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Reputation has long been an important factor for establishing trust and evaluating the 

character of others. Though subjective by definition, it recently emerged in the field 

of cybersecurity as a metric to quantify and predict the nature of domain names, IP 

addresses, files, and more. Implicit in the use of reputation to enhance cybersecurity 

is the assumption that past behaviors and opinions of others provides insight into the 

expected future behavior of an entity, which can be used to proactively identify 

potential threats to cybersecurity. Despite the plethora of work in industry and 

academia on reputation in cyberspace, proposed methods are often presented as black 

boxes and lack scientific rigor, reproducibility, and validation. Moreover, despite 

widespread recognition that cybersecurity solutions must consider the human user, 

there is limited work focusing on user reputation in a security context. This 

dissertation presents a mathematical interpretation of user cyber reputation and a 



 

methodology for evaluating reputation in a network security context. A user’s cyber 

reputation is defined as the most likely probability the user demonstrates a specific 

characteristic on the network, based on evidence. The methodology for evaluating 

user reputation is presented in three phases: characteristic definition and evidence 

collection; reputation quantification and prediction; and reputation model validation 

and refinement. The methodology is illustrated through a case study on a large 

university network, where network traffic data is used as evidence to determine the 

likelihood a user becomes infected or remains uninfected on the network. A separate 

case study explores social media as an alternate source of data for evaluating user 

reputation. User-reported account compromise data is collected from Twitter and 

used to predict if a user will self-report compromise. This case study uncovers user 

cybersecurity experiences and victimization trends and emphasizes the feasibility of 

using social media to enhance understandings of users from a security perspective. 

Overall, this dissertation presents an exploration into the complicated space of cyber 

identity. As new threats to security, user privacy, and information integrity continue 

to manifest, the need for reputation systems and techniques to evaluate and validate 

online identities will continue to grow.  
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1 Introduction 

1.1 Background and Motivation  

Reputation has long been an important factor for establishing trust and 

evaluating the character and quality of others. Today, efforts to evaluate, quantify, 

predict, manage, and repair reputation are pervasive in nearly every industry. 

Companies and institutions are given star ratings and reviews on e-commerce 

platforms based on customer experiences. Countries are given reputation scores, such 

as the Reputation Institute’s annual RepTrack score, which indicates the effectiveness 

of a country’s government, the appeal of its environment, and the state of its economy 

using a score on a 0 to 100 scale [2]. In the United States, individuals are given 

financial reputation scores in the form of FICO credit scores on a 300 to 850 scale 

based on features such as payment history, debt, and length of credit history [1]. In 

2015, Ant Financial Services Group launched a similar credit score in China called 

Zhima Credit, which assigns individuals credit scores between 350 and 950 based on 

credit history, personality traits, interpersonal relationships, Internet activity, and a 

variety of other aspects of an individual's identity; by 2020, the Chinese government 

plans to have fully implemented a far more expansive credit system that will quantify 

an individual’s social reputation [105]. Implicit in the widely accepted importance 

and use of reputation is the assumption that insights gleaned from an entity’s past 

behaviors, based either on evidence or the judgments of others, can provide 

meaningful insight into the entity’s nature and its expected future behaviors.  

Reputation can have substantial impact: whether described in a qualitative 

manner or scored in a quantitative manner, reputation may be used to reward good 
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behavior or punish bad behavior, enforce desired behaviors, predict future behaviors, 

or foster new relationships or opportunities. Consumers make heavy use of star 

ratings when determining whether or not to buy a company’s goods and services; 

research suggests that the difference in a star rating on the review site Yelp can 

equate to a 5 to 9% difference in yearly revenue [3]. The Reputation Institute claims 

that having strong reputation, as defined by the RepIndex score, makes a country 

better poised to attract a highly skilled workforce, enhance tourism, and encourage 

purchases of the country’s exports [2]. FICO credit scores are used to measure a 

lender’s financial risk of giving a loan to an individual; a low credit score can prevent 

an individual from receiving the credit to make large purchases, which in turn 

motivates many individuals to exercise financial responsibility and caution. China’s 

social credit system rewards people deemed trustworthy with financial perks, travel 

opportunities, access to good healthcare and schools, and so on; untrustworthy people 

face consequences ranging from denial of a loan or a flight to jail time [105].  

Over the last couple decades, reputation has emerged as an important factor in 

the field of cybersecurity. Originating as a vital component for building trust and 

mitigating dishonest behavior on e-commerce websites [4, 5] and as a metric for 

identifying spam-sending emails and IP addresses [6, 7, 8], reputation is now 

quantified and evaluated for a range of cyber entities. There has been extensive work 

in academia and industry to evaluate the reputation of domain names [9, 10, 11, 12, 

13, 14, 15]; IP addresses [16, 17, 18, 19]; infrastructure [20, 21]; files [22], and 

binaries [23]. These reputation assessments are a valuable component of 

cybersecurity and serve a variety of purposes, such as supporting identification of 
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suspicious or malicious activity, enabling attribution of cyber attacks or anonymous 

behaviors to specific entities or advanced persistent threats (APTs), in addition to 

facilitating a wide range of other decisions and judgments about cyber entities.  

Industry and academia have also explored assessing the reputation of users in 

online communities and social networks [24, 25, 26]. The United States’ 2016 

Presidential Election brought mainstream media attention to fake, automated, and 

malicious social media accounts; the concept of user reputation has unsurprisingly 

had a surge of attention in response. In 2018, the Washington Post reported that 

Facebook was developing a capability to assign users a reputation score on a zero to 

one scale indicating trustworthiness [106]; meanwhile, Twitter has been removing 

tens of millions of suspicious accounts from its platform [107]. 

 
Clearly, reputation - whether of users or infrastructure - can play a key role in 

enhancing cybersecurity on a computer network or online service. However, despite 

the plethora of available research and tools and the incorporation of reputation 

systems into many online platforms, reputation evaluation suffers from a lack of 

scientific rigor. For a given context there is no single recognized definition for 

reputation or framework for evaluating reputation. There is also little consensus 

across the many different definitions and scoring methodologies. Moreover, new 

approaches for assessing reputation are often constructed without regard to existing 

techniques, representing a major shortcoming in the field of online reputation systems 

and further preventing reputation scoring from becoming a reliable or scientific 

process  [27]. Finally, reputation scores and evaluation methodologies are often 

highly reactive in nature, documenting only known incidents and failing to consider 
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behaviors or warning signs that may be indicative of changes in an entity’s reputation 

before these changes have actually manifested. Just as there is a need in the broader 

field of cybersecurity for foundational research contributing to the ‘science of 

security’ [28], in order for reputation to become a reliable tool for improving the 

security of online networks and services, there is similarly a need for foundational 

research contributing to the ‘science of reputation.’ Reputation may be a subjective 

concept amongst humans, but when used as a metric in a system it should be an 

objective quantity.  

1.2 Research Scope  

Though there are many different types of cyber entities that can be evaluated 

for reputation, this dissertation will focus on quantifying and predicting the reputation 

of human users on a computer network or Internet service. In this dissertation, a user 

is considered to be an account or collection of accounts on a computer network or 

Internet service associated with a unique human who exists in the physical world, as 

shown in Figure 1. Accounts or personas that represent businesses, institutions, or 

governments or are created for purposes such as entertainment or marketing and do 

not represent a real individual are not considered users and are therefore outside the 

scope of this research.  
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 It is assumed that users must authenticate onto the network or service so there 

is ground truth regarding the mapping of a user account to activity on the network. 

However, depending on the nature of the network or service, there may be several 

challenges associated with defining a user as an account or collection of accounts. 

First, there is the challenge of correctly associating an account with a user and 

ensuring it is not another user with a similar or identical name or alias. Second, there 

is the challenge of ensuring all activity stemming from an account belongs to the true 

account owner, i.e. the user’s credentials have not been stolen or shared and no one is 

attempting to impersonate the user. Finally, there is the challenge of identifying all 

the accounts belonging to a user: depending on the type of network or service, users 

might have multiple accounts and may or may not use their real name or identity on 

these services. Depending on the challenges associated with a particular use case, 

there may be some uncertainty regarding the identity of a user; this is a limitation of 

Figure 1: The mapping of a person in the physical world to a user in cyberspace 
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trying to evaluate users in a cyber environment. However, even if interpreting a user 

as an account creates some uncertainty, it enables the network administrator to 

evaluate the point of access used to conduct activity on the network.  

A user’s online reputation, denoted their cyber reputation, is intended to 

provide insight into the user’s propensity for exhibiting some characteristic of interest 

to a network administrator for the purpose of improving cybersecurity. This cyber 

reputation is based on the behaviors the user has demonstrated in cyberspace and 

individual human traits of the user that impact their behaviors in cyberspace, as 

shown in Figure 2. Cyber reputation is used for two main purposes: quantifying the 

reputation of users on a computer network and predicting the future reputation i.e. 

behaviors of users on a computer network.  

Figure 2: Elements that form user cyber reputation 
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A user’s cyber reputation may be a set of behaviors, represented as numerical 

features in a vector denoted the cyber reputation vector. This vector is intended to 

provide a comprehensive picture of behaviors a user has demonstrated that are 

indicative of a certain characteristic that may adversely impact cybersecurity. In order 

to ensure that the reputation vector is comprehensive, a variety of exploratory data 

analysis techniques must be conducted and the vector should be periodically 

reevaluated and updated with new data.   

A user’s reputation may also be a single number, denoted their cyber 

reputation score, that provides network administrators or security practitioners with a 

metric to evaluate a user or compare multiple users. Just as a FICO credit score takes 

a set of observations about a person’s financial history and provides lenders with a 

metric for assessing the risk of granting the person a loan, a cyber reputation score is 

intended to condense a collection of observations about a user’s past behavior into a 

summary that can easily be used to assess the risk a user might pose to a network.  

Ultimately, the goal of both the cyber reputation vector and the cyber 

reputation score is to help network administrators or security practitioners identify 

users who are more likely than others to harm or degrade the quality of a network or 

have already exhibited behaviors that harm or degrade the network. Depending on the 

network or service, these reputation assessments may translate into actions taken by 

the network administrators or into privileges or restrictions imposed on users. For 

example, users with a reputation for being more susceptible to phishing attacks or 

exhibiting risky cyber behaviors may be given additional security training or may be 

denied access to more sensitive areas or services on the network. Similarly, users who 
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behave selfishly and have a reputation for consuming more resources than others or 

users who behave maliciously and have a reputation for propagating malware may 

incur higher costs to use services on the network or may have their ability to interact 

with others restricted or their account suspended. This concept has been explored and 

implemented in both e-commerce and P2P network settings [29, 30].  

 

1.3 Research Questions and Approach 

The goal of this research is to develop a quantitative definition of user cyber 

reputation and a methodology for evaluating user cyber reputation that can be used in 

a network administration or security setting to objectively quantify how likely a user 

is to exhibit a characteristic that may threaten the network’s security. The proposed 

methodology is intended to function as a type of centralized reputation system, in 

which there is some key entity, denoted the central authority, which has oversight of 

the network and the users who exist on the network and is responsible for calculating 

user cyber reputation.  

The research questions for this dissertation are as follows:     

• Research Question 1 (RQ1): What data can be used as evidence of a user’s 

cyber reputation for specific characteristics or behaviors on a computer 

network?  

• Research Question 2 (RQ2): How can this evidence be used to define and 

quantify a user’s cyber reputation and develop predictive models of future 

reputation?   
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• Research Question 3 (RQ3): How can quantification assessments and 

predictions of a user’s cyber reputation be validated and refined?   

To address RQ1, we propose an experimental approach to identify 

correlations between observations about users and the characteristics or behaviors that 

they exhibit on the network. Observations about users are collected from the network 

by the central authority and then various feature engineering and dimensionality 

reduction techniques are conducted to transform this initial set of observations into 

numerical features stored in a feature vector of size n, denoted the observation space. 

Correlation analysis is performed between the features of the observation space and 

the characteristic for which user cyber reputation is being evaluated. Strongly 

correlated features are considered evidence and stored in a cyber reputation vector, of 

size ≤ 𝑛.  

To address RQ2, we propose interpreting a user cyber reputation score as the 

probability with which a user demonstrates some characteristic or behavior on the 

network. This probability is determined through the process of Bayesian Inference, in 

which an initial probability or probability distribution is formed to capture the central 

authority’s subjective belief about the nature of the user and then updated using the 

evidence obtained in the experiments for RQ1. In other words, a user’s cyber 

reputation is the probability a user exhibits a characteristic, based on past behaviors 

on the network and the judgment of the central authority. 

Finally, to address RQ3, we propose making initial assessments and 

predictions about user reputation and then experimentally validating these 
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assessments and predictions by monitoring their accuracy over time. Additionally, 

addressing this question will require sensitivity analysis on the parameters of any user 

reputation models; for example, we may vary the amount of data, time period of data 

collection, or sources of data for which initial assessments and predictions are made 

and then evaluate if accuracy is impacted.  

1.4 Contributions 

From a network security and administration perspective, understanding the 

cyber reputation of users is particularly important due to the now widespread 

recognition that humans are the weakest link in the cybersecurity chain. In recent 

years, interest in better understanding users and user behavior to tailor and strengthen 

cybersecurity has increased. We hypothesize that cyber reputation assessments of 

users on a network, based on their past activities on the network, may provide a new 

and important angle from which to study users, similar to how the reputation of 

technical entities has become an invaluable tool for proactive identification of 

security threats. By understanding the reputation of users on a network, a network 

administrator may be able to proactively identify users who are more likely to 

introduce threats to the network, become victims of cyber attacks, or intentionally 

harm the network. Understanding the reputation of users in the context of network 

security also represents a gap in the literature, as the majority of work in the network 

security domain has focused on the reputation of network and Internet infrastructure, 

end hosts and devices, and various other technical cyber entities. And, as is the case 

with cyber reputation for many other types of cyber entities, there is no widespread, 
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accepted definition for user reputation, nor is there an existing scientific methodology 

for evaluating or quantifying user reputation. 

The contributions of this research are as follows: 

• We introduce a mathematical interpretation of user cyber reputation for 

network security settings that is grounded in statistical theory and existing 

reputation literature.   

• We present a methodology for evaluating a user’s cyber reputation that 

enables a network administrator to identify evidence that can be used to 

quantify cyber reputation, make predictions about future behaviors, assess the 

uncertainty associated with these predictions, and update cyber reputation 

assessments and predictions as new evidence becomes available. 

• We illustrate and validate the proposed reputation interpretation and 

evaluation methodology through a case study at the University of Maryland in 

which we quantify the reputation of users in order to identify those with 

susceptibility to device infection or exploitation.  

• Through a case study of account compromise incidents self-reported by users 

on Twitter, we explore social media as a source of data for studying users and 

evaluate the feasibility of using social media to extract insights into user 

behavior and demographics that can be used as evidence to quantify user 

reputation.  

• Through the case studies of user infection on a network and user-reported 

compromise on Twitter, we contribute new understandings of users to the 

field of cybersecurity by identifying and evaluating features in a user’s 
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network traffic and online activity patterns that may indicate an increased 

likelihood of victimization or propensity toward risky security behaviors. We 

also uncover trends in user victimization, identify particularly vulnerable 

populations based on the compromise data, and reveal startling user attitudes 

and misconceptions about cybersecurity.   

1.5 Dissertation Outline 

 The remainder of this dissertation is organized as follows. Chapter 2 provides 

the background and related work. Chapter 3 presents a mathematical interpretation of 

user reputation based on Bayesian probability. Chapter 4 presents the methodology 

for evaluating and quantifying user reputation with the proposed definition. Chapter 5 

presents a case study on a large university network that investigates the feasibility of 

extracting evidence of user reputation from network traffic and using it to 

differentiate between two different types of users. Chapter 6 extends this case study 

by showing how this evidence can be used to evaluate and predict user cyber 

reputation, where user cyber reputation is considered a measure of how likely a user 

is to be compromised (“infected”) on the network. Chapter 6 also shows how these 

reputation scores can be validated and refined. Chapter 7 presents a case study 

exploring social media data as a source of information about user reputation, while 

Chapter 8 explores the feasibility of using this data to make predictions about users. 

Chapter 9 concludes this dissertation with a summary and discussion of the completed 

work, important considerations when quantifying user reputation, the limitations of 

this dissertation, and areas of future work.  
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1.6 Summary of Terminology  

This section provides definitions for the terms used in the introduction and 

throughout the remainder of this dissertation.  

• User: an account or collection of accounts on a computer network or Internet 

service associated with a unique human who exists in the physical world. 

• User Cyber Reputation:  a user’s propensity for exhibiting some characteristic 

that is of interest to a network administrator for the purpose of improving 

cybersecurity. 

• Cyber Reputation Score:  a user’s propensity for exhibiting some 

characteristic of interest to a network administrator for the purpose of 

improving cybersecurity, quantified as a probability reflecting the likelihood a 

user exhibits the characteristic.   

• Central Authority: A key entity, in most cases the network administrator, who 

has oversight of the network and the users who exist on the network and is 

responsible for calculating and maintaining user cyber reputation scores.  

• Characteristic of Interest: The quality for which user cyber reputation is being 

evaluated.  

• Observation: A numerical feature summarizing some behavior a user has 

exhibited on the network or a human trait of the user.  

• Observation Space: An n-dimensional vector containing all the observations 

for a user.  

• Evidence: Observations that are strongly correlated with a specific 

characteristic of interest.  
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• Cyber Reputation Vector: A vector of size  ≤ 𝑛 containing all the evidence for 

a specific characteristic of interest.   

• User Reputation Model: A function that is used to quantify or predict user 

reputation, such as a regression model or equation for combining sources of 

evidence into a final distribution.  
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2 Background and Related Work 

2.1 Introduction 

The meaning of reputation is highly context dependent and many different 

interpretations of reputation can be found in the literature. Though this dissertation is 

focused on quantifying user cyber reputation on a computer network, the literature 

review was conducted to understand how reputation is generally understood in the 

context of a computer network or Internet service and therefore covers existing work 

to assess the reputation of domain names, IP addresses, peers or nodes on a network, 

and users in a variety of online communities and services. The majority of work to 

assess online reputation can be broadly categorized as either an effort to distinguish 

between malicious and benign entities or an effort to gauge the trustworthiness of an 

entity, though there is work relating reputation to perceived influence, authority, and 

quality.  

2.2 Reputation as a Measure of Maliciousness  

In both academia and industry, it is common practice to assign reputation 

assessments to domain names and IP addresses. In [17] IP reputation is defined as the 

quality of content originating from an IP address and indicates whether the IP is 

sending solicited or unsolicited content. The authors in both [18, 19] applied a similar 

definition.  In [9], the authors used domain reputation as a mechanism for predicting 

future malicious activity based on evidence from a domain’s past behavior and its 

relationship to other domains based on DNS topology. Similarly, [10] used domain 

reputation to indicate a domain’s history of suspicious activities and opinions held 
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about the domain and used DNS traffic analysis to identify botnet domains. The 

authors in [31] determined an IP’s reputation score based on the number of times it 

appeared on different blacklists. In [23], the authors created the reputation system 

EXPOSURE which used 15 different features derived from DNS traffic to categorize 

domains into categories such as ‘spam,’ ‘risky,’ ‘adult,’ ‘Conficker,’ ‘malware,’ 

‘blacklisted.’ In [32], the authors considered domain reputation a binary classification 

problem to label sites as malicious or benign using lexical and host based features of 

domain names to detect malicious websites.  

Some approaches base the reputation of a domain on its ‘social network.’ In 

[11], the authors classified websites with low reputation if they mapped to IP 

addresses found in IP address blocks commonly used by malicious actors or were 

registered through registrars commonly used by malicious actors. In [16], the authors 

applied a similar approach by considering ‘bad neighborhoods’ on the Internet: 

domains or IPs located within a certain geographic region or within the same IP 

address space as known malicious domains are considered to have the same 

reputation as the malicious domain. In [12], the authors used a graph inference system 

to predict a domain’s likelihood of being malicious based on its connectivity to 

known malicious or benign domains. Based on this connectivity, domains were 

assigned numerical reputation scores in the [-127, 127] range, with  [50, 127] 

indicating high-risk domains, [30, 49] indicating suspicious domains, [15, 29] 

representing neutral domains, and [-127, 14] representing good domains.  

Other approaches have combined a domain’s history and social network with 

Domain Name Server (DNS) information. In [13], the authors leveraged DNS 
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registration information, appearance in DNS zone files, and similarity to known 

malicious domains to proactively blacklist domains. In [15] the authors built Notos, a 

dynamic reputation scoring tool, that assigns low reputation scores to domains 

involved in malware spreading, phishing, and spam campaigns and high reputation 

scores to domains used for legitimate Internet services.  Notos used DNS registration 

information, DNS zone information, blacklist presence, and network behaviors to 

assign scores between 0 and 1 - with 0 being the lowest possible reputation and 1 

being the highest - to unknown domains.  

The definition of reputation as an indication of maliciousness is also applied 

when assessing the reputation of nodes in Peer-to-Peer (P2P) networks in order to 

determine whether a node has or will introduce malware or corrupted files to the 

network, behave selfishly by consuming excesive resources, purposely transmit 

incorrect data, or induce some other form of harm on the network or the entities on 

the network. In [33], the authors presented SocialTrust, a reputation system for P2P 

file sharing networks that used both relationships between nodes and ratings to 

distinguish between reputable nodes and malicious nodes. In [34], the authors 

introduced a distributed Bayesian-based reputation system that allowed nodes in a 

vehicular ad-hoc network to label their neighbors as either malicious or benign and 

predict their neighbors’ future behaviors.  

2.3 Reputation as a Measure of Trustworthiness  

Understanding and evaluating trust on the web is an active area of research 

going back several decades. Trust is necessary for promoting and enhancing the 

quality and usefulness of Internet based platforms and is used extensively to evaluate 
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services, content, and users [35]. Reputation and trust are often closely coupled, with 

reputation systems commonly serving as a method for assessing trust [36]. Measures 

of reputation for services, content, and users enable other entities to make informed 

decisions about whether or not to trust or interact with the service, content, or user in 

question.  

The link between reputation and trust is evident in ecommerce and Internet 

transaction settings, social networks, and various other types of online 

communities.  For example, in the context of e-commerce, the authors in [37] define 

reputation as “what is generally said or believed about a person’s or thing’s character 

or standing” and considers reputation a “collective measure of trustworthiness based 

on referrals or ratings from members in a community.” In [37], the authors observed 

that trust reflects one entity’s subjective view of another entity, while reputation 

reflects a community’s perception of an entity. Similarly, [38] observed that 

reputation is more objective than trust because it represents the collective opinion of 

an online community, while [39] defined reputation as a “social notion of trust”. Trust 

and reputation systems are critical in settings such as Ebay, Amazon, and various 

other commerce and review platforms because an entity’s history is condensed into a 

value that allows others to make a judgment about expected future behavior [37].  In 

the context of social networks, a user’s reputation for being trustworthy is often 

informed by their behaviors on the social network and the experiences of other users 

when interacting with the user in question. Reputation allows users to determine how 

much information to share, who to interact or exchange information with, and how to 

evaluate the information they are presented with [35, 36]. For example, in question 
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and answer communities such as StackOverflow, reputation is considered “a rough 

measurement of how much the community trusts you” [40]. Reputation on 

StackOverflow is represented as a numeric score with no maximum value; users 

begin with a score of 1 and can earn up to 200 points per day.  

Reputation as a measure of trustworthiness and reputation as a measure 

of maliciousness may also be closely coupled. The interconnected nature of 

reputation, trust, and predicting maliciousness is evident in many P2P settings. 

Though a goal of P2P network reputation systems is to identify malicious nodes, 

these reputation systems often work by collecting information about past behaviors of 

nodes on the network and then using these behaviors to make judgments of how 

trustworthy a node is in comparison to other nodes [29]. In some cases, trust may be 

measured based on the number of relationships and the strength of the relationships a 

node has with other nodes [29, 33]. Similarly, trust may be based on the ratings of 

other nodes, as in the well-known EigenTrust algorithm [41]. In cases where nodes 

are transmitting data or information - such as mobile sensing networks - trust may be 

determined by evaluating whether data sent by a node in the past turned out to be 

honest/dishonest or accurate/inaccurate [30, 34, 42].  

2.4 Additional Definitions for Reputation 

Reputation can also relate to the perceived authority, expertise, or influence of 

an entity. In academia, the H-index is a type of reputation measure used to “quantify 

an individual’s scientific research output” [43]. Google’s PageRank - the algorithm 

used to order webpages returned by a Google search - is also a form of reputation and 

attempts to objectively rank the relative importance of a web page [44]. This 
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effectively provides users with a measure of the authority of a website on a given 

topic. Similarly, on the forum StackOverflow, though reputation is used to reflect the 

trust the community has placed in a user, it is gained by “convincing your peers that 

you know what you’re talking about” and is gained by “posting good questions and 

useful answers” and therefore conveys notions of authority and expertise [40]. The 

authors in [39] observed that using reputation to vet the reliability of someone’s 

statements or someone’s expertise on a topic must be done in a context-specific 

manner. Similarly, in [38] reputation reflects a user’s expertise on a topic and is 

considered relative to a specific context since expertise varies depending area of 

knowledge. By using reputation as a measure of expertise, it is effectively 

“summarizing the quality of information which a user produces” [38].  This 

introduces yet another definition of reputation - reputation as a measure of perceived 

authenticity. An active area of research in academia and industry is mitigating the risk 

of review fraud either by analyzing changes in an entity’s ratings over time or 

assessing the reputation of the reviewers themselves  [45, 46, 47, 48].  

2.5 Summary of Reputation Interpretations 

 As is evident from the related work, reputation is defined and evaluated in a 

variety of different ways in the literature. Based on the literature, the reputation of a 

cyber entity may be interpreted in the following ways:   

• An indication that an entity will exhibit malicious behaviors that may be 

damaging to other entities.   

• A community’s perception of an entity’s typical or notable characteristics or 

behavior.  
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• A collective assessment of the trustworthiness of an entity.   

• An indication of an entity’s perceived expertise, authority, or influence on a 

specific topic or on a specific platform.  

• An indication of the quality of goods or services provided by the entity.    

Based on the related work, it can be concluded that reputation never stands 

alone - it is always relative to some specific characteristic or behavior of interest. 

Common across all of the interpretations is the use of reputation to make assessments 

about an entity’s expected future characteristic or behavior within a specific context, 

based on some evidence. This evidence may take the form of past behaviors, 

judgments of others, or similarity to others.  
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3 A Mathematical Interpretation of User Reputation 

3.1 Introduction 

Regardless of the field or application, an entity’s reputation, built from 

understandings of the entity’s past behaviors and the judgments of others, is assumed 

to provide valuable insight into the expected future behavior of the entity. In a 

network administration or security setting, a user’s reputation should provide a 

network administrator with insight into the user’s past behavior on the network so 

that the administrator can proactively identify users who may threaten, harm, or 

degrade the quality of the network. Therefore, a useful mathematical interpretation of 

reputation is one that provides the central authority with an assessment of the 

probability a user will exhibit some characteristic of interest in the future and this 

probability should be based on past evidence. As discussed in Chapter 1, representing 

user reputation as a score – and now more specifically as a probability – is intended to 

capture the complex and multifaceted concept of reputation in shorthand notation that 

can easily be used by the central authority to compare users or make determinations 

about users. This chapter presents the background and related work that motivated 

this interpretation and formalizes the definition of user reputation.  

3.2 Background and Related Work 

Reputation has been interpreted as a probability in a range of diverse settings. 

In the context of assessing domain names, tools such as Webroot BrightCloud assign 

domains and IP addresses a Web Reputation Index (WRI) ranging from 1 to 100, with 

a score of 1 implying a user has a high probability of being exposed to malicious 
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content on the site and a score of 100 implying the site is well known and a user has a 

very low probability of being exposed to malicious content. WRI is based on features 

such as site history, age, registration information, links, real-time performance, 

content, and behavior over time [49]. Similarly, the Zulu URL Risk Analyzer assesses 

the reputation of domains using risk scores on a 0 to 100 scale, with 0 being the 

highest score and 100 being the lowest possible score. This risk score is informed by 

content analysis, host information, suspicious URL patterns, presence on public 

blacklists and whitelists, historic risk assessments of both top-level domains and 

subdomains associated with the domain, geographic location, and behavioral features 

of the host [50]. In the context of Peer-to-Peer (P2P) networks, the authors in [51] 

defined soft reputation as the “average probability of inaccurate- or outright wrong-

readings that stem from malicious intelligence” in order to assess the trustworthiness 

of data generated by a node and therefore the reputation of a node in a mobile sensing 

environment.   

Several authors, including [4, 27, 34, 52], interpreted reputation as the 

probability derived from a Bayesian Inference process. Not only is this a statistically 

rigorous approach, but it also provides an intuitive interpretation, since the Bayesian 

Inference applies Bayes Rule to determine the probability of an event occurring, 

given some evidence. In the context of assessing reputation, Bayesian Inference is 

used to determine the probability of an entity exhibiting characteristic 𝑐 in the future, 

given some historical evidence 𝑒, denoted 𝑝 𝑐 𝑒).  A prior probability, 𝑝(𝑐), is 

selected to represent the belief about the probability of 𝑐 before any evidence has 

been observed. The likelihood function, denoted 𝑝 𝑒 𝑐), reflects the probability of 
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observing 𝑒 given 𝑐. It is effectively a model of the probability distribution of the 

evidence. Finally, 𝑝 𝑒  reflects the probability distribution of observing the evidence. 

The posterior probability, 𝑝 𝑐 𝑒), is computed as:  

𝑝 𝑐|𝑒 =  
𝑝 𝑒 𝑐 ∗ 𝑝(𝑐)

𝑝(𝑒)  

and represents the probability of a new, unobserved event.  

The equations above reflect the process of Bayesian Inference using point 

estimates, but as is the case with most real-world applications of Bayesian Inference, 

in the context of assessing reputation the prior, likelihood, and posterior are more 

useful if they are calculated not as point estimates, but as probability distributions. In 

this case, the prior reflects the belief about the distribution of probabilities with which 

characteristic 𝑐 occurs, the likelihood function represents the distribution of how 

evidence is observed, and the posterior probability distribution provides the 

probability distribution of a observing characteristic 𝑐 given the evidence. More 

details on the mathematics behind Bayesian Inference can be found in [53] and [54].  

In [4], the authors proposed the use of a Bayesian Inference reputation system 

for e-commerce platforms. In this approach, reputation functions based on the Beta 

distribution and reputation ratings based on the expectation of probability for the Beta 

distribution were developed for sellers using information about buyer satisfaction or 

dissatisfaction with a transaction. The Bayesian approach was motivated by its strong 

foundation in statistical theory and the Beta distribution was selected due to its 

flexibility and simplicity. The Beta distribution is a continuous probability 

distribution denoted 𝑓 (𝑝|𝛼,𝛽) with 0 ≤ 𝑝 ≤ 1 and shape parameters 𝛼,𝛽 > 0. 
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Because the Beta distribution forms a conjugate pair with the Binomial distribution, 

in Bayesian inference the Beta distribution is used to derive the posterior probability 

distributions for events with binary outcomes. If event A occurred in the past with a 

frequency of 𝑥 and event B occurred in the past with a frequency of 𝑦, then the 

probability distribution of observing event A in the future is a Beta distribution of the 

form 𝑓 (𝑝|𝛼,𝛽), where 𝛼 =  𝑥 +  1 and 𝛽 =  𝑦 +  1, and 𝛼,𝛽 > 0. The expectation 

of probability is computed as 𝐸 𝑝 =  𝛼 (𝛼 +  𝛽) and represents the most likely 

probability with which event A will occur [4]. In [4], (𝛼,𝛽) are replaced with (𝑟, 𝑠), 

where 𝑟 ≥  0 represents the degree of satisfaction with a transaction and 𝑠 ≥ 0 

represents the degree of dissatisfaction with a transaction. Reputation is considered 

subjective and therefore buyer 𝑋 provides feedback about seller 𝑇 and 𝑇’s reputation 

function defined by 𝑋 is written as 𝜑 𝑝 𝑟!! , 𝑠!!). 𝑇’s reputation rating is then given 

by 𝐸(𝜑 𝑝 𝑟!! , 𝑠!!)); when scaled between [0 , 1], a probability expectation of 0.5 

indicates a neutral rating. The authors in [4] also presented a process for combining 

feedback from multiple buyers in order to derive an overarching reputation function 

and rating for a specific seller that can be maintained by some central authority. This 

process can be done by simply accumulating all 𝑟, 𝑠 parameters, or allowing buyers 

with high reputation to carry more weight and discounting the feedback provided by 

buyers with lower reputation. The authors in [4] also introduced the concept of a 

forgetting factor, which would enable older feedback to be forgotten, motivated by 

the fact that buyers may change their behavior over time.  

