUN networks

and the idea was described both visually and formally. Furthermore, we considered

conditions that lead to networks that can effectively be used for finding symbol encod-

ings, albeit the practical use of these conditions still needs to be proven or examined.

In order to evaluate potential gate implementations together with the self-organizing

symbol encoding, we additionally showed how to extend the information-theoretic

5.5. DISCUSSION 139

analysis from Chapter 4 for tautological loops as a fitness function for evolutionary

computation. As an example of the applicability of the tautological loop network con-

cept, we ran evolution experiments with simulations of artificial droplet computers

as modeled in Chapter 2. In this process, we evolved two different NAND gates that

used different spike rate encodings for the symbols zero and one. We also verified the

function of the NAND gates by coupling them to form a functional half-adder, which

was successful only for one of the evolved NAND gates.

In the practical evolution experiments carried out in this chapter, even though the

tautological loop was designed to fulfill the NAND-gate function, a NOR-gate and a

NAND-gate are equivalently evolved, dependent on the interpretation of the observed

signal patterns. When assuming that a low spike rate is interpreted as a logical zero

and a high spike rate as a logical one, the gate design in Figure 5.9 (a) corresponds

to a NAND gate here. But obviously, when inverting this assignment, a NAND gate

becomes a NOR gate for the same operation on high and low signals, as explained in

Table 5.3.

This interchangability of the symbol encodings might also be an obstacle for evo-

lutionary optimization with tautological loops, because therefore, in our examples,

there are always at least two stable states. When the system changes from one stable

state to another, low fitness values are generated, because the signals in wires that

are supposed to carry different symbols exchange. Consequently, it might help in the

evolutionary process to gradually lengthen the simulation time, in such that early

droplet network designs are not discarded because of occasional signal inversions.

Another interesting finding of the experiments carried out here is that even though the

symbols that evolved in Section 5.4 were temporarily stable in the tautological loop

during stochastic fitness evaluation, the resulting gates did not automatically exhibit

error-correcting properties. Especially the droplet network in Figure 5.9 (a) was not

suitable for composing a half-adder from individual gate instances. So apparently,

the emerging symbols were temporarily stable in the tautological loop system but

not necessarily outside, when run through the evolved gates by thesmselves. One

reason might be timing effects, that work only because of the exact lengths of the

140 CHAPTER 5. TAUTOLOGICAL LOOPS

connecting segments between the gate instances in the loop. Here it could be tried

to use arbitrary lengths for the connecting segments between the gate instances in

the loop to reduce effects that require an exact timing. Additionally, it might prove

effective to cycle through tautological loop designs with similar properties, based on

our classifications in Section 5.1.3 in an evolutionary run. Also, similar to conventional

electronics, switching processes in gates require time, such that only a limited number

of gates can be combined in a clock cycle.

In following studies, it should be investigated whether the use of tautological loops

bears actual advantages in the search for symbol encodings when compared to symbol

co-evolution as shown in Chapter 3 or to naive enumerative approaches. For example,

tautological networks might be useful for finding symbol encodings with less compu-

tational effort or to find encodings that have better error correction properties. Also

cryptographic hash functions like the secure hashing algorithm (SHA, [Nat12]) might

be a useful “substrate” for further studying the applicability of tautological loop

topologies. A variable number of input and output bits could then be considered,

such that the symbol complexity can be analyzed on different scales. Such crypto-

graphic hash functions would be an extreme case, where it should be especially hard

to find suitable symbol encodings by rational design decisions, because inputs and

outputs are supposed to be not trivially related. An approach in this direction was

taken in the bachelor’s thesis [Ruh14].

In the tautological networks presented in this chapter, different instances of the same

basis function f are connected in a loop to find suitable symbol encodings. But while

NAND gates can be used to build all other binary Boolean gates, for other, maybe

not Boolean information processing modules, it might be necessary to wire different

basis functions together, probably resulting in more complex tautological loops.

5.5. DISCUSSION 141

in
cl
u
d
in
g
se
lf
-l
o
op

s
ex
cl
u
d
in
g
se
lf
-l
o
op

s
G
at
e

P
at
te
rn

S
ta
b
le

C
ov
er
in
g

m
in
S
ta
b
le

S
ta
b
le

C
ov
er
in
g

m
in
S
ta
b
le

0
-
F
A
L
S
E

00
00

19
80

-
-

33
7

-
-

1
-
A
N
D

00
01

19
80

14
3:

8
33
7

-
-

2
00
10

19
80

52
2:

23
33
7

-
-

3
00
11

19
80

81
4:

52
33
7

5
4:

5
4

01
00

19
80

47
2:

23
33
7

-
-

5
01
01

19
80

49
4:

38
33
7

3
4:

3
6
-
X
O
R

01
10

19
80

26
0

2:
18
2

33
7

28
2:

28
7
-
O
R

01
11

19
80

14
3:

8
33
7

-
-

8
-
N
O
R

10
00

70
8

57
1:

32
27
7

28
1:

3
9
-
X
N
O
R

10
01

19
80

26
0

2:
18
2

33
7

28
2:

28
10

10
10

53
8

16
2

2:
14
9

19
9

47
2:

43
11

10
11

19
80

52
2:

23
33
7

-
-

12
11
00

51
3

14
9

2:
13
5

21
4

52
2:

47
13

11
01

19
80

47
2:

23
33
7

-
-

14
-
N
A
N
D

11
10

70
8

57
1:

32
22
7

28
1:

3
15

-
T
R
U
E

11
11

19
80

-
-

33
7

-
-

T
ab

le
5.
2:

N
u
m
b
er

of
p
os
si
b
le
ta
u
to
lo
gi
ca
l
lo
op

s
fr
om

fo
u
r
tw

o-
in
p
u
t
B
o
ol
ea
n
ga
te
s
w
it
h
an

d
w
it
h
ou

t
al
lo
w
in
g
se
lf
-

lo
op

s.
.
T
h
e
S
ta
bl
e
ro
w

co
n
ta
in
s
th
e
n
u
m
b
er

of
n
et
w
or
k
s
th
at

h
av
e
at

le
as
t
on

e
st
ab

le
so
lu
ti
on

.
O
f
th
os
e
n
et
w
or
k
s,

th
e
’C
ov
er
in
g’

ro
w

co
n
ta
in
s
th
e
n
u
m
b
er

of
n
et
w
or
k
s
th
at

h
av
e
a
st
ab

le
so
lu
ti
on

th
at

w
ou

ld
ge
n
er
at
e
ev
er
y
in
p
u
t

si
tu
at
io
n
.
O
f
th
os
e
n
et
w
or
k
s,

th
e
’m

in
S
ta
b
le
’
ro
w
s
co
n
ta
in
s
th
e
n
u
m
b
er

of
n
et
w
or
k
s
th
at

sh
ow

ex
ac
tl
y
k
st
ab

le
st
at
es
,
w
h
er
e
k
is
th
e
m
in
im

al
n
u
m
b
er

of
st
ab

le
st
at
es

fo
u
n
d
.

142 CHAPTER 5. TAUTOLOGICAL LOOPS

i0 i1 output
A A B
A B B
B A B
B B A

(a) abstract

i0 i1 output
0 0 1
0 1 1
1 0 1
1 1 0

(b) A∼’0’, B∼’1’

i0 i1 output
1 1 0
1 0 0
0 1 0
0 0 1

(c) A∼’1’, B∼’0’

Table 5.3: Input/output signal table for NAND and NOR gates. In table a), A and
B represent signals that encode Boolean values. When A represents a ’0’ and B a ’1’
as in table b), the table becomes a truth table for the NAND function. On the other
hand, when A represents a ’1’ and B a ’0’ as in c), the table becomes the truth table
for a NOR function. Because of this symmetry and the principle of not presetting
the symbol encoding for the tautological loops, we can not distinguish a NAND gate
from a NOR gate.

Chapter 6

Embodied Evolution

Evolutionary computation [Fog66, Rec71, Sch75, Hol75, Koz89, Fog94, Bey02, Wei02,

Eib08] were used more excessively in the sense of genetic programming [Koz89] in

Chapter 3 to find the algorithm or program pf that computes some function f . In this

section, instead, a step towards embodied evolution is taken such that the algorithm pf

itself is an evolutionary process that is embedded into the unconventional computing

substrate. Although embodied evolution is defined as evolution happening in a real-

world population of robots [Wat02], the agents here are molecular machines whose

dynamics will only be explored in simulation.

In evolutionary computation systems, the optimality criteria, i.e., the fitness functions

are often evaluated in the same digital computer that runs the evolutionary algorithm,

for example in simulation or as ODE integration. When externalized however, the

fitness evaluation can be realized in a technical or physical system as CCE (Com-

puter Controlled Evolution) [Hig96, Dit98, Mil14] or even by human beings [Tak01].

Furthermore, also the selection operation can be externalized, e.g. by biochemistry

methods like the SELEX (Systematic Evolution of Ligands by Exponential Enrich-

ment) technique [Klu94, Mat06b]. Still, in contrast to the system proposed here,

the populations of most common evolutionary computation systems are exclusively

held as data structures maintained on digital computers and the generation scheme

is mostly controlled externally.

143

144 CHAPTER 6. EMBODIED EVOLUTION

In the following work that was done in collaboration with Gabi Escuela and Thomas

Hinze in [Gru11b], the concept of molecular embodied evolution is elaborated in the

context of solving the exact set cover problem. An evolutionary process is exem-

plified here that is, similar to a biological organism, embedded in a single physical

world, which contains the fitness evaluation but also the population, the selection,

the mutation operations as well as the control of an asynchronous generation scheme

as proposed by Banzhaf [Ban90]. This single physical world of the work shown here

is being simulated using the rule-based reaction system SRSim [Gru10] for structured

molecules.

6.1 The Exact Set Cover Problem

We will first give a formal definition for the exact set cover problem, which is NP-

complete [Kar72]: Let X = {x1, x2, . . . , xn} be a finite set of elements and F =

{S1, S2, . . . ,Sk} be a family of sets (also called collection), such that ∀i ∈ {1 . . . k} :

(Si ̸= ∅) ∧ (Si ⊆ X). Then, C ⊆ F is an exact cover of X if and only if:

1. X =


S∈C S, and

2. ∀S, S ′ ∈ C, S ̸= S ′ : S ∩ S ′ = ∅ .

The decision-problem here is defined as the question, if such an exact cover C exists,

given the set of elements X and the set of subsets F . To find all the solutions for

this problem, Knuth [Knu00] proposed a so-called Algorithm X, a recursive, non-

deterministic algorithm that combines depth-first and backtracking as programming

strategies, and as data a matrix that represents the relation “contained in” between

elements and subsets.

The exact set cover problem shares common properties with other NP-complete prob-

lems, including those that consider other kinds of cover. Set cover problems, in gen-

eral, have their practical applications in conservation biology [Moo03], phylogenetics

[Hal04] and protein identification [He11].

6.1. THE EXACT SET COVER PROBLEM 145

(a) Five elements
and three subsets

(b) Ten elements
and ten subsets

Figure 6.1: Two exemplary instances of the exact set cover problem: Circles on the
left of each graph represent the different subsets A,B,C, ... of the elements a, b, c, ...,
which are shown on the right side of each graph. Arrows leaving a subset indicate
all the elements that belong to this subset. Hence, these arrows are a representation
of the externally given problem instance and cannot be modified by the algorithm.
The thick circles on the left of each panel indicate the perfect set of subsets and
thus a solution to the exact set cover task. This means that each element on the
right is reached by exactly one arrow, when exactly the thick subsets on the left
are chosen. In a simple instance of the problem X = {a, b, c, d, e} and F = {A =
{a, d}, B = {a, b}, C = {c, d, e}}, the subsets B and C lead to the perfect solution,
while A only covers the elements a and d but also disallows the subsets B and C
to cover more elements. (b) In the larger example with X = {a, b, c, d, e, f, g, h, i, j}
and F = {{a, b, c}, {d, e, f}, {g, h}, {i, j}, {a}, {d}, {g}, {i}, {b}, {e}} there are ten
elements as well as ten subsets of elements.

Two instances of the set cover problem are displayed in Figure 6.1. The search space

is growing exponentially with the number of available solution candidates Ci ∈ P(F)

from the power set of the available subsets. Each element Ci of the power set has

to be considered as a potential solution. This means that the chance of randomly

generating a correct solution is 1
2|F| , where the notation |F| denotes the cardinality

of the set F . This implies a probability of 1
8
= 12.5% in the case displayed in Figure

6.1a and 1
1024

≈ 0.1% in the case of 10 subsets as in Figure 6.1b.

146 CHAPTER 6. EMBODIED EVOLUTION

6.2 An Evolutionary Algorithm in Rule-Based Chem-

istry

We follow the design principles of an object centered view, where each of the molecules

represents a possible solution candidate object. Each of the objects is following its

own heuristic reaction path that can lead it to become a perfect solution to the

exact set cover problem. This happens fully concurrently, i.e., there is no temporal

dependency between different global phases of the algorithm that would have to be

controlled from the outside.

We use molecular descriptions of molecules that evaluate, select and reproduce solu-

tion candidates, constituting a molecular implementation of a heuristic optimization

algorithm that uses gradient information. In particular, we present an instance of

an asynchronous evolutionary algorithm that is purely implemented in rule-based

chemistry [Hla06, Gru10], similar to the evolutionary algorithm that was described

by Banzhaf, 1990 [Ban90] but, in this case, used for the exact set cover problem.

The population of individuals from the search space, the calculation of the fitness,

the reproduction as well as the selection are realized by structured molecules in the

reactor and the limited set of reaction rules between them.

Also different membrane computing frameworks, like the Membrane Algorithms that

were presented by Nishida in 2005 [Nis06], can be used to implement evolutionary

algorithms. But in contrast to these, our approach uses local rules instead of a

global timing scheme or instead of a global spatial division into areas working under

a different scheme. The computation happens according to local rules only.

6.2.1 Genotype and Phenotype

Each possible solution Ci ∈ P(F) to the exact set cover problem problem is repre-

sented by a genotype as well as its consequent phenotype in this approach. These two

components are realized by a molecule dimer gen - phen. The genotype molecule gen

has exactly one docking site for each possible subset Si ∈ F . “Token molecules” T

6.2. AN EVOLUTIONARY ALGORITHM IN RULE-BASED CHEMISTRY 147

can attach to each binding site of gen, representing the inclusion of a certain subset

Si, when attached. The phenotype molecule phen on the other site of the dimer has

exactly one docking site for each element xi ∈ X of the set to be covered. A token T

that is attached to a phen molecule represents a covered element xi, as displayed in

Figure 6.2a.

