7 research outputs found

    Mass Removal of Botnet Attacks Using Heterogeneous Ensemble Stacking PROSIMA classifier in IoT

    Get PDF
    In an Internet of Things (IoT) environment, any object, which is equipped with sensor node and other electronic devices can involve in the communication over wireless network. Hence, this environment is highly vulnerable to Botnet attack. Botnet attack degrades the system performance in a manner difficult to get identified by the IoT network users. The Botnet attack is incredibly difficult to observe and take away in restricted time. there are challenges prevailed in the detection of Botnet attack due to number of reasons such as its unique structurally repetitive nature, performing non uniform and dissimilar activities and  invisible nature followed by deleting the record of history. Even though existing mechanisms have taken action against the Botnet attack proactively, it has been observed failing to capture the frequent abnormal activities of Botnet attackers .When number of devices in the IoT environment increases, the existing mechanisms have missed more number of Botnet due to its functional complexity. So this type of attack is very complex in nature and difficult to identify. In order to detect Botnet attack, Heterogeneous Ensemble Stacking PROSIMA classifier is proposed. This takes advantage of cluster sampling in place of conventional random sampling for higher accuracy of prediction. The proposed classifier is tested on an experimental test setup with 20 nodes. The proposed approach enables mass removal of Botnet attack detection with higher accuracy that helps in the IoT environment to maintain the reliability of the entire network

    Botnets and how to automatic detect them: exploring new ways of dealing with botnet classification: Botnets e como detectá-los automaticamente: explorando novas maneiras de lidar com a classificação botnet

    Get PDF
    Threats such as Botnets have become very popular in the current usage of the Internet, such as attacks like distributed denial of services (DoS) which can cause a significant impact on the use of technology. One way to mitigate such issues can be a focus on using intelligent models that can attempt to identify the existence of Botnets in the network traffic early. Thus, this work aims to evaluate the current state of the art on threats related to Botnets and how intelligent technology has been used in real-world restrictions such as real-time deadlines and increased network traffic. From our findings, we have indications that Botnet detection in real-time still is a more significant challenge because the computation power has not grown at the same rate that Internet traffic. This has pointed out other restrictions that must be considered, like privacy legislation and employing cryptography methods for all communications. In this context, we discuss the following steps to deal with the identified issues

    A black-Box adversarial attack for poisoning clustering

    Get PDF
    Clustering algorithms play a fundamental role as tools in decision-making and sensible automation pro-cesses. Due to the widespread use of these applications, a robustness analysis of this family of algorithms against adversarial noise has become imperative. To the best of our knowledge, however, only a few works have currently addressed this problem. In an attempt to fill this gap, in this work, we propose a black-box adversarial attack for crafting adversarial samples to test the robustness of clustering algo-rithms. We formulate the problem as a constrained minimization program, general in its structure and customizable by the attacker according to her capability constraints. We do not assume any information about the internal structure of the victim clustering algorithm, and we allow the attacker to query it as a service only. In the absence of any derivative information, we perform the optimization with a custom approach inspired by the Abstract Genetic Algorithm (AGA). In the experimental part, we demonstrate the sensibility of different single and ensemble clustering algorithms against our crafted adversarial samples on different scenarios. Furthermore, we perform a comparison of our algorithm with a state-of-the-art approach showing that we are able to reach or even outperform its performance. Finally, to highlight the general nature of the generated noise, we show that our attacks are transferable even against supervised algorithms such as SVMs, random forests and neural networks. (c) 2021 Elsevier Ltd. All rights reserved

    QUANTIFYING AND PREDICTING USER REPUTATION IN A NETWORK SECURITY CONTEXT

    Get PDF
    Reputation has long been an important factor for establishing trust and evaluating the character of others. Though subjective by definition, it recently emerged in the field of cybersecurity as a metric to quantify and predict the nature of domain names, IP addresses, files, and more. Implicit in the use of reputation to enhance cybersecurity is the assumption that past behaviors and opinions of others provides insight into the expected future behavior of an entity, which can be used to proactively identify potential threats to cybersecurity. Despite the plethora of work in industry and academia on reputation in cyberspace, proposed methods are often presented as black boxes and lack scientific rigor, reproducibility, and validation. Moreover, despite widespread recognition that cybersecurity solutions must consider the human user, there is limited work focusing on user reputation in a security context. This dissertation presents a mathematical interpretation of user cyber reputation and a methodology for evaluating reputation in a network security context. A user’s cyber reputation is defined as the most likely probability the user demonstrates a specific characteristic on the network, based on evidence. The methodology for evaluating user reputation is presented in three phases: characteristic definition and evidence collection; reputation quantification and prediction; and reputation model validation and refinement. The methodology is illustrated through a case study on a large university network, where network traffic data is used as evidence to determine the likelihood a user becomes infected or remains uninfected on the network. A separate case study explores social media as an alternate source of data for evaluating user reputation. User-reported account compromise data is collected from Twitter and used to predict if a user will self-report compromise. This case study uncovers user cybersecurity experiences and victimization trends and emphasizes the feasibility of using social media to enhance understandings of users from a security perspective. Overall, this dissertation presents an exploration into the complicated space of cyber identity. As new threats to security, user privacy, and information integrity continue to manifest, the need for reputation systems and techniques to evaluate and validate online identities will continue to grow
    corecore