In [27], a modified version of the Beta reputation system was proposed. This 

version replaced the Beta distribution with the Dirichlet multinomial distribution, 
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allowing a more nuanced representation of reputation. In other words, instead of 

reputation reflecting binary outcomes such as probability of a seller being bad or 

probability of a seller being good, the Dirichlet distribution enabled probability 

estimates for a seller being mediocre, bad, average, good, or excellent.   

In 2004, [52] presented a Bayesian based reputation system for Peer-to-Peer 

(P2P) and mobile sensing networks. In this distributed reputation system, every node 

maintains a reputation rating for every other node in the network; node 𝑖’s reputation 

rating for node 𝑗 reflects node 𝑖’s opinion about whether 𝑗 behaves correctly, either by 

sending the correct files in the P2P network setting or using the correct routing 

protocol in the mobile sensing setting. Because this is a distributed reputation system 

and nodes rely on the opinions and ratings created by other nodes for information, 

trust ratings are also a key component. Node 𝑖’s trust rating for node 𝑗 reflects node 

𝑖’s opinion about whether 𝑗 is honest when evaluating other nodes. Both the 

reputation rating and trust rating are Bayesian-based and the reputation (or 

trustworthiness) of a node is understood to be some probability Θ drawn according to 

the posterior distribution, indicating that a node misbehaves with probability Θ.  

As in [4], the authors in [52] used Beta as the prior and posterior distributions. 

When a node makes firsthand observations about another node, the distribution is 

updated by modifying the shape and scale parameters 𝛼,𝛽: setting 𝛼 =  𝛼 +  𝑠 when 

𝑠 number of misbehaviors are observed and setting 𝛽 =  𝛽 +  𝑓 when 𝑓 correct 

behaviors are observed. If node 𝑖 updates its assessment of node 𝑗 based on node 𝑘’s 

rating of 𝑗, a model merging approach is taken instead of directly updating 𝛼,𝛽. 

Specifically, the authors in [52] proposed a linear pool model merging method in 
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which node 𝑘’s model is merged into node 𝑖’s model using weights determined by 

how trustworthy node 𝑖 believes node 𝑘 is. Finally,  [52]’s approach also allows for a 

discounting factor so that older evidence is given less importance than newer 

evidence in a reputation rating.  

In 2015, the authors in [34] introduced a distributed Bayesian-based 

reputation system for Vehicular Ad-hoc Networks (VANETs) in which nodes 

determined the probability of other nodes behaving maliciously by observing packets 

sent by the nodes over a monitoring period. Nodes were then assigned class labels 

based on these probabilities; nodes were labeled ‘malicious’ if their probability of 

being malicious was over 0.5, otherwise they were labeled ‘benign.’  

3.3 Defining User Reputation 

Based on the related work presented in here and in Chapter 2, it can be 

concluded that reputation does not stand alone - it is relative to some specific 

characteristic of interest. Therefore, reputation should be defined and quantified 

relative to a characteristic; defining a user’s reputation without respect to anything 

else is meaningless. In a network security setting, particular characteristics of interest 

may be whether a user has a reputation for being malicious - i.e. has the user spread 

malware, attempted to steal protected information, or launched cyber attacks against 

others? - or whether a user has a reputation of being infected or being more likely 

than another user to be infected - i.e. has the user been the victim of a social 

engineering or phishing campaign or does the user own devices that have been 

compromised with malware?  
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Common across all of the interpretations is the use of reputation to make 

assessments about an entity’s expected future characteristic or behavior within a 

specific context, based on some evidence. This evidence may take the form of past 

behaviors, judgments of others, or similarity to others. As observed in [4, 27, 34, 52], 

using a Bayesian Inference framework for assessing reputation produces an intuitive 

and statistically rigorous mathematical interpretation of reputation because an entity’s 

reputation for a specific characteristic can be understood as a prediction and 

quantified as a probability distribution shaped by past evidence. This approach also 

allows for evaluation of the uncertainty surrounding a reputation assessment of a user. 

Based on this, the following mathematical interpretation of user reputation as 

a score in a network security context is proposed:  

A user’s cyber reputation score is a probability representing the likelihood a 

user demonstrates a specific characteristic on a network, based on evidence of past 

behaviors that are considered representative of this characteristic.  

  
Mathematically, a user’s reputation score is the probability expectation of a 

posterior distribution derived from the process of Bayesian Inference, i.e. 𝐸[𝑝 𝑐|𝑒 ]. 

The posterior distribution is calculated as:  

𝑝 𝑐 𝑒 =  
𝑝 𝑒 𝑐 ∗  𝑝 𝑐
𝑝 𝑒 𝑐 ∗ 𝑝 𝑐  𝑑𝑥

 

[54]. The prior distribution 𝑝 (𝑐) is selected to represent the central authority’s 

subjective belief about the likelihood with which a user exhibits a specific 

characteristic. The likelihood function 𝑝 (𝑒|𝑐) reflects the probability of observing 

evidence 𝑒 given 𝑐.  Finally, the denominator 𝑝 𝑒 𝑐 ∗ 𝑝 𝑐  𝑑𝑥 normalizes the 
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calculation. The expectation value of the resulting posterior distribution is determined 

either analytically or through a random sampling method.  

 
Chapter 4 provides more detail on how reputation can be quantified in practice 

using the proposed definition. Additionally, in Chapters 5 and 6 we illustrate the 

entire methodology through a case study.  
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4 A Methodology for Evaluating User Reputation 

4.1 Introduction 

This chapter presents an overview of our methodology for quantifying and 

predicting user reputation in a network administration or security setting. The 

methodology objectives and assumptions are outlined and the three major phases of 

the methodology - characteristic definition and evidence collection; reputation 

quantification and prediction; and model validation and refinement - are presented in 

detail.  The chapter concludes with an overview of the case studies that will be used 

to illustrate and validate the methodology.  

4.2 Methodology Requirements, Objectives, and Assumptions  

A major shortcoming in the field of cybersecurity is the lack of well-defined 

frameworks for conducting security experiments and deriving understandings from 

them [55, 56]. Quantifying and predicting the reputation of users on a network is 

effectively a type of experiment since the goal is to establish and test a hypothesis 

about the expected future behaviors of a user on a network. Therefore, the proposed 

methodology for evaluating user reputation should satisfy the requirements of a sound 

scientific experiment. According to the authors of [57] and [58], a well-structured 

method - i.e. the process that is followed to reach a correct conclusion - achieves the 

following criteria: 

• Requirement 1: Internal Validity (or correctness): “the mechanism under 

experimentation is of suitable scope to achieve the reported results; the 
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entities and activities of the experimental mechanism are not susceptible to 

systematic error” [57]. In the context of this research, this implies assessments 

of user reputation are built from clean datasets and experiments on the dataset 

are designed such that results of the experiment are fully explained by the 

variable(s) being tested.  

• Requirement 2: External Validity (or realism): “the mechanism under 

experimentation (and therefore the result of the experiment) is not solely an 

artifact of the laboratory setting” [57]. In the context of this research, this 

implies that procedures for assessing user reputation generalize to different 

types of computer networks and user populations.  

• Requirement 3: Containment (or safety):  “no pre-mechanism causes threaten 

to confound the results, and no post-mechanism effects are a threat to safety” 

[57]. In the context of this research, safety may be interpreted as a guarantee 

of privacy of sensitive data about a user.  

• Requirement 4: Transparency:  “there are no explanatory gaps in the 

experimental mechanism; the diagram for the experimental mechanism is 

complete” [57]. In the context of this research, this implies the procedures for 

quantifying user reputation should be described clearly and in enough detail 

that another researcher, network administrator, or security practitioner can 

replicate the analysis on the same network or reproduce the process on another 

network and set of users.  

Satisfying the four requirements above will ensure the proposed methodology 

represents a scientifically valid approach to evaluating reputation. To ensure the 
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methodology actually provides a practical and useful framework for assessing user 

reputation from a network security perspective, the methodology should satisfy the 

following objectives:  

• Objective 1: The methodology enables the central authority to be proactive 

rather than reactive: it provides a process for identifying behaviors that are 

significantly correlated with or indicative of a characteristic of interest and 

can be used to predict future characteristics or behaviors for current or new 

users.  

• Objective 2: The methodology accounts for uncertainty: it provides a process 

for identifying and evaluating uncertainty associated with the model for user 

reputation, the reputation probability score, and the accuracy of the data itself, 

and a process for propagating this uncertainty into any predictions made about 

a user.  

• Objective 3: The methodology is flexible and recognizes that reputation is 

dynamic: it enables the tracking and updating of user reputation over time and 

the refinement of models for user reputation based on new evidence. 

 The proposed methodology for assessing user reputation is based on the 

following assumptions:  

• Assumption 1: There is a central authority tasked with calculating and 

maintaining user cyber reputations. In other words, this is a type of centralized 

reputation system and is not intended for decentralized settings where users 

maintain subjective reputation assessments of other users.  
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• Assumption 2: Users have authenticated onto the computer network so there 

is ground truth about the mapping of an account (or set of accounts owned by 

the same user) and any traffic or events generated by the account(s) on the 

network.  

• Assumption 3: The central authority maintains a record or history of events, 

incidents, and alerts on the network and can correlate these events with a 

unique user.  

4.3 Methodology Overview 

At a high level, the methodology for assessing and quantifying user reputation 

consists of iterating through the following three phases, as shown in Figure 3: 

characteristic definition and evidence collection; reputation quantification and 

prediction; and model validation and refinement.  

 These three phases should enable the central authority to answer the three 

high-level research questions posed in Chapter 1. First, what data can be used as 

evidence that user 𝑋 has a reputation for a particular characteristic 𝑐? Second, what is 

Figure 3: Phases of the methodology 
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the probability of user 𝑋 exhibiting characteristic 𝑐 based on this evidence and how 

can this probability and/or evidence be used to predict user behavior and reputation 

on the network in the future? And finally, how can reputation assessments be 

validated and refined? The following sections describe the steps to answer these 

questions, while the following chapters of this dissertation present a series of case 

studies to experimentally evaluate the proposed methodology.  

4.4 Phase One: Characteristic Definition and Evidence Collection  

Recall that Research Question 1 (RQ1) presented in Chapter 1 asked:  What 

data can be used as evidence of a user’s cyber reputation for specific characteristics or 

behaviors on a computer network? This question is addressed in Phase One of the 

methodology, in which the central authority tasked with quantifying reputation 

identifies a characteristic of interest, defines how this characteristic manifests on the 

network, and then collects data that can be used as evidence of the characteristic.  

4.4.1 Characteristic Definition  

Reputation is always relative to some characteristic, so the central authority 

must define the perspective from which they are trying to understand user reputation. 

In this dissertation, a characteristic is some quality or property of a user that is 

necessary to understand for the purpose of improving cybersecurity and can be used 

to differentiate between different types of users that may be more or less harmful to 

the network’s security. For example, the characteristic may be whether the user is 

malicious or benign or whether the user is infected or uninfected with malware. How 

this characteristic manifests on the network must also be carefully defined. In the 
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realm of domain name and IP reputation scoring, even though the majority of tools 

are intended to indicate to what degree a domain or IP is malicious, the meaning of 

malicious is often ambiguous or undefined entirely, resulting in a lack of clarity 

regarding what is actually being measured. Therefore, it is necessary to define what it 

actually means to be malicious, infected, and so on in a particular network or service 

setting. For example, a malicious user may be defined generally as someone who has 

violated the policies, terms, and conditions of a service, or more specifically as 

someone who has spread malware to other user devices, while an infected user may 

be defined as someone who has malware on one or all of their devices or has been 

flagged by the network’s Intrusion Detection/Prevention system or other security tool. 

Certain definitions may require reliance on a third party algorithm or tool to define 

whether a characteristic has manifested, but some form of ‘ground truth’ is necessary 

up front for initial reputation assessments.  

4.4.2 Sources of Data 

Once the central authority has identified the characteristic of interest and 

defined how this characteristic manifests, data about users that can be used to assess 

reputation must be collected. Recall from Chapter 1 that data about users must be 

collected and represented in a set of numerical features denoted observations that are 

stored in an 𝑛-dimensional vector denoted the observation space.  

Observations about users may be derived from computer network traffic, hosts 

and devices associated with the user, online profiles or accounts associated with the 

user, or services and platforms maintained by the network on which the user has a 

presence. The nature of these observations will of course depend on data availability, 
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privacy expectations of users on the network, and the context or environment. 

Additionally, depending on the source of the data, there may be uncertainty in the 

completeness and accuracy of the data.   

According to the methodology assumptions, a ground truth source of data 

about users can be derived from network traffic generated and collected on the 

computer network or service on which the user is being evaluated. In other words, the 

central authority tasked with calculating reputation should be able to match network 

traffic records with unique users. Observations derived from traffic record header 

files may include patterns of usage, source and destination IP addresses, source and 

destination ports, protocol, packets sent, bytes sent, and so on. If full packet capture is 

performed on the network, then further observations can be obtained from the 

payload, such as the nature of content of any files sent during the traffic session. If a 

firewall or antivirus system is employed, any alerts or threats created by users are also 

valuable observations for assessing user reputation.  

Host or device based observations can be derived from any devices associated 

with the user’s login credentials on the network. Again, depending on the nature of 

the network and the privacy expectations of the users, the insights gained from user 

devices will vary. On a network where users do not consent to monitoring of personal 

devices (for example, a university network or an Internet cafe), host-based 

observations may be limited to insights such as the number of devices a user has on 

the network and how frequently they are used. On a network where users do consent 

to monitoring, observations may include any installed applications, downloads, 

keystroke analysis, mouse click patterns, security software, regularity of applying 
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patches and other software updates, and so on.  Aspects of these observations may 

still be obtained in the ‘non-consent to monitoring’ scenario through means such as 

surveys or focus groups. However, there is no guarantee that users will be willing to 

participate in such surveys and if they are, there is no guarantee that they will be 

honest about their applications, updating behaviors, and various other device features 

of interest.  

Additional observations may come from a user’s online accounts or profiles. 

These profiles may exist on platforms or services owned and maintained by the 

network, or they may exist on public Internet platforms, to include social media sites 

such as Facebook [59] or Twitter [60], online communities such as Reddit [61], 

question and answer forums such as Quora [62] or StackOverflow [40], interest or 

profession specific platforms such as GitHub [63], and more. Observations from these 

platforms or services may include user activities, patterns of usage, content, 

interactions with other users, social networks, etc. Insights from Internet platforms 

may be difficult to obtain however, because there may not be ground truth available 

regarding profiles associated with a user and data availability may be limited to due 

privacy expectations of the users, or privacy policies and terms and conditions 

associated with the service.  

 It is worth noting that it is not practical to create a finalized list of all the 

sources where observations about users can be derived. This is due not only to 

inherent differences that will exist in computer networks, but also due to the rapid 

pace at which technology evolves. New sources of data about users appear as new 

technology platforms and devices are introduced. For example, Internet of Things 
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(IoT) devices are not discussed in this dissertation, but could potentially provide a 

wealth of information about a user’s cyber reputation on a network.  

If the central authority has access to data regarding the unique physical world 

human associated with a cyber account(s), a final important source of data may be 

individual differences in people. Individual differences encompass a wide range of 

characteristics that vary between people [64], but the four major categories commonly 

evaluated in cybersecurity literature include demographic factors, personality traits, 

risk-taking preferences, and decision-making styles. Demographics include 

characteristics of a human population such as age, gender, occupation, and so on. 

While there are many different personality traits, there are five major categories in the 

widely accepted “Big Five” model: agreeableness, conscientiousness, neuroticism, 

openness, and extraversion [65]. Agreeableness measures cooperative traits; 

conscientiousness measures dependable and organized traits; neuroticism, also 

sometimes categorized as emotional stability, measures insecure and nervous traits; 

openness measures intellectual and imaginative traits; finally, extraversion measures 

energetic and outgoing traits [65]. Risk-taking is a measure of risk attitude and shapes 

decision-making, which is examined in the literature in relation to several forms of 

risky behavior [66]. There are five dimensions of risk-taking preferences that are 

commonly studied in relation to cybersecurity and user behaviors: ethical (RTE), 

financial (RTF), health/ safety (RTH), recreational (RTR), and social (RTS) risk-

taking. Finally, decision-making style is the response pattern exhibited by an 

individual in a decision-making situation [67]. Decision-making styles are generally 

categorized into five broad categories: rational (DMR), avoidant (DMA), dependent 
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(DMD), intuitive (DMI), and spontaneous (DMD) decision-making. Rational refers to 

using logic when making decisions; avoidant refers to delaying decision-making; 

dependent refers to relying on others for decision-making help; intuitive refers to 

decision-making based on instincts; lastly, spontaneous refers to quick decision-

making [68].  

While the availability of such data will depend on the network and the privacy 

expectations of users, this data can provide a wealth of information for user reputation 

assessments. For example, research has correlated a user’s age with a variety of 

cybersecurity behaviors and risks, to include phishing susceptibility [108, 109]; 

password sharing habits [110]; likelihood of malware encounters [111]; and 

likelihood of malware contamination [112].  As another example, in a survey we 

conducted to correlate human traits with cybersecurity behavior intentions, we found 

gender, extraversion, financial risk-taking, and rational decision-making were all 

significant predictors of good security behavior [113].  

4.4.3 Evidence Shaping  

Once observations about users have been collected, the central authority must 

identify a subset of features that is highly indicative or predictive of the characteristic 

of interest. Each individual feature is considered evidence and the evidence is stored 

as numerical features in the cyber reputation vector of size ≤ 𝑛. It is important to 

distinguish between data that defines a characteristic has manifested and data that is 

used as evidence to predict whether a characteristic may manifest. For example, if the 

characteristic of interest is maliciousness and a user with a reputation for being 
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malicious is defined as someone who has spread malware to other users, evidence 

may include the number of messages or files sent by this user to others and the 

number and nature of the links and files contained in these messages. Observations 

that are useful forms of evidence can be identified via various feature engineering, 

dimensionality reduction, and correlation analysis techniques.  

In order to use the observation space in statistical or predictive models, 

observations should be represented in the feature vector as numeric features. For 

example, if observations are taken from network traffic data, features may include the 

number of traffic sessions created by a user per day, the average length of a traffic 

session, and the number of alerts created by a user per day. As another example, if 

observations are taken from user devices, numeric features may include the number 

of devices owned by a user, the frequency that a user applies software updates, and 

the number of third party applications installed on average on a user’s device.   

Feature engineering can and should also reflect the preferences of the network 

administrator and events that are considered deviations from appropriate behavior on 

the network. For example, in a corporate network environment, an example feature 

might be the number of non-work related websites visited by a user per day, while on 

a university network, an example feature might be a Boolean value indicating the 

presence of file sharing software on the user’s device.  

Once the observations have been transformed into a set of numerical features, 

denoted the observation space, dimensionality reduction and correlation analysis can 

be performed to identify a subset of features that best explain user behavior and the 

features from this subset that are highly correlated with the characteristic of interest. 
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For example, Principal Component Analysis, a statistical dimensionality reduction 

technique that converts a set of potentially correlated features into a smaller set of 

orthogonal linearly uncorrelated features called the principal components, may be 

used to find combinations of features that explain as much variance in the data as 

possible [69]. The correlation values between the Principal Components and the 

original features of the observation space can then be analyzed to identify the features 

that contribute most to explaining variance in user behavior and therefore may be 

most important in differentiating between users. Unsupervised clustering techniques 

can then be used with both the original features of the observation space and the 

newly formed principal components to identify users or behaviors that are outliers or 

to understand if there are any natural partitions in the data. Finally, statistical 

correlation tests or classification algorithms may be used to identify if any of the 

original features or principal components are correlated to the characteristic of 

interest. If high correlation or classification accuracy values cannot be obtained from 

the current observation space, additional data will need to be collected and 

incorporated into the observation space, and the process of evidence shaping will 

need to be repeated. Depending on the classification algorithm, it may also be 

possible to determine feature importance, a ranking indicating which features were 

used the most of used to make key decisions [114]. 

Note that in some cases, depending on the size of the network, it may be 

infeasible to determine the cyber reputation vector using the entire user population. In 

this case, a random sample of users should be obtained from the network and the 

previously described process to identify evidence should be applied on this sample.  
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4.5 Phase Two: Reputation Quantification and Prediction 

This section presents Phase Two of the methodology in which Research 

Question 2 (RQ2) is addressed. Recall that RQ2 asked: How can evidence be used to 

define and quantify a user’s cyber reputation and develop predictive models of future 

reputation?  In Phase Two the evidence contained in the reputation vector is used to 

either quantify reputation using the mathematical interpretation presented in Chapter 

3 or is used to make predictions about an existing or new user’s future reputation or 

behaviors.  

4.5.1 Reputation Quantification  

 Recall from Chapter 3 that in the context of quantifying user reputation as a 

single score, Bayesian Inference is used to determine a posterior probability 

distribution 𝑝 (𝑐|𝑒) providing the likelihood of probabilities with which a user 

exhibits a characteristic 𝑐 given some historical evidence 𝑒.  

The prior probability,𝑝 (𝑐), is selected to represent the belief about the 

probability of 𝑐 before any evidence has been observed. As observed in the work of 

[4, 52], the Beta distribution is a simple and intuitive distribution that can be used as 

the prior. Though the information it captures is somewhat limited, the Beta 

distribution allows for easy updating via counts of observed evidence. Regardless of 

what type of distribution is used, the prior is shaped using knowledge from previous 

studies or existing knowledge about the nature of users on the network. If there is no 

previous work or existing knowledge on which to base the distribution, a non-

informative prior, known as Jeffrey’s Prior, can be used [54].   
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While a prior distribution must be shaped independently of any data that is 

used as evidence, Bayesian Inference can be performed iteratively. In other words, if 

Bayesian Inference has already been applied to users on the network and a posterior 

distribution has been formed using evidence, this posterior can be continuously 

updated and refined as new evidence comes in, effectively serving as the prior.  

The likelihood function, denoted 𝑝 𝑒 𝑐  is effectively a model of the 

probability distribution of the evidence. If a Beta prior has been selected, the 

Binomial distribution should be used as the likelihood function since the two are a 

conjugate pair [54].  

 
The posterior distribution updates the prior distribution using the collected 

evidence and Bayes Rule. When the Beta-Binomial conjugate pair is used, the 

Posterior is also a Beta distribution. As discussed previously, Bayesian Inference can 

easily be conducted iteratively. In the Beta-Binomial distribution scenario, if 

additional evidence is observed after the posterior has been computed, evidence 

counts can simply be added in order to reshape the parameters of the posterior Beta; it 

is mathematically no different than if all of the evidence had been observed at once 

and the posterior had been calculated afterward.  

The discussion on reputation quantification so far has assumed that all 

evidence is the same and can simply be incorporated into the posterior distribution as 

a frequency count. This is, however, an oversimplification. How evidence is actually 

represented and incorporated into the Bayesian model will depend on the nature of 

the evidence and selected distribution. If there are multiple types of evidence – i.e. 

different features – the posterior may be formed using techniques such as the method 
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of weighted posteriors, in which the process of Bayesian Inference is applied 

separately for each source of evidence and then the resulting posteriors are each 

assigned a weight and combined into a single distribution representing a summation 

of the weighted posteriors [54].  These weights may be adjusted based on how 

strongly evidence is correlated with a characteristic of interest.  

Once the posterior distribution has been developed, a reputation score can be 

calculated as the probability expectation of the distribution. In other words, a 

reputation score defines the most likely probability with which a user will exhibit a 

characteristic in the future, based on evidence. This probability expectation value may 

be derived analytically, as done in [4] in which a seller is given a reputation rating in 

the form of the probability expectation of the Beta distribution, which is calculated 

directly as 𝐸 𝑝 =  𝛼 (𝛼 +  𝛽). While this approach is effective, a more useful 

approach may be calculating the score via repeated sampling of the posterior. This 

enables the central authority to determine a confidence interval around the score. 

Moreover, in some cases it may be impossible to derive the probability expectation 

value directly using analytic methods.  

Sampling from the posterior to derive a reputation score can be done using 

techniques such as Monte Carlo Sampling or Latin Hypercube Sampling. Both 

techniques produce a frequency distribution of the possible outcome probability 

values by repeatedly recalculating point estimates for the outcome probability using 

input values that have been sampled from the input distributions. After thousands or 

tens of thousands of iterations, the sample uncertainty distribution is assumed to 

approach the true distribution [70]. The two techniques differ in how they sample 
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from the input distributions. The Monte Carlo Method randomly samples from any 

input value that has an associated uncertainty distribution [70]. The Latin Hypercube 

Method seeks to improve upon the Monte Carlo Method by sampling from across the 

entire space of an input distribution, ensuring that calculations are performed even for 

input values that occur with low probability [70].     

The reputation score may be taken as the most frequently occurring 

probability. The uncertainty in the score can be evaluated by calculating confidence 

intervals; narrow confidence intervals indicate higher certainty in the score than wide 

confidence intervals. For example, if the most frequently occurring probability for a 

user behaving maliciously is 0.80, and the 90% confidence interval is between 0.79 

and 0.81, there is low uncertainty in the estimate and the central authority has high 

confidence in assigning the user a reputation score a reputation value of 0.80. 

However, if the 90% confidence interval is between 0.50 and 0.90, there is high 

uncertainty in the estimate and the central authority may have low confidence in the 

0.80 reputation score.  

Because a user’s reputation score is calculated as a probability expectation 

value, this score may be interpreted differently depending on the preferences of the 

central authority. One approach to making the reputation score intuitive and useful for 

decision support is mapping the score to a class label based on a probability 

threshold. For example, if the characteristic of interest was maliciousness, users may 

be assigned the label ‘malicious’ if their reputation score exceeds a certain value; the 

remaining users who do not have reputation scores that exceed this value may be 

assigned the label ‘benign.’ The actual threshold value can be selected based on 
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whether importance is placed on minimizing false negatives or false positives. Setting 

a high threshold for defining users as malicious - for example, defining malicious 

users as those who have a probability expectation of behaving maliciously that is over 

0.90 - will reduce false positives and may be applicable in network settings where the 

impact of a user introducing a threat or vulnerability to a network is limited.  Setting a 

lower threshold will increase false positives and reduce false negatives, and may be 

applicable in a setting where the impact of a user introducing a threat or vulnerability 

is considered high.  

The uncertainty bounds can also be used to determine how users are defined 

and labeled or may be used to supplement a label with more information. For 

example, a user may be labeled as malicious with low confidence or labeled as 

malicious with high confidence. This estimate of confidence in turn can impact any 

decisions the central authority makes about the user.   

4.5.2 Reputation Prediction  

While a reputation score provides a probability that a user will exhibit a 

certain characteristic, in some cases the central authority may want to make 

predictions about future user reputation or the reputation of new or unknown users. In 

this case, the cyber reputation vector may be used as input to clustering or supervised 

learning algorithms.  

For users with unknown reputation, unsupervised learning techniques may 

also be used to make predictions about these users based on their similarity to known 

users. For example, if the central authority has determined that there is a set of users 

with a strong reputation for a certain characteristic (based on some probability 
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threshold, as discussed in the section on Reputation Quantification), the cyber 

reputation vectors may be calculated for both the known and unknown users and then 

used as input to a clustering algorithm. Depending on proximity of the unknown users 

to the known users based on some distance metric, the central authority may consider 

these users to have the same reputation. If this is the case, depending on the 

characteristic, the central authority may choose to restrict or grant privileges, conduct 

additional monitoring, or require additional training of the unknown users until they 

can be monitored for enough time to make a reputation determination based actual 

user behavior on the network. This determination may also be used for reputation 

quantification - these unknown users may have their prior distributions modeled after 

the posterior distributions of the known users.  

Unsupervised learning can also be applied to make predictions for users 

whose reputation is already known. Specifically, there may be some subset of users 

that do not have a reputation for the characteristic of interest based on their past 

behaviors. However, behavior - and therefore reputation - can change over time. So, 

if clustering reveals that these users are very similar to users that do have a reputation 

for this characteristic, again based on some selected similarity metric, the central 

authority may still choose to restrict or grant privileges, conduct additional 

monitoring, or require additional training until the user proves otherwise.   

If a sample of users is assigned class labels based on their reputation scores, as 

discussed in the section on Reputation Quantification, this sample may be used as 

training data for supervised learning techniques in order to classify other users.  
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Supervised learning techniques may also be used to make more nuanced 

predictions about the behaviors of users. If there is some behavior that the central 

authority is particularly interested in monitoring, this behavior can be tracked for a 

period of time and then regression models can be built to analyze how this behavior 

will manifest in the future. For example, if the number of unverified application 

downloads is evidence in the cyber reputation vector that is correlated with a 

reputation for device infection, the central authority may track this value per user on a 

weekly basis and use these values to predict future suspicious downloads counts. The 

central authority may then decide that users whose regression models indicate 

increasing numbers of suspicious downloads are required to take additional security 

trainings or require download approvals from network administrators.  

4.6 Phase 3: Validation and Refinement  

This section presents Phase Three of the methodology for addressing 

Research Question 3 (RQ3), which asked: How can quantification assessments and 

predictions of a user’s cyber reputation be validated and refined?   

4.6.1 Validation 

 In order to validate the scores and predictions, a pilot study should be 

conducted in which a sample of users are evaluated and monitored over a period of 

time and then any scores or predictions are compared to the actual observed 

outcomes. Since reputation assessments of users are either probabilities or 

predictions, forecast verification methods can be used to validate the prediction 

accuracy or assess the reliability of user reputation models [104]. For measuring the 
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accuracy of probabilities, metrics such as the Brier Score, commonly used in 

assessing weather predictions, can be used. The Brier Score provides the mean 

squared error for probabilistic forecasts for two category predictions (in this case 

‘yes’ the user did exhibit the characteristic of interest or ‘no’ the user did not exhibit 

the characteristic), with a score of 0 indicating the probability is deterministic and a 

score of 1 indicating the probability is always incorrect [104]. Other metrics that may 

be used to validate probabilities (if they are mapped to binary outcomes) include 

Pearson’s Correlation Coefficient or Spearman Rank Correlation, which can both be 

used to assess the linear association between predictions and outcomes [104]. 

Reliability diagrams, which plot the frequency with which an event is observed 

against the probability, may also be used to assess predictions. A “perfectly reliable” 

probability model is one with a curve that lies on the 45! diagonal line of the 

reliability diagram [104].  

For predictions of user behavior involving supervised learning algorithms, 

metrics such as Mean Square Error (MSE), the square of the difference between 

predictions and actual observations, or Mean Absolute Error (MAE), the average of 

the absolute difference between predictions and actual observations, may be used 

[104]. A Receiver Operating Curve (ROC), which plots false positive rates on the x-

axis against true positive rates, can also be used to assess prediction models.  

4.6.2 Refinement  

 Depending on the accuracy of the reputation scores and predictions, steps can 

be taken to refine the user reputation model. First, if all possible sources of data have 

not yet been exhausted, the data collection and evidence-shaping phase can be 
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revisited. Second, if there are no additional sources of data that the central authority 

can analyze, the characteristic definition may be revisited and narrowed or broadened. 

If the original characteristic definition was too broad, it may be difficult to find 

evidence with strong correlation to the characteristic. Similarly, if the original 

characteristic definition was too narrow, it may be difficult to find enough sources of 

data to form evidence.  