The genotype-phenotype mapping, i.e. the assignment stating which elements {x1, ..., xk}
belong to which subset Si, is realized through artificial transfer factors. These trans-

fer factors follow the example of biological transfer-RNAs (tRNAs) [Qui76], which

facilitate the mapping between a triplet of DNA bases to a specific amino acid. In

our approach, there is exactly one species of transfer molecules trans for each subset

Si. It is loaded with exactly one subset-token molecule that corresponds to the subset

Si ∈ F and a variable number of element-token molecules, each corresponding to one

of the elements xi ∈ X . Some examples for transfer molecules are displayed in Figure

6.2b. This design has the advantage that the instance of the exact set cover problem

is independent from the set of rules. We are even able to dynamically exchange the

problem instance, while the “algorithm” is working in a reactor by feeding a different

set of transfer molecules into the reaction vessel.

Each subset- and element-token molecule T is of a given sub-type, similar to the codon

region of a transfer RNA. Hence we can allow a token to dock only to the binding

sites that fit its sub-type. In total, we need a number of |X | + |F| different types of
tokens to allow for the specific binding of tokens to the distinct sites of the genotype

and phenotype molecules.

A transfer molecule can dock to any fitting free site of the gen - phen dimer with its

attached tokens, if they are of the correct type. If and only if a transfer molecule

can dock all of its tokens into the docking sites of the gen - phen solution dimer,

the transfer molecule can dissociate from its tokens, leaving them with the solution

dimer. If there is already a token blocking one of the necessary sites of the gen - phen

dimer, the complete transfer molecule with all of its tokens will dissociate after some

time. Thus we ensure, that the tokens at the gen side corresponding to the selected

subsets Si are correctly mapped to the tokens on the phen side, corresponding to

148 CHAPTER 6. EMBODIED EVOLUTION

(a) An arbitrary solution
candidate represented
by a gen - phen dimer
with attached subset- and
element-tokens.

(b) Exemplary transfer factors. The docking site s is
loaded with a subset-token and the sites e are loaded
with element-tokens.

Figure 6.2: Genotype - Phenotype mapping: molecules representing the genotype gen
and the phenotype phen of an individual in the evolution. The mapping (a) between
subsets and elements is realized by various transfer factors (b) which are specific to
the problem instance displayed in Figure 6.1b. For this problem instance, a maximum
of three element tokens is sufficient. Each token molecule is marked with the name
of the binding sites that it will be able to bind to.

the elements xi. In this way we cannot attach subsets to a solution that lead to

a duplicate selection of an element xi. On the other hand, when all the elements

from X are present in a solution, we have also selected an appropriate set of subsets

{Sa, ..., Sk}.

6.2.2 Evaluation and Inheritance

When implementing the system according to the design given in the last section,

we obtain a molecular random search system that will automatically avoid choosing

combinations of sets with overlapping elements. Nonetheless, when there is a large

number of non-overlapping subset attachment pathways that lead to imperfect solu-

tions, the chances for producing a correct solution to the problem are small. And

even when one molecule in the reactor found the perfect solution, it would be hard

to identify it among all the other wrong solutions. Consequently we add a selection

6.2. AN EVOLUTIONARY ALGORITHM IN RULE-BASED CHEMISTRY 149

and reproduction operator here, which will help to cover a larger search space and to

amplify good solutions.

Both functions, selection and reproduction, are realized by a single molecule Copier

which goes through different internal phases. In the beginning, it attaches to one gen

- phen dimer, then to an arbitrary other possible solution dimer as shown in Figure

6.3. When it has docked to two possible solution candidates, it “decides” which of

them to discard and which to take as a template for reproduction.

This decision is made by a small number of |X | reaction rules: for each element

xi ∈ X , a rule is defined that is applicable, when there is an element token (e.g. T-e

in Figure 6.3) that is only present on one of the docked solution instances.

The reaction then marks the solution with the lacking element token as dominated,

the other one as template. The more elements are present in one solution but missing

in another, the higher the probability for the better solution to be marked as template.

Still it is a stochastic process, so it is possible that a good solution A covering many

elements can be marked as dominated in comparison with a competing solution B

owning few elements.

Once one of the solution candidates is marked as dominated, it will reject all its to-

kens, effectively deleting this solution and remove the dominated marking. Now two

alternative events can happen: Either the cleared solution can dissociate from the

Copier to recruit new transfer molecules and thus generate a new solution candi-

date randomly. But until the dissociation happens, new transfer molecules can still

dock to the cleared solution candidate. Here, the docked Copier molecule prevents

transfer molecules to attach subset tokens to the cleared molecule, if its other tem-

plate solutions does not show this token. The longer the cleared solution remains at

the Copier, the more exact will the template solution be reproduced at the cleared

solution. Consequently, by modifying the dissociation rate, we can alter the effec-

tive mutation rate in this evolutionary algorithm. Nonetheless, a mutation can only

mean to leave out a subset-token in the overwritten molecule, not to induce a new

subset-token. But after the new solution candidate dissociates from the Copier, it

can indeed be attached to a different subset-token.

150 CHAPTER 6. EMBODIED EVOLUTION

Figure 6.3: The Copiermolecule realizes both, the selection and reproduction process.
The left solution candidate is fitter than the right one, because it has more element-
tokens attached to its phenotype side. As a result, the right candidate will be erased
and overwritten by the Copier molecule.

6.2.3 Differences to standard evolutionary algorithms

In comparison to traditional evolutionary algorithms as they are implemented on

sequential computers, our approach is asynchronous to begin with, as described by

Banzhaf, 1990 [Ban90] or in embodied evolution scenarios [Wat02]. All the com-

ponents of the evolution system work continuously in the whole system, without

separating the system into discrete generations as it is usually done. The evaluation

of the fitness is also different, in that no global ranking is done and that no real valued

score is calculated. Instead, the fitness of two solution candidates is compared locally

and stochastically. Recombination is not implemented in our approach but might be

realized by coupling multiple Copier molecules.

The most striking difference to traditional evolutionary algorithms is probably that

we do not switch the “environment” between the execution of the evolutionary algo-

rithm and the evaluation of the fitness function as it usually done, when the fitness

evaluation appears as a black box in the algorithm. Here instead, all aspects of the

evolutionary algorithm: the mutation operators, the reproduction and the selection

are described in the rule-based chemistry language BNGL [Bli04, Hla06].

6.2. AN EVOLUTIONARY ALGORITHM IN RULE-BASED CHEMISTRY 151

(a) An empty gen - phen

dimer as solution candi-
date and a loaded transfer
molecule.

(b) The transfer factor has
docked to the solution can-
didate with a single token.

(c) All the transfer factor’s
tokens are bound to the so-
lution candidate.

(d) The transfer factor jet-
tisons its tokens...

(e) ...and diffuses away
from the modified solution
candidate.

(f) A snapshot of the whole
reactor.

Figure 6.4: Snapshots of the transfer factors while delivering tokens to a solution
candidate (a-e) and a visualization of the SRSim simulation of the entire reactor (f).

6.2.4 Simulation case study

To test the system with ten subsets, which was presented in Figure 6.1b, we imple-

mented the asynchronous, local evolutionary algorithm in rule-based chemistry using

the BioNetGen Language (BNGL) [Bli04, Hla06] and simulated it with SRSim, our

simulation system for spatial and rule-based chemistries [Gru10]. Some snapshots of

a docking transfer factor and the general simulation process are shown in Figure 6.4.

Though the size |F| = |X | = 10 of the problem instance might seem very small,

nonetheless, a fully enumerative approach would still need to produce 210 = 1024

different tentative solutions and thus an even larger number of molecules would be

necessary to stochastically cover a large fraction of them. Instead, the toy system we

152 CHAPTER 6. EMBODIED EVOLUTION

investigated comprised 10 gen - phen dimers, three Copier molecules and 30 transfer

factors for each subset Si ∈ F . To test different mutation rates, we varied the

dissociation rate koff of gen - phen dimers from the Copier molecules. We considered

the three cases of koff = 101, 10−4, 10−6 and the control case of no selection at all. In

addition to the reaction system described before, we added rules to “recycle” used

transfer factors. Alternatively, an inflow of loaded transfer factors and an outflow of

used trans molecules might be used.

Figure 6.5: Development of the solution candidates in the optimizing molecular sys-
tem over time. Averaged (n=50) number of generated perfect solutions. Error bars
indicate the standard error of the mean. When omitting the copier molecules (box
points, purple), we obtain a perfect solution in a fraction of the simulations close
to the theoretical 2.56%, corresponding to a perfect solution in about every fourth
simulation run. With the highest mutation and dissociation rate koff = 101 instead,
we obtain a high percentage of perfect solutions in the system quickly. This high
mutation rate leads to the situation, that effectively no information is passed from a
“parent” molecule to its offspring. A cleared solution candidate will dissociate very
fast and generate a new potential solution from scratch (plus points, red). With a
lower dissociation rate koff = 10−4, the cleared solution candidates will stay with
the Copier molecule for some time, inheriting some or all of the template solutions
features. This koff rate leads to the fastest convergence in our simulations (x points,
green). The lowest dissociation rate delays the whole process of copying a solution
very long and leads to a slow convergence (star points, blue).

6.2. AN EVOLUTIONARY ALGORITHM IN RULE-BASED CHEMISTRY 153

Figure 6.6: Development of the solution candidates in the optimizing molecular sys-
tem over time. Averaged (n=50) quality of the solutions, in the form of the number
of elements from X that are covered by the current solution. Error bars indicate the
standard error of the mean. While Figure 6.5 showed the number of perfect solutions,
the quality of the found solution candidates is plotted here. Although the number
of perfect solutions is initially very low as seen in Figure 6.5, the average quality is
quite high in all scenarios from the beginning at about 80%.

154 CHAPTER 6. EMBODIED EVOLUTION

To average the results, we simulated 50 instances for each condition of the system for

1.5 · 106 time steps. Please note that one time step is not identical to one generation

in the evolutionary algorithms sense in our simulation. Most simulation time steps

will only update particle positions from diffusive movement, some will also incorpo-

rate chemical reactions. Also, since the algorithm works asynchronously, we cannot

distinguish generations. Instead, we measured the number of dissociations of the gen

- phen dimers from the Copier molecules over the whole simulation time to be about

140 for koff = 101, 110 for koff = 10−4 and 10 for koff = 10−6 in average. Since we are

not interested in the optimization performance per generation but per time, the plots

in Figure 6.5 and 6.6 are not normalized in respect to the generations.

In Figure 6.5 we plot the number of perfect solutions present in a simulation averaged

over 50 simulation runs with different dissociation rates, showing that a dissociation

and mutation rate of koff = 10−4 led to the fastest increase of optimal solutions.

As we described in Section 6.1, the problem instance with ten subsets from Figure

6.1(b) is still relatively easy to solve, meaning that about three percent of any ran-

domly generated individual will be a perfect solution. Also, while evolution with

an intermediate mutation rate (x points) produces the best results here, it is tightly

followed by a system with an extremely high mutation rate and thus practically no

inheritance (plus points). For more difficult instances of the problem, we expect the

evolution with intermediate mutation rates to perform better in a more distinguished

way. Considering the implicitly defined objective function as the number of covered

elements, Figure 6.6 shows a very fast initial rise of the average population fitness,

followed by a slower increase in average fitness.

6.3 Discussion

In this chapter, we introduced an evolutionary computation system that is imple-

mented entirely as a rule-based reaction network. We demonstrated its heuristic

problem-solving capacity with an exemplary instance of the exact set cover prob-

lem. Different ranges of dissociation parameters were analyzed for their effect on the

6.3. DISCUSSION 155

performance of the evolutionary algorithm.

So far, molecular computing methods were typically aiming at solving difficult com-

puting problems by exploiting the vast amount of molecules in reaction vessels to

enumerate all possible solutions in cases of high combinatorial complexity. Hence,

the exponential effort of sequential algorithms in runtime is shifted to an exponential

effort in material. While sequential algorithms could solve larger problem instances

“in principle” in many years runtime, molecular computing setups could solve these

problems “in principle” when using earth-sized amounts of DNA, protein or other

molecular computing substrate [GN11].

In contrast to that, we follow the path of heuristics that helps to generate relatively

good, though not necessarily perfect, results for a wide range of problems. Still,

in our example example, the propagation of the best solution happens slower than

the generation of many solutions of quite good fitness. Our focus here is not on

solving NP-hard problems, but to generate relatively good solutions to non-trivial

optimization tasks while staying in the chemical reaction medium. This provides

the advantage of having control structures for bioreactors or other artificial chemi-

cal systems that could be implemented directly inside the reaction vessel instead of

installing sensors, connecting silicon-based computers and feeding controlling actions

back through actuators.

Nonetheless, it will probably be difficult to find or engineer molecules that behave

in such a way as proposed here. But it might be an advantage to focus on the

object-oriented view upon the molecules designed here to distinguish between differ-

ent aspects of such dynamical chemical systems. Instead of searching for molecules

that fulfill a hardly comprehensible large list of constraints, the different aspects and

dependencies that are necessary for each molecule type are here explicitly mentioned

in a rule-based description.

156 CHAPTER 6. EMBODIED EVOLUTION

Chapter 7

Programmed Self-Assembly in

Biology

Many of the established unconventional computing approaches like Membrane Com-

puting [Pău06], Molecular- or DNA Computing [Adl94, Win98, Con98, Leh02, Rot04,

Rot06, See06, Yin08, Had10, Rub14, Xia14] utilize self-assembly processes. Consider-

ing any self-assembled structure, there will typically be a range of final structures with

these systems. But the variance of final molecular structures is small in comparison,

when compared to a hypothetical random assembly of similar building blocks. Hence,

the self-assembly of an artificial or biological structure [Zau05b] should be considered

as controlled processes, similar to the execution of an algorithm, where the results

of the computations are either the structures themselves or the functions they serve.

Following the notation from Section 1.3, the human kinetochore complex, for example,

fulfills among others, the function fk of distributing the mechanical forces between

the spindle apparatus and the chromosomes [Per11, Ibr13]. Hence, roughly speaking,

the implementation pfk of this computation is described as “generate a structure sk

which realizes function fk”.

pfk : ∅ −→ sk

157

158 CHAPTER 7. PROGRAMMED SELF-ASSEMBLY IN BIOLOGY

Similar to a computer program that could run on very different processor architec-

tures, the actual task is abstracted from the molecular implementation of the kineto-

chore, i.e. the same task fk could have been realized by a completely different set of

biomolecules [Gör13].

Observing this molecular system as a computing process, where is the program?

Similar to Zauner’s anti-universal Turing Machine [Zau96], the systems is useful only

for one particular computation and the program is encoded directly in the specification

pfk of the “machine”. Hence, the program can be encoded in the design of the building

blocks themselves, in the quantity and timing of their injection into the reaction

container, in the medium composition and temperature or in the spatial structure

of the reaction vessel or in its fluid dynamics and stirring properties [Con98, Leh02,

Rot04, Yin08, Had10, Rub14]. An example of an evolved self-assembly system for

droplet computers (cf. Chapter 2) is discussed in Section 3.2, more details of which

are presented in Refs. [Die12a, Die12b].

