3,615 research outputs found

    Priority-Based Conflict Resolution in Inconsistent Relational Databases

    Full text link
    We study here the impact of priorities on conflict resolution in inconsistent relational databases. We extend the framework of repairs and consistent query answers. We propose a set of postulates that an extended framework should satisfy and consider two instantiations of the framework: (locally preferred) l-repairs and (globally preferred) g-repairs. We study the relationships between them and the impact each notion of repair has on the computational complexity of repair checking and consistent query answers

    Modular Logic Programming: Full Compositionality and Conflict Handling for Practical Reasoning

    Get PDF
    With the recent development of a new ubiquitous nature of data and the profusity of available knowledge, there is nowadays the need to reason from multiple sources of often incomplete and uncertain knowledge. Our goal was to provide a way to combine declarative knowledge bases – represented as logic programming modules under the answer set semantics – as well as the individual results one already inferred from them, without having to recalculate the results for their composition and without having to explicitly know the original logic programming encodings that produced such results. This posed us many challenges such as how to deal with fundamental problems of modular frameworks for logic programming, namely how to define a general compositional semantics that allows us to compose unrestricted modules. Building upon existing logic programming approaches, we devised a framework capable of composing generic logic programming modules while preserving the crucial property of compositionality, which informally means that the combination of models of individual modules are the models of the union of modules. We are also still able to reason in the presence of knowledge containing incoherencies, which is informally characterised by a logic program that does not have an answer set due to cyclic dependencies of an atom from its default negation. In this thesis we also discuss how the same approach can be extended to deal with probabilistic knowledge in a modular and compositional way. We depart from the Modular Logic Programming approach in Oikarinen & Janhunen (2008); Janhunen et al. (2009) which achieved a restricted form of compositionality of answer set programming modules. We aim at generalising this framework of modular logic programming and start by lifting restrictive conditions that were originally imposed, and use alternative ways of combining these (so called by us) Generalised Modular Logic Programs. We then deal with conflicts arising in generalised modular logic programming and provide modular justifications and debugging for the generalised modular logic programming setting, where justification models answer the question: Why is a given interpretation indeed an Answer Set? and Debugging models answer the question: Why is a given interpretation not an Answer Set? In summary, our research deals with the problematic of formally devising a generic modular logic programming framework, providing: operators for combining arbitrary modular logic programs together with a compositional semantics; We characterise conflicts that occur when composing access control policies, which are generalisable to our context of generalised modular logic programming, and ways of dealing with them syntactically: provided a unification for justification and debugging of logic programs; and semantically: provide a new semantics capable of dealing with incoherences. We also provide an extension of modular logic programming to a probabilistic setting. These goals are already covered with published work. A prototypical tool implementing the unification of justifications and debugging is available for download from http://cptkirk.sourceforge.net

    Epistemic Logic Programs: a Novel Perspective and Some Extensions

    Get PDF
    Epistemic Logic Programs (ELPs), which propose an extension to Answer Set Programming (ASP) with epistemic operators, have their semantic defined, in various ways, in terms of world views, which are sets of belief sets. Several semantic approaches have in fact been proposed over time to characterize world views, and, recently, to also characterize semantic properties that should be met by any semantics for ELPs. We propose a new semantics, easy also from the computational point of view, but effective, also in order to compare the different semantic approaches. We also propose a significant extension to the ELP approach, by allowing epistemic atoms in rule heads

    Sensor Synthesis for POMDPs with Reachability Objectives

    Full text link
    Partially observable Markov decision processes (POMDPs) are widely used in probabilistic planning problems in which an agent interacts with an environment using noisy and imprecise sensors. We study a setting in which the sensors are only partially defined and the goal is to synthesize "weakest" additional sensors, such that in the resulting POMDP, there is a small-memory policy for the agent that almost-surely (with probability~1) satisfies a reachability objective. We show that the problem is NP-complete, and present a symbolic algorithm by encoding the problem into SAT instances. We illustrate trade-offs between the amount of memory of the policy and the number of additional sensors on a simple example. We have implemented our approach and consider three classical POMDP examples from the literature, and show that in all the examples the number of sensors can be significantly decreased (as compared to the existing solutions in the literature) without increasing the complexity of the policies.Comment: arXiv admin note: text overlap with arXiv:1511.0845

    A static analysis for quantifying information flow in a simple imperative language

    Get PDF
    We propose an approach to quantify interference in a simple imperative language that includes a looping construct. In this paper we focus on a particular case of this definition of interference: leakage of information from private variables to public ones via a Trojan Horse attack. We quantify leakage in terms of Shannon's information theory and we motivate our definition by proving a result relating this definition of leakage and the classical notion of programming language interference. The major contribution of the paper is a quantitative static analysis based on this definition for such a language. The analysis uses some non-trivial information theory results like Fano's inequality and L1 inequalities to provide reasonable bounds for conditional statements. While-loops are handled by integrating a qualitative flow-sensitive dependency analysis into the quantitative analysis

    Symmetry Breaking for Answer Set Programming

    Full text link
    In the context of answer set programming, this work investigates symmetry detection and symmetry breaking to eliminate symmetric parts of the search space and, thereby, simplify the solution process. We contribute a reduction of symmetry detection to a graph automorphism problem which allows to extract symmetries of a logic program from the symmetries of the constructed coloured graph. We also propose an encoding of symmetry-breaking constraints in terms of permutation cycles and use only generators in this process which implicitly represent symmetries and always with exponential compression. These ideas are formulated as preprocessing and implemented in a completely automated flow that first detects symmetries from a given answer set program, adds symmetry-breaking constraints, and can be applied to any existing answer set solver. We demonstrate computational impact on benchmarks versus direct application of the solver. Furthermore, we explore symmetry breaking for answer set programming in two domains: first, constraint answer set programming as a novel approach to represent and solve constraint satisfaction problems, and second, distributed nonmonotonic multi-context systems. In particular, we formulate a translation-based approach to constraint answer set solving which allows for the application of our symmetry detection and symmetry breaking methods. To compare their performance with a-priori symmetry breaking techniques, we also contribute a decomposition of the global value precedence constraint that enforces domain consistency on the original constraint via the unit-propagation of an answer set solver. We evaluate both options in an empirical analysis. In the context of distributed nonmonotonic multi-context system, we develop an algorithm for distributed symmetry detection and also carry over symmetry-breaking constraints for distributed answer set programming.Comment: Diploma thesis. Vienna University of Technology, August 201
    • …
    corecore