A third approach to improving user reputation models may be increasing the 

time period of data collection before any models are constructed. Data may need to be 

collected and analyzed over time to understand the nature of the network and the 

users on the network. This is especially important for networks that may experience 

varying levels of activity depending on time of day, seasons, and various other 

external features. If the time window of data selected for building reputation models 

does not actually match the time periods where users are active or fails to capture 

how external factors influence the network, model accuracy may be hindered.  

Closely tied to this idea is a fourth approach to refining user reputation 

models: increasing the frequency with which the models are updated and new 

evidence is incorporated. Since reputation is dynamic in nature, again depending on 

the nature of the network and user, the frequency with which evidence features are 

recalculated may need to be increased. Taking a random sample of users and 

recalculating their evidence values at varying intervals of time, such as hourly, daily, 

weekly, and monthly, can help determine this. If evidence values show no significant 

difference when calculated hourly or daily, but do show a difference when calculated 

weekly, then weekly may be selected as the update frequency in the reputation model. 
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In some cases, evidence update frequency may only need to be increased for users 

who demonstrate more erratic or unpredictable behavior. 

The fifth approach to refining reputation models involves incorporating more 

nuances into the model and how evidence is handled. For example, the central 

authority may vary the amount of weight given to evidence when performing 

Bayesian Inference. The concepts of ‘forgetting’ and ‘forgiveness,’ in which older 

behavior and evidence is given less importance than newer behaviors and evidence, 

can be incorporated into the model. The authors in [4] presented the idea of 

‘forgetting’ in an e-commerce setting. Motivated by the fact that agents change their 

behavior over time, in their model, older feedback was given less weight via a 

forgetting factor. A similar concept was presented in [52] as a discounting factor. In 

the context of network security, undesirable behaviors that contribute to a lower user 

reputation may be given less weight or importance over time (“forgetting”) or may be 

given less weight or importance if the user takes steps to improve their behavior, such 

as taking security training (“forgiveness”).  

Note that any efforts to refine the model should be conducted incrementally – 

i.e. only one method at a time should be applied and then user reputation scores and 

predictions should be recalculated and validated. Multiple improvement techniques 

may be conducted in parallel on different random samples of users. Refined models 

can be assessed using the same validation metrics presented previously. Also note 

that the steps proposed in this section may also be used to reduce the uncertainty 

bounds around a reputation score.  
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4.7 Case Study Outline  

Chapter 5 illustrates Phase One of the methodology through a case study of 

users on the wireless network at a large, public university. User infection was selected 

as the characteristic of interest. A user is considered to be a single account that is used 

to access and conduct activity on the university’s wireless network from an endpoint 

device or multiple endpoint devices. An infected user is defined as someone who has 

a record of device compromise in the university’s Intrusion Detection/Prevention 

System logs; an uninfected user is someone who has no record of device compromise 

in the university’s logs. Wireless network traffic for all infected users on the network 

and random samples of uninfected users is used as the initial source of data for user 

observations. We conduct a series of feature engineering, dimensionality reduction, 

clustering, and classification techniques in order to determine the feasibility of using 

network traffic as evidence of user reputation with respect to infection status. 

 Chapter 6 expands on this case study by illustrating Phases Two and Three of 

the methodology. We construct models to represent infected and uninfected users and 

then take a sample of unknown users and assign them reputation scores indicating 

their likelihood of infection. We monitor and refine these scores over time. We 

conclude with a discussion of additional sources of data that could help reduce 

uncertainty in the reputation assessments.   

 Chapters 7 and 8 present a separate case study, in which we collect and 

analyze incidents of account compromise self-reported by users on Twitter. We 

illustrate the viability of using user-reports on social media to understand people and 
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their cybersecurity attitudes and behaviors. We conclude this case study with an 

outline of our future work in this area.  
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5 Identifying Infected Users via Network Traffic: An 
Empirical Case Study 

5.1 Introduction  

This chapter presents a case study demonstrating Phase One of the 

methodology presented in Chapter 4. This chapter investigates the feasibility of 

extracting evidence from network traffic that can be used to identify users who will 

be exploited, i.e. become infected on the network. The goal of this chapter is to 

determine whether network traffic provides enough evidence to quantify and 

prediction whether users on the network have or will have a reputation for infection.  

In both research and development there has been extensive work to use 

network traffic to proactively identify entities that are susceptible to becoming 

infected and entities that are more likely to exploit others or spread infection. 

Network traffic analysis of IP addresses, binaries, and devices has become an 

invaluable process for proactive identification of security threats; anomaly and 

network intrusion detection systems often boast over 99% accuracy rates for detecting 

suspicious, malicious, or compromised entities. Here, we explore whether network 

traffic can be just as useful for evaluating users. 

Several authors have observed that users’ network traffic contains discernable 

patterns that can act as user fingerprints [71, 72, 73]. However, work in this area is 

limited and generally focuses on the goal of uniquely identifying users from their 

traffic flows. Our research presents a complementary approach: given a corpus of 

network traffic and ground truth data about the mapping of traffic records to the 

unique user who generated the traffic, we explore whether features from a user’s 
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‘network fingerprint’ can be used to differentiate between users who are more likely 

to become compromise victims and users who are less likely to become victims. 

We analyze two months of wireless network traffic at a large, public 

university for all the infected users that appeared in the logs during that time window 

(1,923 total) and random samples of uninfected users. In this case study, we consider 

a user to be represented by a single account that is used to access and conduct activity 

on the wireless network from one or more endpoint devices. We define an infected 

user as someone who has a record of device compromise in the university’s intrusion 

detection/protection system logs. 

We make the following contributions:  

• We extract 36 features from network traffic and apply Principal Component 

Analysis to identify 13 principal components that explain about 92.8% of the 

variance in user behavior. Analysis of these 13 components reveals 10 

features that best explain user behavior, suggesting 26 features that may be 

less useful for understanding users.   

• Through unsupervised learning techniques, we show that there are differences 

in users revealed by their network traffic that can be used to partition users 

into distinct groups, and in some cases these clusters separate the infected and 

uninfected users, with some clusters having a composition up to 100.0% of 

only one type of user.  

• We apply 10 different supervised learning techniques using both the original 

36 features and the 13 principal components and evaluate the accuracy, area 

under the receiver operating characteristic curve (ROC AUC), false positive 
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rate, and false negative rate with which we can classify users as either infected 

or uninfected. We show that that using network traffic alone to classify users, 

we can achieve accuracy values up to 79.0% and ROC AUC values up to 

86.0%. However, the lowest false positive rate is 16.8% and the lowest false 

negative rate is 21.2%, suggesting additional features or sources of data may 

be necessary to further refine the models.  

• We show there is potential to identify signals of infection status from network 

traffic patterns without knowledge of the actual content a user is accessing.  

The remainder of this chapter is organized as follows. Section 5.2 presents the 

background and related work and research questions. Section 5.3 presents the 

methodology for feature engineering, dimensionality reduction, unsupervised 

clustering, and supervised learning. Section 5.4 presents the results, followed by a 

discussion of the results in Section 5.5. Section 5.6 presents the limitations and Section 

5.7 concludes the chapter.  

5.2 Background and Related Work 

Network traffic, either raw or summarized in a form such as Cisco’s NetFlow, 

is commonly analyzed for the purpose of anomaly or network intrusion detection 

[74]. Since hostile traffic generally looks different from benign traffic, these 

approaches often involve extracting various features about an IP address from the 

network traffic - such as byte or packet values, temporal patterns, source and 

destination location information - and then using some statistical, classification, 

clustering, or rules-based algorithm to distinguish between malicious and benign IP 

addresses [74-80]. 
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Several authors have observed that grouping and analyzing traffic flows from 

a human user-centric perspective versus an IP or host-centric perspective provides a 

more nuanced understanding of a network and may prove useful for identifying 

threats to the network, especially because users typically generate traffic on multiple 

devices and a single IP can map to thousands of unique users [71, 72, 81, 82]. In [71], 

the authors observed that traffic generated by an individual can act as a biometric 

signature and developed a system that could infer the identity of users from NetFlow 

records even when thousands of users were hidden behind a few IP addresses. The 

authors used eight hours of NetFlow records to profile five users on a large 

metropolitan WiFi network with a total of 200,000 users and an average of 1,000 

users whose IPs have been mapped (Network Address Translated) behind two IPs 

addresses. When attempting to identify these users from a set of 100 million raw 

NetFlow records collected over a 24 hour time period, the system correctly identified 

the users with true positive rates over 90% and false positive rates below 0.08. 

In [82], the authors examined the possibility of user identification using 

network packet metadata and neural networks. They collected network traffic 

consisting of fields such as time stamps, source and destination IP and port 

information, and packet length for 46 users over a two-month period. They then 

examined whether or not they could use traffic metadata to identify specific users on 

nine popular services. Results varied depending on the user and the service. For 

example, on Google, the neural net achieved a true positive identification rate of 90% 

for one user, but a true positive identification rate of only 48.3% for another. 

Similarly, in [81], the authors developed user-behavioral profiles from raw traffic 
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network metadata and found that they could accurately identify users on Skype, 

Hotmail, and BBC with 98.1%, 96.2%, and 81.8% accuracy, respectively. In [72], the 

authors examined how to derive high-level behavioral features from low-level 

network traffic metadata in order to build profiles that indicate the services used by an 

individual and how they use the service; when the authors evaluated their profiling 

technique on Facebook, they were able to distinguish between different user activities 

using the raw traffic alone. 

In [83], the authors developed a tool that used HTTP traffic from four users in 

a domestic household network to identify the user generating the traffic with a true-

positive rate of 64% and a false-positive rate of 28%. In [84], the authors profiled 25 

synthetic users with 90% accuracy based on web transactions and observed that user 

web transactions are fairly consistent and exhibit little novelty over time. In [73], the 

authors examined how effectively they could identify whether a 802.11 traffic sample 

came from a user and found that ‘implicit identifiers’ such as network destinations (IP 

address and port pairs) and SSIDs were highly useful in distinguishing users.   

Our work is most similar to the work presented in [115], in which the authors 

analyzed the web browsing behaviors of users to predict who was at risk of being 

exposed to malware. Using telemetry data from a major AV company containing 

100,000 users and millions of URLs visited by the users, the authors extracted 74 

features summarizing user behavior, to include volume of activity, temporal patterns 

of activity, number and type of websites visited, and variability of browser activity. 

Correlation analysis was performed to understand the relationship between these 

features and the probability of the user encountering a malicious web page. The 
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authors defined at risk users as those who visited at least two distinct malicious URLs 

or at least three blacklisted domains during the two-month study period; safe users 

never visited malicious URLs or blacklisted domains; and the uncertain users were 

those who did not fall into either category. The authors found that there was a 

significant increase in malicious URLs visited by users on the weekend; at risk users 

spent more time online at night; and volume of activity was one of the best predictors 

of being at risk. The authors then used insights from their correlation analysis to build 

logistic regression models; the model classified users as at risk with 74% accuracy 

and an 8% false positive rate.  

An important distinction between our work and the work in [115] is that our 

work is better suited to network administration contexts where an administrator 

would like to be able to forecast which users will become victims of threats or 

vulnerabilities as identified by the monitoring tool implemented on the network, but 

due to the privacy expectations of users they cannot instrument user devices, require 

specific antivirus products, or know the actual content users are accessing on the web. 

Our work attempts to identify indicators and make predictions about users in a 

privacy-preserving manner using network patterns alone. The actual specifics of our 

data will be discussed in detail in Section 5.3. 

Based on the related work that has shown how features can be extracted from 

network traffic to either uniquely identify or profile different types of users, the first 

research question for this study is: 

Research Question 5.1 (RQ5.1): Are there features that can be extracted 

from the network traffic that best explain the differences in user behavior?   
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Motivated by the extensive related work that has shown how features 

extracted from historic network traffic can be used to develop profiles that distinguish 

between malicious and benign hosts or IP addresses (and in the case of [115], at risk 

users), we examine whether the features we extract to explain user behavior can also 

be used to distinguish between infected and uninfected users. The second research 

question for this study is therefore: 

Research Question 5.2 (RQ5.2): How well can we differentiate between 

infected and uninfected users on the network using features derived from user 

network traffic? 

We evaluate RQ5.2 using both an unsupervised clustering and supervised 

learning approach. In the context of unsupervised clustering, we evaluate cluster 

purity, i.e. the percent of users in a cluster that represent only one type of user 

(infected or uninfected). In the context of supervised learning, we evaluate accuracy, 

area under the receiver operating characteristic curve (ROC AUC), false positive rate, 

and false negative rate. The technique to compare these four attributes is discussed in 

Section 5.3.   

5.3 Methodology 

This section presents an overview of the dataset, the steps taken to clean and 

process the data, and the experiments to test our research questions.  

5.3.1 Data Overview  

The data for this experiment consists of the wireless network traffic and 

wireless network threat events collected by a Palo Alto Networks Intrusion 
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Detection/Prevention System at a large, public university. The security division of the 

university’s Information Technology (IT) department manages this system. From 

September 26 to October 18, the system version was Pan OS 7.0.10. It was upgraded 

to version 8.0.4 on October 18th and to 8.0.5 on October 25th. The system is 

configured to detect threats using the default Palo Alto signatures and detection rules. 

The IT department modifies the list of domains and IPs that the system’s firewall is 

set to block based on a feed of active hostile threats updated every 15 minutes. 

The IT security office provided us with a random sample of traffic records 

from each hour of each day for the period of September 26, 2017 through November 

21, 2017. They provided us with a complete record of the threats during this time 

period. 

Of all the traffic generated by users at the university, 65% is wireless. Users of 

the wireless network include students, faculty, staff, and guests at the university. 

Users must authenticate onto the wireless campus network using a unique user ID that 

is recorded by the Palo Alto system.  

To guarantee privacy of the users, the IT security office replaced user IDs 

with unique hashes. Anonymous sessions or sessions associated with a router or 

device that did not map back to a specific user were discarded. The resulting data was 

then pushed to a secure server hosted at the university for our analysis. After the 

process of discarding and anonymization, the dataset consisted of 66,561,686 wireless 

traffic records and 14,621 threat records.   

The traffic logs record wireless traffic sessions on the network, with a session 

representing a complete conversation between a source and destination IP address. 
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That is, a single record in a traffic log captures the request sent from a source IP to a 

destination IP and the response received by the source IP from the destination IP. The 

traffic logs record 54 fields associated with the session, including the source user ID, 

time the session began, source and destination IP, number of bytes sent and received, 

number of packets sent and received, length of the session, and so on. 

The threat logs record events that occurred during wireless traffic sessions that 

were identified as malicious or suspicious by the Palo Alto system. Therefore, every 

record in the threat logs can be matched with a record in the traffic logs representing 

the session during which the threat occurred. If a threat is identified by the system 

during a wireless traffic session, once the session is complete the associated source 

and destination IP addresses and ports are recorded in the threat log, along with 

information about the protocol, time of the threat, type of threat, severity level, and so 

on. Severity levels are ranked as informational, low, medium, high, or critical. Our 

threat dataset consisted of the threats ranked medium, high, or critical, as these are the 

events that trigger a response from the IT department. 

More information about the Palo Alto system and its traffic logs and threat logs 

can be found at [85].  

5.3.2 Data Validation and Preprocessing  

This section discusses the steps that were taken to validate and prepare the 

data for our analysis. Validation and preprocessing were done using Python, with the 

Pandas [86] and NumPy [87] packages. 

The first step was to identify the number of unique users in our data. Filtering 

by unique user hash, we determined there were 53,165 unique users who appeared in 
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the traffic logs. In the threat logs, we identified 1,935 unique users. Since every threat 

record is associated with a traffic session, any user who appears in the threat logs 

should also appear in the traffic logs. Comparing the users in the threat logs to the 

users in the traffic logs, we identified 12 users who never appear in the traffic logs. 

Because data is taken directly from the IDS/IPS threat logs, we assume these 12 users 

represent a corner case in the threat recording process. One possible explanation is if 

a threat is identified at the start of a session and is immediately blocked, a completed 

traffic session never occurs and therefore is never recorded in the traffic log. These 12 

users and their records in the threat logs were dropped from the analysis, resulting in 

1,923 unique users in the threat logs. We denote the 1,923 users who appeared in the 

threat records – in other words users who have created threats assigned a severity 

level of medium, high, and/or critical – as the infected users. 

The next step was ensuring that we could identify the traffic sessions 

associated with the threat records for these 1,923 users. For each infected user threat 

record, we filtered the traffic logs by the user’s unique user hash. From this set of 

potential traffic sessions, we then filtered by the recorded time of the traffic session 

and the threat record. Since traffic records only appear in the traffic logs when the 

conversation between the source and destination IP has been completed or terminated 

and because some sessions may last several days, we first tested filtering the traffic 

sessions by a 48-hour window before the threat log was recorded and a 48-hour 

window after the threat log was recorded. From this filtered set of records, we 

checked if there was an IP address in the traffic record that matched an IP address in 

the threat record. After doing this process for all the threat records, there were only 28 
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records created by a total of 11 unique users that were not matched. By expanding the 

time window from 48 hours to 96 hours before and after a threat was recorded and 

then checking for a match on either source or destination IP address, we matched six 

more records associated with five unique users. By expanding our search to month-

long windows and then searching for a match on source or destination IP, we matched 

three records created by two unique users. By relaxing the condition on matching a 

source and destination IP, we matched the remaining 19 records created by four 

unique users by first searching a 96-hour window and then expanding to a month-

long window.  

After this phase of preprocessing, there were 1,923 unique infected users and 

51,242 unique uninfected users. Using the entire set of uninfected users in our 

analysis would result in artificially high accuracy results when attempting to classify 

users as infected or uninfected. So, we conducted our analysis on two different ratios 

of infected and uninfected users. One ratio represented a 50:50 split of infected to 

uninfected users, so 1,923 infected and 1,923 uninfected. The uninfected users 

represented a random sample of the total uninfected population. To ensure the results 

were not the product of the random sample, we produced three different random 

samples of uninfected users and repeated our analysis of the 50:50 ratio for each 

sample.  

In order to also have a dataset with an imbalance of infected and uninfected 

users, we also selected a 30:70 ratio of infected to uninfected, so 1,923 infected and 

4,487 uninfected. Again, we conducted our analysis on three random samples 

containing 4,487 uninfected users each.  
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The final step in our data-preprocessing phase was to analyze and clean the 

fields in the actual traffic sessions. In the traffic logs, there are 54 fields recorded for 

a single traffic session. These fields are defined by Palo Alto so not all of them are 

relevant on the university network. We reduced this list of 54 fields to ten fields after 

dropping fields that contained missing values, always recorded the same value, or 

provided only minimal information about a traffic session. The final fields retained 

for feature engineering were: Start Time, Elapsed Time, Source IP, Source Port, 

Destination IP, Destination Port, Bytes Sent, Bytes Received, Packets Sent, and 

Packets Received.  

5.3.3 Feature Engineering  

The ten features were then transformed into numerical features that 

summarized all of a user’s traffic records. Feature engineering was driven both by 

exploratory data analysis and related work that has identified useful features for 

differentiating between malicious and benign IP addresses [74, 78, 79, 80]. This 

process resulted in 36 different features, presented in Table 1.  

To account for the fact that some features are quantified using different units 

of measurement (for example, frequency count vs. time) and to ensure each variable 

received equal weight, feature values were standardized prior to analysis using the 

process described in [88]. 
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Code Feature Code Feature 

NREC Number of user records in the 
traffic logs 0600 Number of sessions initiated by a 

user between 0600 and 0659 

LEN Average session length 0700 Number of sessions initiated by a 
user between 0700 and 0759 

TDIF Average time difference between 
session start times 0800 Number of sessions initiated by a 

user between 0800 and 0859 

BYS Average number of bytes sent 0900 Number of sessions initiated by a 
user between 0900 and 0959 

BYR Average number of bytes received 1000 Number of sessions initiated by a 
user between 1000 and 1059 

PAS Average number of packets sent 1100 Number of sessions initiated by a 
user between 1100 and 1159 

PAR Average number of packets 
received 1200 Number of sessions initiated by a 

user between 1200 and 1259 

SIP Number of unique source IP 
addresses 1300 Number of sessions initiated by a 

user between 1300 and 1359 

SP Number of unique source ports 1400 Number of sessions initiated by a 
user between 1400 and 1459 

DIP Number of unique destination IP 
addresses 1500 Number of sessions initiated by a 

user between 1500 and 1559 

DP Number of unique destination 
ports 1600 Number of sessions initiated by a 

user between 1600 and 1659 

NAPP Number of applications used 1700 Number of sessions initiated by a 
user between 1700 and 1759 

0000 Number of sessions initiated by a 
user between 0000 and 0059 1800 Number of sessions initiated by a 

user between 1800 and 1859 

0100 Number of sessions initiated by a 
user between 0100 and 0159 1900 Number of sessions initiated by a 

user between 1900 and 1959 

0200 Number of sessions initiated by a 
user between 0200 and 0259 2000 Number of sessions initiated by a 

user between 2000 and 2059 

0300 Number of sessions initiated by a 
user between 0300 and 0359 2100 Number of sessions initiated by a 

user between 2100 and 2159 

0400 Number of sessions initiated by a 
user between 0400 and 0459 2200 Number of sessions initiated by a 

user between 2200 and 2259 

0500 Number of sessions initiated by a 
user between 0500 and 0559 2300 Number of sessions initiated by a 

user between 2300 and 2359 
Table 1: Final list of features 
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5.3.4 Principal Component Analysis  

Principal Component Analysis (PCA) is a statistical dimensionality reduction 

technique that converts a set of potentially correlated features into a smaller set of 

orthogonal linearly uncorrelated features called the principal components that explain 

as much variance in the data as possible [69]. PCA has been used in the related work 

[8] to identify subsets of features from larger sets of features derived from traffic 

record data that are the most useful for understanding normal IP/host behavior.  

PCA was performed using Python’s sklearn.decomposition.PCA library [89] 

on the standardized data. Scree plots were produced for each sample to determine the 

number of principal components that should be retained for analysis. We examined 

the Scree plots to see at what number of components the graphs began to level off. 

For the three samples with a 50:50 ratio, the graphs all leveled off at 13 components, 

providing us with percent variance explained ratio values of 90.01%, 90.22%, and 

98.09%, respectively. Using similar reasoning for the 30:70 ratio samples, we also 

retained 13 components for all three cases, achieving percent variance explained 

ratios of 90.27%, 90.39%, and 97.71%.  

We then examined how each of the original 36 features contributed to the 

percent variance explained and the principal components. Figure 4 displays the 

average percent variance explained by each feature for the three samples in the 50:50 

dataset and the average percent variance explained by each feature for the three 

samples in the 30:70 dataset. 

The correlation values between each feature and each of the 13 principal 

components were also calculated for each sample using the 
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sklearn.decomposition.PCA library. Absolute values of the correlation values were 

then calculated, because based on the method we used for calculating these variables, 

magnitude, not direction, is used for determining variable importance [90]. Tables 2 

and 3 present the correlation values between features and principal components where 

the correlation value was greater than 0.5; we discuss these features in more detail in 

the Section 5.4. 

 

 

 

 

 

.  

Figure 4: % Average variance explained by each feature for the 13 components for both ratios 
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 Feature code 

Principal Components 

PC2 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13 

PAR 
0.557 
0.565 

--          

PAS 
0.557 
0.562 

--          

LEN   

0.578 
-- 
-- 

0.640 
-- 
--  

-- 
0.508 

-- 

-- 
-- 

0.765    

BYS    

-- 
0.811 

-- 

0.871 
-- 
--  

-- 
-- 

0.607   

-- 
-- 

0.618 

BYR 
0.548 
0.535 

--          

DP    

0.513 
-- 

0.775 

-- 
0.52 

--      

SIP       

-- 
0.519 

--    

TDIF   

-- 
-- 

0.516  

-- 
0.514 
0.699 

0.667 
0.507 

--     

1400        

-- 
-- 

0.546 

0.721 
-- 

0.546  

1500  

-- 
-- 

0.501         

1900          

-- 
0.714 

-- 

Table 2: Correlation values between features and principal components for the three samples of the 30:70 
ratio where the correlation value was greater than or equal to 0.5 
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Feature code 

Principal Components 

PC2 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13 

PAR 
0.556 
0.556 

--          

PAS 
0.553 
0.545 

--          

LEN     

0.763 
-- 
-- 

-- 
0.522 

--     

BYS    

0.898 
0.807 

--    

-- 
-- 

0.833   

BYR 
0.540 
0.516 

--          

DP  

0.515 
-- 
-- 

-- 
-- 

0.744        

SIP  

-- 
-- 

0.499   

-- 
-- 

0.500      

TDIF  

-- 
-- 

0.557 

0.545 
-- 
-- 

-- 
-- 

0.683 

-- 
0.601 

-- 

0.700 
-- 
--     

1400       

-- 
-- 

0.751  

0.779 
0.737 

--  

Table 3: Correlation values between features and principal components for the three samples of the 50:50 
ratio where the correlation value was greater than or equal to 0.5. 
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5.3.5 Unsupervised Clustering  

Motivated by related work [79, 80] that has explored the feasibility of using 

K-means clustering to differentiate between normal and anomalous traffic, we apply 

K-means clustering to our six samples using both the 36 original features and the 13 

principal components as input. K-means clustering works by grouping entities into a 

user-specified number of clusters based on similarities between the features of the 

entities. 

We evaluated K-values ranging from [1, 5] and for each K, calculated the sum 

of squares difference between the cluster center and each observation in the cluster. 

This value is 0 when all observations in a cluster are identical, so using this approach, 

the ‘best’ value of K is the one in which the sum of squares distance is minimized 

[91]. Based on the sum of squares difference, the best value was K=4. 

Once the algorithm partitioned users into clusters, we examined how many 

infected and uninfected users appeared in each cluster. Note that K-means is an 

unsupervised technique, so the algorithm did not have knowledge of these labels. 

Below we present the results of the percent and number of infected and uninfected 

users in each cluster for K=4 for all three samples for each of the 30:70 and 50:50 

ratios; Table 4 presents the clustering results for the 36 original features while Table 5 

presents the clustering results for the 13 principal components.  
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% Infected (# infected) in each cluster 
% Uninfected (# uninfected) in each cluster 

Cluster 1 Cluster 2 Cluster 3 Cluster 4 

Original 36 features, 30:70 Ratio 

12.15% (489) 
87.85% (3537) 

76.39% (356) 
23.61% (110) 

56.18% (1077) 
43.82% (840) 

100.0% (1) 
0.0% (0) 

10.95% (416) 
89.05% (3382) 

71.97% (534) 
28.03% (208) 

51.37% (938) 
48.63% (888) 

79.55% (35) 
20.45% (9) 

14.47% (635) 
85.53% (3754) 

0.0% (0) 
100.0% (1) 

63.79% (1288) 
36.21% (731) 

0.0% (0) 
100.0% (1) 

Original 36 features, 50:50 Ratio 

88.54% (340) 
11.46% (44) 

25.27% (514) 
74.73% (1520) 

74.84% (1068) 
25.16% (359) 

100.0% (1) 
0.0% (0) 

25.01% (513) 
74.99% (1538) 

89.09% (343) 
10.91% (42) 

75.66% (1066) 
24.34% (343) 

100.0% (1) 
0.0% (0) 

29.49% (681) 
70.51% (1628) 

0.0% (0) 
100 (1) 

0.0% (0) 
100% (1) 

80.91% (1242) 
19.09% (293) 

Table 4: K-Means clustering result for K=4 for each data sample using the 36 original features. 

 

5.3.6 Supervised Learning  

To use our dataset for supervised learning, infected users were labeled with a 

1 and uninfected users were labeled with a 0. Each sample in the 30:70 and 50:50 

infected to uninfected ratio datasets were both split into training and testing sets. We 

evaluated two common train/test splits: 70/30 and 80/20.  

 
Eight supervised algorithms were implemented using Python’s sklearn 

libraries: K-Nearest Neighbors [92], Logistic Regression [93], Random Forest [94], 

AdaBoost classifier [95], Gradient Boost [96], Extra Tree [97], Bagging [98], Voting 

(Majority Rule) [99]. For all the algorithms except Voting (which is built on the 

output of the other algorithms), Grid Search [100] was used to tune the hyper-



 73 
 

parameters and stratified 10-fold cross validation [101] was conducted to prevent 

model overfitting. Two neural networks were implemented using the keras.io library 

[102], one with two layers, denoted Neural Network 1, and one with four layers, grid 

search to tune parameters, and 10-fold cross validation to prevent overfitting, denoted 

Neural Network 2. For all models, we calculate the accuracy, false positive rate, false 

negative rate, and area under the receiver operating characteristic curves produced by 

varying the decision threshold on balancing the true positive rate with the false 

positive rate. 

 
% Infected (# infected) in each cluster 

% Uninfected (# uninfected) in each cluster 

Cluster 1 Cluster 2 Cluster 3 Cluster 4 

13 Principal Components, 30:70 Ratio 

12.19% (424) 
87.81% (3053) 

80.0% (16) 
20.0% (4) 

51.85% 1483) 
48.15% (1377) 

0.0% (0) 
100.0% (53) 

60.07% (1309) 
39.93% (870) 

14.19% (595) 
85.81% (3598) 

18.18% (4) 
81.82% (18) 

93.75% (15) 
6.25% (1) 

61.03% (1339) 
38.97% (855) 

13.86% (584) 
86.14% (3630) 

0.0% (0) 
100.0% (1) 

0.0% (0) 
100.0% (1) 

13 Principal Components, 50:50 Ratio 

81.85% (496) 
18.15% (110) 

26.33% (465) 
73.67% (1301) 

94.12% (16) 
5.88% (1) 

64.93% (946) 
35.07% (511) 

79.28% (1213) 
20.72% (317) 

51.28% (20) 
48.72% (19) 

30.32% (690) 
69.68% (1586) 

0.0% (0) 
100.0% (1) 

78.46% (1235) 
21.54% (339) 

30.31% (688) 
69.69% (1582) 

0.0% (0) 
100.0% (1) 

0.0% (0) 
100.0% (1) 

Table 5: K-Means clustering result for K = 4 for each data sample using the principal components 
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In Table 6 and Table 7 we present the average accuracy, ROC AUC, false 

positive rate (FPR), and false negative rate (FNR) across all three samples for the 

50:50 ratio and 30:70 ratio, respectively. We do not present the results of all 

classifiers, but rather we present the non-dominated classifiers when comparing 

classifiers on four attributes: accuracy and ROC AUC (both of which we aim to 

maximize) and false positive rate and false negative rate (both of which we aim to 

minimize. Results for all classifiers can be found in Appendix A.  

Non-dominated classifiers were determined using the dominance choice 

strategy [116], a technique commonly used in engineering disciplines to select the 

best alternative using multiple attributes as the criteria. To apply the technique, we 

eliminated classifiers if there was another classifier that performed better on all four 

attributes until we were left with a list of classifiers that could no longer be 

eliminated. For example, when identifying the non-dominated classifiers for the 50:50 

ratio using the 36 original features and an 80/20 train/test split, Neural Network 1 was 

eliminated because Gradient Boost had a higher accuracy, higher ROC AUC, lower 

false positive rate, and lower false negative rate than it did. Gradient Boost was not 

eliminated because there was no other classifier that performed better across all four 

attributes. Note that the dominance calculations were made using six significant 

digits, but the tables present the values rounded to three significant digits for clarity 

and simplicity.  