While the perspective of unconventional computing is obvious for artificial or engi-

neered self-assembling systems, also for many existing biological systems it might be

beneficial to understand the systems as computing processes, albeit designed by evo-

lution. In return, this perspective might as well be helpful for learning new design

principles for artificial systems. This is exemplified in the following summaries of the

works on the human kinetochore multi-protein complex [Tsc13, Ibr13, Gör13] and on

the human interphase chromatin organization [Geh12]. In both examples, the ap-

proach is shared to build a more accessible replica p′f of the original biological system

pf in computer simulation as visualized in Figure 7.1.

7.1 The Human Kinetochore Self-Assembly

As outlined in the introduction to Section 7, the kinetochore assembly can be observed

from the perspective of a computation pfk generating a structure sk that, in turn,

7.1. THE HUMAN KINETOCHORE SELF-ASSEMBLY 159

ssig

s′sig s′conf

sconf

xsig yconf

co(xsig)
p′f

pf

ab(sconf)

f

Figure 7.1: Interpretation of biological self-assembling conformations as a computing
systems. Signals xsig that reach the structure via signaling molecules ssig somehow
lead to the modification of the assembly process or the organization of the structure
sconf , eventually resulting in an altered behavior or function yconf in the cell. While
the actual biological purpose f of a system as well as the specifics of the real biological
implementation of pf are sometimes hardly accessible (red), a replica in simulation
p′f of the system allows for cheaper and more transparent experiments and hypothesis
testing (black).

fulfills the many functions fk of the kinetochore.

pfk : ∅ −→ sk

From the computational perspective, much is known about the abstract result of the

computation, i.e. about the effect of the kinetochore which facilitates the proper

segregation of the daughter chromatids during mitosis [San09, Cay10, Cay12]. These

functions lead to the proper segregation of the chromatids into the daughter cells

and include for example various logical checkpoints [Cay12], arresting the cell cycle

in case of problems. Furthermore the kinetochore structure also allows for the dis-

tribution of physical force to the DNA strands so that they are not damaged when

being dragged to the daughter cells [Mus07]. What is mostly unknown are the “im-

plementation details”, i.e. the exact set of molecules involved, their interactions and

their particular roles in the process. Hence, the task here can be seen as a process

of reverse engineering where the aim is to understand the syntax and semantics of

the “molecular programming language” and the mechanisms that lead to the final

160 CHAPTER 7. PROGRAMMED SELF-ASSEMBLY IN BIOLOGY

structure sk and its functions. The computing substrate here is the cell physiology,

the physics and chemistry of the cell. We might say that the primitives that the bio-

logical kinetochore is “programmed” with are the amino acid and RNA sequences of

the involved proteins. Additionally, the intracellular regulation mechanisms generate

a precise and complex timing scheme of the availability of particular biomolecules at

particular times. This biological program pfk cannot simply be read out for inter-

pretation; rather, complex laboratory experiments are required to characterize each

aspect of the program step-by-step.

The approach that was taken in the papers [Tsc13, Ibr13, Gör13] was the effort

to build an alternative implementation p′fk of the program on a different computing

substrate, i.e., in the coarse grained molecular dynamics simulator SRSim [Gru10]. By

using a similar set of “building blocks” that is constrained by the knowledge about the

original system, a set of alternative implementations should be generated that show

high similarities to the biological system and thus allow for a deeper understanding

of the original system. A snapshot of a single simulated kinetochore structure is

shown in Figure 7.2 while Figure 7.3 shows the similarity tree of an ensemble of

computed kinetochore structures. In Figure 7.4, the interacting proteins are shown

with their potential bonds colored in blue. Red lines of variable thickness correspond

to the statistical dependency between different bonds. They indicate that found

correlations between the realization of the H3/CenpW bond and the CenpB/CenpA

bond. More details and further results of the simulations are given the manuscripts

[Tsc13, Ibr13, Gör13].

7.2 Yeast Interphase Chromatin Conformation

In the previous section, the study on the peculiarities of the implementation of the

molecular algorithm that leads to the partially understood effects of the kinetochore

was outlined. Considering the interphase chromatin organization [Cre01, Ber08] of

yeast cells, less is known about either the details of the implementation, the abstrac-

tions, or the input-output signals [HS06].

7.2. YEAST INTERPHASE CHROMATIN CONFORMATION 161

Figure 7.2: Snapshot of a simulation of the inner kinetochore model from a typical
simulation run with all inner kinetochore proteins responsible for building the bridge
between two nucleosomes. Kinetochore proteins are labeled in a short form (e.g. K
for CenpK). The same structure is rotated 180◦ from left to right. Rendering by
Sergej Tschernyschkow (2013), Jena. [Tsc13]

While chromosomes are highly condensed during mitosis, the genetic material is ex-

panded throughout the nucleus during interphase, ready for transcription and regula-

tion processes to access the information. In this state, the organization of the different

genomic regions throughout the nucleus is of importance [Mis05, Spr05, Fra07, SB12].

The chromatin layout is controlled and not random; nonetheless, there is still a lot of

variance in the positions of the individual pieces of DNA. Currently it is still hard to

determine the exact distribution of positions for each piece of DNA in experiments.

Also the exact function, the dynamics, and the precise effects of the chromatin layout

are still being researched [VB12, dW12].

In the work outlined here, an alternative “molecular algorithm” was constructed in

simulation that should generate an artificial output signal similar to the original bi-

ological one, i.e., the interphase chromatin organization of yeast S. cerevisiae. In

this light, the nucleus and the interphase chromatin conformation can be seen as

an information transforming system, i.e., as computation as well: input in the form

of signaling molecules, mediated by proteins and DNA fiber dynamics, affects the

chromatin organization and thus leads to an output in the form of different transcrip-

tomes. This means that the nucleus implements a mapping from signaling molecules

to different gene expression patterns. Comparing this potential computation of the

162 CHAPTER 7. PROGRAMMED SELF-ASSEMBLY IN BIOLOGY

Figure 7.3: Structural comparison visualized as similarity tree. Each leaf represents
one computed structure and the distance between two leaves indicates the dissimi-
larity between two computed structures. The distances between 537 structures are
visualized in this tree. We highlighted three particular model variations, where a spe-
cific subset of the possible bonds is realized: 154 structures missing CenpA/CenpB in
red, 71 missing CenpB/CenpW in yellow and 50 missing H3/CenpW in green. The
tetramer CenpT/W/S/X, marked as external blue cycles, was found 3 times. The
tight structure clusters indicate that a similar set of formed bonds also leads to a high
similarity in the resulting spatial structures. Rendering by Sergej Tschernyschkow
(2013), Jena. [Tsc13]

7.2. YEAST INTERPHASE CHROMATIN CONFORMATION 163

Figure 7.4: This graph displays the protein-protein bonds of the inner kinetochore as
well as the mutual information between these bonds. Because a bond can or cannot
be realized in an instance of the experiment, we can measure the entropy of a bond’s
presence as well as the mutual information between the presence of different bonds.
Thick blue edges indicate protein-protein interactions, running over special nodes that
represent each bond as separate pink node. Red colored edges are showing mutual
information between two bonds with the thickness indicating the level of the mutual
information. The thickest lines have mutual information values of about 0.67, while
the cutoff for drawing lines was set to 0.05. The bond nodes are drawn larger for
higher entropy. We found high mutual information between the CenpA/CenpB and
the H3/CenpW bonds and moderate mutual information between CenpA/CenpB and
CenpW/CenpB while lower mutual information between the CenpW/CenpB and the
CenpW/H3 bonds.

164 CHAPTER 7. PROGRAMMED SELF-ASSEMBLY IN BIOLOGY

nucleus to the diagram in Figure 1.4, a function fnuc describes the finegrained tran-

scriptional control in the nucleus. Some mostly unknown signals xnuc can affect the

chromatin structure and thus the final transcription pattern ynuc. This computation

is implemented by an unknown “program” pfnuc constituted by the interactions be-

tween a large number of intracellular molecules and DNA strands. To understand,

manipulate and utilize this regulation process, it would be helpful to understand pfnuc

itself, but also the final structure snuc as well as its meaning ynuc.

Only very few aspects of the computing system pfnuc are known: some of the partici-

pating molecules and some of their interactions [Got96, Bys04, Bys05] as well as some

characteristics of the polymer dynamics of the various types of DNA fibers in differ-

ent compaction states [Heu01, Bys04]. In particular, using genomic conformation

capture (GCC) [Rod09], one can experimentally map some of the genomic regions

that are found in close spatial proximity. What still needs to be elucidated are the

abstraction functions, which external information xnuc influences the conformational

changes, how they alter the conformation and which mechanisms lead to the final

conformation snuc and finally how this conformation is translated into a particular

transcription pattern ynuc by the “molecular program” pf .

In [Geh12], we worked towards reconstructing the “output signal” snuc, i.e., the ge-

ometry of the DNA fibers in the biological nucleus, based on the GCC data as well

as less specific information as for example the rough location of the centromeres and

telomeres. In analogy to Figure 7.1, because of the hardly accessible real implemen-

tation pf , we built an analogue system p′f while relating the probabilistically sampled

resulting chromatin conformations s′nuc to the known facts about the real system. The

complete yeast genome was simulated in a polymer simulation using the LAMMPS

molecular dynamics simulation software [Pli95] with DNA segments comprising be-

tween 1300 and 3900 base pairs. A snapshot of the reconstructed output signal can

be found in Figure 7.5, showing the generated probability distribution of the DNA

segments that will hopefully lead to a better understanding of the processes that

generate the spatial localization, i.e., the cellular algorithm pf .

7.2. YEAST INTERPHASE CHROMATIN CONFORMATION 165

Figure 7.5: Color reconstruction of chromosome territories in exponentially growing
respiro-fermenting yeast cells seen from different angles. Chromosomes are shown at
a minimum 85% contour density. Rendering by Lutz Gehlen and Jörg Langowski
(2012), Heidelberg. [Geh12]

166 CHAPTER 7. PROGRAMMED SELF-ASSEMBLY IN BIOLOGY

Chapter 8

Conclusions

In this thesis, research towards unconventional programming methods, predominantly

for unconventional computing systems, is documented. As a first step, a model system

for unconventional computations is presented in combination with suitable simulation

models in Chapter 2. Different formalisms for modeling the Belousov-Zhabotinsky

reaction and Belousov-Zhabotinsky droplets are discussed. For the network scale of

ten to 1000 droplets, the introduced event-based model offers fast simulation speeds,

reproduces laboratory results and accounts for stochastic effects that can strongly

influence practical computations in vitro.

Then programming approaches based on artificial evolution (cf. Chapter 3) are ex-

plored in the context of the model system. It is shown that evolution can be used

as an indicator for task difficulty and that co-evolution of signals with computing

systems allows finding suitable symbol encodings for computing networks. Here, the

co-evolved symbols, as compared to naive rate-coding symbols, are shown to simplify

the task of finding a droplet network structure for Boolean gates.

A novel method for understanding and analyzing the mechanisms of computation as

information flows is introduced in Chapter 4 in the context of the model system.

The investigation of information flows differs from conventional computer science

methods, where the execution of a computer program is typically studied from the

perspective of runtime and memory complexity. This understanding allows targeted

167

168 CHAPTER 8. CONCLUSIONS

modifications of problematic positions where the information flow is impeded, which

is also demonstrated. Furthermore, information theoretic measures can be used as

fitness function for evolutionary computation.

Self-organization principles are presented in Chapter 5 to be suitable for finding

symbol encodings by using the system’s own dynamics, potentially leading to ad-

vantageous solutions as well as to an efficient fitness evaluation. The resulting self-

organizing network structures, tautological loops, are formalized, partially enumerated

and an information theoretic objective function for the observed signals is developed.

Evolutionary computation using the self-organization of symbol encodings is demon-

strated, resulting in two droplet NAND-gate implementations, one of which is shown

to work in a half-adder setup.

Embodied evolution experiments are described in Chapter 6. They show that evolu-

tionary processes can not only be implemented with classical RNA and DNA. Thus,

evolutionary processes could also be applicable for continuously optimizing biochem-

ical production processes in vitro. The domain-oriented view of rule-based modelling

can here help designing molecules with appropriate properties. An in-silico imple-

mentation of an evolutionary computation system using rule-based chemistry only is

tested using an instance of the exact set cover problem.

Additionally, an excursion is taken into the information processing perspective of

biological, self-assembling systems in Chapter 7.

Further Research Options

In this thesis, it was a common theme to search for implementations pf and modalities

for the implementation of an already known function f . In contrast, especially in

the unconventional computing [Ada01, Ada06, Mat07, Teu08, Ste12] community, it

seems not uncommon to start from an information processing system with unknown

properties and signal processing behavior that is then further characterized. Although

this approach was neglected in this thesis, also for this direction of research the

information flow analysis techniques from Chapter 4 might be helpful in narrowing

down the range of potential target functions.

169

Also evolutionary algorithms were frequently used in this work to generate problem

solutions of various forms. Typically this implies mimicking the process of biological

evolution, including a population of solution candidates, random mutations, fitness

based selection and recombination to generate the next generation. Nonetheless,

in artificial evolution, it might be possible to increase the search speed by working

around evolutionary bottlenecks, also in ways which would not be possible in bio-

logical evolution: For example, automatically defined functions [Koz96] can be used

to modularize genetic programs, Differential Evolution (DE) [Das11], the Covariance

Matrix Adapted Evolution Strategy (CMA-ES) [Han01] and many other schemes can

be used to modify the mutation operators, potentially leading to a more efficient

optimization process.

Another method that might allow bypassing evolutionary bottlenecks with specialized

domain knowledge would be to make use of known intermediate results of the desired

computation. Thus the optimization of a complex system could be simplified down

to break the system into smaller and more independent parts. Similarly, also the

information flow measures from Chapter 4, which were used as a fitness function

in Chapter 5, might be helpful for improving the optimization process. In further

works, the calculation of information flow measures might be revised for reducing

discretization and sampling errors [Rou99, Kra04]. But these measures might not

only be used as an analysis tool and fitness function, but also to modify the mutation

operator in artificial evolution approaches: When the desired information flow is

known an advance, mutations could be focused in a region where the information

flow is obstructed or where the information recombination between different sources

does not work properly.

While this approach would not resemble an evolutionary process with random muta-

tions any more, the resulting process might still constitute a powerful optimization

system worth exploring. But it should be noted that such a technique would be based

on partially decoupling different parts of the evolved system, i.e., by splitting the in-

formation flows or by defining regions in which particular information is supposed to

be mixed. Although this decoupling might lead to faster results, the “blindness” of

170 CHAPTER 8. CONCLUSIONS

normal evolutionary algorithms might be a feature that sets them apart from design

processes using common engineering principles. Hence the search space is narrowed

down, potentially missing some good solution candidates. But it might also be pos-

sible to control how broadly the information of an input or an intermediate result

spreads out through the network or how decentralized the information is represented.

For example, we might force the symbols in the system to be represented using multi-

ple nodes of the network, such that a single node does not bear the mutual information

while a combination of some nodes would.

When following, as proposed in the last paragraphs, the approach of controlled in-

formation flows, it is still questionable how to derive information flow graphs that

would be suitable for a given problem. One path toward a solution here might be

offered by mutual information decomposition [Wil10a, Wil10b], which can show how

much information about the output value of a computation is uniquely, redundantly

and synergistically found in each combination of the input signals. Redundant in-

formation is equally present in all considered input channel combinations. Unique

information can only be found in one particular input channel combination. Syner-

gistic information only becomes available, when combining different input channels.

i0 i1 i2 o
0 0 0 1
1 0 0 0
0 1 0 1
1 1 0 0
0 0 1 0
1 0 1 1
0 1 1 0
1 1 1 0

Table 8.1: Exemplary Boolean function f37 with three input values i0, i1, i2 and one
output value o for information decomposition.

The truth-table of an exemplary Boolean function f37 is displayed in Table 8.1. As-

suming all input combinations are used with the same probability, the entropy of the

output channel is ∼0.95 bits. In the corresponding mutual information decomposition

analysis in Figure 8.1, it can be seen that each of the input channels shares ca. 0.049

171

Figure 8.1: Mutual information decomposition [Wil10a, Wil10b] between three input
values and one output value for the Boolean function f37 from Table 8.1. In this
kind of diagram, combinations of two or more input signals for a computation are
analyzed for their redundant, unique and synergistic contribution to the final result.
Therefore, each node in the graph represents the redundant information between
combinations of input signals: Exemplarily, [[v, w], [x, y]] denotes the redundancy
between the combined inputs [v, w] and [x, y]. The redundant information structure
is ordered in a lattice, such that the higher nodes that are pointed to by an arrow carry
at least as much information as the nodes below. Nodes where a combination of input
channels adds more information than the nodes below are colored in red and show a
third line with a value indicating the additional redundant information of this node.
In this case, from bottom to top, the graph can be interpreted followingly: All three
input channels individually share ∼0.049 bits of information. These ∼0.049 bits are
present in all input channels redundantly. Either combination of two of the channels
adds additional ∼0.156 bit of information, but this information is only available when
observing pairs of channels together - thus it is called synergistic information. The
combination of inputs [0, 2] has 0.5 bit of extra information next to the information
that is already shared with the individual inputs and the combinations [0, 1] and
[1, 2]. When considering all combinations of two channels, the combination [0, 2] has
0.5 bit of unique information, that can not be found in either [0, 1] or [1, 2]. When
combining all three channels, an additional 0.25 bit of information on the output of
the computation are gained as synergistic information.

172 CHAPTER 8. CONCLUSIONS

bits of mutual information about the output: Having a zero in either of the input

channels makes an output of 1 slightly more likely. The red node in the central row

indicates that either combination of two input channels adds another ∼0.16 bit of in-

formation. Then the combination of inputs i0 and i2 adds another 0.5 bits and finally

the combination of all three inputs add the final 0.25 bits of information about the

output value. This might indicate that the best way of computing the result from the

three input channels is to first combine inputs i0 and i2 and to merge the result with

input i1. Because of the ∼0.16 bits that are shared by all input combinations, the

results of the combinations (i0,i1) and (i1,i2) might be used for additional checking.

Also, the decomposition reveals that the combination of the input channels i0 and i2

could maximally result in ∼0.7 bits of mutual information with the output and thus

can be used as an intermediate goal to verify that the combination was successful,

before it is attempted to include i1 for the final result.

In conclusion, information theory, self-oranization and smart objective functions for

optimization algorithms seem like helpful guidelines for understanding unconventional

computing systems and programs in general. They can thus be understood as a

particular perspective, as filters that allow a better understanding and design of

the systems under particular angles. Hopefully, more unconventional programming

paradigms, more filters and thus more perspectives will in future be established that

allow transforming complex and promising systems that are not directly accessible

for engineering principles into a more observable and more human-accessible form.

Bibliography

[Abe00] Abelson, H.; Allen, D.; Coore, D.; Hanson, C.; Homsy, G.; Knight Jr, T. F.; Nagpal, R.;

Rauch, E.; Sussman, G. J.; Weiss, R. Amorphous computing. Commun. Acm., 43(5):74–82,

2000.

[Ada01] Adamatzky, A. Computing in nonlinear media and automata collectives. IOP Publishing

Ltd., Bristol, UK, 2001.

[Ada02a] Adamatzky, A. Collision-based computing. Springer Verlag, 2002.

[Ada02b] Adamatzky, A.; Costello, B. Experimental logical gates in a reaction-diffusion medium:

The xor gate and beyond. Physical Review E, 66(4):046112, 2002.

[Ada04] Adamatzky, A. Collision-based computing in belousov-zhabotinsky medium. Chaos, Soli-

tons & Fractals, 21(5):1259–1264, 2004.

[Ada05] Adamatzky, A.; Costello, B. D. L.; Asai, T. Reaction-diffusion computers. Elsevier Science

Limited, 2005.

[Ada06] Adamatzky, A.; Teuscher, C., editors. From Utopian to Genuine Unconventional Comput-

ers. Luniver Press, 2006.

[Ada09] Adamatzky, A.; Bull, L. Are complex systems hard to evolve? Complexity, 14(6):15–20,

2009.

[Ada10] Adamatzky, A. On excitable beta-skeletons. Journal of Computational Science, 1(3):175 –

186, 2010.

[Ada11a] Adamatzky, A.; de Lacy Costello, B.; Bull, L. On polymorphic logical gates in sub-

excitable chemical medium. International Journal of Bifurcation and Chaos, 21(7):1977–

1986, 2011.

[Ada11b] Adamatzky, A.; De Lacy Costello, B.; Bull, L.; Holley, J. Towards arithmetic circuits in

sub-excitable chemical media. Isr. J. Chem., 51(1):56–66, 2011.

173

174 BIBLIOGRAPHY

[Ada11c] Adamatzky, A.; de Lacy Costello, B.; Holley, J.; Gorecki, J.; Bull, L. Vesicle computers:

Approximating a voronoi diagram using voronoi automata. Chaos Solitons and Fractals,

44:480–489, 2011.

[Ada11d] Adamatzky, A.; Holley, J.; Bull, L.; De Lacy Costello, B. On computing in fine-grained

compartmentalised belousov-zhabotinsky medium. Chaos Solitons and Fractals, 44:779–

790, 2011.

[Adl94] Adleman, L. M. Molecular computation of solutions to combinatorial problems. Science,

266(5187):1021–1024, 1994.

[Agh08] Aghdaei, S.; Sandison, M.; Zagnoni, M.; Green, N.; Morgan, H. Formation of artificial lipid

bilayers using droplet dielectrophoresis. Lab Chip, 8(10):1617–1620, 2008.

[Agl96] Agladze, K.; Aliev, R.; Yamaguchi, T.; Yoshikawa, K. Chemical diode. J. Phys. Chem.,

100(33):13895–13897, 1996.

[Ali97] Ali, F.; Menzinger, M. Stirring effects and phase-dependent inhomogeneity in chemical oscil-

lations: The belousov-zhabotinsky reaction in a CSTR. The Journal of Physical Chemistry

A, 101(12):2304–2309, 1997.

[Alu94] Alur, R.; Dill, D. L. A theory of timed automata. Theoretical Computer Science, 126(2):183–

235, 1994.

[Bab89] Babbage, C. Science and reform: selected works of Charles Babbage. Cambridge University

Press, 1989.

[Ban90] Banzhaf, W. The “molecular” traveling salesman. Biological Cybernetics, 64(1):7–14, 1990.

[Ban05] Banâtre, J.-P.; Fradet, P.; Giavitto, J.-L.; Michel, O., editors. Unconventional Programming

Paradigms, International Workshop UPP 2004, Le Mont Saint Michel, France, September

15-17, 2004, Revised Selected and Invited Papers, volume 3566 of Lect. Notes Comput. Sc.

Springer-Verlag Berlin Heidelberg, 2005.

[Ban13] Banda, P.; Teuscher, C.; Lakin, M. R. Online learning in a chemical perceptron. Artificial

Life, 19(2):195–219, 2013.

[Bar91] Barkley, D. A model for fast computer simulation of waves in excitable media. Physica D:

Nonlinear Phenomena, 49(1-2):61–70, 1991.

[Bar08] Barbieri, M. Biosemiotics: a new understanding of life. Naturwissenschaften, 95(7):577–599,

2008.

[Bea05] Beal, J. Programming an amorphous computational medium. In Banâtre, J.-P.; Fradet, P.;

Giavitto, J.-L.; Michel, O., editors, Unconventional Programming Paradigms, Lect. Notes

Comput. Sc., pages 121–136. Springer-Verlag Berlin Heidelberg, 2005.

BIBLIOGRAPHY 175

[Bea11] Beal, J.; Michel, O.; Schultz, U. P. Spatial computing: Distributed systems that take

advantage of our geometric world. ACM Transactions on Autonomous and Adaptive Systems

(TAAS), 6(2):11, 2011.

[Bee92] Beer, R. D.; Gallagher, J. C. Evolving dynamical neural networks for adaptive behavior.

Adaptive behavior, 1(1):91–122, 1992.

[Ben82] Bennett, C. H. The thermodynamics of computation—a review. Int. J. Theor. Phys.,

21(12):905–940, 1982.

[Ber08] Berger, A. B.; Cabal, G. G.; Fabre, E.; Duong, T.; Buc, H.; Nehrbass, U.; Olivo-Marin,

J.-C.; Gadal, O.; Zimmer, C. High-resolution statistical mapping reveals gene territories in

live yeast. Nature methods, 5(12):1031–1037, 2008.

[Bes10] Bessey, A.; Block, K.; Chelf, B.; Chou, A.; Fulton, B.; Hallem, S.; Henri-Gros, C.; Kamsky,

A.; McPeak, S.; Engler, D. A few billion lines of code later: using static analysis to find

bugs in the real world. Commun. Acm., 53(2):66–75, 2010.

[Bey02] Beyer, H.-G.; Schwefel, H.-P. Evolution strategies – a comprehensive introduction. Natural

Computing, 1(1):3–52, 2002.

[BL01] Berners-Lee, T.; Hendler, J.; Lassila, O.; others, . The semantic web. Sci. Am., 284(5):28–

37, 2001.

[Bli04] Blinov, M. L.; Faeder, J. R.; Goldstein, B.; Hlavacek, W. S. Bionetgen: software for

rule-based modeling of signal transduction based on the interactions of molecular domains.

Bioinformatics, 20(17):3289–3291, 2004.

[Bod00] Bodenschatz, E.; Pesch, W.; Ahlers, G. Recent developments in rayleigh-bénard convection.

Annual review of fluid mechanics, 32(1):709–778, 2000.

[Bor99] Borst, A.; Theunissen, F. E. Information theory and neural coding. Nat. Neurosci.,

2(11):947–957, 1999.

[Bou02] Bourret, R. B.; Stock, A. M. Molecular information processing: lessons from bacterial

chemotaxis. J. Biol. Chem., 277(12):9625–9628, 2002.

[Bro04] Brown, E. N.; Kass, R. E.; Mitra, P. P. Multiple neural spike train data analysis: state-of-

the-art and future challenges. Nat. Neurosci., 7(5):456–461, May 2004.

[Bul13] Bull, L.; Holley, J.; Costello, B. D. L.; Adamatzky, A. Toward Turing’s a-type unorganised

machines in an unconventional substrate: a dynamic representation in compartmentalised

excitable chemical media. In Dodig-Crnkovic, G.; Giovagnoli, R., editors, Computing Na-

ture. Springer, 2013.

176 BIBLIOGRAPHY

[Bys04] Bystricky, K.; Heun, P.; Gehlen, L.; Langowski, J.; Gasser, S. M. Long-range compaction

and flexibility of interphase chromatin in budding yeast analyzed by high-resolution imag-

ing techniques. Proceedings of the National Academy of Sciences of the United States of

America, 101(47):16495–16500, 2004.

[Bys05] Bystricky, K.; Laroche, T.; van Houwe, G.; Blaszczyk, M.; Gasser, S. M. Chromosome

looping in yeast telomere pairing and coordinated movement reflect anchoring efficiency

and territorial organization. The Journal of cell biology, 168(3):375–387, 2005.

[Car14] Carman, C. C.; Evans, J. On the epoch of the antikythera mechanism and its eclipse

predictor. Archive for History of Exact Sciences, pages 1–82, 2014.

[Cas10] Caschera, F.; Gazzola, G.; Bedau, M. A.; Moreno, C. B.; Buchanan, A.; Cawse, J.; Packard,

N.; Hanczyc, M. M. Automated discovery of novel drug formulations using predictive

iterated high throughput experimentation. PLoS One, 5(1):e8546, 2010.

[Caw11] Cawse, J. N.; Gazzola, G.; Packard, N. Efficient discovery and optimization of complex

high-throughput experiments. Catal. Today, 159(1):55–63, 2011.

[Cay10] Caydasi, A. K.; Ibrahim, B.; Pereira, G. Monitoring spindle orientation: Spindle position

checkpoint in charge. Cell Div, 5:28, 2010.

[Cay12] Caydasi, A. K.; Lohel, M.; Grünert, G.; Dittrich, P.; Pereira, G.; Ibrahim, B. A dynamical

model of the spindle position checkpoint. Molecular Systems Biology, 8(1), 2012.

[Che02] Cheon, Y.; Leavens, G. T. A simple and practical approach to unit testing: The JML

and JUnit way. In Magnusson, B., editor, ECOOP 2002 – Object-Oriented Programming,

volume 2374 of Lect. Notes Comput. Sc., pages 231–255. Springer-Verlag Berlin Heidelberg,

2002.

[Cli93] Cliff, D.; Harvey, I.; Husbands, P. Incremental evolution of neural network architectures

for adaptive behaviour. In Verleysen, M., editor, European Symposium on Artificial Neural

Networks (ESANN’93), pages 39–44, Brussels, 1993. D Facto.

[Con89] Conrad, M. The brain-machine disanalogy. BioSystems, 22(3):197–213, 1989.

[Con95a] Conrad, M. The price of programmability. In The Universal Turing Machine A Half-

Century Survey, pages 261–281. Springer, 1995.

[Con95b] Conrad, M. Scaling of efficiency in programmable and non-programmable systems. BioSys-

tems, 35(2):161–166, 1995.

[Con98] Conrad, M.; Zauner, K.-P. DNA as a vehicle for the self-assembly model of computing.

BioSystems, 45(1):59 – 66, 1998.

BIBLIOGRAPHY 177

[Cop08] Copeland, B. J. The church-turing thesis. In Zalta, E. N., editor, The Stanford Encyclopedia

of Philosophy. Stanford University, fall 2008 edition, 2008.