 

 

 

 



 75 
 

 
Classifier Accuracy ROC AUC FPR FNR 

30:70 Ratio, 36 original features, 70/30 train/ test split 
KNeighbors 0.784 0.851 0.211 0.229 

Gradient Boost 0.784 0.853 0.215 0.217 
Extra Tree 0.781 0.832 0.168 0.340 

30:70 Ratio, 36 original features, 80/20 train/ test split 
Gradient Boost 0.785 0.850 0.214 0.217 

Extra Tree 0.775 0.830 0.169 0.360 
30:70 Ratio, 13 principal components, 70/30 train/ test split 

Random Forest 0.781 0.809 0.211 0.238 
Ada Boost 0.780 0.845 0.211 0.239 

Gradient Boost 0.780 0.849 0.220 0.221 
Extra Tree  0.770 0.821 0.176 0.358 

30:70 Ratio, 13 principal components, 80/20 train/ test split 
Extra Tree  0.774 0.824 0.196 0.230 

Neural Network 2 0.781 0.847 0.218 0.220 
Table 6: Supervised results for the 30:70 ratio dataset 

Classifier Accuracy ROC AUC FPR FNR 
50:50 Ratio, 36 original features, 70/30 train/ test split 

Ada Boost 0.768 0.836 0.214 0.250 
Gradient Boost 0.784 0.851 0.215 0.217 

50:50 Ratio, 36 original features, 80/20 train/ test split 
Ada Boost 0.775 0.849 0.201 0.249 

Gradient Boost 0.784 0.860 0.213 0.218 
Bagging 0.784 0.854 0.211 0.221 

Neural Network 2 0.788 0.853 0.210 0.214 
50:50 Ratio, 13 principal components, 70/30 train/ test split 

Ada Boost 0.737 0.837 0.175 0.351 
Gradient Boost 0.783 0.847 0.215 0.218 

Extra Tree 0.752 0.810 0.203 0.294 
50:50 Ratio, 13 principal components, 80/20 train/ test split 

Gradient Boost 0.787 0.854 0.212 0.214 
Extra Tree 0.710 0.822 0.172 0.413 

Neural Network 2 0.790 0.852 0.208 0.212 
Table 7: Supervised results for the 50:50 ratio dataset 

5.4 Results 

This section provides a more in depth discussion of the results of Principal 

Component Analysis (PCA), K-means clustering, and supervised learning.  
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5.4.1 Principal Component Analysis  

For the datasets with a 50:50 ratio of infected to uninfected users, the average 

variance in the data explained by the 13 principal components was 92.77%. As was 

shown in Figure 4, for all three samples there were about five different features that 

contributed the most variance to the overall variance: average session length, average 

number of bytes sent, number of unique destination ports, number of unique source IP 

addresses, and average time difference between session start times.  

By examining the correlation values between the principal components and 

the original 36 features, we can further understand the network traffic features that 

contribute most to explaining the differences in users. Determining the threshold for a 

correlation value to be large enough for a feature to be considered important is a 

subjective decision [117]; higher values reduce the number of features considered 

important, while lower values increase the number of features.  

For the 50:50 ratio, if we consider 0.4 to be the threshold on importance we 

retain 17 features; a threshold of 0.5 retains 10 features; 0.6 retains six features; 0.7 

retains two features; and 0.8 retains one feature, a correlation value of 0.885 between 

average number of bytes sent and principal component 7 (PC7).  

Setting the threshold at 0.5, the ten features considered important are: average 

number of packets received, average number of packets sent, average session length, 

average number of bytes sent, average number of bytes received, number of unique 

source ports, number of unique destination ports, number of unique applications used, 

number of unique source IP addresses, and average difference between session start 
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times. Five of these features overlap with the five features that contribute the most 

variance to the overall variance.  

For the datasets with a 30:70 ratio of infected to uninfected users, the average 

variance in the data explained by the 13 principal components was 92.79%. The same 

five features as in the 50:50 ratio dataset contributed the most variance to the overall 

variance: average session length, average number of bytes sent, number of unique 

destination ports, number of unique source IP addresses, and average time difference 

between session start times.  

Again, if we consider 0.4 to be the threshold on importance we retain 17 

features; a threshold of 0.5 retains nine features; 0.6 retains six features; 0.7 retains 

four features; and 0.8 retains two features, with the highest correlation value being 

0.895 again between average number of bytes sent and PC7. 

Setting the threshold at 0.5, the nine features considered important are: 

average number of packets received, average number of packets sent, average session 

length, average number of bytes sent, average number of bytes received, number of 

unique destination ports, number of unique applications used, number of unique 

source IP addresses, and average difference between session start times. Nine of these 

features overlap with the ten features presented in the 50:50 ratio; in this ratio, only 

number of unique source ports is no longer considered important.  

In Research Question 5.1, we asked if we could derive features from network 

traffic that could explain the difference in user behavior, motivated by existing 

research that has suggested network traffic patterns can function as user fingerprints. 

Overall, comparing the PCA results of the two different ratios, there is a total of 10 
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unique features that, either based on the percentage of total variance explained or 

correlation values above 0.5 with individual principal components, are most 

important in shaping the final principal components and explaining user behavior.  

5.4.2 Unsupervised Clustering  

We performed K-means clustering using both the original 36 features as input 

(see Table 4), and the 13 principal components as input (see Table 5). For all data 

samples the partitioning of users created by the K-means algorithm often aligned with 

the infected/ uninfected labels that we assigned to users.  

Examining the clusters created using the 36 original features as input, for the 

50:50 ratio there are a few instances where clusters consist of a single user; we 

interpret Cluster 4 in the first and second samples and Clusters 2 and 3 in the third 

sample as potential outliers. Excluding these instances, we see that cluster purity 

ranges from about 70.51% (1628 uninfected users in Cluster 1 in the third data 

sample) to 89.09% (343 infected users in Cluster 2 in the second data sample). For 

the 30:70 ratio, we similarly see a majority of high cluster purity instances and three 

outlier instances. We also see instances where the cluster composition is split almost 

evenly between infected and uninfected users; for example, in the second sample, 

51.37% of Cluster 3 represents infected users and 48.63% represents uninfected users.  

When we examine the results of K-means using the 13 principal components, 

for the 50:50 ratio there are three outlier instances and one cluster instance that splits 

infected and uninfected users evenly. Besides these instances, cluster purity values 

range from 64.93% (946 infected users in Cluster 4 in the first sample) to 94.12% (16 

infected users in Cluster 3 in the first sample).  For the 30:70 ratio, there are two 
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outlier instances and one instance where a cluster is evenly split. Besides these 

instances, cluster purity ranges from 60.07% (1,309 infected users for Cluster 2 in the 

second sample) to 100.0% (53 uninfected users for Cluster 4 in the first sample).  

By the nature of unsupervised clustering, we do not have insight into how the 

algorithm made its decisions to partition users. Our interest in applying K-means was 

to understand if there was a signal of infection status present in the network traffic 

data; since the algorithm had no insight into user infection status, users were 

partitioned according to whatever features or combinations of features K-means 

determined provided the strongest signal for separating users into clusters.  

Our results suggest that a signal for infection status is present in both the 36 

features we extracted from the network traffic records and in the 13 principal 

components derived from these features. This implies both may have potential for our 

long-term goal to develop a set of user infection symptoms. However, because some 

clusters were partitioned almost evenly between infected and uninfected users, to 

validate the strength of the infection signal derived from network traffic, further 

analysis over longer periods of time and for additional samples of users is necessary.  

Recall that Research Question 5.2 asked what is the highest cluster purity of 

infected or uninfected users we can achieve when using unsupervised clustering to 

differentiate between users. Using the network traffic, the highest purity we achieve is 

89.09% infected users; using the principal components, the highest purity we achieve 

is 100.0% infected users.  



 80 
 

5.4.3 Supervised Learning  

For the 50:50 ratio of infected to uninfected users, classification accuracies of 

the top performing models ranged from 71.0% to 79.0%, ROC AUCs ranged from 

81.0% to 86.0%, false positive rates ranged from 17.2% to 21.5%, and false negative 

rates ranged from 21.2% to 41.3%. While Bagging is listed as a top performing 

classifier (see Table 6), its training accuracy was at least 10% higher than its testing 

accuracy, suggesting that the model may have been overfitting. 

For the 30:70 ratio of infected to uninfected users, classification accuracies of 

the top performing models ranged from 77.0% to 78.5%, ROC AUCs ranged from 

80.9% to 85.3%, false positive rates ranged from 16.8% to 22.0%, and false negative 

rates ranged from 21.7% to 36.0%.  

In deciding which algorithm results to include in this case study, we chose to 

consider the four different attributes of equal importance.  In practice of course, a 

decision-maker would need to make a determination about what attribute(s) is most 

important. If the goal is to supplement a firewall or anti-virus system, i.e. a disease 

confirmation test, with indicators of user infection, i.e. warning symptoms that trigger 

early intervention – as is the intended goal of our work - then high false positive rates 

may not be as detrimental or concerning as high false negative rates and the number 

or rate of true positives may be considered most important. In this case, an algorithm 

like Neural Network 2 for the 50:50 ratio using the 13 principal components and an 

80/20 train/test split performs quite well, with an accuracy of 79.0%, an ROC AUC of 

85.2%, an FPR of 20.8%, and an FNR of 21.2%. 
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Recall that Research Question 5.2 asked how well we can classify users as 

infected or uninfected using supervised learning. For the 50:50 ratio, there is no one 

model that outperforms all the others on every attribute, but examining the attributes 

individually and excluding the Bagging classifier because of overfitting: 79.0% 

accuracy by Neural Network 2; 86.0% ROC AUC by Gradient Boost; 17.2% FPR by 

Extra Tree; and 21.2% FNR by Neural Network 2.  Examining attributes individually 

for the 30:70 ratio: 78.5% accuracy by Gradient Boost; 85.3% ROC AUC by 

Gradient Boost; 16.8% FPR by Extra Tree; and 21.7% FNR by Gradient Boost.  

5.5 Discussion 

We extracted 36 features from the traffic records based on exploratory 

analysis and an extensive review of the related work. We identified features that 

summarize the data sent and received during traffic sessions, source and destination 

IP and port information, and temporal patterns of user network activity. Our features 

are suited to a network administration context where it is not possible to instrument 

devices or know the specific content that users are accessing on the web due to the 

privacy expectations of users. We therefore investigate the feasibility of 

understanding user infection status in a context-unaware manner.  

We applied PCA to identify 13 principal components that best explain the 

variance in user behavior. These 13 components are able to explain 92.77% variance 

on average for the three data samples with a 50:50 ratio of infected to uninfected 

users; for the three data samples with the 30:70 ratio, the components explain on 

average 92.79% of the variance. After analyzing how each of the original 36 features 

contributed to the overall variance, we identified five features that may be of more 
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importance than others in explaining the difference in user behavior: average session 

length, average number of bytes sent, number of unique destination ports, number of 

unique source IP addresses, and average time difference between session start times. 

After analyzing the correlation values between the original features and the 13 

principal components and using a correlation value of 0.5 as a threshold for feature 

importance, we confirmed these five features and identified five additional features: 

average number of packets received, average number of packets sent, average number 

of bytes received, number of unique source ports, and number of unique applications 

used.  

K-means clustering was performed using both the 36 original features and the 

13 principal components. After the algorithm partitioned the users in to 4 distinct 

clusters based on the optimal K value, we identified the number and percent of 

infected and uninfected users that were partitioned into each cluster. Despite a few 

clusters consisting of a single user and a few clusters split evenly between infected 

and uninfected users, cluster purity ranged from 60.07% up to 100%, suggesting a 

signal of infection status exists in network traffic patterns.  

Finally, we also tested an array of supervised learning algorithms for both data 

ratios and two different training/ testing splits to ensure any results we obtained were 

not just the product of our selected parameters. Though at a minimum our false 

positive rates are 16.8% and false negative rates are 21.2% - in other words, quite 

high - we were able to classify users as either infected or uninfected with accuracies 

up to 79.0% and ROC AUCs up to 86.0%, further showing that features extracted 
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from the network traffic records of users can differentiate between the infected and 

uninfected.  

5.6 Limitations  

Our study has several limitations. First, we used traffic records flagged for 

containing threat activity by the university’s IDS/IPS as ground truth for defining 

infection status. We do not know the specifics of how the system determines threats, 

and we also do not know the system’s false positive rate or false negative rate. While 

knowing the labeling process might give us more insight into why users do or do not 

appear in the threat logs, understanding the nuances of the system is not relevant to 

our goal, as the IDS/IPS is simply what triggers a response from the network team at 

the university. Revisiting the disease analogy we presented earlier, developing a 

method to confirm a disease is a separate problem from identifying symptoms of the 

disease; the threat labeling process is analogous to a disease confirmation test. 

Moreover, the system makes infection determinations with insight into the content a 

user is accessing, to include specific websites and downloads, while we are making 

determinations using only network traffic patterns.  

Another limitation is how we chose to define the infected users. As noted 

previously, the Palo Alto IDS/IPS tags each threat with a severity level of 

informational, low, medium, high, or critical.  We labeled users as ‘infected’ if they 

created medium, high, or critical threats and did not differentiate between infection 

severities. 1,858 users created medium severity threats only, 41 created high severity 

threats only, and 11 created critical threats only. If we consider users who created 

high and/or critical threats as the infected population, the differences between the 
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infected and uninfected may be more pronounced. However, our sample of critical 

and high severity threat users is currently too small to effectively apply the 

unsupervised or supervised algorithms presented here.  

The next limitation is that we were unable to verify completeness of the traffic 

data. Though the traffic logs should capture every session that occurs on the 

university network and this data is stored in a redundant manner by the IT division, 

due to the sheer volume of data it was infeasible for us to validate that we have every 

record created by every user during our two-month window of data.  

Finally, our study focused on users at a university network. This was 

motivated by the availability of ground truth data to match users with network traffic 

flows. Therefore, though our methodology generalizes to other networks, it is 

possible that the network indicators identified in this experiment do not. However, the 

advantage of using an open, university network is that there is the possibility of 

discoveries about users that would not be possible on a closed network. Unlike many 

corporate networks where extensive security checks and restrictions are in place, at 

the university users maintain their own devices, there are no restrictions on the type 

of devices or the software on them, and almost no websites or services are blocked. 

This enabled us to analyze how users behave on a network on which they have almost 

complete freedom.  

5.7 Conclusion  

In this chapter, we conducted an empirical study on the feasibility of 

extracting indicators from the network traffic of users that can be used as early 

warning symptoms of infection. Motivated by work that has used insights from 
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network traffic to proactively identify malicious IPs or infected hosts and more recent 

work that has suggested users have unique network traffic fingerprints, we analyzed 

two months of wireless network traffic for 1,923 infected users and random samples 

of uninfected users at a large public university.  

Though our classification results are not successful enough to merit use in 

practice, they do show that network traffic records have the potential to reveal 

differences in users. In the following chapter, we show how these features and 

insights can be used to quantify and predict user reputation, keeping in mind the 

uncertainty that exists in the features themselves and ensuring this uncertainty is 

reflected in the predictions.  
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6 Quantifying and Predicting User Reputation via Network 
Traffic: Demonstrating the Proposed Methodology 

Through a Case Study 

6.1 Introduction  

Recall from Chapter 4 that the process of evaluating user reputation consists 

of three major phases: Phase One - Characteristic Definition and Evidence Collection; 

Phase Two - Reputation Quantification and Prediction; and Phase Three - Validation 

and Refinement.  

The previous chapter illustrated Phase One of the methodology. We selected 

infection as our characteristic of interest and defined infected users as those who 

appeared in the threat records of the university’s intrusion detection/ prevention 

system (IDS/IPS). Using wireless traffic data provided by the university’s Division of 

Information Technology, we extracted 36 features and investigated the feasibility of 

using these features as evidence of infection. Framing this feasibility study as a 

supervised classification problem in which we tried to differentiate between infected 

and uninfected users, we achieved AUC ROC values up to 0.86.  Based on these 

results, we hypothesize that network traffic activity of users is an appropriate source 

of initial evidence for making predictions about user reputation. This chapter focuses 

on illustrating Phases Two and Three of the methodology through this university 

network case study. We use data from September 2017 through December 2017 to 

build reputation models for infected and uninfected users. We experiment with 

different parametric model building techniques, using individual features and 

combinations of features.  
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We then test reputation scoring using these models on samples of users who 

appeared in the traffic records in 2018. We update the user scores over the course of 

three months by incorporating new evidence from additional network activity 

generated by the user. We validate the model by observing whether or not users 

become infected or remain uninfected.  

This chapter makes the following contributions: 

• We illustrate Phases Two and Three of the reputation evaluation methodology 

by quantifying and predicting user reputation scores and validating and 

refining these scores using the network traffic data and insights presented in 

the previous chapter.  

• We illustrate the process of developing reputation models using several 

different model-building techniques. We compare scores associated with 

different types of models and discuss the advantages and challenges 

associated with different modeling approaches.  

• We show the feasibility of using Bayesian-based probabilities as reputation 

scores and the valuable information regarding confidence in a score gained by 

using this approach.  

• Using the Brier Score as a metric to confirm the accuracy of our predicted 

reputation scores, we show the potential of using network traffic data to make 

predictions about user reputation for infection. We obtain a Brier Score of 

0.296 by the end of our three-month pilot study (recall from Chapter 4 that 0 

is the best possible score while 1 is the worst and indicates a forecast is 

always incorrect). By recalculating the Brier Score for each month in our pilot 
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study sample, we also illustrate how adding more evidence can help improve 

prediction accuracy. 

• By analyzing the Brier Scores and 95% confidence intervals associated with 

our reputation scores, we emphasize the importance of varied sources of 

evidence for predicting user reputation and motivate future work to obtain 

additional sources of data that can help to improve the reputation predictions 

and narrow the confidence intervals.  

The remainder of this chapter is organized as follows. Section 6.2 presents the 

background on this chapter. Section 6.3 presents the methodology, which discusses 

the process for developing, quantifying, validating, and refining user reputation 

models and scores. This is followed by the results in Section 6.4 and then a discussion 

of the case study and the proposed methodology in Section 6.5. Section 6.6 presents 

the limitations; 6.7 presents areas of future work; and lastly, 6.8 presents concluding 

comments on this case study.  

6.2  Background  

This section revisits Phases Two and Three of the methodology presented in 

Chapter 4, providing additional background on how they will be applied to this case 

study. 

6.2.1 Phase Two: Reputation Quantification and Prediction 

Phase Two of the methodology provides an outline for quantifying user cyber 

reputation and developing predictive models of user reputation. Recall that the 

methodology and scoring technique are based on a Bayesian Inference process. In 



 89 
 

Chapter 4, we presented a simple example of applying Bayesian Inference using a 

Beta-Binomial conjugate pair to model and update evidence, motivated by related 

work in the field of e-commerce.  

The Beta-Binomial approach works well if the evidence is collected as counts 

of behaviors that reflect the characteristic of interest; for example, if we are interested 

in a user’s reputation for being trustworthy and are counting how often a user behaves 

in a trustworthy manner or in an untrustworthy manner. This case study is somewhat 

more complicated, so using a Beta-Binomial approach to update counts of evidence is 

not feasible.  

Additionally, another nuance to consider is that due to the nature of our 

evidence and the characteristic of interest, we are not actually just looking at one 

characteristic, we are looking at two: the likelihood of being infected and the 

likelihood of being uninfected. Going back to the example of trustworthiness, one 

could think of being trustworthy and untrustworthy as being on opposite ends of a 

scale, in which case reputation can measure the degree of trustworthiness based on 

evidence. Infection status is not relevant on such a scale, especially because our 

evidence illustrates how the infected and uninfected users behave on the network, not 

the ‘degree’ with which a user is infected.  

So, when quantifying user reputation in this case study, we are really trying to 

answer the following question: given evidence about how a user behaves on a 

network and historical data about how infected and uninfected users behave on the 

same network, what is the most likely probability the user belongs to either the 

infected population or the uninfected population?   



 90 
 

To answer this question, we must first build models (distributions) that 

summarize the behavior of known infected users and known uninfected users. We can 

then determine a user’s reputation score by evaluating how likely a user is to belong 

to either model. The methodology section (6.3) shows the process for model 

construction and probability calculation.  

6.2.2 Phase Three: Validation and Refinement  

Phase Three of the methodology provides a process for validating and refining 

the reputation scores. A pilot study can be conducted in which a sample of users are 

evaluated and monitored over time and the predicted reputation scores are compared 

against the actual outcomes. As discussed in Chapter 4, there are various forecast 

verification techniques that can be employed to assess the success of a prediction. In 

the context of this case study, validation will involve calculating reputation for a 

sample of users, monitoring these users over a three month period, observing if the 

users do actually become infected during the three month period, and calculating the 

Brier Score, a metric that provides the accuracy associated with a probabilistic 

forecast [104]. Additionally, we quantify the 95% confidence intervals associated 

with reputation scores and use these intervals to understand the confidence in a score.  

Chapter 4 proposed several options for refining the reputation models and 

scores. In this case study, we illustrate refining the models by experimenting with 

different parametric model building techniques, in which we fit distributions to 

individual features or combinations of features. In addition to exploring different 

model construction approaches, we also show how scores can be updated with new 

evidence.  
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There were other techniques for model and score refinement presented in 

Chapter 4, such as finding different sources of data to use as evidence, combining 

multiple sources of data into the same reputation model, and altering how the 

characteristic of interest is defined. These are all considered areas of future work and 

are discussed later in this chapter and in the conclusion of this dissertation.  

6.3 Methodology   

This section presents an overview of the data used in this case study and the 

techniques to construct reputation models and assign users reputation scores.  

6.3.1 Data 

As in Chapter 5, the data consists of the wireless network traffic and wireless 

network threat events collected by a Palo Alto Networks IDS/IPS at the university. 

We receive random samples of traffic records for each hour of the day and each 

record is labeled with an anonymized, unique user hash.  

6.3.1.1 Reputation Model Data 

The data to build the reputation models was taken from the period of 

September 26, 2017, through December 24, 2017. There were 2,910 total unique 

users who appeared in the threat logs during this time period, and we defined these 

users as the infected users. We took a random sample of 2,910 users who appeared in 

the traffic logs but not in the threat logs during this same time period and defined 

these users as the uninfected users. We then calculated the 36 network traffic features 

for each user (refer back to Table 1 in Chapter 5 for a complete list of these features). 
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6.3.1.2 Pilot Study User Sample  

The percentage of infected users on the network is small compared to the total 

number of users; for example, in Chapter 5 infected users represented about 3.8% of 

all users over a two-month period. If we were to take a random sample of users to test 

the reputation evaluation methodology, it is possible that it would result in an 

imbalanced dataset of infected and uninfected users. To aid us in testing the 

methodology, we iteratively identified infected users over the course of January, 

February, and March of 2018. Each month, we also took random samples of 

uninfected users and assigned these users reputation scores so we could evaluate how 

well the models perform on assessing uninfected users.  

We began with the month of January 2018, during which there appeared 

51,123 total unique uninfected users and 764 infected users. We filtered out any users 

who overlapped with the users used to construct the reputation models. This left us 

with 46,596 uninfected users and 532 infected users. We took all 532 infected users to 

be our sample of infected users. We also took a random sample of 532 uninfected 

users from the total uninfected population active on the network in January.  

In February 2018, we updated our sample of 532 infected users and 532 

uninfected users with any new network activity conducted by these users. In 

February, there were an additional 599 infected users on the network. Of the 599 

infected users, 584 existed on the network in January but were uninfected. We added 

the January data associated with these users to our sample of now 1,131 infected 

users so that we could calculate and analyze their reputation scores prior to infection. 
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The remaining 15 users of the 599 newly infected users were new to the network in 

February, so no previous January data existed for these users.  

In February there were 50,329 unique uninfected users on the network. We 

took an additional random sample of 599 users from this population and added it to 

our sample of uninfected users, bringing our sample of uninfected users to 1,131 total 

users. If the user existed in January but was not already part of our sample, we 

included any network activity conducted by this user in our data. 55 of these users did 

not exist on the network in January, so there was no additional data to add.  

We applied the same dataset building approach in March, updating the data 

for users currently in our infected and uninfected sample with any additional network 

activity. In March, there were an additional 3,656 infected users on the network. We 

added these 3,656 infected users to our sample of infected users, bringing the infected 

user sample total to 4,787. Of these 3,656 users, 3,468 existed on the network in 

January and February but were uninfected during those months. 94 of the 3,656 users 

were new to the network in February and only became infected in March. Again, we 

updated the network traffic features for these users using the data from January and 

February. An additional 94 of these 3,656 users were new to the network in March 

and became infected in March, and thus there was no data from the previous months 

to include.   

In March 2018 there were 51,035 unique uninfected users on the network. We 

again took a random sample of the uninfected users in March, adding an additional 

3,656 uninfected users so that our total sample of uninfected users by the end of 

March was 4,787. We included data for these users from the previous months if it was 
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available; 282 of these users were new to the network in March so there was no 

additional data to add.  

It is reasonable that there might be a disparity in infected user count between 

January and other months, since in January students and a large portion of faculty and 

staff are on break and therefore not active on the network. However, the spring 

semester begins again at the end of January and we saw similar numbers of infection 

between January and February. The surge in March prompted us to look closer at the 

March data. There were no significant university network, IDS/IPS, or logging 

changes that could account for this large increase. Though there were some new 

threat signatures added, we observed that even existing threat categories, such as 

spyware, DNS, brute force, and code execution, experienced surges from the previous 

months. As of January 2019, the number of threat events has never been as high as it 

was in March of 2018, suggesting the increase may have been due to an outbreak of 

malicious activity on the wireless network. We discuss this further in Section 6.6 and 

plan to investigate this in future work.  

6.3.2 Reputation Model Construction  

Recall that construction of a reputation model entails fitting a distribution to 

some historical evidence. In this study, we use the 36 network traffic features and 

ground truth about user infection from the period of September 2017 to December 

2017 to build our reputation models. Again, refer back to Table 1 in Chapter 5 to 

review these features. As discussed in the background (Section 6.2) we build separate 

reputation models for the infected and uninfected users, as our approach for 

reputation scoring is to determine which model better describes the user.  
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We experiment with several different approaches for constructing reputation 

models. This section presents techniques to build parametric models based on 

individual features and combinations of features.  

To illustrate the concept of reputation scoring, we first apply a naive approach 

in which we construct individual parametric models for each feature. We use the 

GaussianNB implementation in Python’s scikit learn library to fit Gaussian 

distributions to the data for each feature [160]. This process results in 72 different 

distributions, i.e. for each feature, we have a distribution summarizing infected user 

behavior and a distribution summarizing uninfected user behavior. Note that this 

approach is essentially implementing the backbone of a Naive Bayes Classifier.  

For a stronger parametric approach, we combine all the features into a single 

model. This time, we use the Bayesian Gaussian Mixture implementation in Python’s 

scikit learn library [161]. This approach creates a mixture of Gaussian distributions, 

where each individual distribution describes a feature. More technical details about 

this approach can be found in [162]. 

6.3.3 Reputation Quantification  

The next two sections present the process for obtaining point estimate 

reputation scores and confidence intervals around these scores.  

6.3.3.1 Point Estimates 

This section presents the process of using the models to assign point estimate 

reputation scores to users. First, for each user in our pilot study sample, we calculate 

the 36 network traffic features to use as evidence using the data from the traffic logs 

associated with the user.  
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Next, to calculate the actual reputation scores, we use the predict_proba 

function provided in both the GaussianNB and the Bayesian Gaussian Mixture 

Python classes. At a high level, the process to determine the probability of the user 

belonging to the infected or uninfected model requires calling predict_proba on the 

reputation model and passing the user’s cyber reputation vector - the evidence 

formatted as an n-dimensional feature vector - to the predict_proba function.  

For the individual feature models, we must do this separately for the infected 

and uninfected models associated with each of the 36 features. In this scenario, the 

user’s cyber reputation vector is 1-dimensional and contains the calculated network 

traffic feature associated with the feature model. The probability associated with the 

infected model gives us the user’s reputation for infection (i.e. the most likely 

probability that they are infected), while the probability associated with the 

uninfected model gives us the user’s reputation for uninfection (i.e. the most likely 

probability that they are uninfected).  

For the combined feature model, we do not need to perform probability 

computations for features or infected/uninfected models separately. In regards to the 

features, this time we have combined them all into one model. In regards to the 

models, because the Bayesian Gaussian Mixture is implemented as unsupervised 

learning model, it uses information about infected and uninfected users together to 

assign a user a probability of belonging to either class; because of this, the 

probabilities associated with each model sum to 1. This time, the user’s cyber 

reputation vector is 36-dimensional and contains all the network traffic features. As 
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with the individual models, this computation provides us with reputation scores for 

both infection and uninfection.  

To help illustrate reputation scoring, we present a sample of scores for 10 

users identified as infected in January. We use the first 9 digits of the user’s unique 

hash in the traffic data as the user ID in the table. Table 8 shows scores associated 

with an individual feature model (using the feature NREC, the number of records 

produced by a user) and with the combined feature model.  

 

User 

Reputation Score for Infection Reputation Score for Uninfection 

Individual Feature 
Model (NREC) 

Combined 
Feature Model 

Individual Feature 
Model (NREC) 

Combined 
Feature Model 

688e55ee1 23.7 69.2 0 30.8 

7a59cd2f0 27.1 100 38.7 0 

7cd3fb2d7 39.9 41.9 12.9 58.1 

2df53e57c 37.5 0.1 28.6 99.9 

fba66479e 31.1 100 0.05 0 

af1a7205a 29.5 100 39.9 0 

472676714 37.8 100 27.5 0 

1087cbd4b 27.3 100 38.9 0 

dd49757e6 24.6 100 35.9 0 

f4cc6bbb1 25.5 100 37.1 0 
Table 8: Sample reputation scores for infection and uninfection for a model based on a single network 

traffic feature and a model based on a combination of all 36 features. All users presented here were 
identified as infected in the month of January.  

Though Table 8 presents a small sample of the scores for illustrative purposes, 

an important observation reflected in the table is that scores derived from individual 

feature models are not very high in comparison to scores derived from the combined 

models. In fact, across all scores generated by individual feature models, the highest 

probability ever assigned to a user is 39.9%. In the case of the combined feature 

models, users are sometimes given maximum reputation scores of 100%. In other 
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words, more evidence enables us to better differentiate between infected and 

uninfected status. This is intuitive, but shows the importance of varied evidence for 

reputation scoring.  

6.3.3.2 Confidence Intervals  

Table 8 showed point estimate-based reputation scores. While a single 

probability value gives some insight into likelihood (i.e. a reputation score of 100% 

for infection indicates high probability that a user belongs to the infected class), point 

estimates do not give us insight into the confidence associated with the reputation 

score. By adding confidence intervals, we can understand the interval of reputation 

scores that would include a user’s reputation score. Here, we calculate the 95% 

confidence interval, i.e. the range for which we can be 95% sure contains the user’s 

reputation score. We implement this computation using Python’s numpy.percentile 

function [163].  

To calculate confidence intervals for the individual feature models, we 

recalculate probability estimates on 1,500 resamplings of the data for each of the 

infected and uninfected feature models. To generate these samples, we rerun testing 

and training using Gaussian NB 1,500 times, each time computing the area under the 

receiver operating curve (ROC AUC). We pass these ROC AUC values to the 

numpy.percentile function, which allows us to specify the desired confidence interval. 

In Table 9, we show the confidence intervals associated with the point estimates for 

the sample of 10 confirmed infected users presented above using the parametric 

model based on the feature number of records (NREC).  
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For the Bayesian Gaussian Mixture-based models, we employ a similar 

repeated sampling approach to generate confidence intervals. Because Bayesian 

Gaussian Mixtures are implemented as unsupervised models, in order to obtain 

different samples we take random subsets of the original 2017 data used to generate 

the models. Specifically, we sample 90% of the 2017 data multiple times to create 

different models and therefore different probability point estimates. Additionally, 

because Bayesian Gaussian Mixture uses the infected and uninfected model together 

to assign probabilities to users, to obtain separate confidence intervals for infected 

and uninfected users we repeatedly resample the data and generate point estimates 

such that we have 1,500 samples for users who are predicted to most likely be 

infected and 1,500 samples for users who are predicted to most likely be 

uninfected.  A sample of these point estimates and associated confidence intervals for 

the same users presented in the Tables 8 and 9 are shown below in Table 10.  

While much lower probability values are associated with scores generated by 

the individual feature models versus scores generated by the combined feature 

models, the 95% confidence intervals surrounding the scores derived from the 

individual feature models are much narrower. In fact, in some cases, as evidenced in 

Table 10, we see confidence intervals where the lower and upper bound are 

equivalent to the point estimate. Though in some cases this happens with the 

combined feature model confidence bounds, with these we sometimes see intervals 

that span the entire range of probabilities, i.e. (0, 1), indicating very little confidence 

in the true reputation score. With the individual feature models, the greatest range we 
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observed is 0.079; this corresponds with a user given a reputation score of uninfection 

of 18.6%, with confidence interval (0.113, 0.192).  

 

 

 
 

User 

Reputation Score for Infection Reputation Score for Uninfection 

NREC Feature 
Model 

Confidence 
Interval 

NREC Feature 
Model 

Confidence 
Interval 

688e55ee1 23.7 (0.224, 0.242) 0 (0, 0.001) 
7a59cd2f0 27.1 (0.262, 0.273) 38.7 (0.381, 0.388) 
7cd3fb2d7 39.9 (0.399, 0.399) 12.9 (0.062, 0.135) 
2df53e57c 37.5 (0.373, 0.376) 28.6 (0.229, 0.291) 
fba66479e 31.1 (0.302, 0.315) 0.05 (0, 0.006) 
af1a7205a 29.5 (0.287, 0.297) 39.9 (0.399, 0.399) 
472676714 37.8 (0.377, 0.379) 27.5 (0.214, 0.28) 
1087cbd4b 27.3 (0.265, 0.276) 38.9 (0.385, 0.34) 
dd49757e6 24.6 (0.256, 0.249) 35.9 (0.34, 0.361) 
f4cc6bbb1 25.5 (0.245, 0.258) 37.1 (0.357 ,0.372) 

Table 9: Sample reputation scores and confidence intervals using an individual feature model 

 
 
 

User 

Reputation Score for Infection Reputation Score for Uninfection 

Combined 
Feature Model 

Confidence 
Interval 

Combined 
Feature Model 

Confidence 
Interval 

688e55ee1 69.2 (0, 0.998) 30.8 (0.002,1) 
7a59cd2f0 100 (1,1) 0 (0,0) 
7cd3fb2d7 41.9 (0.022,0.964) 58.1 (0.036, 0.978) 
2df53e57c 0.1 (0,0.018) 99.9 (0.982,1) 
fba66479e 100 (1,1) 0 (0,0) 
af1a7205a 100 (1,1) 0 (0,0) 
472676714 100 (1,1) 0 (0,0) 
1087cbd4b 100 (0.991,1) 0 (0,0.009) 
dd49757e6 100 (1,1) 0 (0,0) 
f4cc6bbb1 100 (1,1) 0 (0,0) 

Table 10: Sample reputation scores and confidence intervals using the combined feature model 
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6.3.4 Reputation Validation 

Validation helps ensure the reputation models and evidence used to build 

these models are useful for assigning user reputation scores. In Chapter 4, we 

discussed several different ways that scores and models can be validated; here we 

illustrate a few of these options.  

First, by mapping scores to labels, we can assess models using metrics such as 

True Positive Rate (TPR), False Positive Rate (FPR), True Negative Rate (TNR), and 

False Negative Rate (FNR). In order to map a score to a label, we first determine 

whether the infected or uninfected reputation model better describes the user. Just as 

if we were doing classification, we consider the distribution associated with the larger 

of the two probability values to indicate the best model for the user and assign the 

model type (infected or uninfected) as the user’s label.  

Though this validation technique is useful for a quick assessment of the 

success of the models with respect to classification, we lose information associated 

with likelihood and confidence in a score by taking this approach. Because reputation 

scores are probabilities, determining if a model was successful (or useful) is not really 

as simple as evaluating if the score was ‘right’ or ‘wrong.’ Consider the example of 

weather: if a model predicts there is a 60% chance of rain and it does not rain, this 

does not necessarily mean the model was incorrect. The Brier Score, mentioned 

previously in Chapter 4, is a metric for evaluating the accuracy of probabilistic 

predictions that can be applied when there are mutually exclusive, discrete outcomes. 

A Brier Score of 0 indicates a probability is always correct, while a 1 indicates the 
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probability is always incorrect. In other words, the closer the score to 0, the better the 

prediction. The Brier Score is calculated using the following formula: 

𝐵𝑟𝑖𝑒𝑟 𝑆𝑐𝑜𝑟𝑒 =  
1
𝑁

 (𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 − 𝑜𝑢𝑡𝑐𝑜𝑚𝑒)!
!

!

 

In the context of this dissertation, N is the number of users in the sample, 

forecast is the user’s reputation score, and the outcome is whether the user became 

infected or remained uninfected.  

We calculate the Brier Score for reputation scores associated with the 

parametric combined feature models. We calculate the score for each month of our 

sample (January, February, and March), considering forecast to be the user’s 

reputation score for infection and outcome to equal 1 if the user was infected by the 

end of March and 0 if the user remained uninfected at the end of March. Note that if 

we were to instead assign the forecast value to the user’s reputation for uninfection 

(and in turn, assign outcome to 1 if the user remained uninfected and 0 if the user 

became infected), we would obtain the same score since probability of infection and 

probability of uninfection sum to 1 in the context of the Bayesian Gaussian Mixture 

approach. 

Because we quantify user reputation for two different characteristics and 

because we know that infection is a confirmed outcome, whereas uninfection implies 

the user could still become infected, we also calculate the Brier Score separately for 

the confirmed infected and currently uninfected populations. This enables us to 

understand and compare how well the reputation models work for infected and 

uninfected users. Note that when we calculate the score for the uninfected users, we 
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consider the forecast to be the user’s score for uninfection and set outcome to 1 if the 

user remained uninfected. 

Lastly, another way to validate and interpret reputation scores is to look at the 

probability values themselves and the associated confidence intervals. Though a label 

may categorize all users with reputation scores for infection above 50% as the 

infected, a probability of 100% indicates a much higher likelihood of a user being 

infected than a probability of 50%. To assess the scores using confidence intervals, 

we analyze how wide the 95% confidence interval is around the reputation score. 

Wide intervals imply less confidence in the true value of a user’s status as either 

infected or uninfected, and indicate that refining the scores and models to narrow the 

intervals is necessary.  

6.3.5 Reputation Refinement  

As mentioned previously, there are different ways a score can be refined. In 

this chapter, we focus on updating scores on a monthly basis as a technique for 

refinement. Each month, we recalculate a user’s reputation score by updating the 

user’s cyber reputation vector with the new network traffic activity generated by the 

user. Tables 11 and 12 show reputation scores for infection and reputation scores for 

uninfection updated monthly for the 10 sample users presented in the previous tables.  

 

 

 

 

 



 104 
 

Example of Updating Reputation Scores for Infection 

User January Probability February Probability March Probability 

688e55ee1 69.2 100 100 

7a59cd2f0 100 100 100 

7cd3fb2d7 41.9 100 100 

2df53e57c 0.1 100 100 

fba66479e 100 100 100 

af1a7205a 100 100 100 

472676714 100 100 100 

1087cbd4b 100 100 100 

dd49757e6 100 0.0 0.0 

f4cc6bbb1 100 0.0 0.0 
Table 11: Sample of monthly reputation scores for infection 

 

Example of Updating Reputation Scores for Uninfection 

User January Probability February Probability March Probability 

688e55ee1 30.8 0 0 

7a59cd2f0 0 0 0 

7cd3fb2d7 58.1 0 0 

2df53e57c 99.9 0 0 

fba66479e 0 0 0 

af1a7205a 0 0 0 

472676714 0 0 0 

1087cbd4b 0 0 0 

dd49757e6 0 100 100 

f4cc6bbb1 0 100 100 
Table 12: Sample of monthly reputation scores for uninfection 
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6.4 Results  

Section 6.3 presented several different techniques for reputation model 

building and examples of reputation scores associated with these models. In this 

section, we present a deep dive into the results of scoring users with the parametric, 

combined feature model. The full results of reputation quantification using the 

parametric combined feature model, to include user scores for infection and 

uninfection, the associated confidence intervals, monthly updates to the reputation 

scores, and the month of infection if applicable, are available upon request and at 

http://www.terpconnect.umd.edu/~mgratian/.  

This section follows the structure of Section 6.3.4. We first assess the results 

with respect to the mapping of scores to labels, then with respect to the Brier Score, 

and finally with respect to the likelihood and confidence intervals associated with 

reputation scores.  

6.4.1 Assessing Results by Mapping Scores to Labels 

There are several ways we can analyze and interpret the scoring results. First, 

if we use the approach where we consider the model with the higher probability to be 

the ‘better’ prediction and map the user’s score to a label, we can interpret the results 

using a confusion matrix. Tables 13-15 show the confusion matrices for January 

through March.  

 

 

 

 



 106 
 

 

 Assigned Label in January 

Ground Truth in January Infected Uninfected 

Infected 434 98 

Uninfected 526 8 

Table 13: Confusion matrix associated with mapping reputation scores to labels in January 

 

 Assigned Label in February 

Ground Truth in February Infected Uninfected 

Infected 832 299 

Uninfected 220 911 

Table 14: Confusion matrix associated with mapping reputation scores to labels in February 

 

 Assigned Label in March 

Ground Truth in March Infected Uninfected 

Infected 3088 1699 

Uninfected 1154 3633 

Table 15: Confusion matrix associated with mapping reputation scores to labels in March 

 
In January, we correctly identify 434 out of 532 infected users (81.6%). In 

February, we correctly identify 832 of 1131 infected users (73.6%, including the 

users already identified in January). In March, we correctly identify 3088 of 4787 

infected users (64.5%, including the users already identified in January and 

February). Interestingly, the number of correctly identified infected users based on 

probability mappings to labels decreases over time.  

When looking at the correctly identified uninfected users, we see the opposite 

trend. In January, we label only 8 of the 532 uninfected users as infected (1.5%). By 



 107 
 

February, this jumps to 911 out of 1131 uninfected users (80.5%) and by March drops 

slight to 3633 out of 4787 users (75.9 %).  

Table 16 shows the true positive rate (TPR), true negative rate (TNR), false 

negative rate (FNR), and false positive rate (FPR) associated with the assigned labels.  

 

 TPR TNR FNR FPR 

January 81.6% 1.5% 18.4% 98.5% 

February 73.6% 80.5% 26.4% 19.5% 

March 64.5 % 75.9% 35.5% 24.1% 
Table 16: TPR, TNR, FNR, and FPR associated with the reputation labels each month 

 

While looking at confusion matrices and various prediction rates is useful and 

provides a quick way to understand the results, the purpose of the reputation score 

presented in this dissertation is to capture likelihood and confidence. As mentioned 

previously, by evaluating a score as a label, we are losing the benefits that a 

probability-based score provides over a label-based score. The next two sections 

discuss the results of calculating the Brier Scores and present a deeper analysis of the 

probability values and confidence intervals associated with reputation scores.  

6.4.2 Assessing Results by Evaluating Probabilities  

In this section we present the Brier Scores associated with the reputation 

scores. All scores have been rounded to the 3rd decimal place. In Table 17, we 

present the Brier Scores computed for each month using all users in our sample, just 

the confirmed infected users, and just the uninfected users. As a reminder, a 0 is the 

best possible score and a 1 is the worst possible score. Going back to the weather 
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example provided earlier, if a forecast said there was a 90% chance of rain and it 

rained, the Brier Score would be 0.1; if a forecast said there was a 30% chance of rain 

and it rained, the score would be 0.7; if a forecast said there was a 0% chance of rain 

and it rained, the score would be 1. 

Month Brier Score for 
all users 

Brier Score for infected 
population only 

Brier Score for uninfected 
population only 

January 0.582 0.176 0.988 
February 0.227 0.261 0.193 

March 0.296 0.353 0.24 
Table 17: Brier Scores 

Looking first at the scores associated with all users, in January, the score of 

0.582 does not provide any information about the success of our predictions. In 

February and March, however, we attain scores of 0.227 and 0.296, indicating that the 

predictions become more accurate. Looking at the Brier Scores specifically associated 

with users confirmed as infected, we see that in January, the score is good - 0.176. 

However, it increases over the following two months. Finally, looking at the Brier 

Scores associated with users defined as uninfected, we see that in January, we are 

almost always inaccurate. This was already reflected in the False Positive Rate 

reported previously; the models are essentially defaulting toward giving all users a 

greater probability of being infected than uninfected. By February and March, the 

score drops drastically from what it was in January. However, again, in March we see 

a slight increase from February.  

Overall, in assessing the Brier Scores, we see that scores do appear to improve 

in February and March in comparison to January. However, in each case the March 

scores are worse than the February scores, indicating that refining the scores will 

likely not just be a matter of including more data. This also indicates additional 
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research is necessary to understand the cause of score fluctuations. This finding may 

also be related to the unexpected surge in infection March; our models, built on 

infection data from 2017, may not have been equipped to handle this anomaly.  

6.4.3 Assessing Results by Evaluating Probabilities and Confidence Intervals 

In this section, we present an overview of the likelihood and confidence 

intervals associated with user reputation scores.  

Recall that there were 532 infected users in January. Of these 523 users, we 

assigned reputation scores for infection of 100% to 284 users. For 262 of these users, 

the 95% confidence interval was (1, 1), indicating the model had high confidence that 

the user’s most likely probability of infection was 100%. The remaining 22 were 

given 95% confidence intervals where the lower bound was at least 99%. An 

additional 118 users were given reputation scores for infection above or equal to 

99%; 93 of these users had a lower bound on their 95% confidence interval of at least 

99%. All but 10 of the 118 users had lower bounds on their confidence intervals of 

80% or more. 19 users of the 532 confirmed infected in January were given 

reputation scores for infection between [90%, 99%); for these users, the confidence 

intervals spanned the entire range of probabilities (0,1), indicating that the model had 

little confidence in the true reputation score.  

There were 599 newly infected users in February. 331 of these users were 

given reputation scores for infection of 100%; 230 had a lower bound of 100% on the 

95% confidence interval while an additional 57 had a lower bound of 99%, indicating 

high confidence in the score. 60 of the 559 newly infected were given reputation 

scores for infection in the range [99%, 100%). For the majority of these 60 users, 
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their confidence intervals span the entire range of potential probabilities, indicating 

that the model had little confidence in the true reputation score. Overall however, in 

February we see similar trends to those of January, where the majority of infected 

users correctly identified as infected are given very high probabilities of infection and 

very narrow confidence intervals.  

There were 3,656 newly infected users in March. 1,902 of these users were 

given 100% reputation scores of infection. Only 4 of these users were given 95% 

confidence intervals of (1, 1). The remaining 1,898 had 95% confidence intervals that 

spanned the entire range of probabilities, i.e. (0, 1). If we consider the entire pool of 

confirmed infected users by the end of March – 4,787 users total - we see 2,810 of 

these users are given 100% reputation scores of infection by the end of March. Only 5 

of these users are given 95% confidence intervals between (1, 1). For the remaining 

2,805 users, the 95% confidence interval for their score spans the entire probability 

range of (0, 1). These results present a drastic difference from January or February, 

where confidence intervals were quite narrow around scores of 100%. As before, we 

hypothesize that this may be related to the unexplained surge of infected users in 

March, which may have been due to an outbreak of new malicious activity that was 

different from the malicious activity captured in our reputation models. We discuss 

this as a limitation of our data in the Section 6.6 and consider investigating this 

phenomenon as an area of future work.  

Another way to analyze the reputation scores is to assess how many users 

were assigned higher probabilities of infection when they were uninfected and vice 

versa, and to look at the 95% confidence intervals for these incorrect predictions. 
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Recall that of the 4,787 users who were infected by the end of March, 1,699 were 

given reputation scores of uninfection above 50% by the end of March; these users 

correspond with the false negatives when we mapped scores to labels. How confident 

was the model in this incorrect score assignment? Looking at the 95% confidence 

intervals, a lack of confidence is clear - the intervals span the entire range of 

probabilities. However, because in some instances we also saw wide confidence 

intervals when the scores correctly identified infected users, we refrain from over-

exaggerating the importance of this finding.  

Recall that of the 4,787 users who were uninfected by the end of March, 1,154 

were given reputation scores of infection above 50%; these users correspond to the 

false positives associated with mapping scores to labels. Looking at the 95% 

confidence intervals, all 1,154 of these users span close to the entire range, (0, 0.99). 

So, though they were given higher probabilities of infection, the model was not 

confident in this assessment. Again, however, we also saw wide confidence intervals 

in several cases where uninfected users were correctly identified as such.  

It is also interesting to understand how reputation scores changed over the 

months as new data was added. Of the 4,787 confirmed infected users at the end of 

March, the reputation scores of 4,518 of these users showed a monotonically 

increasing trend from February to March, i.e. their March infection scores were 

greater than or equal to their February scores. 2,448 had scores that showed a strictly 

increasing trend from February to March. Looking at scores from January to February 

to March, 2,096 of the infected 4,787 showed a monotonically increasing trend; 50 

scores showed a strictly increasing trend.  
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Conducting a similar analysis for uninfected users, we find that 935 of the 

4,787 uninfected users show a monotonically increasing score trend for uninfection 

from February to March; only 9 show a strictly increasing trend. Across all three 

months, only 346 show a monotonically increasing uninfection score trend; only 3 of 

these show a strictly increasing trend. This result, in comparison to trends seen with 

infected user scoring, suggests our uninfection model was perhaps not as strong as 

our infection model. 

6.5 Discussion  

This section presents a discussion of the results in this case study, 

observations on the methodology, and some comments on the benefits and challenges 

of using a Bayesian-based approach to reputation scoring.  

Section 6.4.1 first presented an overview of the TPR, TNR, FNR, and FPR 

associated with assigning users labels of infection or uninfection based on the model 

that assigned them the largest probability. These results are somewhat difficult to 

interpret, especially evaluating the trends associated with these metrics over January, 

February, and March. Though in some cases we see improvements between January 

and February (e.g. with respect to TNR and FPR), we see slight decreases in 

performance between February and March. Looking at the March metrics, in which 

we are including up to three months of data for every user, we see that the TPR and 

TNR indicate we are doing better than random guessing when assigning reputation 

scores, but the FNR and FPR are quite high. Overall, if the scores are to be mapped to 

labels, network-based features alone do not provide enough evidence to make 

reputation assessments about users. Though in Chapter 5 we framed the feasibility 
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study of using network traffic features as a supervised problem and concluded that the 

features did provide substantial evidence to differentiate between infected and 

uninfected users, by attempting to score a larger sample of users over a longer time 

window, in this chapter we reevaluate our original assessment and conclude network 

traffic features provide only a starting point for understanding users.  

Assessing Brier Scores (6.4.2) provided us with a different perspective from 

which to understand users. Though we still see a decrease in prediction success 

between February and March, the Brier Scores for those two months present 

substantial improvements from the January Brier Scores and suggest there is potential 

for using reputation scores to make assessments about the future behavior or state of a 

user. Analyzing the probabilities assigned to users in more depth, we observed that in 

some cases, a reputation score was able to proactively warn us that a user was 

‘trending’ toward infection or already infected before the user was identified as such 

in the network threat logs. This is exactly the goal of a reputation system - to allow 

proactive judgments about an entity based on some evidence.  

Assessing likelihood, based on the value of a reputation score, and confidence, 

based on the 95% confidence interval around a reputation score, was even more 

telling than looking at sensitivity/specificity metrics (6.4.3). We found that in the 

majority of cases where we correctly identified a user as infected (as in, we gave them 

a higher reputation score for infection than uninfection), the score was often 100% or 

99% and the confidence intervals were quite narrow around these scores. We also 

found that the majority of infected users had reputation scores for infection that 
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increased each month; this was a promising result and suggests that for infected users 

at least, evidence of infection can be found in network traffic features.  

The current results of reputation scoring users via network traffic are certainly 

not at the level where they could be used in an operational setting. However, the 

results do indicate the viability of using a Bayesian-based approach to reputation 

scoring. First, by comparing understandings gained by looking at classification 

metrics to understandings gained by analyzing the probabilities and confidence 

intervals themselves, we emphasize the wealth of information that can be contained in 

a probability-based score. With metrics such as TPR or FPR - and by extension, 

scores that are mapped to labels - we do not get a sense of likelihood or confidence. 

By interpreting user reputation via probabilities, we’re able to understand the strength 

of our predictions and identify areas where we could improve them. Regarding this 

case study specifically, we see that network traffic can function an initial form of 

evidence and hypothesize that stronger evidence may help strengthen our score 

accuracy.  

Additionally, by illustrating the process of collecting data, identifying 

evidence, updating scores over time, and including confidence intervals, we show that 

the proposed reputation methodology is flexible and capable of generalizing to other 

networks, environments, data sources, and characteristics of interest. Moreover, the 

methodology provides a systematic way to create and refine reputation models and 

scores, which was the intended goal of introducing a formal definition of reputation 

and evaluation methodology.  
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As mentioned previously, we hypothesize that adding forms of evidence could 

help improve the prediction accuracy of the reputation scores and narrow the 

confidence intervals. We discuss this further in Section 6.7, but here we note that this 

emphasizes one of the key challenges of a Bayesian approach to reputation scoring - 

acquiring good data. The accuracy of a reputation score can only be as good as the 

evidence used to make the prediction. And in the context of understanding users, 

acquiring data is challenging and requires deep understandings of the nature of users 

on a particular network or in a specific setting. Therefore, in any attempt to assess 

user reputation, a major (but feasible to overcome) hurdle will always be identifying 

and preparing useful sources of data. 

6.6 Limitations 

There are several limitations of the case study and the reputation evaluation 

methodology. First, as highlighted previously in Chapter 5, we define infection status 

using the university’s IDS/IPS threat logs. The Palo Alto system is essentially a black 

box: we know the system rules set by the university, but we do not know the specifics 

of how threats are identified or the system’s false positive or false negative rates. 

Again, while understanding this may provide more insight into why users are 

infected, the focus of this case study was on illustrating the reputation evaluation 

methodology, not on reverse engineering the Palo Alto system. Moreover, since we 

are scoring reputation of users on a university network, it is appropriate to use the 

university’s definition of infection, i.e. using the threat logs as ground truth.  

Second, we do not differentiate between different types of infection. In the 

IDS/IPS threat records, threats are assigned different severity levels, categories, and 
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signatures. We do not currently separate infected users by these differences, but it 

would be useful to understand how reputation scores and their associated confidence 

intervals vary with threat type. This may help us understand why in certain cases 

were have more or less certainty and confidence in a score. Future work will include 

exploring more nuanced definitions of infection. We plan to incorporate infection 

type into our definition and look for other sources of data to corroborate that a user is 

truly infected. Note that in Chapter 4, we suggested altering how the characteristic of 

interest is defined as a score refinement technique. 

Third, when we mark a user as infected, we do not differentiate between users 

who are intentionally creating threats and those who are victims. Intention is difficult 

to assess without speaking to a user directly, but tightening the definition of 

reputation may help create this distinction. For example, if we differentiate by threat 

type, users who are infected because of ‘code execution’ on their devices are probably 

victims and not perpetrators. This, of course, adds some subjectivity to the definition 

of the characteristic of interest, but the reputation evaluation methodology is 

structured such that even subjective characteristics can be quantified. Overall, in their 

current state the reputation scores we present here are useful for identifying accounts 

that may pose enhanced threats to the network or are in need of human scrutiny or 

intervention; a score could be made even more useful if there were models to 

differentiate between different types of infection, which in turn might help one 

understand why an account poses a threat to the network. 

Fourth, and connected to the previous limitations, we assume a user is truly 

responsible for all the network traffic that we use to assess their reputation. This was 
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a useful assumption for a pilot analysis of the reputation evaluation methodology, but 

this may not necessarily be true. The user may have willingly shared their credentials 

with someone else. Alternatively, someone may have stolen the user’s credentials or 

hijacked the user’s device and/or accounts without the user’s knowledge. If so, the 

reputation score actually reflects the point of access to the network’s reputation and 

not a user’s reputation.  

Verifying that activity truly belongs to a user was outside the scope of this 

case study, but is something that could be accomplished with a reputation system. 

Analogous to financial credit monitoring, if a network administrator (or even the user, 

assuming their reputation score is available to them) observes a change in a reputation 

score that has generally been consistent over time, this may be an indication that 

someone besides the user is responsible for the traffic. While this may be expected if 

the user is switching from an uninfected status to an infected status, it is possible for a 

user to remain in an uninfected state even if their account has been hijacked; for 

example, a malicious actor is simply using the user’s account to access university 

resources. In this case, changes in a user’s score or differences in the distribution of 

the user’s activity and how they compare to other users may facilitate the discovery of 

this. Future work to explore this will involve expanding this case study over a longer 

period of time and conducting deeper analysis of users.  

Fifth, there are also limitations associated with our data. We were missing 

threat log data on January 1, February 5-7, and February 21-27, 2018. So, it is 

possible that we missed some infected users when building our infected sample each 

month. Additionally, we do not know what caused the surge of infected users or 
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threat alerts in March. While our initial exploration of this with the Division of IT on 

campus has indicate there was simply an outbreak of malicious systems and activity 

in March, we will continue to investigate this surge in future work.  

Sixth and lastly, there are also limitations associated with the quality of the 

evidence used to build our reputation models and evaluate user reputation. While the 

previous chapter indicated network traffic had potential for differentiating between 

infected and uninfected users, the false positive and false negative rates were quite 

high, indicating network traffic alone was unlikely to suffice as a data source. In this 

chapter, though in some cases we obtained reasonable probability estimates (in that 

the outcome of infection or uninfection was predicted by the reputation score), it is 

unsurprising that the network traffic data was not strong enough evidence.  

6.7 Future Work  

There are several ways we plan to expand the work presented in this chapter 

and further test the reputation evaluation methodology. Future work will include 

efforts to improve both the models and the scores themselves and analysis of the 

reputation scores over longer periods of time.  

As a first step to improve the models in future work, we will include more 

data into the reputation models. Currently, the models were built using three months 

of data, but we will evaluate how scores are impacted if the models are constructed 

using more data and are incrementally updated as new evidence becomes available. 

Additionally, we will also explore the idea of dynamically updating the models each 

time a new infected user is identified in order to refine the model’s ‘knowledge’ of 

normalcy for infected users.  
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Another area of future work to improve the models will be to evaluate 

different types of distributions. In this chapter, we focus on a parametric approach 

using the Gaussian distribution. In future work, we will evaluate different 

distributions and non-parametric approaches and test how reputation scores vary 

based on the distribution.  

Related to this, we will also explore different techniques for incorporating 

features as evidence. This may include testing different combinations of features; in 

this chapter, we used features individually or all together. Another technique is to 

specify the weights of features directly using some knowledge about which features 

represent stronger evidence; in the approach presented in this chapter, we allowed the 

Gaussian Mixture model algorithm to choose the weights.  

In addition to evaluating different model construction techniques and 

assessing how they impact user reputation scores, in future work we will also 

monitor, assign, and update user scores over longer periods of time. This will allow 

deeper trend analysis and better understandings of how variances in the models and 

the available data impact a score. Related to this, we will also conduct analysis to 

understand why and how scores fluctuate and how scores differ based on types of 

infection, as highlighted already in Section 6.6. Instead of just assigning users 

reputation scores, we will try to uncover why a user is given a particular score.  

Finally, we will also look for other sources of data to incorporate as evidence. 

While network traffic enabled us to establish initial reputation scores for users, we 

will attempt to find additional evidence that may help improve scores and narrow the 

confidence intervals. In particular, related work has identified correlations between 
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demographics and likelihood of cyber victimization. We are working with the 

Division of IT at the university to pair demographics with the network traffic data. 

We discuss the importance of demographics and other user traits in the following 

chapters (Chapters 7 and 8) and in the conclusion of this dissertation (Chapter 9).  

6.8 Conclusion  

This chapter expanded on the case study from Chapter 5. Using the network 

traffic data from the university, we built reputation models for infected and 

uninfected users and conducted a pilot study in which we assigned 9574 users 

reputation scores over the course of three months. Though there is certainly work that 

can be done to improve these predictions, overall this chapter illustrated that 

probability-based scores are feasible to generate, useful for making proactive 

reputation assessments, and informative due to their ability to capture the certainty, 

confidence, and subjectivity associated with a score.  

This chapter also emphasized the importance of obtaining strong evidence and 

multiple sources of data for creating reputation scores with high certainty and narrow 

confidence intervals. Recall that individual feature models were never able to assign 

users reputation scores higher than 39.9%, while combined feature models were able 

to assign users scores of 100% (and in many cases, this prediction was correct). 

Though it may be obvious that more data leads to stronger predictions, finding 

substantial data to use to make predictions about users in a cybersecurity context is 

challenging. The next two chapters present a case study where social media is 

explored as a potential source of evidence.  
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7 Social Media as Source of Data: Constructing a Dataset 
of Self-Reported Cyber Victimization Cases on Twitter 

7.1 Introduction 

Data is key to any reputation system; without substantial evidence, reputation 

assessments are simply guesswork. A major challenge when it comes to evaluating 

user reputation in a cybersecurity context is obtaining meaningful data. As was 

illustrated in the previous case study, quantifying user reputation for cybersecurity 

requires understanding how various human traits and behaviors are connected to user 

cybersecurity experiences. From a broader perspective, understanding user behavior 

is also critical for developing secure systems and effective cybersecurity solutions. 

Unfortunately, research in this space is still limited: a majority of studies evaluate 

users in the context of phishing attacks using surveys or controlled experiments. 

These studies are certainly valuable, but phishing attacks represent just one context 

for understanding users, while surveys and controlled experiments are resource 

intensive endeavors.  

Motivated by work in public health that has tapped social media to identify 

trends and develop new theories about people and the medical ailments that affect 

them, in this chapter we investigate the feasibility of using Twitter to understand user 

cybersecurity experiences. We hypothesize that user-reported cyber victimization 

experiences will provide a valuable new source of data that can both supplement 

traditional forms of data collection and offer previously unknown insights about 

users. 
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While other researchers have analyzed Twitter to detect vulnerabilities or to 

identify malicious or fake accounts, we explore a distinct problem: identifying the 

victims of cybercrime. Observing that users will often use social media to self-report 

cyber victimization (Don’t click the link, I’ve been hacked!) we search Twitter for 

users who tweeted about everything from falling for social engineering scams to 

downloading malware on their personal devices during the period of January 1, 2018 

through March 13, 2018. We apply an intensive manual review and labeling process 

to these Tweets and the context surrounding them in order to build a clean dataset of 

cases of self-reported victimization. Our final corpus consists of 2,910 users, each 

representing what we have determined to be an authentic cyber victimization case.  

We conduct exploratory analysis of our dataset to understand the nature of 

users who self-report victimization. We identify the accounts, devices, and 

consequences associated with victimization, as explained by users themselves. We 

also identify users who have repeatedly been victims of cybercrime. Initial analysis 

reveals Twitter is a key source for understanding user attitudes toward cybersecurity 

and cyber victimization: users openly and explicitly Tweet about everything from 

illegal downloading, financial and reputational loss, and compromised corporate 

infrastructures. This analysis also hints at the prevalence of victimization on various 

online services: of the posts that specify an affected account, about 43% report 

victimization on social media and about 32% report victimization in online games. 
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The contributions are as follows: 

• To the best of our knowledge, we present the first Twitter dataset of user-

reported cyber victimization cases for which every case has been manually 

reviewed in order to validate its authenticity.  

• We illustrate the viability of using Twitter as a source of unsolicited user 

feedback on user cybersecurity experiences. We propose using this data to 

supplement and address some of the challenges associated with traditional 

means of data collection such as surveys and controlled-experiments, 

which are resource intensive, limited in the breadth of the population they 

can cover, and can suffer from response bias and inauthentic user behavior. 

• We begin to uncover various victimization trends and user attitudes that 

can help security practitioners understand the attack vectors they must 

defend against and the factors they must contend with when developing 

secure systems and security policy.  

• We identify social media as an additional source of data that can be used to 

colllect evidence for user reputation assessments.  

The remainder of this chapter is organized as follows. Section 7.2 presents the 

related work. Section 7.3 follows with our data collection methodology. We then 

present our final dataset and observations made during data collection in Section 7.4. 