[Cou77] Cousot, P.; Cousot, R. Abstract interpretation: a unified lattice model for static analysis

of programs by construction or approximation of fixpoints. In Proceedings of the 4th ACM

SIGACT-SIGPLAN symposium on Principles of programming languages, POPL ’77, pages

238–252, New York, NY, USA, 1977. ACM.

[Cre01] Cremer, T.; Cremer, C. Chromosome territories, nuclear architecture and gene regulation

in mammalian cells. Nature reviews genetics, 2(4):292–301, 2001.

[Cyp93] Cypher, A.; Halbert, D. C. Watch what I do: programming by demonstration. MIT press,

1993.

[Das11] Das, S.; Suganthan, P. N. Differential evolution: A survey of the state-of-the-art. Evolu-

tionary Computation, IEEE Transactions on, 15(1):4–31, 2011.

[Dau09] Dauwels, J.; Vialatte, F.; Weber, T.; Cichocki, A. On similarity measures for spike trains. In

Köppen, M.; Kasabov, N.; Coghill, G., editors, Advances in Neuro-Information Processing,

volume 5506 of Lect. Notes Comput. Sc., pages 177–185. Springer-Verlag Berlin Heidelberg,

2009.

[dC07] de Castro, L. N. Fundamentals of natural computing: an overview. Physics of Life Reviews,

4(1):1 – 36, 2007.

[DC11] Dodig-Crnkovic, G. Significance of models of computation, from turing model to natural

computation. Minds and Machines, 21(2):301–322, 2011.

[Die12a] Diem, A. Design principles for droplet-based computing for the classification of environ-

mental situations. diploma thesis, Friedrich-Schiller-Universität Jena, 2012.

[Die12b] Diem, A.; Gruenert, G.; Dittrich, P. Evolution and growth of molecular networks for

disease classification. In Book of Abstracts, European Conference on Complex Systems,

page 44, Brussels, September 2012.

[Dim00] Dimitrov, A. G.; Miller, J. P. Natural time scales for neural encoding. Neurocomputing,

32–33:1027 – 1034, 2000.

[Dit98] Dittrich, P.; Buergel, A.; Banzhaf, W. Learning to move a robot with random morphology.

In Husbands, P.; Meyer, J.-A., editors, Evolutionary Robotics, volume 1468 of Lect. Notes

Comput. Sc., pages 165–178. Springer Berlin Heidelberg, 1998.

[Dit01] Dittrich, P.; Ziegler, J.; Banzhaf, W. Artificial chemistries–a review. Artif Life, 7(3):225–

275, 2001.

178 BIBLIOGRAPHY

[Dit05] Dittrich, P. Chemical computing. In Banâtre, J.-P.; Fradet, P.; Giavitto, J.-L.; Michel, O.,

editors, Unconventional Programming Paradigms, volume 3566 of Lect. Notes Comput. Sc.,

pages 19–32. Springer Berlin Heidelberg, 2005.

[Dit07] Dittrich, P.; di Fenizio, P. Chemical organisation theory. Bulletin of Mathematical Biology,

69(4):1199–1231, May 2007.

[DL06] De Luca, M.; Beckmann, C.; De Stefano, N.; Matthews, P.; Smith, S. M. fmri resting state

networks define distinct modes of long-distance interactions in the human brain. Neuroim-

age, 29(4):1359–1367, 2006.

[DLC11] De Lacy Costello, B.; Adamatzky, A.; Jahan, I.; Zhang, L. Towards constructing one-bit

binary adder in excitable chemical medium. Chem. Phys., 381:88–99, 2011.

[dW12] de Wit, E.; de Laat, W. A decade of 3c technologies: insights into nuclear organization.

Genes & development, 26(1):11–24, 2012.

[Egb13] Egbert, M.; Grünert, G.; Escuela, G.; Dittrich, P. Synthetic signalling protocell networks

as models of neural computation. In Liò, P.; Miglino, O.; Nicosia, G.; Nolfi, S.; Pavone,

M., editors, Advances in Artificial Life, ECAL 2013, volume 12, pages 248–249. MIT Press,

2013.

[Egb15] Egbert, M.; Grünert, G.; Dittrich, P. Using feedback to find natural boolean representations

in uncoventional computational media. in preparation, 2015.

[Eib08] Eiben, A.; Smith, J. Introduction to evolutionary computing. Springer, 2008.

[Esc13] Escuela, G.; Gruenert, G.; Dittrich, P. Symbol representations and signal dynamics in

evolving droplet computers. Natural Computing, 13(2):247–256, 2013.

[Ese14] Eser, J.; Zheng, P.; Triesch, J. Nonlinear dynamics analysis of a self-organizing recurrent

neural network: Chaos waning. PloS one, 9(1):e86962, 2014.

[Fer10] Ferrucci, D.; Brown, E.; Chu-Carroll, J.; Fan, J.; Gondek, D.; Kalyanpur, A. A.; Lally, A.;

Murdock, J. W.; Nyberg, E.; Prager, J.; Schlaefer, N.; Welty, C. Building Watson: An

overview of the DeepQA project. AI magazine, 31(3):59–79, 2010.

[Fie72] Field, R.; Körös, E.; Noyes, R. Oscillations in chemical systems. II. Thorough analysis

of temporal oscillation in the bromate-cerium-malonic acid system. J. Am. Chem. Soc.,

94(25):8649–8664, 1972.

[Fis01] Fishman, G. Discrete-Event Simulation: Modeling, Programming, and Analysis. Springer

Verlag, 2001.

[Fis04] Fischer, G.; Giaccardi, E.; Ye, Y.; Sutcliffe, A. G.; Mehandjiev, N. Meta-design: a manifesto

for end-user development. Commun. Acm., 47(9):33–37, 2004.

BIBLIOGRAPHY 179

[Fog66] Fogel, L.; Owens, A.; Walsh, M. Artificial intelligence through simulated evolution. John

Wiley, New York, 1966.

[Fog90] Fogel, D.; Fogel, L.; Porto, V. Evolving neural networks. Biological Cybernetics, 63(6):487–

493, 1990.

[Fog94] Fogel, D. An introduction to simulated evolutionary optimization. IEEE T. Neural Net-

works, 5(1):3–14, 1994.

[Fow10] Fowler, M. Domain-specific languages. Pearson Education, 2010.

[Fra86] Fraser, A. M.; Swinney, H. L. Independent coordinates for strange attractors from mutual

information. Phys. Rev. A, 33:1134–1140, Feb 1986.

[Fra07] Fraser, P.; Bickmore, W. Nuclear organization of the genome and the potential for gene

regulation. Nature, 447(7143):413–417, 2007.

[Fri14] Friedrich, J.; Urbanczik, R.; Senn, W. Code-specific learning rules improve action selection

by populations of spiking neurons. Int. J. Neural Syst., 24(05):1450002, 2014.

[Geh12] Gehlen, L.; Gruenert, G.; Jones, M.; Rodley, C.; Langowski, J.; O’Sullivan, J. Chromosome

positioning and the clustering of functionally related loci in yeast is driven by chromosomal

interactions. Nucleus (Austin, Tex.), 3(4):370, 2012.

[Gen12] Gentili, P. L.; Horvath, V.; Vanag, V. K.; Epstein, I. R. Belousov-zhabotinsky “chemical

neuron” as a binary and fuzzy logic processor. International Journal of Unconventional

Computing, 8(2):177–192, 2012.

[Ger90] Gerhardt, M.; Schuster, H.; Tyson, J. A cellular automation model of excitable media

including curvature and dispersion. Science, 247(4950):1563, 1990.

[Gia05] Giavitto, J.-L.; Michel, O.; Cohen, J.; Spicher, A. Computations in space and space in com-

putations. In Banâtre, J.-P.; Fradet, P.; Giavitto, J.-L.; Michel, O., editors, Unconventional

Programming Paradigms, pages 137–152. Springer-Verlag Berlin Heidelberg, 2005.

[Gil77] Gillespie, D. T. Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem.,

81(25):2340–2361, 1977.

[Giz16] Gizynski, K.; Gruenert, G.; Dittrich, P.; Gorecki, J. Evolutionary design of classifiers made

of droplets containing a nonlinear chemical medium. Evolutionary Computation, published

online, 2016.

[GN11] Gutiérrez-Naranjo, M.; Pérez-Jiménez, M. Depth-first search with p systems. In Gheorghe,

M.; Hinze, T.; Păun, G.; Rozenberg, G.; Salomaa, A., editors, Membrane Computing,

volume 6501 of Lect. Notes Comput. Sc., pages 257–264. Springer Berlin Heidelberg, 2011.

180 BIBLIOGRAPHY

[Gor03] Gorecki, J.; Yoshikawa, K.; Igarashi, Y. On chemical reactors that can count. J. Phys.

Chem. A, 107(10):1664–1669, 2003.

[Gor05] Gorecki, J.; Gorecka, J. N.; Yoshikawa, K.; Igarashi, Y.; Nagahara, H. Sensing the dis-

tance to a source of periodic oscillations in a nonlinear chemical medium with the output

information coded in frequency of excitation pulses. Phys. Rev. E, 72:046201, Oct 2005.

[Gor09] Gorecki, J.; Gorecka, J. N. Computing in Geometrical Constrained Excitable Chemical

Systems, pages 1352–1376. Springer-Verlag, 2009.

[Gor11a] Gorecki, J.; Szymanski, J.; Gorecka, J. N. Realistic parameters for simple models of the

belousov–zhabotinsky reaction. J. Phys. Chem. A, 115(32):8855–8859, 2011.

[Gör11b] Görlich, D.; Artmann, S.; Dittrich, P. Cells as semantic systems. Biochimica et Biophysica

Acta (BBA)-General Subjects, 1810(10):914–923, 2011.

[Gor12] Gorecka, J. N.; Gorecki, J.; Szymanski, J.; Gizynski, K. A simple model of interactions

between belousov-zhabotinsky droplets. not yet published, 2012.

[Gör13] Görlich, D.; Escuela, G.; Gruenert, G.; Dittrich, P.; Ibrahim, B. Molecular codes through

complex formation in a model of the human inner kinetochore. Biosemiotics, 7(2):223–247,

2013.

[Gor14] Gorecki, J.; Gorecka, J. N.; Adamatzky, A. Information coding with frequency of oscillations

in belousov-zhabotinsky encapsulated disks. Phys. Rev. E, 89:042910, Apr 2014.

[Got96] Gotta, M.; Laroche, T.; Formenton, A.; Maillet, L.; Scherthan, H.; Gasser, S. M. The

clustering of telomeres and colocalization with rap1, sir3, and sir4 proteins in wild-type

saccharomyces cerevisiae. The Journal of cell biology, 134(6):1349–1363, 1996.

[Gre78] Greenberg, J. M.; Hastings, S. P. Spatial patterns for discrete models of diffusion in excitable

media. SIAM Journal on Applied Mathematics, 34(3):pp. 515–523, 1978.

[Gre96] Green, T. R. G.; Petre, M. Usability analysis of visual programming environments: a

‘cognitive dimensions’ framework. Journal of Visual Languages & Computing, 7(2):131–

174, 1996.

[Gru10] Gruenert, G.; Ibrahim, B.; Lenser, T.; Lohel, M.; Hinze, T.; Dittrich, P. Rule-based

spatial modeling with diffusing, geometrically constrained molecules. BMC Bioinformatics,

11(1):307, 2010.

[Gru11a] Gruenert, G.; Dittrich, P.; Zauner, K.-P. Artificial wet neuronal networks from compart-

mentalised excitable chemical media. ERCIM News, (85):30–32, 2011.

BIBLIOGRAPHY 181

[Gru11b] Gruenert, G.; Escuela, G.; Dittrich, P.; Hinze, T. Morphological algorithms: Membrane

receptor-ligand interactions and rule-based molecule graph evolution for exact set cover

problem. In Gheorghe, M.; Pâun, G.; Verlan, S., editors, Proceedings of the Twelfth Con-

ference on Membrane Computing (CMC12), pages 169 – 190, Fontainebleau/Paris, France,

July 2011.

[Gru12] Gruenert, G.; Escuela, G.; Dittrich, P. Symbol representations in evolving droplet com-

puters. In Durand-Lose, J.; Jonoska, N., editors, Unconventional Computation and Natural

Computation - 11th International Conference, UCNC 2012, Orléan, France, September 3-7,

2012. Proceedings, volume 7445 of Lect. Notes Comput. Sc., pages 130–140. Springer-Verlag

Berlin Heidelberg, 2012.

[Gru13] Gruenert, G.; Szymanski, J.; Holley, J.; Escuela, G.; Diem, A.; Ibrahim, B.; Adamatzky, A.;

Gorecki, J.; Dittrich, P. Multi-scale modelling of computers made from excitable chemical

droplets. Int. J. Unconv. Comput., 9:237–266, 2013.

[Gru14] Gruenert, G.; Gizynski, K.; Escuela, G.; Ibrahim, B.; Gorecki, J.; Dittrich, P. Understand-

ing networks of computing chemical droplet neurons based on information flow. Int. J.

Neur. Syst., page 1450032, 2014.

[Gyo90] Gyorgyi, L.; Turànyi, T.; Field, R. Mechanistic details of the oscillatory belousov-

zhabotinskii reaction. J. Phys. Chem., 94(18):7162–7170, 1990.

[Had10] Hadorn, M.; Hotz, P. Dna-mediated self-assembly of artificial vesicles. PLoS One,

5(3):e9886, 2010.

[Hal04] Halperin, E.; Karp, R. M. Perfect phylogeny and haplotype assignment. In Proceedings of

the eighth annual international conference on Research in computational molecular biology,

pages 10–19. ACM, 2004.

[Han01] Hansen, N.; Ostermeier, A. Completely derandomized self-adaptation in evolution strate-

gies. Evolutionary computation, 9(2):159–195, 2001.

[Har96] Harrison, R.; Smaraweera, L.; Dobie, M.; Lewis, P. Comparing programming paradigms:

an evaluation of functional and object-oriented programs. Software Engineering Journal,

11(4):247–254, 1996.

[He11] He, Z.; Yang, C.; Yu, W. A partial set covering model for protein mixture identification

using mass spectrometry data. IEEE/ACM Transactions on Computational Biology and

Bioinformatics (TCBB), 8(2):368–380, 2011.

[Heu01] Heun, P.; Laroche, T.; Shimada, K.; Furrer, P.; Gasser, S. M. Chromosome dynamics in

the yeast interphase nucleus. Science, 294(5549):2181–2186, 2001.

182 BIBLIOGRAPHY

[Hig96] Higuchi, T.; Iwata, M.; Kajitani, I.; Yamada, H.; Manderick, B.; Hirao, Y.; Murakawa,

M.; Yoshizawa, S.; Furuya, T. Evolvable hardware with genetic learning. In Circuits and

Systems, 1996. ISCAS’96., Connecting the World., 1996 IEEE International Symposium

on, volume 4, pages 29–32. IEEE, 1996.