We then provide a broader discussion of our dataset, additional observations, and an 

overview of the advantages and disadvantages of using Twitter in Section 7.5. Section 

7.6 concludes the chapter concludes with a discussion of the limitations of our 

dataset. Chapter 8 further expands on this case study.  
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7.2 Background and Related Work  

Twitter data is used in many fields to collect user self-reports and self-

diagnoses for a variety of conditions. The field of public health in particular takes 

advantage of self-reported data. In [118], researchers monitored posts on Twitter that 

mentioned the flu (“down with swine flu”) in order to predict emergence of the flu in 

a population. While individual pieces of data were noisy, in aggregate they captured 

the pattern of the epidemic over time and across geographic regions; their Twitter-

based dataset had a 0.985 Pearson Correlation Coefficient with the US Center for 

Disease Control flu trend data. The authors in [119] conducted a similar study and 

also found that Twitter was highly effective for tracking influenza levels. In [120], 

researchers searched for Tweets reporting diagnosis of various mental health issues 

(“I have been diagnosed with depression);” this data was used to discover previously 

unknown linguistic signals associated with the disease. In [121], the researchers 

identified Tweets where users reported dental pain (“toothache” or “tooth pain”); 

their dataset consisted of 772 Tweets that were studied to understand the nature of the 

dental pain and how people reacted to it. The authors in [122] conducted a much more 

expansive study of user health reports on Twitter: they searched Twitter for Tweets 

containing words and phrases related to medications (e.g. “ibuprofen”), ailments (e.g. 

“cancer”), and more. In [123], the author identified Twitter users beginning an 

Alcoholics Anonymous program (“first AA meeting”) and identified users who either 

maintained sobriety (“I’ve officially been sober for 4 months”) or relapsed (“Taking 5 

shots of vodka after I left work tonight was not a good idea”).  
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Twitter has also been used in the field of cybersecurity to monitor emerging 

threats. In [124], the authors presented one of the first Twitter-based methods for 

early detection of software exploits. The authors monitored Twitter over a one-year 

period for the keyword “CVE” (Common Vulnerability and Exposures) and then 

conducted quantitative and qualitative analysis of the 5,865 CVEs collected to 

understand the nature of vulnerability disclosure on Twitter. They also developed a 

‘whitelist’ of 4,335 Twitter users who post ‘information-rich’ security messages and 

advocated use of these for real-time vulnerability and exploit discovery. Similarly, the 

authors in [125] developed a framework to issue vulnerability alerts to users. Their 

system searches Twitter for keywords such as “XSS,” “spoofing,” and “buffer” and 

then automatically filters and labels the Tweets to identify relevant information for a 

security analyst.  

Other security researchers have studied Twitter to identify the spread of 

malicious, suspicious, or spam-sending URLs [126, 127, 128]. There is also extensive 

work to identify malicious, spam, or fake accounts on Twitter [129, 130, 131, 132]. 

While this work is valuable, especially because social media sites are well established 

as lucrative platforms for criminals, understanding the victims of malicious cyber 

activity is a distinct problem.  

Our work is most similar to that of [133], in which the authors analyzed how 

users responded to “hacked” Twitter accounts. They collected Tweets containing the 

keywords ‘“hacked” or “compromised” and “account”’ and then trained a Support 

Vector Machine to classify Tweets with different types of user responses to 

victimization, such as apologizing to followers or creating entirely new accounts.  
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Our work is distinct from [133] for several reasons. First, we employ a 

thorough manual review of our victimization cases; the methodology for this is 

discussed later in this chapter. The only data cleaning and validation performed by the 

authors of [133] is to separate self-reports from peer-reports of victimization (i.e. 

“I’ve been hacked” vs. “I think you’ve been hacked”). While their resulting dataset of 

358,639 users is impressive, it is likely that many of these do not represent true cases 

of victimization and should be excluded from analysis. To emphasize this point, we 

replicate the author’s search of ‘“hacked” or “compromised” and “account”’ on the 

period of January 1, 2018 through March 13, 2018 using the Twitter API. The search 

returns 81,866 Tweets. Manually reviewing these Tweets reveals results such as:  

• Sorry for the posts last night...alcohol hacked my account L 

• The Russians have managed to hack me and cause many of my Twitter 

accounts to be suspended because they did not like what I said... 

These are either clearly not real victimization cases or are difficult to validate. 

Therefore, while fully automated searches may return a high volume of Tweets, user-

generated content can be noisy so we opted for a manual labeling process for this 

initial investigation into Twitter as a data source for security research.    

The next major distinction is the focus of the work in [133]. The authors 

identify the percent of users who create a new account in response to victimization 

and the percent of users who either apologize or state they’ve been hacked. The 

authors only retain victimization cases related to Twitter. We extract a more extensive 

range of insights from the Tweets and retain Tweets related to victimization on a 

variety of other platforms.   
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7.3 Methodology 

This section outlines the methodology to construct our dataset. We collected 

cases of self-reported victimization by first developing a set of cybercrime related 

keywords, searching Twitter for posts containing these keywords, and then manually 

reviewing these posts to confirm if they represented a true case of victimization. The 

final dataset consists only of users with Tweets and profiles publicly available 

through Twitter at the time of data collection.  Example Tweets are paraphrased. 

7.3.1 Search Term Development  

Search terms were developed using a Grounded Theory Sampling approach 

[134]. To apply this approach, we first identified a few Tweets demonstrating 

characteristics relevant to our study and then iteratively added new cases as we 

gained insight into user reporting behavior. Through our personal experiences with 

social media, we knew that people often announce ‘hacked’ accounts in order to warn 

or apologize for account behavior to friends or followers. So, we began with the 

keyword ‘hacked.’ We searched this term directly on https://twitter.com/search. 

Manually reviewing the results that appeared in the Top category, we confirmed that 

‘hacked’ was a word often employed by users to self-report on hijacked accounts or 

credentials. However, because using the word ‘hacked’ returned many Tweets that 

were not relevant to our study, we also developed more refined search rules that 

would help us filter Tweets more efficiently.  

This included creating a search rule that excluded words related to the US 

Presidential Election, as this was a very popular topic of discussion on Twitter at the 

time of data collection. Under this rule, we searched for Tweets containing the word 
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‘hacked’ and not containing the words “Trump,” “Hillary,” “Clinton,” ”RNC,” 

“DNC,” or “Russia” using the following format: hacked -Trump -Hillary -Clinton -

RNC -DNC –Russia. 

As an alternate to search by excluding keywords, we also examined ways we 

could narrow our searches by including additional keywords. As already noted, many 

users Tweet about victimization for the purpose of notifying their social media 

community, i.e. Don’t click the link I sent out!, so the term ‘hacked’ was often paired 

with terms such as ‘link’ or ‘click.’ So, we created another rule resulting in Tweets 

containing both “hacked” and “link” and one term from the set [“don’t”, “ignore”, 

“click”]. This was searched using the following format: hacked link don't OR ignore 

OR click. 

In addition to self-reporting in order to alert followers, we observed many 

users seeking help from companies with a Twitter presence, i.e. @instagram please 

help my account has been hacked. This lead to a search rule for Tweets containing 

both the words “hacked” and “help,” searched using the following format: hacked 

help. 

Finally, we also observed a few cases of the term “virus.” This term alone 

resulted in a high volume of physical health-related Tweets, so we narrowed the 

results by searching “virus” and either “computer” or “phone” using the format virus 

computer OR phone. We tried variants of the word “virus,” such as “malware," but 

found this term was mainly used by security professionals or security-focused Twitter 

accounts and not by the general Twitter population. Based on this observation, we 

chose not to use specific cybersecurity words, as was done in [124] and [125]. 
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7.3.2 Data Collection  

We searched Twitter with our keywords over the period of January 1, 2018 

through March 13, 2018. We experimented with using both the Twitter Search API 

and Twitter’s website interface. All cases for January were obtained via the API; all 

cases for February and March were obtained using direct search on Twitter’s website. 

While the API helped us acquire a greater volume of Tweets, direct search helped us 

realize the importance of the context surrounding the Tweet, such as screenshots, gifs, 

emojis, and the responses of others, in order to make a judgment about the 

authenticity of the victimization claim. Direct search also enabled us to make 

additional qualitative observations about user experiences and attitudes towards 

cybersecurity, which we present in the Results (7.4) and Discussion (7.5) sections.  

Two reviewers manually reviewed the search results and either labeled a 

result as a true case of victimization or discarded it. We only retained Tweets as cases 

if they provided some proof of the victimization, either through a written description 

of the incident, requests for company or customer support assistance, or screenshots 

of the hacked account. Additional proof was sometimes found in the replies or 

reactions of others, which could include everything from condolences to advice for 

dealing with the incident. Since the API provided only a text representation of a 

Tweet, API-derived Tweets were searched directly on Twitter to view the 

surrounding context if proof was not found in the Tweet text.  

We also only retained Tweets if a user self-reported on victimization. Like the 

authors in [133], we observed that users will sometimes notify others that they’ve 

been victimized, i.e. I think you’ve been hacked, your account is sending a lot of 
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spam messages. We discarded these Tweets since we were only interested in self-

reporting instances.   

During our period of data collection there was a trending hashtag on Twitter 

called “#TweetLikeThe2000s.” Many users self-reported on victimization in response 

to this hashtag, i.e. I downloaded a virus using Limewire or That game always gave 

the family computer a virus! We did not include any Tweets associated with this 

hashtag because there was no way to validate if users were reflecting on a real past 

experience of victimization or simply responding to a trending topic. Similarly, there 

were also many Tweets in which users reported on a specific adult-content site 

leading to computer or phone viruses. The exact same language was often used in 

regards to the same site by many different users or accompanied by laughing or 

smiling emojis, so we interpreted this as a trend and/or attempt at humor and did not 

include any of these Tweets in our dataset.  

After this process, we had 2,387 Tweets from the month of January, 579 

Tweets from February, and 502 Tweets from March. Users sometimes tweeted 

multiple times about an incident of victimization, so we filtered for unique 

usernames, which resulted in 3,459 users. 

7.3.3 Data Cleaning and Labeling  

Since determining if a Tweet represented a true case of victimization was a 

subjective decision, once we collected our initial sample of users we had additional 

reviewers read each Tweet and decide whether to keep it or discard it. The Tweets of 

our initial 3,398 users were split across four reviewers; we ensured the two original 

reviewers did not re-read the same Tweets they collected. If a reviewer had any doubt 
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about the authenticity of the self-report, either due to a lack of specifics about the 

event, grammatical errors making the Tweet difficult to understand (a common 

problem), contradictions or discrepancies created by the user when explaining the 

problem, or the context surrounding the Tweet when viewed directly on Twitter’s 

site, the user was discarded. While general approaches to reviewing the Tweets were 

discussed among the reviewers, each reviewer made a determination about whether to 

keep or discard independently. This process left us with 2,910 true cases.  

During the review process, reviewers also added categories and labels to the 

more informative posts in the sample. We chose not to apply an open coding analysis 

here, as the goal of our study was to investigate the feasibility of using Twitter to 

understand user cybersecurity experiences. Instead, we focused on answering three 

high-level questions: What device or account was affected, what were the associated 

consequences, and has this user been victimized before? We frame these as research 

questions as follows:  

• Research Question 7.1 (RQ7.1): What types of devices or accounts are 

compromised (i.e. what can we learn about the experiences of users on 

various devices and services)?  

• Research Question 7.2 (RQ7.2): What consequences do victims report (i.e., 

what can we learn about victim experiences from user-reported data)? 

• Research Question 7.3 (RQ7.3): Can we identify repeat victims (i.e., how 

prevalent is repeat victimization according to this data)?  
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If a user specifically named a compromised device type or service, reviewers 

added a label indicating this. For example, for the ‘affected device’ category, 

reviewers assigned labels such as ‘phone’ or ‘computer’ if the user specifically named 

a device that was compromised by the victimization. Similarly, for the ‘affected 

account’ category, reviewers added details about the compromised online service if 

the user explicitly named the service. While many users reported victimization on 

high profile platforms, there were also many platforms unfamiliar to us; in these cases 

background research on the specified platform was necessary to understand the user’s 

post. Once this process was complete, the labels were verified and cleaned. Each 

category was cleaned and verified by a single reviewer and then confirmed by a 

second reviewer to ensure consistency within a category. For the affected device 

category, labeling resulted in six different labels: computer, which included desktops 

and laptops, phone, USB, iPad, iPod, and memory card.   

For the affected account category, labeling resulted in 223 unique services and 

platforms. To help us understand the nature of these accounts, we sorted them into 17 

high-level categories. These high level categories are as follows: social media and 

chat applications which included sites such as Twitter and Facebook and applications 

such as WhatsApp and Telegram; online games which included gaming platforms 

such as Steam and specific games such as Fortnite; media and entertainment which 

included services such as Netflix and Spotify; technology, electronic, and 

telecommunication companies which included Amazon, Apple, Microsoft, and Sony; 

cryptocurrency which included exchanges such as Binance and wallets such as My 

Ether Wallet; email services such as Gmail and Yahoo; ride sharing applications, 
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which only included Uber and Olacabs; payment applications such as PayPal and 

Splitwise; traditional banks and financial services such as Bank of America; 

ecommerce, delivery, and retail services such as eBay; housing and hospitality 

services such as AirBnB and Booking.com; website and file hosting services such as 

WordPress; online dating sites such as Match.com; airline websites such as Delta and 

Emirates; school systems; online betting websites; and miscellaneous, such as a URL 

shortener site. Each platform was assigned only one category, though we 

acknowledge there are platforms that could fit into multiple categories.  

The consequences category was less objective so we went through several 

iterations of labeling before finalizing categories of consequences to assign to Tweets. 

As was done for the device and account categories, each reviewer had a fourth of the 

total corpus to label. Reviewers assigned descriptive tags only if users made explicit 

comments about a consequence. For example, @AskPlaystation my account’s been 

hacked will you please help they changed my email :( was labeled with ‘altered 

settings,’ while I spent $100 to fix my computer because I accidentally downloaded a 

virus was labeled with ‘financial loss.’ Since reviewers did not follow any specific 

codebook, sometimes labels differed (e.g. “financial loss” vs. “loss of money”). 

After this process was complete, two reviewers independently assessed all the 

labels and began to combine similar consequences into the same category. For 

example, ‘financial loss,’ ‘monetary loss,’ and ‘loss of money’ were all grouped 

together as the same type of consequence.  The reviewers then compared their results 

and came to a final consensus on a set of 13 categories; these categories are described 

in Table 18. Then, one reviewer relabeled all 2,910 Tweets with these new categories 
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to ensure consistency; a second reviewer reviewed and validated the results. Tweets 

were labeled with multiple consequences if multiple consequences were reported. 

Again, Tweets were only assigned a consequence if a user explicitly stated the 

consequence occurred.  

For our final question – has a user been victimized before? – we assigned 

‘repeated victimization’ labels to posts if a user made a comment about being 

victimized ‘again’ or indicated the number of times they’ve been victimized. 

Consequence Description  
Financial loss Any monetary loss; includes traditional currencies and 

cryptocurrency  
Data loss Any loss of digital items, such as files and media 
Account loss Any loss of access, account suspension, or deletion; user must 

explicitly state they’ve lost access  
Device damage Any damage done to a physical device; includes damage that 

renders a device slow or frozen  
Altered settings Unauthorized changes to user account settings, including account 

login information 
Spam Indicates a hijacked account or device was used to spread spam/ 

unsolicited content 
Reputation loss Any loss of authority or influence or a damaged identity; 

includes a loss of followers or subscribers  
Identity theft Any cases of identity theft, impersonation, use of hijacked 

account to masquerade as the user 
Threats Any form of threats, blackmailing, or ransom 
Professional issues Compromise resulting in professional or workplace trouble for 

the user, their colleagues, or employer 
Access vector Cases where one hijacked account has lead to the compromise of 

other accounts 
Unauthorized 
account activity 

Forms of account activity that are distinct from spam, 
impersonation, and altered settings  

Miscellaneous  Other reported consequences that occurred only once and did not 
easily fit into another category  

Table 18: Victim consequence categories 

7.4 Results  

This section provides an overview of the affected devices, affected accounts, 

associated consequences, repeat victims, and observations made during the data 

collection process. 
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7.4.1 Affected Devices  

Of our 2,910 cases, 472 specified an affected device. The majority of users 

experienced victimization on a computer (277 total) or phone (189 total). Two users 

experienced a compromised USB; two a compromised iPad; one a compromised 

iPod; and one a compromised memory card.    

7.4.2 Affected Accounts  

Table 19 presents an overview of all the affected accounts that were reported 

by users with a frequency greater than 10.  

Since data collection took place on Twitter, it is unsurprising that Twitter has 

the highest number of cases. Of the 382 Twitter cases, 102 were posts reaching out to 

Twitter (i.e. @Twitter why is my account hacked pls help) and 56 were posts reaching 

out to Twitter Support (@twittersupport I’ve been hacked, how can you help me?). 

Though almost half of all Twitter cases attempted to reach out to Twitter for help, 

many did not seem optimistic about the possibility of recovering an account or 

receiving help from Twitter: Friends: someone seems to have hacked my account so 

I’m using my secondary once since I have very little faith in Twitter’s interest in 

solving my problem. If you’ve ever succeeded in getting help from Twitter, please 

advise.  
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Service/ Platform Name Frequency Service/ Platform Name Frequency 
Twitter 382 Netflix 30 
Roblox 258 Steam 27 

Instagram 177 Amazon 27 
PlayStation 161 Airbnb 26 
Facebook 160 Mojang 25 
Spotify 90 Gmail 23 

GroupMe 76 Discord 21 
Jagex 73 Apple 21 

Snapchat 70 Youtube 20 
EA 60 PayPal 18 

Uber 44 eBay 15 
Rockstar Games 36 Xbox 14 

Email 35 Bizzard 13 
Linkedin 34 Binance 12 
Yahoo 33 Google 11 

Table 19: Affected account overview 

The next highest occurring platform was Roblox, a massive multiplayer online 

gaming platform in which users can design their own games, socialize with other 

players, and buy and sell virtual items using Robux, an in-game currency. Originally 

released in 2006 and mainly marketed towards children and teenagers, the game has 

over 64 million active players per month, as of November 2017 [135]. Similar to 

Twitter, we observed many users reaching out to Roblox or to well-known game 

moderators and developers for help: @Roblox help please someone hacked my 

account. 

In addition to Twitter, our sample also contained reports about a variety of 

other social media and communication platforms, including Instagram (frequency 

177), Facebook (frequency 160), Skype (frequency 9), WhatsApp (frequency 6) and 

Tumblr (frequency 5). The pizza chain Dominos occurred with a frequency of 6; 

users reported hacked accounts resulting in unauthorized pizza orders and use of 

account rewards points and free pizza offers.  
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On some services, we were able to observe a common attack vector against 

users during our time window of data collection. For example, of the 76 reported 

cases of compromised GroupMe accounts, 72 users reported their accounts were used 

to send “Happy New Year” messages that contained either links to weight loss pills or 

requests for help via bitcoins.  

There were 130 platforms and services that occurred with a frequency of one 

in our sample. These included large retailers like Walmart and BestBuy, online dating 

platforms, and 17 different cryptocurrency wallets and exchange websites.  

Table 20 presents an overview of the 17 high level categories that accounts 

were grouped into, their frequency of occurrence, and what percent of the total 

number of reported affected accounts they represent. 

Category Frequency Percent of Total 
Social media + chat 992 42.6 

Online games 743 31.6 
Media and entertainment 130 5.5 

Tech, electronics, and telecommunications 118 5 
Cryptocurrency 72 3.1 

Email 62 2.6 
Ride sharing 45 1.9 

Payment and money transfer 26 1.1 
Traditional banks and financial services 40 1.7 

E-commerce, delivery, and retail 39 1.7 
Housing and hospitality 31 1.3 
Website and file hosting 13 0.6 

Online dating 5 0.2 
Miscellaneous 5 0.2 

Airlines 4 0.2 
School systems 3 0.1 
Online betting 3 0.1 

Table 20: Categories of affected accounts 

Social media and chat applications were the most commonly occurring type of 

account for which users self-reported compromise. It is unclear if this is because users 

are simply more likely to discuss social media victimization on social media or 
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because social media sites actually experience a higher volume of cybercrime. Both 

are valid possibilities. Research has shown that the click through rate for phishing 

links is higher on social media than in email and that 8% of all URLs posted on 

Twitter are actually spam, phishing, or malicious links [129]. And since users likely 

share similar networks of friends on different services, it makes sense that they would 

post about compromise on one site on another: Hello friends! My GroupMe was 

hacked so don’t click anything that was sent.  

7.4.3 Consequences  

Of our 2,910 cases, 1,884 specified a total of 2,220 consequences. Table 21 

presents an overview of the major categories of consequences reported by users and 

the frequency and percentage with which they occurred. Loss of account access was 

the most frequently reported: @Microsoft my account was suspended since it was 

hacked and now I am locked out of all my services. Altered setting was the next most 

frequently reported consequence: @DavorCoinHELP somebody hacked my account 

and turned on two factor authentication. Spam – My Twitter was hacked don’t try to 

buy fake Ray Bans from the link I sent – and financial loss – @AirBnBHelp my 

account was hacked for $1800 in fraudulent charges – were also frequently reported.  

When we examined how consequences related to account types, we found that 

social media victims experienced every type of consequence except device damage, 

with 30.2% reporting a social media account was used to send spam and 20.8% 

reporting they lost access to the account. For online games, 29% of users experienced 

account loss, 20.8% experienced data loss, usually in the form of in-game items, and 

20.2% experienced altered settings on their accounts, such as username or password 
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changes. 37.7% of those who reported a compromised media or entertainment service 

experienced altered settings and 32.3% reported account loss. 9.2% observed 

unauthorized activity on their account, which often entailed the attacker using the 

entertainment service: whoever hacked into my @Spotify account, your music taste is 

awful. I wish @SpotifyCares would let me see your IP address or login info. For 

victimization reported regarding technology and electronics companies, almost all 

consequence categories were reported except reputational loss and professional 

issues. 67.6% of users who reported victimization involving cryptocurrency 

experienced financial loss.  

We also observed nine users who reported victimization that led to 

professional issues varying from compromised business accounts to damaged 

workplace infrastructures:  

• @LinkedInHelp This is my 3rd try to get help. My account’s been hacked and I 

cannot reset my password or login. I’m getting calls at work saying that my 

connections have been scammed by me. This is beyond embarrassing...  

• Apparently my computer had a virus so when I connected it to the WIFI at work 

it wrecked the whole server. 
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Consequence Frequency Percent of total 
Account loss 592 26.7 

Altered settings 406 18.3 
Spam 359 16.2 

Financial loss 267 12 
Data loss 247 11.1 

Unauthorized account 
activity 87 3.9 

Access vector 65 2.9 
Reputation loss 61 2.7 
Device damage 59 2.7 

Professional issues 29 1.3 
Identity theft 22 1 

Threats 17 0.8 
Miscellaneous 9 0.4 

Table 21: Consequences of compromise 

7.4.4 Repeated Victims  

Some users made generic comments about repeat victimization: To everyone 

who got a DM from me with a Instagram link, ignore. I got hacked again. But others 

revealed that victimization was a common occurrence:  

• [Facebook] is hacked daily...@facebook you need to do something about this. 

This is the 13th time this year... 

• Yesterday I get an email form Facebook that someone was trying to hack my 

account and today Twitter!? Leave me alone, I lead a normal life people! 

• Lol my first Instagram was hacked millions of times and now my new Insta was 

hacked and IG won’t help me so I’m done with Insta. 

Criminology research indicates victimization is concentrated on a few repeated 

cases and that prior victimization is often an indicator of enhanced risk of future 

victimization [136, 137].  Though only about 3.4% of our sample reported repeat 

victimization, we do not know how many users chose not to report repeat 

victimization. Regardless, our data may be useful for evaluating theories on repeat 
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victimization in the cyber domain. Moreover, these results suggest there is a pool of 

users who are especially vulnerable to victimization.   

7.4.5 Observations about Users  

While collecting data and labeling our final dataset, it quickly became 

apparent that Twitter is incredibly valuable for understanding the poor security 

decisions and risks users choose to take online. Users are regularly reminded not to 

share passwords and yet our data collection phase revealed that these practices still 

occur. For example, we observed many users who claimed to have “been hacked,” 

when in reality a friend of the user had temporary access to the user’s account or 

device and posted as the user. Many of these occurrences appeared to be good-

natured and were viewed as humorous by the user: lol I left my account logged in and 

@<username> hacked me! However, some users experienced the more sinister 

consequences of shared accounts and passwords:   

• Someone scammed me!!! I gave them my password and now they hacked my 

account and changed the password :(.  

• @AirennorGAMES Hi Airennor I was hacked by 18 people because someone 

said my password in one of their videos and I lost all my things... 

User reports may also be useful for understanding how and why users fall for 

victimization, as we observed several phishing victims who seemed to recall when 

they were compromised:  

• I received a DM from a trustworthy account with a link. I clicked it but it was 

some sort of hack. So if you get a link from me in a DM please don’t click.  
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• ...I was hacked I stupidly clicked that link and it sent spam to all my followers 

with a dumb card saying click here.   

We observed some users who not only rejected common security advice but 

also actively chose to risk viruses or hijacked accounts. Typically, this behavior was 

reported in relation to accessing online content freely or illegally: 99% sure I gave my 

computer a virus trying to watch the show from a sketchy site. Even more troubling is 

that we observed several users who acknowledged having this attitude while at work: 

Got a virus on my computer at work trying to click a link to take a quiz...how was I 

supposed to resist that clickbait though? 

Users willing to risk illegal downloading sometimes expressed amusement at 

the outcome:  

• I tried to download an apk file to get Spotify for free and now I have a phone 

virus LMAO.  

• LMAO the worse situation I had was when I tried to download photoshop, I 

caught a virus and my computer wouldn’t turn on lol.  

• My dumb self got a virus on my computer trying to watch a movie lol.  

While it was sometimes difficult to tell if humor was being used in a self-

report sarcastically or as a coping mechanism, it was nonetheless expressed in some 

form quite often: Hahaha I haven’t been able to access my Twitter since early Feb 

because I was hacked and today someone said I was abusive lol.  

Many users expressed attitudes we expected to see, such as fear and distress: 

My computer was hacked by a virus...I miss everything and I’m scared and depressed 
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now. Some even reported having nightmares about viruses: I’ve been having the same 

nightmare over and over where my computer gets a horrible virus and does 

something personal and its creeping me out. Note that we did not perform automated 

sentiment analysis to assess emotional responses; this is considered an area of future 

work.   

Online gamers in particular expressed desperation to recover hijacked 

accounts, which may be due to the fact that the population skews younger than the 

population on other services and many people take their online games quite seriously. 

This was often evident in game-victimization related posts: Roblox I have been 

hacked please help me...I am crying so much please help me.... Desperation was also 

evident in the content users were willing to share to recover an account: My account 

has been hacked and they changed my phone number so I can’t get back in please 

help. My username was: <username> and my password was: <password>. For the 

game Roblox we observed a total of nine users who publicly shared their usernames 

and passwords on Twitter when requesting help for hacked accounts. 

While those who do not play online games may not understand the value of 

game accounts or in-game items, cybercriminals certainly seem to understand that 

games can be lucrative platforms: I got hacked yesterday...the guy that hacked me has 

it and he said I need to pay $15 to get it back. In addition to hijacking online game 

accounts for ransom, game accounts and in-game items can be highly valuable. There 

are many online services that facilitate buying and selling game accounts. On the 

game trading website Player Up, we found accounts for the game Roblox, the service 

that occurs in our sample with the second highest frequency, selling for as much as 
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$450 [138]. We were also able to find marketplaces for other games in our sample 

where accounts and digital items sell for monetary value. On one service, we found 

accounts for the game Fortnite selling for $2000 [139]. 

During data collection, we also observed many misconceptions about 

cybersecurity propagated on Twitter. We observed several users who seemed to 

believe that avoiding viruses simply requires common sense: If you need anti virus 

software you probably shouldn’t be using a computer. Others still believe that it is not 

possible to get viruses on phones or Apple devices: iPhone is impervious to viruses.  

7.4.6 Additional Observations  

Our data collection process also resulted in many observations that were not 

directly tied to understanding user cybersecurity experiences.  Here, we share two 

observations that may be of interest to other security researchers.  

First, our dataset hinted at problems in how account recovery procedures are 

designed and implemented: @LinkedInHelp I can’t follow up on the case I made 

because obviously I don’t have access to my hacked account. The link you sent when I 

created the ticket about my hacked account requires log in. VERY SMART YOU 

GUYS. We observed many users expressing frustration at the lack of real customer 

service support: @instagram my account’s been hacked twice in 24 hours. I’ve tried 

to call but your voicemail clearly says you don’t speak to people. I already changed 

my password 3 times. Any help? Others expressed frustration at how long it takes to 

recover an account: My Facebook account was hacked January 1st...almost 1.5 

months passed and I didn’t get any solution. While most services received criticism 

for how they handle compromise, one company regularly received praise: my 
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@Netflix account was hacked. The nice guy from the help desk took less than two 

minutes to recover it. Great service! J  

Second, our data collection process revealed that we were not the only ones 

interested in identifying cybercrime victims. In February, we observed eight instances 

where Kaspersky Lab, the official Twitter account of the anti-virus company 

Kaspersky, responded to cybercrime victims offering free versions of their software. 

Kaspersky Lab’s responses were all slightly different but generally followed a similar 

format: “So sorry to hear that. Let us help you remove the viruses on your computer. 

Grab a free version at <link> Have a nice night! 

7.5 Discussion  

This section presents a discussion of our dataset and observations made during 

data collection in addition to an overview of the benefits and challenges associated 

with using Twitter. 

7.5.1 Discussion of Results  

There is a wealth of information contained in the self-reports of users. A six-

week period of data collection provided us with hundreds of examples of infected or 

hijacked devices and accounts. Real victimization data is generally difficult to obtain, 

as organizations typically keep a close hold on such information. While this is 

understandable given an organization’s need to protect user privacy, security, and 

brand reputation, it limits the data available to security researchers. As such, 

understandings of users often come from limited sources of data: for example, there is 

substantial work to understanding phishing in university environments.  Our work 
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suggests there are opportunities to use user-reported data to study different attacks 

and different populations of users.  

Our data revealed that users most frequently self-report cyber compromise on 

social media, online games, media and entertainment platforms, technology and 

telecommunication services, and cryptocurrency wallets and exchanges. It also 

provided insight into how users react to compromise and the consequences they (and 

sometimes those around them) face, such as frustration and embarrassment, financial 

loss, and even compromised workplace infrastructures. User reactions to compromise 

also alerted us to flaws in how fraud/abuse detection and account recovery are 

handled on various platforms. Understanding the services that experience high levels 

of compromise and the experiences and reactions of users can help security 

researchers and developers chose how to focus limited resources.  

Our work also highlights that there are some online communities that may be 

especially vulnerable to cybercrime and may not be aware of the resources and 

strategies available for avoiding or handling victimization. This was the case for the 

99 users who experienced repeat compromise. It is also true for users of online 

games, which represented the second highest type of account that users self-reported 

victimization about. While many Internet services require that users be at least 13 or 

even 18 years of age, online games are often specifically marketed toward and 

intended for children. Such accounts may be easier to hijack or compromise because 

young Internet users may not be experienced in recognizing social engineering 

attempts and may exhibit a variety of poor security practices, such as password 

sharing.  
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User reports can also point to platforms and services that may not seem like 

they would be targeted by cybercriminals. For example, while we were unsurprised to 

see Twitter and GroupMe hijacked in order to spread phishing links, we were 

surprised to see that fast food companies were also targeted for rewards points and 

free food. We observed some users who were equally surprised by this: Looks like I 

was hacked on @dunkindonuts account. Need to have strong passwords everywhere 

even in applications like this. Thanks for the help, hopefully I’ll get my new DD card 

soon. And as previously discussed in the context of online games, though some 

reported platforms may not seem as serious or important as bank accounts or financial 

applications and therefore not worth the attention, there may be entire online 

economies that do find real financial value on these platforms.  