[Hje91] Hjelmfelt, A.; Weinberger, E. D.; Ross, J. Chemical implementation of neural networks and

turing machines. Proceedings of the National Academy of Sciences, 88(24):10983–10987,

1991.

[Hla06] Hlavacek, W. S.; Faeder, J. R.; Blinov, M. L.; Posner, R. G.; Hucka, M.; Fontana, W. Rules

for modeling signal-transduction systems. Sci STKE, 2006(344):re6, 2006.

[Hoh02] Hohmuth, M.; Tews, H.; Stephens, S. G. Applying source-code verification to a microker-

nel: the vfiasco project. In Proceedings of the 10th workshop on ACM SIGOPS European

workshop, EW 10, pages 165–169, New York, NY, USA, 2002. ACM.

[Hol75] Holland, J. H. Adaptation in natural and artificial systems: an introductory analysis with

applications to biology, control, and artificial intelligence. The University of Michigan Press,

Ann Arbor, 1975.

[Hol11a] Holley, J.; Adamatzky, A.; Bull, L.; De Lacy Costello, B.; Jahan, I. Computational

modalities of belousov-zhabotinsky encapsulated vesicles. Nano Communication Networks,

2:50–61, 2011.

[Hol11b] Holley, J.; Jahan, I.; Costello, B.; Bull, L.; Adamatzky, A. Logical and arithmetic circuits

in belousov zhabotinsky encapsulated discs. Physical Review E, 84(5):056110, 2011.

[Hor01] Hornby, G. S.; Pollack, J. B. The advantages of generative grammatical encodings for

physical design. In Evolutionary Computation, 2001. Proceedings of the 2001 Congress on,

volume 1, pages 600–607. IEEE, 2001.

[How03] Howard, M.; LeBlanc, D. Writing Secure Code. Best Practices Series. Microsoft Press,

2003.

[HS06] Horowitz-Scherer, R. A.; Woodcock, C. L. Organization of interphase chromatin. Chromo-

soma, 115(1):1–14, 2006.

[Hüt12] Hütt, M.-T.; Jain, M. K.; Hilgetag, C. C.; Lesne, A. Stochastic resonance in discrete

excitable dynamics on graphs. Chaos, Solitons & Fractals, (0):–, 2012.

[Ibr08] Ibrahim, B.; Diekmann, S.; Schmitt, E.; Dittrich, P. In-silico modeling of the mitotic spindle

assembly checkpoint. PLoS One, 3(2):e1555, 2008.

[Ibr13] Ibrahim, B.; Henze, R.; Gruenert, G.; Egbert, M.; Huwald, J.; Dittrich, P. Spatial rule-

based modeling: A method and its application to the human mitotic kinetochore. Cells,

2(3):506–544, 2013.

BIBLIOGRAPHY 183

[Iga11] Igarashi, Y.; Gorecki, J. Chemical diodes built with controlled excitable media. Int. J.

Unconv. Comput., 7(3):141–158, 2011.

[Jae01] Jaeger, H. The “echo state” approach to analysing and training recurrent neural networks-

with an erratum note. Bonn, Germany: German National Research Center for Information

Technology GMD Technical Report, 148:34, 2001.

[Jaf87] Jaffar, J.; Lassez, J.-L. Constraint logic programming. In Proceedings of the 14th ACM

SIGACT-SIGPLAN Symposium on Principles of Programming Languages, POPL ’87, pages

111–119, New York, NY, USA, 1987. ACM.

[Jan10] Januszewski, M.; Kostur, M. Accelerating numerical solution of stochastic differential equa-

tions with cuda. Comput. Phys. Commun., 181(1):183 – 188, 2010.

[Jan12] Janowicz, K.; Hitzler, P. The digital earth as knowledge engine. Semantic Web, 3(3):213–

221, 2012.

[Jen02] Jenkins, T. On the difficulty of learning to program. In Proceedings of the 3rd Annual

Conference of the Learning and Teaching Support Network (LTSN) Centre for Information

and Computer Sciences, volume 4, pages 53–58, 2002.

[Jet89] Jetschke, G. Mathematik der Selbstorganisation: qualitative Theorie nichtlinearer dynamis-

cher Systeme und gleichgewichtsferner Strukturen in Physik, Chemie und Biologie. Dt. Verl.

d. Wiss., 1989.

[Jin10] Jin, S.-H.; Lin, P.; Hallett, M. Linear and nonlinear information flow based on time-

delayed mutual information method and its application to corticomuscular interaction. Clin.

Neurophysiol., 121(3):392 – 401, 2010.

[Jol02] Jolliffe, I. T. Principal Component Analysis. Springer, New York, 2nd edition, 2002.

[Kae96] Kaelbling, L. P.; Littman, M. L.; Moore, A. W. Reinforcement learning: A survey. Journal

of Artificial Intelligence Research, 4:237–285, 1996.

[Kar72] Karp, R. M. Reducibility among combinatorial problems. Springer, 1972.

[Kee86] Keener, J. P.; Tyson, J. J. Spiral waves in the Belousov-Zhabotinskii reaction. Physica D:

Nonlinear Phenomena, 21(2-3):307–324, September 1986.

[Kic97] Kiczales, G.; Lamping, J.; Mendhekar, A.; Maeda, C.; Lopes, C.; Loingtier, J.-M.; Irwin,

J. Aspect-oriented programming. Springer, 1997.

[Klu94] Klug, S. J.; Famulok, M. All you wanted to know about selex. Mol. Biol. Rep., 20(2):97–107,

1994.

[Knu69] Knuth, D. E. The Art of Computer Programming, Volume II: Seminumerical Algorithms.

Addison-Wesley, 1969.

184 BIBLIOGRAPHY

[Knu73] Knuth, D. E. The Art of Computer Programming, Volume I: Fundamental Algorithms, 2nd

Edition. Addison-Wesley, Reading (Mass.) Menlo Park (Calif.) London etc, 1973.

[Knu00] Knuth, D. E. Dancing links. arXiv preprint cs/0011047, 2000.

[Kot07] Kotsiantis, S. B. Supervised machine learning: a review of classification techniques. Infor-

matica, 31(3):249–268, 2007.

[Koz89] Koza, J. R. Hierarchical genetic algorithms operating on populations of computer programs.

In Sridharan, N. S., editor, Proceedings of the Eleventh International Joint Conference on

Artificial Intelligence IJCAI-89, volume 1, pages 768–774, Detroit, MI, USA, 20-25 August

1989. Morgan Kaufmann.

[Koz96] Koza, J. R.; Andre, D.; Bennett III, F. H.; Keane, M. A. Use of automatically defined

functions and architecture-altering operations in automated circuit synthesis with genetic

programming. In Proceedings of the First Annual Conference on Genetic Programming,

pages 132–140. MIT Press, 1996.

[Kra04] Kraskov, A.; Stögbauer, H.; Grassberger, P. Estimating mutual information. Phys. Rev. E,

69:066138, Jun 2004.

[Kuh86] Kuhnert, L. A new optical photochemical memory device in a light-sensitive chemical

active medium. Nature, 319:393, 1986.

[Lan61] Landauer, R. Irreversibility and heat generation in the computing process. IBM journal of

research and development, 5(3):183–191, 1961.

[Lat09] Latham, P. E.; Roudi, Y. Mutual information. Scholarpedia, 4(1):1658, 2009. revision

#122173.

[Laz09] Lazar, A.; Pipa, G.; Triesch, J. Sorn: a self-organizing recurrent neural network. Frontiers

in computational neuroscience, 3, 2009.

[Leh02] Lehn, J.-M. Toward self-organization and complex matter. Science, 295(5564):2400–2403,

2002.

[Liz08] Lizier, J. T.; Prokopenko, M.; Zomaya, A. Y. Local information transfer as a spatiotemporal

filter for complex systems. Phys. Rev. E, 77:026110, Feb 2008.

[Liz10] Lizier, J.; Prokopenko, M.; Zomaya, A. Information modification and particle collisions in

distributed computation. Chaos, 20(3):037109, 2010.

[Luk09] Lukoševičius, M.; Jaeger, H. Reservoir computing approaches to recurrent neural network

training. Computer Science Review, 3(3):127–149, 2009.

BIBLIOGRAPHY 185

[Maa02] Maass, W.; Natschläger, T.; Markram, H. Real-time computing without stable states:

A new framework for neural computation based on perturbations. Neural Comput.,

14(11):2531–2560, November 2002.

[Maa04] Maass, W.; Markram, H. On the computational power of circuits of spiking neurons. J.

Comput. Syst. Sci., 69(4):593 – 616, 2004.

[Mac04] MacLennan, B. J. Natural computation and non-turing models of computation. Theoretical

Computer Science, 317(1–3):115 – 145, 2004.

[Mag09] Maglia, G.; Heron, A.; Hwang, W.; Holden, M.; Mikhailova, E.; Li, Q.; Cheley, S.; Bayley,

H. Droplet networks with incorporated protein diodes show collective properties. Nat.

Nanotechnol., 4(7):437–440, 2009.

[Mar06] Markram, H. The blue brain project. Nat. Rev. Neurosci., 7(2):153–160, 2006.

[Mar10] Markstrum, S. Staking claims: a history of programming language design claims and evi-

dence: a positional work in progress. In Evaluation and Usability of Programming Languages

and Tools, page 7. ACM, 2010.

[Mat06a] Matsumaru, N.; Dittrich, P. Organization-oriented chemical programming for the organic

design of distributed computing systems. In Proceedings of the 1st international conference

on Bio inspired models of network, information and computing systems, page 14, New York,

NY, USA, 2006. ACM.

[Mat06b] Matsuura, T.; Yomo, T. In vitro evolution of proteins. J. Biosci. Bioeng., 101(6):449–456,

2006.

[Mat07] Matsumaru, N.; Centler, F.; di Fenizio, P. S.; Dittrich, P. Chemical organization theory as

a theoretical base for chemical computing. Int. J. Unconv. Comput., 3(4), 2007.

[Mil00a] Miller, J.; Job, D.; Vassilev, V. Principles in the evolutionary design of digital circuits—part

i. Genetic programming and evolvable machines, 1(1):7–35, 2000.

[Mil00b] Miller, J. F.; Thomson, P. Cartesian genetic programming. In Genetic Programming, pages

121–132. Springer, 2000.

[Mil14] Miller, J. F.; Harding, S. L.; Tufte, G. Evolution-in-materio: evolving computation in

materials. Evolutionary Intelligence, 7(1):49–67, 2014.

[Min69] Minsky, M.; Papert, S. Perceptron: an introduction to computational geometry. 1969.

[Mis05] Misteli, T. Concepts in nuclear architecture. BioEssays, 27(5):477–487, 2005.

[Moo03] Moore, J. L.; Folkmann, M.; Balmford, A.; Brooks, T.; Burgess, N.; Rahbek, C.; Williams,

P. H.; Krarup, J. Heuristic and optimal solutions for set-covering problems in conservation

biology. Ecography, 26(5):595–601, 2003.

186 BIBLIOGRAPHY

[Mot99] Motoike, I.; Yoshikawa, K. Information operations with an excitable field. Physical Review

E, 59(5):5354, 1999.

[Mot01] Motoike, I.; Yoshikawa, K.; Iguchi, Y.; Nakata, S. Real-time memory on an excitable field.

Physical Review E, 63(3):036220, 2001.

[Mus07] Musacchio, A.; Salmon, E. D. The spindle-assembly checkpoint in space and time. Nature

reviews Molecular cell biology, 8(5):379–393, 2007.

[Nat12] National Institute of Standards and Technology, . FIPS PUB 180-4: Secure Hash Standard.

2012. Supersedes FIPS 180-3.

[Nem04] Nemenman, I.; Bialek, W.; de Ruyter van Steveninck, R. Entropy and information in

neural spike trains: Progress on the sampling problem. Phys. Rev. E, 69:056111, May 2004.

[Nic12] Nichele, S.; Tufte, G. Genome parameters as information to forecast emergent developmen-

tal behaviors. In Unconventional Computation and Natural Computation, pages 186–197.

Springer, 2012.

[Nis06] Nishida, T. Y. Membrane algorithms. In Membrane Computing, pages 55–66. Springer,

2006.

[Noy72] Noyes, R.; Field, R.; Koros, E. Oscillations in chemical systems. i. detailed mechanism in

a system showing temporal oscillations. J. Am. Chem. Soc., 94(4):1394–1395, 1972.

[Ong03] Ong, Y. S.; Nair, P. B.; Keane, A. J. Evolutionary optimization of computationally expen-

sive problems via surrogate modeling. AIAA journal, 41(4):687–696, 2003.

[Pah08] Pahle, J.; Green, A.; Dixon, C. J.; Kummer, U. Information transfer in signaling pathways:

A study using coupled simulated and experimental data. BMC Bioinformatics, 9(1):139,

2008.

[Pan96] Panzeri, S.; Treves, A. Analytical estimates of limited sampling biases in different informa-

tion measures. Network-Comp. Neural, 7:87–107, 1996.

[Pău06] Păun, G. Applications of Membrane Computing, chapter Introduction to Membrane Com-

puting, pages 1–42. Springer Berlin, 2006.

[Per05] Pereda, E.; Quiroga, R. Q.; Bhattacharya, J. Nonlinear multivariate analysis of neurophys-

iological signals. Prog. Neurobiol., 77(1–2):1 – 37, 2005.

[Per11] Perpelescu, M.; Fukagawa, T. The abcs of cenps. Chromosoma, 120(5):425–446, 2011.

[Pfa01] Pfaffmann, J. O.; Zauner, K.-P. Scouting context-sensitive components. In Evolvable Hard-

ware, 2001. Proceedings. The Third NASA/DoD Workshop on, pages 14–20. IEEE, 2001.

BIBLIOGRAPHY 187

[Pli95] Plimpton, S. J. Fast parallel algorithms for short-range molecular dynamics. J Comp Phys,

117:1–19, 1995.

[Pre92] Press, W.; Flannery, B.; Teukolsky, S.; Vetterling, W. Numerical Recipes in C: The Art of

Scientific Computing. Cambridge University Press, England, 2nd edition, 1992.

[Pre94] Prechelt, L. Proben1: A set of neural network benchmark problems and benchmarking

rules. Technical report, 1994.

[Pri68] Prigogine, I.; Lefever, R. Symmetry breaking instabilities in dissipative systems. ii. J.

Chem. Phys., 48(4):1695–1700, 1968.

[Qui76] Quigley, G. J.; Rich, A. Structural domains of transfer rna molecules. Science,

194(4267):796–806, 1976.

[Qui09] Quiroga, R. Q.; Panzeri, S. Extracting information from neuronal populations: information

theory and decoding approaches. Nat. Rev. Neurosci., 10(3):173–185, 2009.

[Rec71] Rechenberg, I. Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der

biologischen Evolution. PhD thesis, Technical University of Berlin, Department of Process

Engineering, 1971.