Additionally, some platforms may simply be gateways to other platforms or 

accounts. This may certainly be the case for games, which are often linked to credit 

cards, banks, or other payments systems that were used to purchase the game: 

@electronicarts my account has been hacked and my password changed. EA support 

isn’t responding. Online pages don’t help. I’m worried I have a payment card on my 

account.  

As another example, some user posts demonstrated how infections and 

malicious content spread across platforms: Hi everyone, please don’t open any links 

sent by me in the last 24 hours. My [Twitter] account was hacked through a spam 

WhatsApp link but I’ve recovered my password with Twitter support’s help. 

Monitoring the flow of threats across channels and platforms may help security 
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practitioners better defend their systems; spending time and resources to build a 

secure service is not useful if a less secure service acts as a gateway.  

Our data collection process and dataset also reveal that Twitter is very 

valuable for understanding user security behaviors and attitudes. Twitter can help 

security practitioners identify the users who may be particularly vulnerable or 

susceptible to cyber victimization. This may be especially important on networks 

where users are allowed to connect their personal devices to the network; note that we 

had users in our sample who posted about accidentally harming their workplace 

information technology with their personal devices. 

Additionally, users who post, recommend, or otherwise react to inaccurate 

cybersecurity advice may pose a high risk to an institution’s network because they 

may be more likely than others to practice poor security behaviors or reject security 

advice. Other concerning users are those who react to victimization with humor or are 

willing to risk viruses or compromise in order to freely or illegally access content. If a 

user does not care about downloading a virus when using a certain device or platform, 

security engineers must find ways to develop systems that nudge the users toward 

safe practices or make unsafe practices more difficult to accomplish. Furthermore, 

human error is often credited as the cause of successful phishing campaigns. 

Cybersecurity training is often presented as a phishing mitigation strategy, but 

training users to recognize phishing attempts is only effective if human error is truly 

the reason that people click on malicious links. If a user does not care about the risk 

associated with victimization, training a user to recognize phishing links is unlikely to 
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be useful. Intentional subversion of security is a separate problem that may need to be 

handled in a different manner.  

7.5.2 Benefits of Using Twitter  

Understandings of users and their cybersecurity behaviors and experiences are 

often derived from surveys or controlled experiments. Twitter - and social media in 

general - is still a largely underused source of data. Though survey and experiment-

based work has revealed valuable correlations between individual differences in users 

such as gender and age and likelihood of cybercrime victimization [108, 109, 113, 

140, 141], these methods have shortcomings. These methods are cost intensive, but 

social media data can be gathered cheaply and automatically [120, 142]. They also 

suffer from response bias [143], but social media content is unsolicited and 

abundantly available [120, 142]. Surveys and controlled experiments are also 

generally scoped to a specific population, but social media data can provide broad 

geographic coverage of many different demographic groups [120, 142]. Finally, 

participants cannot always be trusted to answer questions honestly and may adjust 

their behavior when being studied, but on social media many users actively, openly, 

and publicly share everything from their emotions to their personal medical issues 

[120, 142]. In the field of public health, Twitter has been used to quickly and cheaply 

assess populations across diverse geographic regions and to uncover findings that 

would have otherwise been infeasible to study via surveys or experiments [120, 142].  

As mentioned previously, social media data may also help fill gaps in attack 

or victim data available to researchers to study. User-reported cases of victimization 

can also help with identifying the prevalence of cybercrime. Metrics on the different 
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types of cybercrime and the platforms they occur on are difficult to obtain. Our work 

indicates that obtaining such estimates may be possible through Twitter data. This 

may be useful for directing security research and engineering efforts, which is 

especially important since cybersecurity is expensive and resources to secure a 

system are limited. Moreover, such metrics may help users evaluate the risk they are 

taking when they use a particular platform. For example, knowing that accounts are 

frequently hijacked on Twitter may prompt users to develop stronger passwords or 

exercise more caution when using Twitter than they otherwise would, just as how 

warning labels on food and medications allow people to take more informed risks 

when they consume them.  

Twitter is also commonly studied because it mirrors trends and events that 

occur in the physical world in almost real time. The security field already makes use 

of Twitter to keep track of new vulnerabilities, exploits, and threats; real-time 

analysis of user security experiences through Twitter may also facilitate a shorter 

turnaround time for a company or institution to respond to security threats against 

users. For example, we observed many users who blamed their hijacked Twitter 

accounts on an application that supposedly would let them see who viewed their 

profiles: Looks like my account was hacked. Don’t click on the ‘check who has visited 

your profile’ app. If network administrators are actively monitoring user reports, 

seeing posts such as this could prompt blacklisting of malicious applications or 

websites before other users are affected.  
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7.5.3 Challenges with Using Twitter  

There are challenges associated with using Twitter data to understand users. 

Here we highlight two major challenges that will likely generalize to any Twitter-

based user analysis. In the following section we discuss limitations specific to our 

study.   

First, it is difficult to know how representative Twitter users are of the general 

population. According to a Pew Research survey conducted in January 2018, of the 

adults in the U.S, 24% of men and 23% of women use Twitter; 40% of 18-29 year 

olds, 27% of 30-49 year olds, 19% of 50-64 year olds, and 8% of 65+ year olds use 

Twitter; and 24% of white people, 26% of black people, and 20% of Hispanic people 

use Twitter [144]. A more detailed breakdown of demographic categories of Twitter 

users in the U.S is not readily available. Additionally, an estimated 79% of Twitter 

accounts are actually geographically located outside the U.S [145] and again, it is 

unclear what the demographic breakdown is like.  

Second, there are privacy concerns associated with using Twitter to analyze 

users. The ethics of using social media data to study users is an active area of debate, 

brought to mainstream media attention most recently by the Facebook and Cambridge 

Analytica scandal [146]. Our dataset contained only the users who chose to make 

their accounts public and is intended to equip security researchers and developers 

with a resource that may be helpful for understanding users. We very intentionally do 

not attempt to connect user accounts with real people. So, while our initial analysis 

suggests that Twitter data is valuable for understanding users, the benefits to users 

should outweigh the risks. Furthermore, the privacy expectations of users should be 
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carefully considered: for example, is it within the rights of a company or university to 

monitor any public Tweets of their population in order to identify the users who may 

pose an additional security risk to the network?  

7.6 Limitations  

Our final dataset has several limitations. First, our dataset only consists of 

users who reported victimization during a six-week period at the start of 2018. While 

this is a relatively small window of time in comparison to how long Twitter has 

existed (the service was created March 2006), it still provided us with a large sample 

of users. In future work, we plan to collect users over a longer period of time.  

Second, the decision about which Tweets to retain and which Tweets to discard 

was subjective. While Tweets were only retained if two different reviewers agreed 

that it reflected a true case of victimization, subjectivity was hard to fully avoid 

because we were passively inferring victimization and unable to directly verify the 

victimization claim with the user.  

We also cannot guarantee that users are being honest about victimization in 

this experiment. While we tried to remedy this by requiring proof in the form of 

details about the victimization, users can of course fabricate such stories. However, 

we believe most users are being honest, especially because our collected Tweets 

usually represent warnings to friends and family or outreach to a company. We 

assume that most users do not want their followers to be victimized by their account 

if it has been hijacked. Additionally, we observe that many users seem to recognize 

Twitter as an alternative to email or phone for accessing company customer support: 
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@AirBnB my account has been hacked and there is no way to contact you since I 

can’t log in with my email. Please help! Similarly, some users turn to Twitter because 

they are either frustrated with the customer support process -  @Amazon My account 

was hacked and my email changed...Your customer service hung up on me twice - or 

because they cannot find any other customer support resources - I can’t get on 

Facebook because my account was hacked...Facebook does not have customer 

support. Any help? A Sprout Social survey from 2016 suggests 34.5% of users 

actually prefer to reach customer service via social media [145], further suggesting 

the legitimacy of Twitter reports.  

In addition to the difficulty of guaranteeing the veracity of user reports, there 

may also be cases where users genuinely believe they have been victims when in 

reality they have not (i.e. an incorrect self-diagnosis). We cannot assume that users 

have the security or computer expertise to accurately and consistently distinguish 

between technology or connectivity issues and cyber victimization. For example, 

during our data collection phase we observed a user who reached out to a company 

about a hacked account and posted a screenshot of their browser as evidence. 

However, the browser simply displayed a blank webpage with a “This page cannot be 

displayed” error banner. There are a variety of reasons a user might see such an error, 

many of which are not related to malicious activity. While this case was easy to 

discard, there may be cases where the user-provided context falsely corroborates the 

victimization claim.  

There is also the slight chance that we captured cases that do not represent real 

users. According to a 2017 study [147], between 9% and 15% of Twitter accounts are 
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bots. While our manual review process was intended to mitigate the risk of including 

inauthentic cases in our final dataset, we do not make any additional attempts to filter 

out fake accounts. This is an entirely separate research problem that was considered 

out of scope.  

The next major limitation is the manual labor necessary to review and confirm 

our sample of self-reported cases. Though we chose this approach to ensure the 

quality of our dataset, our methodology is not something that could easily be applied 

or replicated in an operational, non-research environment. In future work we will 

explore automating the review process. 

Our final limitations are directly connected to the challenges associated with 

using Twitter data presented in the previous section. We do not have insight into the 

representativeness of our dataset. Additionally, our sample contains only users who 

chose to self-report victimization. While data on victimization cases is abundant, we 

have no insight into how many users choose not to report victimization. Similarly, 

while we derived some metrics about the prevalence of victimization across various 

platforms, we do not know how self-reporting behavior varies across users of 

different platforms. For example, while our results suggest that users of social media 

and online games are affected the most by hijacked or hacked accounts, these users 

may simply be more active on Twitter or members of this community may have 

collectively established that reaching out for help via Twitter is normal and/or 

effective.  
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7.7 Conclusion  

This chapter presents work to construct one of the first Twitter datasets of 

user-reported cases of cyber victimization. We search Twitter during January 1, 2018 

through March 13, 2018 for various cybercrime related keywords and employ a 

thorough manual review process of the search results to build a corpus of 2,910 

cybercrime victims. Recall that our research questions centered on what we could 

learn from self-reported data about the experiences of cybercrime victims.  

RQ7.1 asked what types of devices or accounts were reported compromised. 

Of the 472 users who specify an affected device, 58.7% report compromised 

computers and about 40.0% report compromised phones. Of the 2,331 users who 

specify an affected account, 42.6% report compromised social media accounts while 

31.6% report compromised online game accounts. Media and entertainment 

applications such as Netflix and Spotify represent the third most reported affected 

account types, with 5.5% of users reporting victimization on these platforms. 

Technology, electronics, and telecommunication services (5.0%) and cryptocurrency 

wallets and exchange sites (3.1%) follow as the fourth and fifth top occurring account 

types, respectively. RQ7.2 asked what consequences users reported. Of the 1,884 

users who specify a consequence, 26.7% report a loss of account access, 18.3% report 

altered account settings, 16.2% report accounts used to send spam, and 12% report a 

financial loss. Finally, RQ7.3 asked if we could identify repeat victims in the data. 

We determine that at least 3.4% of our sample has previously been victimized.  

Our quantitative analysis of user reports revealed many interesting insights 

about users and user victimization. Many users revealed poor security practices and a 
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surprising amount of disregard for cybersecurity. For some, free content or 

entertainment was often worth the risk of compromise. For others, compromise could 

be both financially and emotionally devastating. User victimization occurred on a 

range of platforms – even fast-food rewards points were targeted. The account 

recovery process was burdensome and sometimes impossible.  

 Based on the findings presented in this chapter, we hypothesize that mining 

social media for unsolicited user feedback on security experiences is not only useful 

for uncovering insights to support user reputation assessments, but can also help 

security researchers and developers gain new understandings of the user attitudes, 

behaviors, and misconceptions that they must contend with when designing security 

solutions. Institutions – and in particular their network administrators - may find 

Twitter data a valuable resource for understanding their network user populations and 

identifying the users who may present an enhanced risk to the network. In the next 

chapter, we extract features from the Twitter profiles of the victims identified in this 

study, construct a dataset of ‘controls’ (users who did not report victimization), and 

evaluate whether these features can be used to predict user-reported cyber 

compromise.  
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8 Social Media as a Source of Data: Predicting User 
Disclosure of Victimization 

8.1 Introduction  

Social media has facilitated and encouraged a culture of constant 

communication and oversharing. Research in a variety of fields - from politics to 

public health - takes advantage of this to study users and develop theories and 

predictions about human behavior.   

In the field of cybersecurity, the use of social media data to understand and 

make predictions about people is still largely unexplored. In the previous chapter, we 

observed that some people turn to Twitter to disclose personal incidents of cyber 

victimization (Help, I’ve been hacked!), often divulging everything from the illegal 

downloading behaviors that led to account compromise to the usernames and 

passwords associated with compromised accounts.  

As we did with the network traffic case study presented in Chapters 5, in this 

chapter we test the feasibility of using our dataset to make predictions about users. 

We use 1,903 cases of compromise - users who publicly tweeted about victimization 

on Twitter during the period of January 1, 2018 through March 13, 2018 – and 

identify an additional 7,056 controls - users randomly selected if they were publicly 

active on Twitter during the same time period and did not self-report victimization in 

their past Tweets.  

Through surveys and controlled experiments, related work has correlated user 

Internet activity and demographics with susceptibility and likelihood of exposure to 
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various forms of cyber compromise. Motivated by these findings, we investigate 

whether similar features can be extracted from Twitter data and used to differentiate 

between cases of compromise and controls. We hypothesize that publicly available 

Twitter profile data can be used to predict which users will turn to social media to 

disclose victimization.  

 We extract features from a user’s Twitter profile summarizing the user’s 

activity patterns and volume, Tweet content, and social network. We use predictive 

lexica to determine demographic factors of age and gender from past user Tweets. We 

then perform supervised learning and evaluate feature importance relative to each 

classifier.   

Our best performing classifier achieves an accuracy of 79.1% and AUC ROC 

of 87.4% when differentiating between cases and controls. Examining feature 

importance to this classifier (a measure of how often and valuable a feature is for 

making key decisions), we identify account age and number of Tweets as being the 

most important indicators of whether a user will disclose victimization on Twitter. 

Predicted gender and age, demographics commonly linked to likelihood of 

victimization, are ranked as some of the least important features in comparison to 

other features. 

We make the following contributions:  

• To the best of our knowledge, we present one of the first studies that makes 

use of unsolicited, user-reported data to understand online victimization.  
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• We identify features that can be used to predict if a user will self-report 

victimization. When considering self-reported victimization as a proxy for 

ground truth victimization data, our results corroborate related work that 

suggests online activity is linked to likelihood of victimization.   

• We find demographic factors of age and gender play almost no role in a 

classifier’s decision to label a user as a case or a control. This contrasts related 

survey-based work that often identifies age and gender as key factors.  

• We illustrate the viability of using social media data for user-focused 

cybersecurity research and show it is possible to make predictions about users 

with publicly available profile data.   

This remainder of this chapter is organized as follows. Section 8.2 presents the 

background and related work, followed by the methodology for dataset construction, 

feature engineering, supervised learning, and feature importance assessment in 

Section 8.3. Section 8.4 presents the results, followed by a discussion of these results 

in Section 8.5. We provide an overview of the limitations in Section 8.6 and conclude 

the chapter with future work to refine and expand this study in Section 8.7.  

8.2 Background and Related Work  

This section presents related work on using Twitter to understand users and 

related work on assessing the factors that make users more susceptible to 

victimization and cybercrime.  
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8.2.1 Using Twitter Data to Understand People  

In Chapter 7 we identified papers in the field of public health that relied on 

self-reported data to make predictions about people. Using Twitter data to make 

predictions proved highly effective in these studies. In several cases, social media 

results were similar to clinical results: in [118], the Twitter-based trend predictions 

had a 0.985 Pearson Correlation Coefficient with the US Center for Disease Control’s 

flu trend predictions. In [123], using features extracted from Twitter data motivated 

by the existing alcoholism literature, the author was able to predict if a user would 

maintain 90 days of sobriety with 80% accuracy. The resulting alcoholism recovery 

rate in this study was predicted to be 22.8%, while the US National Institutes of 

Health predicts long-term recovery rates of 18.2%.  

8.2.2 Understanding the Factors Tied to Online Victimization  

 In [123], the author used previous alcoholism recovery research to motivate 

the Twitter-based feature set. In this section, we provide an overview of related work 

that has correlated Internet behaviors and demographic factors with user susceptibility 

to cybercrime and likelihood of exposure to malicious activity or content.  

In [115], the authors analyzed the web browsing behaviors of users to predict 

who was more at risk than others to being exposed to malware. Using telemetry data 

from a major anti-virus company containing 100,000 users and millions of URLs 

visited by the users, the authors extracted 74 features summarizing user behavior, to 

include volume of activity, temporal patterns of activity, number and type of websites 

visited, and variability of browser activity. The authors found that there was a 
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significant increase in malicious URLs visited by users on the weekend; those at risk 

of encountering malware also spent more time at night and had higher volumes of 

activity than other users. The authors used insights from their correlation analysis to 

build logistic regression models; the model predicted users who would visit malicious 

or blacklisted domains with 74% accuracy and an 8% false positive rate.  

In [111], the authors investigated age and gender as risk factors for malware 

infection using data from 3 million Windows 10 devices running Microsoft’s 

Windows Defender anti-virus tool. While the role of age and gender on malware 

encounter frequency varied depending on the type of malware, younger users were 

more likely to encounter malware than older users (users under 24 were twice as like 

than users over 50 to encounter malware) and men were 1.4 more times likely than 

women to encounter malware.  

In [112], the authors conducted a four-month study of 50 users in which they 

attempted to understand the risk factors associated with malware infection. The 50 

participants were provided with laptops instrumented with several different anti-virus, 

monitoring, and diagnostic software tools. The participants used the laptops over the 

four-month period and attended several in person sessions during which their laptops 

were analyzed for infection. At the end of the study, 38% of users were exposed to 

malware. Of the users with at least one infection during the four-month period, 61% 

were male and the number of unique malware detections was higher for the 25 to 35 

age group than the age groups of 18 to 24 and 36+. When the authors examined cyber 

behaviors, those who installed many applications, frequently visited websites 

regardless of website type, and visited certain categories of websites (such as 
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streaming, adult, and gambling sites) were all significantly more likely to have a 

malware infection than others.  

In [148] the authors used insights from [112] to build predictive models of 

user malware infection. Factors of age, computer expertise level, most commonly 

used web browser, total number of hours online, total number of websites visited, 

total number of files downloaded, and total number of websites visited for specific 

categories (such as peer-to-peer applications or social networking) were used to 

construct a neural net that achieved a testing accuracy of 88.89% for classifying users 

as either at-risk or low-risk for malware exposure.  

Survey-based work has also revealed correlations between demographic 

factors of age and gender and susceptibility to phishing and poor security practices. 

The authors in [108] found women and people aged 18–25 to be more susceptible to 

phishing attacks than men and other age groups, respectively; the authors in [109] 

found a correlation between people aged 18–25 and phishing attack susceptibility; the 

authors in [110] found that younger people were significantly more likely to engage 

in the poor security practice of password sharing; we found correlations between 

gender and security behaviors such as strong password creation, proactive awareness 

of security threats, and device updating [113]. 

Based on the related work that has found correlations between Internet 

activity and demographic factors and increased likelihood of cyber victimization, we 

explore the following three research questions: 
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• Research Question 8.1 (RQ8.1): Can features extracted from the Twitter 

profiles of users differentiate between cases of self-reported cyber 

victimization and controls?  

• Research Question 8.2 (RQ8.2): What types of user activity on Twitter are 

predictive of disclosure of cyber victimization?  

• Research Question 8.3 (RQ8.3): Are user demographics of age and gender 

predictive of disclosure of cyber victimization? 

8.3 Methodology  

This section presents an overview of the process to build our dataset, extract 

features from the data, and evaluate our three research questions using supervised 

learning and feature importance calculation. 

8.3.1 Dataset  

Our sample consisted of 1,905 cases and 7,059 controls. As in the previous 

chapter, any example Tweets in the following sections have been rephrased for 

anonymity purposes.  

8.3.1.1 Cases  
 

Cases were drawn from the pool of users collected in the previous chapter. As 

a reminder, these represent the users who publicly self-reported cyber victimization 

on Twitter during the period of January 1, 2018 through March 13, 2018. To 

construct this dataset, we developed a set of Twitter search rules based on keywords 

commonly used to discuss cybercrime on Twitter, searched Twitter using these rules, 



 164 
 

and manually reviewed returned Tweets to determine if they represented true cases of 

victimization.  

This first round of data cleaning resulted in 3,459 total victimization cases. 

For each case, we used the Twitter API to collect metadata from user profiles such as 

number of Tweets, number of followers, number of accounts a user is following, and 

number of Tweets the user marked as a ‘favorite.’ We also collected up to 3,200 past 

Tweets for each of these users, the maximum allowed by the Twitter API. In some 

cases the API could not access accounts or past Tweets, either due to an account 

switching from public or private or being deleted or banned; if this was the case, we 

discarded the user and any associated data. We also filtered out any users who did not 

have their profile language set to English.  

For the purpose of this study, we performed a final step of data cleaning in 

which we discarded any users who had less than 1,000 total words in their past 

Tweets. At least 1,000 words were necessary to conduct lexica-based age and gender 

predictions [149]; 1,000 words is also generally accepted as the minimum numbers of 

words necessary to conduct text analysis [123]. After discarding users with less than 

1,000 words in their combined collection of past Tweets, we had 1,905 cases.  

8.3.1.2 Controls  
 

The control group consisted of a random sample of Twitter users who were 

active on Twitter (i.e. they publicly posted on Twitter) during the same time window 

that our cases self-reported victimization. Because the Twitter API does not actually 

provide a functionality to collect a random sample of users, we made use of the 
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unique user IDs that Twitter assigns to every user [150]. User IDs are numeric values 

assigned to users when they join Twitter; these IDs began at the number one (the first 

few IDs notably belonging to the founders of Twitter) and have followed an 

increasing order. At the time of writing this paper, there was no authoritative source 

indicating the maximum user ID number or confirming if IDs are consecutively 

incremented. So, we selected a range of [10, 10,000,000,000], assuming the first few 

IDs represent Twitter founders and knowing the estimated number of monthly users 

on Twitter in Quarter 1 of 2018 was 336 million [151].  

Each randomly generated number was used as a user ID value to search for 

English Tweets during the period of January 1, 2018 through March 13, 2018 using 

the Twitter Search API. If the randomly generated user ID resulted in a returned 

Tweet, we added the user associated with this user ID to our sample of random users. 

This process left us with 9,382 users.  

As we did with the cases, we collected various pieces of information from the 

user’s Twitter profile and up to 3,200 past public Tweets. Again, we filtered out any 

users if their profiles were not public or not set to English. 

For each user, we searched their past Tweets for the keywords “hacked” and 

“virus”, the two words at the core of every rule we used to build our case dataset. If a 

Tweet contained a keyword, we manually reviewed it to see if it was a self-report of 

victimization. For example, the CDC reports a new virus is hitting the midwest is 

clearly not a self-report of cyber victimization, while @yahoomail I can’t log in I 

think I’ve been hacked does seem to be a real report. If a user disclosed cyber 
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victimization, they were discarded from the control dataset. This left us 7,188 users. 

Again, we then discarded any users with less than 1000 words in their combined past 

Tweets. This resulted in 7,059 users. 

8.3.2 Feature Engineering  

Next, we developed a set of 11 features. At a high level, these features were 

intended to summarize a Twitter user’s activity, content, social network, and 

demographics. The features are presented in Table 22. 

The majority of these features was embedded in user profiles and could 

therefore be easily extracted. Links and mentions in Tweets were found using Python 

regular expressions to search for character strings that matched a mention (‘@’) or 

link format. 

Feature Description 
Tweet count The user’s total number of Tweets. 

Account age in months The age of the user’s account, based on account 
creation date, in months. 

Favorites count The number of Tweets a user has marked as a favorite. 
Listed count The number of times the user appears in a Twitter list. 

Average number of links The average number of links shared by a user per 
Tweet. 

Average number of words The average number of words per user Tweet. 

Friends count The number of users that a user is following and is 
following the user in return. 

Followers count The number of users following the user’s account. 

Average number of mentions The number of times the user has mentioned another 
user in a Tweet. 

Age The predicted age of the user. 
Gender The predicted gender (male or female) of the user. 

Table 22: Features and their descriptions 

 
8.3.2.1 Age and Gender Prediction  
 

Demographics are not indicated on Twitter profiles. We therefore had to use 

the information available to make predictions about user demographics. For this 
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study, we chose to focus on age and gender, in part because they are frequently 

correlated with cybersecurity attitudes and behaviors in the related work and because 

of the availability of predictive lexica to calculate these features using writing 

samples of users. In particular, we used the age and gender predictive lexicas 

established by the University of Pennsylvania’s World Well-Being Project [152]. The 

authors established these lexicas by analyzing the language of 97,000 Facebook, 

Blogger, and Twitter users [149]. The age and gender lexicas consist of collections of 

words and weights associated with each word. Each lexica also contains an intercept 

value that is used to correct for model bias. Age and gender are calculated using the 

following formula: 

𝑤𝑜𝑟𝑑!"#$!! ∗  
𝑤𝑜𝑟𝑑!"#$%#&'(
𝑡𝑜𝑡𝑎𝑙!"#$%

 
!"#$ ∈ !"#$%&

+ 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 

In the equation, wordfrequency is the frequency with which a word from the 

lexica appears in a user’s text sample, totalwords is the number of words total in a 

user’s text sample, wordweight is the weight associated with the word in the lexica, and 

intercept is the intercept value associated with the lexica. When using the age lexica, 

the value of the user is the predicted age. When using the gender lexica, if the value 

for a user is positive, the user is predicted to be female, otherwise the user is predicted 

to be male [152].  

For each user in both our case and control samples, we used all the publicly 

available Twitter posts for each user to predict age and gender. There were a few 

cases where predicted age was less than 0. We discarded 2 users in the case dataset 

and 3 users in the control dataset who had a predicted age less than 0, bringing out 
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total case dataset to 1,903 users and our control dataset to 7,056 users. The 

breakdown of age and gender is presented in detail in the following section.  

8.3.3 Supervised Learning  

We performed supervised classification on our dataset using decision tree-

based algorithms. We selected tree-based algorithms to enable us to assess the 

importance of each feature, discussed further in the following section. We 

implemented the following algorithms using Python’s sklearn library: Random Forest 

[94], Ada Boost [95], Gradient Boost [96], and Extra Tree [97]. Grid Search [100] 

was used to tune the hyper-parameters and stratified 10-fold cross validation [101] 

was conducted to prevent model overfitting.  

We performed classification using two common train/test splits: 70/30 and 

80/20. Since we do not know the ratio of victims to non-victims on Twitter, we tested 

two different ratios of cases and controls: 30:70 and 50:50. To obtain these ratios, we 

took random samples from the control dataset, such that the 30:70 ratio had 1,903 

cases and 4,440 controls and the 50:50 ratio had 1,903 cases and 1,903 controls.  

Figure 5 presents the breakdown for gender for the 30:70 ratio while Figure 6 

presents the distribution of age. Figure 7 presents the breakdown of gender for the 

50:50 ratio while Figure 8 presents the distribution of age for this ratio.  

Both samples contain more males than females. This is in line with estimates 

of the age distribution of worldwide Twitter users: a Statista report predicts that 

Twitter is 66% male and 33% female as of October 2018 [153]. Predicted age seems 

to be distributed in line with predicted estimates of the Twitter population as well: a 
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Pew Research survey conducted in January 2018 reports that Twitter is used by 40% 

of 18-29 year olds, 27% of 30-49 year olds, 19% of 50-64 year olds, and 8% of 65+ 

year olds [154]. While we do not have ground truth on the actual ages or genders of 

users (and for privacy reasons we intentionally make no attempt to connect users with 

real people), these results give us reasonable confidence in the prediction results and 

the representativeness of our sample compared to the Twitter population.  

For each classifier, we calculate accuracy, false positive rate, false negative 

rate, and area under the receiver operating characteristic (AUC ROC) curve, 

recognizing that depending on the use case, different metrics can be appropriate for 

judging the success of a classifier. These results are presented in Tables 23 and 24 for 

the four different testing scenarios. Values are rounded to the third decimal place. 

Gradient Boost had the highest accuracy and highest AUC ROC in every 

scenario; it almost always had the lowest false positive rate (FPR in the table) and 

false negative rate (FNR in the table). Random Forest performed quite poorly; in 

some cases the accuracy and AUC ROC values suggest the algorithm was not 

performing much better than random guessing. 
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Figure 5: Number of predicted males and females in the cases (compromised) and controls 

(uncompromised) datasets for the 30:70 ratio 

 

 
 

 
 

 

 
 
 
 

Figure 6: Distribution of predicted age for the 30:70 ratio 
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Figure 6: Number of predicted males and females in the cases (compromised) and controls 

(uncompromised) datasets for the 50:50 ratio 

 
 
 
 

 
Figure 7: Distribution of predicted age for the 50:50 ratio 
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8.3.4 Feature Importance  

For tree-based algorithms, feature importance is a value indicating how useful 

a feature was in the construction of the decision tree; features can be ranked based on 

importance values to understand which features were used the most to make decisions 

[114]. Feature importance can be calculated directly using the feature_importances 

function provided in each of the Python sklearn classifier libraries. 

Tables 25 and 26 present the feature importance determined by the Gradient 

Boost algorithm. Feature importance of Ada Boost and Extra Tree are presented in 

Appendix B. Random Forest, our worst performing classifier, gave each feature an 

importance of 0.0 in almost every ratio and testing/training scenario and so its results 

are not presented. 

30:70 Case to Control Ratio 
Classifier Accuracy FPR FNR AUC ROC 

80/20 Train/Test Split 
Random Forest 0.696 0.696 0.304 0.5 

Ada Boost 0.768 0.231 0.233 0.854 
Gradient Boost 0.782 0.217 0.22 0.863 

Extra Tree 0.76 0.216 0.295 0.803 
70/30 Train/Test Split 

Random Forest 0.699 0.699 0.301 0.5 
Ada Boost 0.774 0.226 0.227 0.854 

Gradient Boost 0.788 0.212 0.213 0.866 
Extra Tree 0.757 0.232 0.271 0.807 

Table 23: Supervised classification results for the 30:70 case to control ratio 
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50:50 Case to Control Ratio 
Classifier Accuracy FPR FNR AUC ROC 

80/20 Train/Test Split 
Random Forest 0.719 0.061 0.499 0.731 

Ada Boost 0.753 0.243 0.251 0.836 
Gradient Boost 0.768 0.232 0.232 0.867 

Extra Tree 0.745 0.243 0.266 0.817 
70/30 Train/Test Split 

Random Forest 0.632 0 0.729 0.635 
Ada Boost 0.758 0.24 0.243 0.845 

Gradient Boost 0.791 0.208 0.21 0.874 
Extra Tree 0.739 0.216 0.306 0.805 

Table 24: Supervised classification results for the 50:50 case to control ratio 

8.4 Results 

This section presents an overview of the results.  

8.4.1 Research Question 8.1  

Research Question 8.1 (RQ8.1) asked if features extracted from the Twitter 

profiles of users can be used to differentiate between cases of self-reported cyber 

victimization and controls. Gradient Boost was the best performing classifier, 

achieving accuracy values ranging from 76.8% to 79.1% and AUC ROC values 

ranging from 86.3% to 87.4%.  

Though our accuracy results are comparable to related work predicting user 

behavior from Twitter data [123] and related work predicting user encounters with 

malicious domains [115] or malware [148], our false positive and false negative rates 

are high (around 21 to 23% for both FPR and FNR). Despite this, our results suggest 

there are opportunities to use data from a user’s Twitter profile to predict if a user will 

disclose victimization.  
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8.4.2 Research Question 8.2  

Research Question 8.2 (RQ8.2) asked what type of user activity on Twitter 

could be used to predict disclosure of cyber victimization. We focus on assessing 

feature importance associated with the Gradient Boost algorithm, our best performing 

classifier, to answer this question.  