[Rep06] Repenning, A.; Ioannidou, A. What makes end-user development tick? 13 design guidelines.

In Lieberman, H.; Paternò, F.; Wulf, V., editors, End User Development, Human-Computer

Interaction Series, pages 51–85. Springer Netherlands, 2006.

[Rob03] Robins, A.; Rountree, J.; Rountree, N. Learning and teaching programming: A review and

discussion. Computer Science Education, 13(2):137–172, 2003.

[Rod09] Rodley, C.; Bertels, F.; Jones, B.; O’sullivan, J. Global identification of yeast chromosome

interactions using genome conformation capture. Fungal Genet. Biol., 46(11):879–886, 2009.

[Roe09] Roegel, D. Anecdotes: Prototype fragments from babbage’s first difference engine. Annals

of the History of Computing, IEEE, 31(2):70–75, April 2009.

[Rog87] Rogers, H. Theory of recursive functions and effective computability. MIT Press, Cam-

bridge, Mass, 1987.

[Ros14] Rosselló, J. L.; Canals, V.; Oliver, A.; Morro, A. Studying the role of synchronized and

chaotic spiking neural ensembles in neural information processing. Int. J. Neural Syst.,

24(05):1430003, 2014.

[Rot04] Rothemund, P.; Papadakis, N.; Winfree, E. Algorithmic self-assembly of DNA Sierpinski

triangles. PLoS Biol., 2(12):e424, 2004.

[Rot06] Rothemund, P. W. K. Folding dna to create nanoscale shapes and patterns. Nature,

440(7082):297–302, Mar 2006.

188 BIBLIOGRAPHY

[Rou99] Roulston, M. S. Estimating the errors on measured entropy and mutual information.

Physica D: Nonlinear Phenomena, 125(3–4):285–294, 1999.

[Rub14] Rubenstein, M.; Cornejo, A.; Nagpal, R. Programmable self-assembly in a thousand-robot

swarm. Science, 345(6198):795–799, 2014.

[Ruh14] Ruhland, F. Evolution tautologischer netzwerke. Bachelor’s thesis, Friedrich-Schiller-

University Jena, Germany, 2014.

[San09] Santaguida, S.; Musacchio, A. The life and miracles of kinetochores. The EMBO journal,

28(17):2511–2531, 2009.

[SB12] Schuster-Böckler, B.; Lehner, B. Chromatin organization is a major influence on regional

mutation rates in human cancer cells. Nature, 2012.

[Sch75] Schwefel, H.-P. Evolutionsstrategie und numerische Optimierung. PhD thesis, Technische

Universität Berlin, 1975.

[Sch85] Schaffer, J. Multiple objective optimization with vector evaluated genetic algorithms. In

Proceedings of the 1st international conference on genetic algorithms, pages 93–100. L.

Erlbaum Associates Inc., 1985.

[Sch00] Schreiber, T. Measuring information transfer. Phys. Rev. Lett., 85:461–464, Jul 2000.

[See06] Seelig, G.; Soloveichik, D.; Zhang, D. Y.; Winfree, E. Enzyme-free nucleic acid logic circuits.

Science, 314(5805):1585–1588, 2006.

[Sha48] Shannon, C. E. A mathematical theory of communication. Bell System Technical Journal,

27:379–423 and 623–656, 1948.

[Sha14] Shapero, S.; Zhu, M.; Hasler, J.; Rozell, C. Optimal sparse approximation with integrate

and fire neurons. Int. J. Neural Syst., 24(05):1440001, 2014.

[Shi03] Shimizu, T. S.; Aksenov, S. V.; Bray, D. A spatially extended stochastic model of the

bacterial chemotaxis signalling pathway. J. Mol. Biol., 329(2):291–309, May 2003.

[Sim04] Simpson, T. W.; Booker, A. J.; Ghosh, D.; Giunta, A. A.; Koch, P. N.; Yang, R.-J.

Approximation methods in multidisciplinary analysis and optimization: a panel discussion.

Structural and multidisciplinary optimization, 27(5):302–313, 2004.

[Smi94] Smith, D. C.; Cypher, A.; Spohrer, J. Kidsim: programming agents without a programming

language. Commun. Acm., 37(7):54–67, 1994.

[Sol04] Solé, R. V.; Munteanu, A. The large-scale organization of chemical reaction networks in

astrophysics. Europhys. Lett., 68(2):170, 2004.

BIBLIOGRAPHY 189

[Spr05] Sproul, D.; Gilbert, N.; Bickmore, W. A. The role of chromatin structure in regulating the

expression of clustered genes. Nat. Rev. Genet., 6(10):775–781, 2005.

[Sta08] Staniek, M.; Lehnertz, K. Symbolic transfer entropy. Phys. Rev. Lett., 100:158101, Apr

2008.

[Ste96] Steinbock, O.; Kettunen, P.; Showalter, K. Chemical wave logic gates. J. Phys. Chem.,

100(49):18970–18975, 1996.

[Ste98] Steinbock, O.; Müller, S. Radius-dependent inhibition and activation of chemical oscillations

in small droplets. J. Phys. Chem. A, 102(32):6485–6490, 1998.

[Ste12] Stepney, S. Programming unconventional computers: Dynamics, development, self-

reference. Entropy, 14(10):1939–1952, 2012.

[Sto08] Stone, C.; Toth, R.; de Lacy Costello, B.; Bull, L.; Adamatzky, A. Coevolving cellular

automata with memory for chemical computing: Boolean logic gates in the bz reaction. In

PPSN, pages 579–588, 2008.

[Str98] Strong, S. P.; Koberle, R.; de Ruyter van Steveninck, R. R.; Bialek, W. Entropy and

information in neural spike trains. Phys. Rev. Lett., 80:197–200, Jan 1998.

[Sug12] Sugihara, G.; May, R.; Ye, H.; Hsieh, C.-h.; Deyle, E.; Fogarty, M.; Munch, S. Detecting

causality in complex ecosystems. Science, 338(6106):496–500, 2012.

[Suz13] Suzuki, Y. Harness the nature for computation. In Natural Computing and Beyond, pages

49–70. Springer, 2013.

[Szy10] Szymanski, J.; Gorecki, J. Chemical pulses propagating inside a narrowing channel and

their possible computational applications. Int. J. Unconv. Comput., 6(6):461–471, 2010.

[Szy11] Szymanski, J.; Gorecka, J. N.; Igarashi, Y.; Gizynski, K.; Gorecki, J.; Zauner, K.-P.;

Planque, M. D. Droplets with information processing ability. Int. J. Unconv. Comput.,

7(3):185–200, 2011.

[Tak01] Takagi, H. Interactive evolutionary computation: Fusion of the capabilities of ec optimiza-

tion and human evaluation. Proc. IEEE, 89(9):1275–1296, 2001.

[Teu08] Teuscher, C.; Nemenman, I.; Alexander, F. J. Novel computing paradigms: Quo vadis?

Physica D: Nonlinear Phenomena, 237(9):v–viii, 2008.

[Thu13] Thutupalli, S.; Herminghaus, S. Tuning active emulsion dynamics via surfactants and

topology. Eur. Phys. J. E, 36(8):1–10, 2013.

[Tót95] Tóth, Á.; Showalter, K. Logic gates in excitable media. J. Chem. Phys., 103:2058, 1995.

190 BIBLIOGRAPHY

[Tsc13] Tschernyschkow, S.; Herda, S.; Gruenert, G.; Döring, V.; Görlich, D.; Hofmeister, A.;

Hoischen, C.; Dittrich, P.; Diekmann, S.; Ibrahim, B. Rule-based modeling and simulations

of the inner kinetochore structure. Progress in Biophysics and Molecular Biology, 113(1):33

– 45, 2013.

[Tur36] Turing, A. M. On computable numbers, with an application to the entscheidungsproblem.

J. of Math, 58:345–363, 1936.

[Vap00] Vapnik, V. The nature of statistical learning theory. springer, 2000.

[VB12] Van Bortle, K.; Corces, V. G. Nuclear organization and genome function. Annu. Rev. Cell

Dev. Biol., 28:163, 2012.

[Vid11] Vidybida, A. Testing of information condensation in a model reverberating spiking neural

network. Int. J. Neural Syst., 21(03):187–198, 2011.

[vN66] von Neumann, J. Theory of Self-Reproducing Automata. University of Illinois Press, Cham-

paign, IL, USA, 1966.

[Wat02] Watson, R. A.; Ficici, S. G.; Pollack, J. B. Embodied evolution: Distributing an evolution-

ary algorithm in a population of robots. Robotics and Autonomous Systems, 39(1):1–18,

2002.

[Wei02] Weicker, K. Evolutionäre Algorithmen. Vieweg+Teubner, 2002.

[Wib11] Wibral, M.; Rahm, B.; Rieder, M.; Lindner, M.; Vicente, R.; Kaiser, J. Transfer entropy

in magnetoencephalographic data: Quantifying information flow in cortical and cerebellar

networks. Prog. Biophys. Mol. Biol., 105:80 – 97, 2011.

[Wil10a] Williams, P. L.; Beer, R. D. Information dynamics of evolved agents. In Doncieux, S.;

Girard, B.; Guillot, A.; Hallam, J.; Meyer, J.-A.; Mouret, J.-B., editors, From Animals

to Animats 11, volume 6226 of Lect. Notes Comput. Sc., pages 38–49. Springer Berlin

Heidelberg, 2010.

[Wil10b] Williams, P. L.; Beer, R. D. Nonnegative decomposition of multivariate information. arXiv

preprint arXiv:1004.2515, 2010.

[Win72] Winfree, A. T. Spiral waves of chemical activity. Science, 175(4022):634–636, 1972.

[Win98] Winfree, E.; Liu, F.; Wenzler, L.; Seeman, N. Design and self-assembly of two-dimensional

DNA crystals. Nature, 394(6693):539–544, 1998.

[Win06] Wing, J. M. Computational thinking. Commun. Acm., 49(3):33–35, 2006.

[Wol83] Wolfram, S. Statistical mechanics of cellular automata. Reviews of Modern Physics,

55(3):601–644, July 1983.

BIBLIOGRAPHY 191

[Wol97] Wolpert, D. H.; Macready, W. G. No free lunch theorems for optimization. Evolutionary

Computation, IEEE Transactions on, 1(1):67–82, 1997.

[Xia14] Xiang, L.; Qiangbin, W. DNA-programmed self-assembly of photonic nanoarchitectures.

NPG Asia Mater, 6:e97, apr 2014.

[Yam07] Yamazaki, T.; Tanaka, S. The cerebellum as a liquid state machine. Neural Networks,

20(3):290–297, 2007.

[Yao97] Yao, X.; Liu, Y. A new evolutionary system for evolving artificial neural networks. IEEE

Transactions on Neural Networks, 8(3):694–713, 1997.

[Yin08] Yin, P.; Choi, H. M. T.; Calvert, C. R.; Pierce, N. A. Programming biomolecular self-

assembly pathways. Nature, 451(7176):318–322, January 2008.

[Zai70] Zaikin, A. N.; Zhabotinsky, A. M. Concentration wave propagation in two-dimensional

liquid-phase self-oscillating system. Nature, 225(5232):535–537, February 1970.

[Zau96] Zauner, K.-P.; Conrad, M. Parallel computing with dna: Toward the anti-universal machine.

In Voigt, H.-M.; Ebeling, W.; Rechenberg, I.; Schwefel, H.-P., editors, Parallel Problem

Solving from Nature — PPSN IV, volume 1141 of Lect. Notes Comput. Sc., pages 696–705.

Springer Berlin Heidelberg, 1996.

[Zau05a] Zauner, K.-P. From prescriptive programming of solid-state devices to orchestrated self-

organisation of informed matter. In Unconventional Programming Paradigms, pages 47–55.

Springer, 2005.

[Zau05b] Zauner, K. Molecular information technology. Crit. Rev. Solid State, 30(1):33–69, 2005.

[Zha73] Zhabotinsky, A. M.; Zaikin, A. N. Autowave processes in a distributed chemical system. J.

Theor. Biol., 40(1):45–61, 1973.

[Zha14] Zhang, G.; Rong, H.; Neri, F.; Pérez-Jiménez, M. J. An optimization spiking neural

p system for approximately solving combinatorial optimization problems. Int. J. Neural

Syst., 24(05):1440006, 2014.

[Zit04] Zitzler, E.; Laumanns, M.; Bleuler, S. A tutorial on evolutionary multiobjective optimiza-

tion. Metaheuristics for Multiobjective Optimisation, pages 3–37, 2004.

192 BIBLIOGRAPHY

Appendix A

List of Incorporated Publications

In the course of this thesis, 14 manuscripts for conferences and journals were (co-)

authored by GG, which partially contributed to this thesis. These articles are listed

in Table A.1 together with each manuscript’s contribution by the (co-) author GG.

193

194 APPENDIX A. LIST OF INCORPORATED PUBLICATIONS
S
ec
ti
o
n
s

P
a
p
er

R
o
le

o
f
G
G

C
h
a
p
te
r
2

[G
ru

1
3
,

G
ru

1
1
a
]

G
ru

en
er
t,

G
.;
S
zy

m
a
n
sk
i,
J
.;
H
o
ll
ey
,
J
.;
E
sc
u
el
a
,
G
.;
D
ie
m
,
A
.;
Ib
ra
h
im

,
B
.;
A
d
a
m
a
tz
k
y,

A
.;
G
o
re
ck

i,
J
.;
D
it
tr
ic
h
,

P
.
M
u
lt
i-
sc
a
le

m
o
d
el
li
n
g
o
f
co

m
p
u
te
rs

m
a
d
e
fr
o
m

ex
ci
ta
b
le

ch
em

ic
a
l
d
ro
p
le
ts
.
In

t.
J
.
U
n
co
n
v.

C
o
m
p
u
t.
,
9
:2
3
7
–
2
6
6
,

2
0
1
3

G
ru

en
er
t,
G
.;
D
it
tr
ic
h
,
P
.;
Z
a
u
n
er
,
K
.-
P
.
A
rt
ifi
ci
a
l
w
et

n
eu

ro
n
a
l
n
et
w
o
rk
s
fr
o
m

co
m
p
a
rt
m
en

ta
li
se
d
ex

ci
ta
b
le

ch
em

ic
a
l

m
ed

ia
.
E
R
C
IM

N
ew

s,
(8
5
):
3
0
–
3
2
,
2
0
1
1

M
a
in

w
o
rk
.

C
h
a
p
te
r
3

[G
ru

1
2
,
E
sc
1
3
]

G
ru

en
er
t,

G
.;

E
sc
u
el
a
,
G
.;

D
it
tr
ic
h
,
P
.

S
y
m
b
o
l
re
p
re
se
n
ta
ti
o
n
s
in

ev
o
lv
in
g
d
ro
p
le
t
co

m
p
u
te
rs
.

In
D
u
ra
n
d
-L

o
se
,

J
.;
J
o
n
o
sk
a
,
N
.,
ed

it
o
rs
,
U
n
co
n
ve
n
ti
o
n
a
l
C
o
m
p
u
ta
ti
o
n

a
n
d
N
a
tu
ra
l
C
o
m
p
u
ta
ti
o
n

-
1
1
th

In
te
rn

a
ti
o
n
a
l
C
o
n
fe
re
n
ce
,

U
C
N
C

2
0
1
2
,
O
rl
éa

n
,
F
ra
n
ce
,
S
ep

te
m
be
r
3
-7
,
2
0
1
2
.
P
ro
ce
ed
in
gs
,
v
o
lu
m
e
7
4
4
5
o
f
L
ec
t.

N
o
te
s
C
o
m
p
u
t.

S
c.
,
p
a
g
es

1
3
0
–
1
4
0
.
S
p
ri
n
g
er
-V

er
la
g
B
er
li
n
H
ei
d
el
b
er
g
,
2
0
1
2
,

E
sc
u
el
a
,
G
.;
G
ru

en
er
t,

G
.;
D
it
tr
ic
h
,
P
.
S
y
m
b
o
l
re
p
re
se
n
ta
ti
o
n
s
a
n
d
si
g
n
a
l
d
y
n
a
m
ic
s
in

ev
o
lv
in
g
d
ro
p
le
t
co

m
p
u
te
rs
.

N
a
tu
ra
l
C
o
m
p
u
ti
n
g,

1
3
(2
):
2
4
7
–
2
5
6
,
2
0
1
3

M
a
in

w
o
rk
.

S
ec
ti
o
n
3
.2

[D
ie
1
2
b
]

D
ie
m
,
A
.;
G
ru

en
er
t,

G
.;
D
it
tr
ic
h
,
P
.
E
v
o
lu
ti
o
n
a
n
d
g
ro
w
th

o
f
m
o
le
cu

la
r
n
et
w
o
rk
s
fo
r
d
is
ea

se
cl
a
ss
ifi
ca

ti
o
n
.
In

B
oo

k
o
f
A
bs
tr
a
ct
s,

E
u
ro
pe
a
n
C
o
n
fe
re
n
ce

o
n
C
o
m
p
le
x
S
y
st
em

s,
p
a
g
e
4
4
,
B
ru

ss
el
s,

S
ep

te
m
b
er

2
0
1
2
,

F
it
n
es
s

fu
n
ct
io
n

a
n
d

si
m
u
la
to
r.

C
h
a
p
te
r
4

[G
ru

1
4
]

G
ru

en
er
t,

G
.;
G
iz
y
n
sk
i,
K
.;
E
sc
u
el
a
,
G
.;
Ib
ra
h
im

,
B
.;
G
o
re
ck

i,
J
.;
D
it
tr
ic
h
,
P
.
U
n
d
er
st
a
n
d
in
g
n
et
w
o
rk
s
o
f
co

m
p
u
ti
n
g

ch
em

ic
a
l
d
ro
p
le
t
n
eu

ro
n
s
b
a
se
d
o
n
in
fo
rm

a
ti
o
n
fl
o
w
.
In

t.
J
.
N
eu

r.
S
y
st
.,
p
a
g
e
1
4
5
0
0
3
2
,
2
0
1
4

M
a
in

w
o
rk
.

C
h
a
p
te
r
4

[G
iz
1
6
]

G
iz
y
n
sk
i,
K
.;
G
ru

en
er
t,

G
.;
D
it
tr
ic
h
,
P
.;
G
o
re
ck

i,
J
.
E
v
o
lu
ti
o
n
a
ry

d
es
ig
n
o
f
cl
a
ss
ifi
er
s
m
a
d
e
o
f
d
ro
p
le
ts

co
n
ta
in
in
g

a
n
o
n
li
n
ea

r
ch

em
ic
a
l
m
ed

iu
m
.
E
vo

lu
ti
o
n
a
ry

C
o
m
p
u
ta
ti
o
n
,
p
u
bl
is
h
ed

o
n
li
n
e,

2
0
1
6

F
it
n
es
s

fu
n
ct
io
n

a
n
d

si
m
u
la
to
r.

C
h
a
p
te
r
5

[E
g
b
1
3
],

[E
g
b
1
5
]

E
g
b
er
t,

M
.;

G
rü

n
er
t,

G
.;

E
sc
u
el
a
,
G
.;

D
it
tr
ic
h
,
P
.

S
y
n
th

et
ic

si
g
n
a
ll
in
g

p
ro
to
ce
ll

n
et
w
o
rk
s
a
s
m
o
d
el
s
o
f
n
eu

ra
l

co
m
p
u
ta
ti
o
n
.
In

L
iò
,
P
.;
M
ig
li
n
o
,
O
.;
N
ic
o
si
a
,
G
.;
N
o
lfi
,
S
.;
P
a
v
o
n
e,

M
.,
ed

it
o
rs
,
A
d
va

n
ce
s
in

A
rt
ifi
ci
a
l
L
if
e,

E
C
A
L

2
0
1
3
,
v
o
lu
m
e
1
2
,
p
a
g
es

2
4
8
–
2
4
9
.
M
IT

P
re
ss
,
2
0
1
3

E
g
b
er
t,

M
.;

G
rü

n
er
t,

G
.;

D
it
tr
ic
h
,
P
.

U
si
n
g

fe
ed

b
a
ck

to
fi
n
d

n
a
tu

ra
l
b
o
o
le
a
n

re
p
re
se
n
ta
ti
o
n
s
in

u
n
co
v
en

ti
o
n
a
l

co
m
p
u
ta
ti
o
n
a
l
m
ed

ia
.
in

p
re
p
a
ra
ti
o
n
,
2
0
1
5

F
o
rm

a
li
za

ti
o
n
,

lo
o
p

en
u
m
er
a
ti
o
n
,
ev

o
lu
ti
o
n

o
f

ta
u
to
lo
g
ic
a
l

lo
o
p
s

a
n
d
d
ro
p
le
t
si
m
u
la
ti
o
n
.

C
h
a
p
te
r
6

[G
ru

1
1
b
]

G
ru

en
er
t,

G
.;
E
sc
u
el
a
,
G
.;
D
it
tr
ic
h
,
P
.;
H
in
ze
,
T
.
M
o
rp

h
o
lo
g
ic
a
l
a
lg
o
ri
th

m
s:

M
em

b
ra
n
e
re
ce
p
to
r-
li
g
a
n
d
in
te
ra
ct
io
n
s

a
n
d
ru

le
-b
a
se
d
m
o
le
cu

le
g
ra
p
h
ev

o
lu
ti
o
n
fo
r
ex

a
ct

se
t
co
v
er

p
ro
b
le
m
.
In

G
h
eo

rg
h
e,

M
.;
P
â
u
n
,
G
.;
V
er
la
n
,
S
.,
ed

it
o
rs
,

P
ro
ce
ed
in
gs

o
f
th
e
T
w
el
ft
h
C
o
n
fe
re
n
ce

o
n
M
em

br
a
n
e
C
o
m
p
u
ti
n
g
(C

M
C
1
2
),

p
a
g
es

1
6
9
–
1
9
0
,
F
o
n
ta
in
eb

le
a
u
/
P
a
ri
s,

F
ra
n
ce
,
J
u
ly

2
0
1
1

E
m
b
o
d
ie
d

ev
o
lu
ti
o
n

ex
p
er
im

en
t.

S
ec
ti
o
n
7
.1

[T
sc
1
3
,
G
ö
r1
3
,

Ib
r1
3
]

T
sc
h
er
n
y
sc
h
k
o
w
,
S
.;

H
er
d
a
,
S
.;

G
ru

en
er
t,

G
.;

D
ö
ri
n
g
,
V
.;

G
ö
rl
ic
h
,
D
.;

H
o
fm

ei
st
er
,
A
.;

H
o
is
ch

en
,
C
.;

D
it
tr
ic
h
,
P
.;

D
ie
k
m
a
n
n
,
S
.;

Ib
ra
h
im

,
B
.
R
u
le
-b
a
se
d

m
o
d
el
in
g
a
n
d

si
m
u
la
ti
o
n
s
o
f
th

e
in
n
er

k
in
et
o
ch

o
re

st
ru

ct
u
re
.
P
ro
gr
es
s
in

B
io
p
h
y
si
cs

a
n
d
M
o
le
cu

la
r
B
io
lo
gy

,
1
1
3
(1
):
3
3
–
4
5
,
2
0
1
3

G
ö
rl
ic
h
,
D
.;
E
sc
u
el
a
,
G
.;
G
ru

en
er
t,

G
.;
D
it
tr
ic
h
,
P
.;
Ib
ra
h
im

,
B
.
M
o
le
cu

la
r
co

d
es

th
ro
u
g
h
co

m
p
le
x
fo
rm

a
ti
o
n
in

a
m
o
d
el

o
f
th

e
h
u
m
a
n
in
n
er

k
in
et
o
ch

o
re
.
B
io
se
m
io
ti
cs
,
7
(2
):
2
2
3
–
2
4
7
,
2
0
1
3

Ib
ra
h
im

,
B
.;
H
en

ze
,
R
.;
G
ru

en
er
t,

G
.;
E
g
b
er
t,

M
.;
H
u
w
a
ld
,
J
.;
D
it
tr
ic
h
,
P
.
S
p
a
ti
a
l
ru

le
-b
a
se
d
m
o
d
el
in
g
:
A

m
et
h
o
d

a
n
d
it
s
a
p
p
li
ca

ti
o
n
to

th
e
h
u
m
a
n
m
it
o
ti
c
k
in
et
o
ch

o
re
.
C
el
ls
,
2
(3
):
5
0
6
–
5
4
4
,
2
0
1
3

H
el
p

w
it
h

ex
p
er
im

en
t

d
es
ig
n
,

a
n
a
ly
si
s

a
n
d

si
m
u
la
ti
o
n
so
ft
w
a
re
.

S
ec
ti
o
n
7
.2

[G
eh

1
2
]

G
eh

le
n
,
L
.;

G
ru

en
er
t,

G
.;

J
o
n
es
,
M
.;

R
o
d
le
y,

C
.;

L
a
n
g
o
w
sk
i,

J
.;

O
’S
u
ll
iv
a
n
,
J
.

C
h
ro
m
o
so
m
e
p
o
si
ti
o
n
in
g
a
n
d

th
e

cl
u
st
er
in
g

o
f
fu
n
ct
io
n
a
ll
y

re
la
te
d

lo
ci

in
y
ea

st
is

d
ri
v
en

b
y

ch
ro
m
o
so
m
a
l
in
te
ra
ct
io
n
s.

N
u
cl
eu

s
(A

u
st
in
,
T
ex
.)
,

3
(4
):
3
7
0
,
2
0
1
2

S
im

u
la
ti
o
n
sy
st
em

a
n
d

d
a
ta

a
n
a
ly
si
s.

T
ab

le
A
.1
:
L
is
t
of

jo
u
rn
al

an
d
co
n
fe
re
n
ce

p
ap

er
s
as
so
ci
at
ed

w
it
h
th
is
th
es
is
.

Appendix B

Ehrenwörtliche Erklärung

Hiermit erkläre ich,

• dass mir die Promotionsordnung der Fakultät für Mathematik und Informatik

bekannt ist,

• dass ich die Dissertation selbst angefertigt habe, keine Textabschnitte oder

Ergebnisse eines Dritten oder eigenen Prüfungsarbeiten ohne Kennzeichnung

übernommen und alle von mir benutzten Hilfsmittel, persönliche Mitteilungen

und Quellen in meiner Arbeit angegeben habe,

• dass ich die Hilfe eines Promotionsberaters nicht in Anspruch genommen habe,

• dass ich die Dissertation noch nicht als Prüfungsarbeit für eine staatliche oder

andere wissenschaftliche Prüfung eingereicht habe,

• dass ich die gleiche, eine in wesentlichen Teilen ähnliche bzw. eine andere Ab-

handlung nicht bereits als Dissertation eingereicht habe.

Bei der Auswahl des Materials sowie bei der Herstellung des Manuskripts haben mich

Prof. Peter Dittrich und Prof. Jerzy Gorecki unterstützt. Weitere Kooperationspart-

ner sind in den einzelnen Kapiteln erwähnt und in Tabelle A.1 zusammengefasst.

195

196 APPENDIX B. EHRENWÖRTLICHE ERKLÄRUNG

Frau Stephanie Luther wurde für das Korrekturlesen in Bezug auf orthographische

und grammatikalische Korrektheit des Einleitungskapitels bezahlt. Darüber hinaus

haben Dritte weder unmittelbar noch mittelbar geldwerte Leistungen von mir für

Arbeiten erhalten, die im Zusammenhang mit dem Inhalt der vorgelegten Dissertation

stehen.

Jena, den

Unterschrift

	Introduction
	Motivation
	Conventional Programming
	Definition of Computation
	Unconventional Programming
	Summary

	Droplet Computers
	Basic Properties of the Belousov-Zhabotinsky Medium
	Hypothetical Droplet Types
	Exemplary Droplet System
	Modeling Excitable and Self-Exciting Droplets
	Well-Stirred Ordinary Differential Equation Model
	Reaction-Diffusion Partial Differential Equation Model
	Cellular Automaton Models
	Discrete-Event Model for BZ Droplets

	Modeling of Sub-Excitable Droplets
	Conclusions

	Evolution of Droplet Computers and Signals
	Network - Symbol Co-Evolution
	Methods
	Results

	Self-Assembly of Droplet Computers
	Discussion

	Information Theory Based Methods
	Introduction
	Challenges
	Overview on this Chapter

	Methods
	Experimental Droplet System
	Simulated Droplet System
	Information Theoretic Approach

	Results
	Information Flow in an Experimental System
	Hand-Designed Linear Classifier Network
	Information Flow in an Evolved NOR Gate
	Effect of Manipulating the Information Flow

	Discussion

	Tautological Loops
	Introduction to Tautological Loops
	Naive Approach for Finding Appropriate Signals
	Definition of Tautological Loops
	Estimating Tauological Loop Quality

	Systematic Screening for Tautological Loops
	Implementation Fitness in the Tautological Loop
	Mutual Information Based Fitness
	Fitness based on Spike Frequency

	Tautological Loops for Droplet Computers
	Discussion

	Embodied Evolution
	The Exact Set Cover Problem
	An Evolutionary Algorithm in Rule-Based Chemistry
	Genotype and Phenotype
	Evaluation and Inheritance
	Differences to standard evolutionary algorithms
	Simulation case study

	Discussion

	Programmed Self-Assembly in Biology
	The Human Kinetochore Self-Assembly
	Yeast Interphase Chromatin Conformation

	Conclusions
	Bibliography
	Appendix List of Incorporated Publications
	Appendix Ehrenwörtliche Erklärung