For the 30:70 case to control ratio and both training/testing splits, account age 

is ranked as the most important feature for classification, followed by number of 

tweets, and then the number of favorites. For the 50:50 case to control ratio and both 

training/testing splits, number of Tweets ranks first, followed by account age, and 

then number of favorites again. Overall, features related to Tweet content, such as 

average number of words and shared links, rank toward the middle of the list. 

Features related to a user’s social network, such as number of followers, number of 

friends, and list count, rank toward the bottom of the feature importance list.  

As discussed in the Background and Related Work section, other researchers 

found volume and timing of online activity to be important predictors of malware 

exposure or infection [112, 115, 148]. We similarly find high volume of activity and 

length of time on Twitter to be predictors of self-reported victimization. 
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30:70 Case to Control Ratio, Gradient Boost Feature Importance 
80/20 Train/Test Split  70/30 Train/Test Split  
Feature Importance Feature Importance 

Account age in months 0.18 Account age in months 0.217 
Tweet count 0.171 Tweet count 0.162 
Favorite count 0.141 Favorite count 0.15 
Average number of links 0.107 Average number of links 0.1 
Average number of words 0.1 Average number of words 0.08 
Average number of 
mentions 0.078 

Average number of 
mentions 0.079 

Age 0.077 Followers count 0.076 
Followers count 0.062 Age 0.06 
Friends count 0.043 Friends count 0.04 
Listed count 0.034 Listed count 0.028 
Gender 0.007 Gender 0.008 

Table 25: Supervised classification results for the 30:70 case to control ratio 

 
 

50:50 Case to Control Ratio, Gradient Boost Feature Importance 
80/20 Train/Test Split  70/30 Train/Test Split  
Feature Importance Feature Importance 

Tweet count 0.183 Tweet count 0.201 
Account age in months 0.157 Account age in months 0.165 
Favorite count 0.144 Favorite count 0.147 
Average number of words 0.113 Average number of links 0.123 
Average number of links 0.098 Average number of words 0.119 
Average number of 
mentions 0.087 

Average number of 
mentions 0.075 

Age 0.087 Followers count 0.06 
Friends count 0.056 Friends count 0.04 
Followers count 0.044 Age 0.032 
Gender 0.019 Listed count 0.02 
Listed count 0.012 Gender 0.016 

Table 26: Supervised classification results for the 50:50 case to control ratio 
 

8.4.3 Research Question 8.3 

Research Question 8.3 (RQ8.3) asked if demographic factors of age and 

gender could be used to predict disclosure of cyber victimization. Again, we focus on 
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assessing feature importance associated with the Gradient Boost algorithm, our best 

performing classifier, to answer this question. 

In the four different ratios and train/test split scenarios, age is ranked in the 

bottom half of all features: it is ranked as 7 out of 11 twice, 8 out of 11 once, and 9 

out of 11 once. Gender is ranked as the least important feature three times and as the 

second to last most important feature once. 

Unlike the related work discussed previously which found relationships 

between age and gender and likelihood of victimization or malware encounters, our 

results suggest these demographics are not so useful for understanding self-reporting 

behaviors and self-reported victims. 

8.5 Discussion 

This section provides a discussion and potential applications of our results. 

Our results suggest account age and number of Tweets are some of the most 

important features for differentiating between users who publicly disclose cyber 

compromise and those who do not. This suggests a few theories that can be explored 

in future work. The first is that longer ‘exposure’ may be linked to a higher chance of 

victimization, i.e. more time online simply means more opportunities for a user to be 

victimized. By the nature of our dataset, all users we evaluated have public accounts, 

so another potential theory is users who frequently and freely share information 

publicly have weaker security practices or are more likely to be noticed and therefore 

targeted by attackers. Alternatively, users who post more frequently and have been on 
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Twitter longer than others may simply be more comfortable turning to the platform to 

express their problems.  

Our results also suggest that age and gender, frequently reported in related 

work as important demographic factors for identifying vulnerable users or users with 

poor security practices, are not so important when it comes to understanding 

victimization cases reported on Twitter. The impact of age may not be obvious in our 

data because Twitter skews young [154] and victimization is generally reported to be 

more common in the 18-24 age range [108, 110, 111, 113]. It is unclear why gender 

has little to no importance. This may simply indicate that men and women have 

similar victimization-reporting habits. Alternatively, the lack of importance of both 

age and gender in our study may have broader implications when discussing the 

relationship between demographics and cybersecurity practices.  

 Most user-focused work in cybersecurity studies a limited range of security 

incidents and behaviors. As discussed in our related work, correlations between 

demographics and likelihood of victimization are often specifically related to 

phishing; a few papers connect demographics to malware encounters. Therefore, it 

may not be surprising that we found no relationship between demographics and 

victimization reports, since the Twitter data was not limited to evaluating one type of 

attack or one type of device (and it is reasonable to assume that vulnerability may be 

context and platform specific). 

Overall, work evaluating a broader range of attacks and user security 

behaviors and attitudes is limited. We hypothesize that this is largely because real 
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victimization data is often hard to obtain. Most organizations keep a close hold on 

incident data for privacy, security, and brand reputation-related reasons.  

Using user-reported Twitter data as a source of ground truth on victimization 

may provide an opportunity for researchers to develop theories and understandings 

about previously unstudied platforms or attacks.  While using social media data for 

this purpose relies on user-reported data, we assume that most users who self-report 

victimization are being honest based on the nature of their reports.  

 In our dataset, most users report victimization to apologize to their followers 

for content propagated by a compromised account, e.g. Sorry for the spam, been 

hacked; to warn their followers away from malicious content, e.g. If you got a private 

message from me, don’t click the link!; or to get help from the service provider 

associated with the compromised account e.g. @Facebook someone hijacked my 

account and I can’t find your customer service information. We therefore assume we 

can use self-reported incidents as a proxy for ground truth data on user compromise.  

 In addition to enabling broader coverage of security incidents, Twitter data 

can also potentially be used to proactively identify users who will become cybercrime 

victims. In the field of public health, identifying risk factors in people that make them 

more susceptible to certain diseases enables health practitioners to recommend early 

interventions that can reduce the likelihood of the disease. Similarly, identifying users 

who are more likely to become cybercrime victims through relatively easy to obtain 

data may be a way for network administrators or service providers to identify the 



 179 
 

more vulnerable users in their populations and step in with early interventions or 

additional protections for these users.  

8.6 Limitations  

The previous chapter highlighted several limitations of our data collection 

process and dataset. The following presents a few more limitations specifically 

relevant to the classification problem addressed in this chapter.  

Just as there was uncertainty in our case dataset, there is uncertainty in our 

control dataset. For our controls, we do not know how many users who did publicly 

report victimization we failed to identify in our data cleaning process.  We also do not 

know how many controls have been victims of cybercrime but have chosen not to 

publicly share this on Twitter. Because of this, we can only use our immediate results 

to analyze user-reporting behaviors. In our discussion section we suggest the 

possibility of using our results to predict users who will become compromised, but 

work to understand what percent of people who are victims choose to report 

victimization is necessary first. Again, we also do not know the mapping of users to 

real people. Therefore, it is possible that some ‘users’ are multiple people or that 

multiple user accounts are owned by one person; it is also possible that some accounts 

are fake. Identifying fake or duplicate identities is a challenging and distinct problem 

that was outside the scope of this paper.  

The next limitation is the lack of ground truth for the gender and age of users. 

We used University of Pennsylvania's publicly available predictive lexica, which was 

considered state-of-the-art in age and gender prediction at the time it was published in 
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2014 [149]. We know it is likely that some predictions are incorrect; in some cases 

we observed obvious problems, such as users with negative predicted ages (these 

were discarded from the final sample). However, to the best of our knowledge there 

was no other readily available or more recently developed lexicon that we could 

apply to our study. Additionally, our predictions were in line with estimated Twitter 

demographics in 2018, so we felt confident moving forward with this as our selected 

approach. 

Our final limitation is the high false positive and false negative rates of the 

classifiers. This may suggest our current features are not strong enough to fully 

differentiate between cases and controls despite relatively successful accuracy and 

AUC ROC values. In future work we intend to add additional features to see if we 

can reduce the FPR and FNR. 

8.7 Conclusion   

To the best of our knowledge, this chapter presents one of the first research 

efforts that takes advantage of unsolicited, user-reported victimization data to study 

and make predictions about users in a cybersecurity context. We identify a set of 

keywords commonly used by people on Twitter to discuss various forms of cyber 

victimization and use these keywords and a thorough manual review process to 

iteratively construct a dataset of 1,903 cases of self-reported compromise. We also 

build a dataset of 7,056 controls.  

Motivated by related work that has uncovered relationships between Internet 

activity and user demographics and likelihood of compromise, we develop a set of 
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eleven features from the case and control user profile data. These features include 

number of Tweets, account age, number of followers and more, in addition to 

demographic factors of age and gender as determined by predictive lexica.  

We perform supervised learning using four different tree-based algorithms 

and evalute feature importance for each classifier. Our best performing classifier 

achieves an accuracy of 79.1% and AUC ROC of 87.4%. Account age and number of 

Tweets rank as the top two most important features, while age and gender rank as 

some of the least important features. This corroborates work that has tied Internet 

activity to victimization but contrasts work that has found age and gender to be 

important predictors of victimization.  

User-focused security research is limited despite widespread recognition of 

users as the weakest link in cybersecurity. Research focused on users is generally 

studied in the context of phishing attacks or malware infections, while understandings 

of users are typically derived from surveys or controlled experiments. There is a need 

for additional methods and sources of data that can supplement existing techniques 

and knowledge.  

Our work shows the advantages of tapping social media data for such reseach. 

Considering user-reports as a proxy for ground truth data on victimization, our work 

hints at the possibility of predicting which users will become victims using publicly 

available data alone. More generally, our study shows the feasibility of tapping social 

media data to obtain unsolicited user feedback on a broader range of attacks and 

experiences.  
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Based on the results of this study, in future work we plan to refine and expand 

the dataset presented here. This will include automating the data collection and 

cleaning process where possible; including a broader range of features; and 

evaluating additional techniques to extract human traits and demographics from the 

Twitter data, in particular focusing on attributes linked to cybersecurity behaviors in 

related work. We will then apply the reputation quantification methodology and 

monitor these users over time, as we did in the network traffic case study.  
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9 Conclusion 

9.1 Introduction  

Reputation has a long history as a crucial factor for establishing trust and 

making predictions about an entity’s character or quality. Though subjective by 

definition, in recent years it has emerged as a quantifiable concept in cybersecurity: 

represented as a numerical score, ranking, or label, it is often used as the basis of 

decisions such as which IP address to blacklist or which users to grant or deny 

privileged access. Its value is indisputable, but the methods to quantify it are often ad-

hoc, arbitrary, and difficult to replicate or validate. Motivated by this, the goal of this 

dissertation was to develop a quantitative definition of cyber user reputation and a 

methodology for evaluating cyber user reputation for use in a network administration 

or security setting. This chapter concludes this dissertation with a summary of the 

contributions and completed work (9.2), a discussion of the proposed reputation 

evaluation methodology and case studies (9.3), an overview of the limitations (9.4), 

areas of future work (9.5), and concluding comments (9.6).  

9.2 Summary of Contributions and Completed Work   

This section presents a summary of the completed work, contributions, and 

peer-reviewed work associated with this dissertation.  
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9.2.1 Summary of Dissertation  

In this dissertation, we defined a user as an account or collection of accounts 

on a computer network or Internet service associated with a unique human who exists 

in the physical world. There were three research questions presented in Chapter 1:  

• RQ1: What data can be used as evidence of a user’s cyber reputation for 

specific characteristics or behaviors on a computer network?  

• RQ2: How can this evidence be used to define and quantify a user’s cyber 

reputation and develop predictive models of future reputation? 

•  RQ3: How can quantification assessments and predictions of a user’s cyber 

reputation be validated and refined?  

 Chapter 2 presented the background and related work on reputation systems. 

In the cyber domain, reputation is primarily used to differentiate between the 

malicious and the benign, the trustworthy and the untrustworthy. Reputation is also 

used to quantify an entity’s perceived authority, expertise, or influence. Examining 

these different definitions, it became clear that 1) reputation is always relative to 

some specific characteristic or behavior and 2) some form of evidence is crucial for 

any reputation assessment.  

Chapter 3 delved further into the background and related work, examining 

how various definitions of reputation are quantified. Based on related work that 

represents reputation as a probability, an intuitive approach to quantifying a 

subjective and uncertain quality, Chapter 3 presented a mathematical interpretation of 

user reputation: 



 185 
 

A user’s cyber reputation score is a probability representing the likelihood 

that a user demonstrates a specific characteristic on a network, based on evidence of 

past behaviors that are considered representative of this characteristic.  

Chapter 4 presented a general methodology for answering the three main 

research questions of this dissertation. The methodology consists of three phases for 

evaluating user reputation and developing mathematical user cyber reputation scores. 

Phase One addresses RQ1 by exploring how evidence can be collected to evaluate 

some characteristic of interest. In Chapter 4, we presented a variety of different data 

sources that may be useful for evaluating users, including network traffic, Internet 

activity, and user demographics. We also presented techniques for identifying, 

extracting, and validating evidence from these observations. 

Phase Two of the methodology addresses RQ2 by exploring how this 

evidence can be used to mathematically quantify cyber reputation. Since a user’s 

cyber reputation score is a probability representing the likelihood a user demonstrates 

a specific characteristic based on evidence, a Bayesian Inference process can be used. 

Chapter 4 presented a simple example of using a Beta-Binomial conjugate pair to 

develop a prior distribution for a user and updating it with evidence to form the 

posterior, which in turn can be sampled from to determine the most likely probability 

a user displays some behavior or characteristic.   

Lastly, Phase Three addresses RQ3 by exploring how reputation assessments 

can be validated and refined through pilot studies, forecast verification techniques, 

additional data, and variations on the reputation definition.  
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Chapters 5 and 6 presented a case study at a university illustrating the 

reputation evaluation methodology. In Chapter 5, we first explored the feasibility of 

using a user’s network traffic as a source of evidence for reputation, where the 

characteristic of interest was infection status, as defined by the university’s IDS/IPS 

threat logs. The observation space consisted of a sample of wireless network traffic 

for each user. We extracted 36 features from the network traffic. We evaluated their 

feasibility as evidence for reputation through a supervised classification problem, in 

which the 36 features were used to differentiate between infected and uninfected 

users.  

 While Chapter 5 served to illustrate Phase One of the reputation evaluation 

methodology (and therefore RQ1), Chapter 6 focused on Phases Two and Three (and 

therefore RQ2 and RQ3). Based on the results of the supervised classification study, 

we determined network traffic provided enough initial evidence to differentiate 

between infected and uninfected users. Motivated by this, in Chapter 6 we first 

illustrated the process of developing reputation models, creating various distributions 

using combinations of the network traffic features for a sample of users. We then 

used these reputation models to quantify the reputation of 4,787 infected users and 

4,787 uninfected users over a three-month period. We analyzed the reputation scores 

and evaluated them based on various prediction/forecast verification metrics. Overall, 

Chapter 6 illustrated the feasibility of using a Bayesian probability-based approach 

for developing user reputation scores.    

 Chapters 7 and 8 further explored RQ1 through a case study of user-reported 

compromise on Twitter. Observing that users will frequently turn to Twitter to self-
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report compromise (Help, I’ve been hacked!), in Chapter 7 we focused on 

constructing a dataset of user-reported cases of compromise. An analysis of user-

reported compromised devices and accounts and the associated consequences 

revealed many interesting observations about users and their cybersecurity attitudes, 

behaviors, misconceptions about security, and propensity toward risky cyber 

decisions.  

Using self-reports as ground truth for compromised users, Chapter 8 explored 

whether Twitter data can be used to make predictions about users and whether 

enough evidence can actually be extracted from social media data to evaluate user 

reputation. We framed this feasibility study as a supervised learning problem, similar 

to the approach taken in Chapter 5. The observation space for this study consisted of 

up to 3,200 of a user’s past Tweets and any publicly available profile data. We 

extracted various features from the Twitter data, such as the user’s number of Tweets, 

followers, and favorites. We used predictive lexica to extract demographics of age 

and gender from user Tweets, motivated by the correlations identified in the literature 

between these features and likelihood of victimization and poor security practices. 

The study revealed the potential for using self-reported data from social media to 

understand users and collect evidence for quantifying user reputation. The study did 

not, however, find a connection between demographics and user-reported 

compromise. Based on the results, this study will be improved and expanded; this is 

discussed in more detail in the Future Work section of this chapter.  
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9.2.2 Summary of Contributions  

The contributions of this dissertation are as follows: 

• We present an intuitive, mathematical interpretation of user cyber reputation 

for network security settings grounded in Bayesian statistical theory and 

motivated by existing reputation literature.  

• We present a general methodology for evaluating a user’s cyber reputation 

that enables a network administrator to identify evidence that can be used to 

quantify cyber reputation, make predictions about future behaviors, assess the 

uncertainty associated with these predictions, and update cyber reputation 

assessments and predictions as new evidence becomes available. 

• We contribute to the science of security by framing reputation quantification 

as a scientific experiment to test and validate a hypothesis, improving upon 

existing techniques for quantifying reputation that are often ad-hoc and 

arbitrary.  

• We illustrate and validate the entire reputation evaluation methodology 

through a case study at a large, public university in which we use network 

traffic to develop reputation models for infection and uninfection and then 

apply these models to assign Bayesian probability-based reputation scores to a 

sample of users.  

• Through this case study of network traffic and user infection, we contribute 

new understandings of users to the field of cybersecurity by identifying 

features that can be extracted from a user’s network traffic to identify users 

who may be more susceptible to infection than others. 
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• We present one of the first Twitter datasets of user-reported cases of device or 

account compromise. 

• Through our analysis of this dataset, we uncover additional insight into user 

cybersecurity attitudes and behaviors, in addition to illustrating both the 

viability and importance of using social media data to understand users from a 

cybersecurity perspective.  

9.2.3 Summary of Published Work  

The case study presented in Chapter 5 maps to a peer-reviewed paper 

published in the January 2019 issue of the journal Computers & Security [155].  

The case study presented in Chapter 7 was submitted to the 2019 Web 

Conference, while the expansion of this case study presented in Chapter 8 was 

submitted to the 40th IEEE Symposium on Security and Privacy.  The papers were not 

accepted and revisions are being made to both based on reviewer feedback. The 

papers will be revised and resubmitted post-defense.  

An additional paper related to research presented in this dissertation but not 

included as a chapter was published in the March 2018 issue of Computers & 

Security. The paper, titled Correlating Human Traits and Cybersecurity Behavior 

Intentions, investigated how differences in demographics, personality, risk-taking 

preferences, and decision-making styles impact user cybersecurity behavior intentions 

through a survey of 369 students, faculty, and staff at the University of Maryland. 

Individual differences accounted for 5%–23% of the variance in cybersecurity 

behavior intentions. Characteristics such as financial risk-taking, rational decision-
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making, extraversion, and gender were found to be significant unique predictors of 

good security behaviors. 

A conference paper, not included in this dissertation research, was presented 

at the International Conference on Security and Privacy in Communication Systems 

(SECURECOMM, 27% acceptance rate) in October 2015. The paper, titled An 

Improved Method for Anomaly-Based Network Scan Detection [156], investigated the 

use of machine learning-based approaches for network scan detection and showed the 

approach on a case study on the University of Maryland’s network. 

9.3 Discussion 

This section presents a discussion of the reputation evaluation methodology, 

potential applications of user cyber reputation, and some general security and ethical 

considerations when quantifying user reputation.  

9.3.1 Comments on the Reputation Scoring and Evaluation Techniques   

Related work in the fields of e-commerce and engineering risk assessment in 

addition to scientific experiment design motivated the proposed mathematical 

quantification of user cyber reputation and the evaluation methodology. This section 

provides some additional justification for the reasoning behind this approach.  

Framing a reputation score as a probability is an intuitive way to quantify a 

subjective concept and allow uncertainty to be transparent in the reputation score. 

However, as evidenced in Chapter 2, there are many ways reputation can be 

quantified besides probabilities. Nominal and ordinal metrics are commonly seen in 

both the academic literature and in reputation systems used in practice: consider star 
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ratings for products or movies; likes and dislikes or ‘upvotes’ and ‘downvotes’ on 

social media; rankings for institutions; and numeric scores or labels for IP addresses 

and domain names.  

Nominal scales can certainly serve a purpose for making a score more 

actionable. In the network traffic case study for example, we mapped likelihoods to 

the labels ‘infected’ or ‘uninfected,’ with the intention that this label could be used to 

help the network administrator decide where to focus security training and resources. 

The problem with using nominal scales alone is that they fail to capture uncertainty 

and can be highly subjective, especially when considering characteristics that cannot 

be as objectively defined as infection status or compromise. By using them in 

combination with probability, the degree of confidence in the assigned label can be 

understood.  

Some reputation systems make use of ordinal scales; the FICO score and 

China’s Zhima Credit are examples of this. The reality is, however, that these scales 

are often arbitrary. Though a FICO score can certainly help banks understand which 

people have ‘better’ financial behavior than others, without context a score of 732 

does not mean much. Even with context these scores are confusing; exactly how 

much better is a 733 than a 732?  

Interval scales and ratio scales can be appealing but are somewhat 

problematic, since it is challenging to define fixed intervals between reputation 

values. Additionally, it may be difficult to determine what a score of 0 (i.e. the “true 

zero” in the interval scale) actually is in the context of reputation. Overall, using 
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probability values provided a way to ensure reputation scores were not arbitrary 

numeric values or labels.  

The proposed reputation evaluation methodology assumes some central 

authority is tasked with evaluating and maintaining user reputation scores and has 

insight into the identities and activities of users on the network. In other words, the 

methodology is intended for use in a centralized reputation system.  

In Chapter 4, we proposed that the reputation evaluation methodology should 

essentially follow the same process as designing and validating a scientific 

experiment. Making a judgment about someone’s reputation and observing if the 

judgment is correct can be equated to forming and testing a hypothesis. Chapter 4 

outlined several requirements for a reputation evaluation methodology, based on 

requirements for sound experiments established previously in the scientific literature: 

datasets must be clean and the results of the reputation evaluation should make sense 

given the data; the reputation evaluation procedures should generalize to other 

networks and user populations; sensitive user data must be carefully and securely 

stored; and finally, other researchers and practitioners should be able to replicate the 

methodology. We also established several objectives for the methodology: it must 

allow the central authority to be proactive when assigning scores; it must enable 

quantification of uncertainty; and finally, it must enable updating of reputation scores 

over time.  

The proposed methodology accomplished these requirements and objectives. 

Phase One captured hypothesis development and initial experiment design; Phase 

Two captured experiment testing; Phase Three captured experiment validation and 
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improvement. The two different case studies illustrated the processes for developing 

clean datasets, practicing ethical and secure data collection and storage, proactively 

assigning and updating of reputation scores, and incorporating uncertainty in the 

reputation assessments.   

9.3.2 Benefits and Applications of Quantifying User Cyber Reputation  

As mentioned previously, one of the major motivations for focusing on 

reputation quantification in this dissertation was the application of reputation to 

cybersecurity. The network traffic case study and the social media case study both 

focused on the idea of using evidence to make some determination about how likely a 

user is to become compromised on a network or online platform. What can actually 

be done with a reputation score in practice? This section provides a deeper discussion 

of the applications and benefits of quantifying the reputation of users on a network.  

 The phrase ‘the human is the weakest link in cybersecurity’ echoes throughout 

most human-focused cybersecurity research. Some researchers have focused on the 

problem of understanding who is most vulnerable to poor security practices or online 

victimization; others have tried to uncover why they are vulnerable. In studying 

online reputation, we pull insights from both these areas of research to proactively 

identify the vulnerable users. Assigning reputation scores to users on a network can 

help administrators identify users in need of interventions that could prevent them 

from being victimized. Users whose scores reveal they are more likely to be 

compromised than other users may be in need of additional security training, 

resources, and support.  
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 Reputation can, of course, be evaluated for many other characteristics and 

behaviors besides vulnerability or likelihood of compromise. Cyber reputation may 

also be useful for identifying the users who pose an enhanced threat to a network or 

platform. This has applications in the realm of insider threat detection: who are the 

users conducting suspicious activities on the network?; how similar are their 

behaviors to past insiders?; and so on. Knowing the reputation of a user may also be 

useful for assessing the content produced by the user. This is crucial in social media 

settings and can be used to address the most notorious social media problems of the 

last couple of years: “fake news” and fake accounts. With reputation, we can evaluate 

how likely the user is to be producing authentic or factual content, given past content 

from the user or similar users.  

Discussed briefly in Chapter 6, another application of evaluating and tracking 

reputation is to identify hijacked or compromised accounts. Similar to financial credit 

scores, abrupt changes in a user’s behavior and/or reputation score may indicate 

someone else is making use of the user’s account. If users are aware of their 

reputation scores, they can monitor their scores just as they might monitor their 

financial credit reports.  

Making reputation scores known to users may also be a technique to enforce 

‘good’ behavior on the network or platform and discourage ‘bad’ behavior. Just as 

stars for product ratings or likes on Instagram and Facebook encourage quality 

products and content, reputation scores might motivate users to comply with network 

rules and policies. This is especially the case if reputation scores are used to make 

decisions about permissions and access on the network or platform.  
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Regardless of what cyber reputation is used for, it is crucial that it is based on 

evidence and can be validated. Security decisions about users should not be arbitrary 

and subjective; a formalized method for evaluating reputation (or any security metric 

for that matter) can ensure decisions are rooted in data and any uncertainty in the 

prediction or decision is transparent.  

9.3.3 Unintended Consequences of Quantifying User Cyber Reputation  

There are drawbacks to assigning reputation scores to users and creating a 

centralized reputation system for a network. This section discusses some important 

considerations related to ethics and security.  

 
9.3.3.1 Ethical Considerations  
 

There are ethical concerns associated with any system designed to track and 

score people. A system that catalogs vulnerable users or ties user demographics to 

some behavior can intentionally or unintentionally lead to harmful profiling of certain 

populations. Additionally, biases in the data or the scoring algorithm can result in 

reputation scores biased toward or against certain populations. 

For example, as discussed previously in this dissertation, research including 

our own has identified age and gender as demographic factors linked to increased 

likelihood of compromise. If a network administrator identifies people with certain 

demographic traits to present enhanced risks to their network, are they simply 

allowed to restrict or deny access and privileges of these users for the sake of 

protecting the network?  
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As another example, in the US the FICO credit score has unintentionally led 

to high-interest rates and denied loans among specific demographic groups. For 

example, length of credit history is a key part of a FICO score, meaning that younger 

people often have trouble qualifying for housing mortgages [157]. Recognizing the 

discrimination that FICO has unintentionally enabled, in 2019 Fair Isaac Corporation 

intends to roll out the UltraFICO score, an opt-in score intended to address some of 

the shortcomings of the current score by incorporating additional factors, such as a 

person’s savings and regular bill payments. UltraFICO will also provide a score for 

the 15 million consumers who do not have a FICO score because they simply do not 

have a credit history [158]. In the case of these 15 million users, not having a score 

was as damaging as having a low score because it indicated there was no knowledge 

about these users and therefore providing them with a loan was risky. In other words, 

the absence of a score can still imply reputation. Therefore, it is important to consider 

not only how a score is assigned but also who receives a score.  

Another important consideration is ensuring the system is not abused or used 

for malicious purposes. Questions that arise include: who has access to the reputation 

system?; who has the authority to assign scores or make decisions based on scores?; 

and how are the powers of a reputation system’s central authority or a network’s 

administrator kept in check? Take, for instance, China’s financial and social credit 

system, which is intended to prevent dishonesty and encourage socially acceptable 

behaviors. It is solely up to the government to decide what behaviors are acceptable; 

the system has already been used to punish people for behaviors deemed undesirable 
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through canceled flights, bans from top educational institutions, and a variety of other 

repercussions [159]. 

Shortcomings of existing reputation systems will be key to understand in the 

development of any cyber reputation system. As with any research or system, benefits 

to users should outweigh the risks. However, as the FICO example illustrated, it is 

sometimes difficult to know what the risks and problems are in advance.  

9.3.3.2 Security Considerations  
 

There are several important security considerations if a user reputation system 

is implemented in an operational setting. The primary security consideration centers 

on protecting user privacy. The data used to develop reputation scores should stay 

confidential. The central authority and/or reputation system will likely aggregate or 

access a variety of data sources containing sensitive information about users, to 

include their real identities, demographics, online activities, and more. If the 

reputation system is breached or the data is somehow exposed, this could cause 

serious harm to the users. The reputation scores themselves should also be 

confidential; access to reputation scores could provide an adversary with a detailed 

list of vulnerable users on a network. Another important consideration is ensuring the 

integrity of both the data used to develop reputation scores and the reputation scores 

themselves; a malicious actor should not be able to alter a user’s score by contributing 

garbage data or altering the score through some other means. Related to this, the 

people with access to the reputation system and its data must somehow be vetted and 

trusted not to share or alter the data.  
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Overall, the security considerations listed here are challenging to implement 

and enforce (one need only to turn on the news to learn about the latest breach), but 

they are important to consider and dedicate time and resources toward before 

establishing a reputation system. Otherwise, the system may do more harm than good 

on the network. 

9.4 Limitations  

This section focuses on the limitations of the reputation evaluation 

methodology and the two case studies presented in this dissertation.  

First, in its current state, the reputation evaluation methodology is not resilient 

to reputation manipulation. If a user tries to somehow manipulate their score through 

fake data, altered behaviors, or some other means, there is nothing in the 

methodology to detect or correct for this. This is particularly concerning if the 

reputation system is transparent to users and there is some penalty or reward 

associated with a user’s reputation score. This was not an issue for the case studies 

presented in this dissertation, but will be a concern to address in future work.  

On a similar note, the methodology does not validate whether all data feeding 

a reputation score truly belongs to a particular user. Though we assume there is some 

central authority such as a network administrator with insight into the connection 

between a user account and network activity, if the user’s account is hijacked or if the 

user willingly allows another person to access the network with their credentials, the 

scoring system will still assume this data is associated with the true account owner. In 

theory, if user activity is tracked and scored over time, abrupt changes in behavior or 
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the reputation score may be used as an indicator that a different user is behind the 

account. Regardless, this limitation is in need of further exploration in future work.  

Another limitation of the methodology is its dependence on data. Insubstantial 

data or weak evidence will produce scores with high uncertainty. Unfortunately, this 

limitation is extraordinarily difficult to avoid; garbage in will equal garbage out. 

There are also limitations associated with the case studies and their ability to 

illustrate the reputation evaluation methodology. The first limitation is that the two 

case studies did not illustrate all the nuances and complexities of the presented 

methodology. While the network traffic case study showed the full methodology 

applied to users on a university network, only one source of data was used for 

reputation evaluation. The reputation evaluation methodology provided guidance for 

combining evidence from multiple sources of data in order to strengthen confidence 

in scores and predictions; privacy restrictions on user data prevented us from 

incorporating other sources of data, such as demographics, into this case study at the 

time of writing this dissertation.  

Lastly, both case studies focused on a similar characteristic of interest that 

was fairly objective in nature i.e. is the user infected or uninfected, compromised or 

uncompromised. While this dissertation was focused on applying reputation to a 

network security setting, the selection of these characteristics does not show how a 

more subjective characteristic can be handled by the evaluation methodology. More 

subjective qualities, such as maliciousness or trustworthiness, were discussed in this 

dissertation but were not fully explored through a case study. As with the other 
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limitations, this will be explored and addressed in future work that is addressed in 

more detail in the following section.   

Note that there are also limitations specific to each case studies’ design and 

results; these were discussed previously in the case study chapters.  

9.5 Future Work   

This section discusses immediate future work to expand the two case studies 

and refine the reputation evaluation methodology. This is followed by a discussion of 

long-term areas of research in the cyber reputation space.  

9.5.1 Expanding the University Network Case Study  

Chapters 5 and 6 presented a case study at a large, public university in which 

network traffic was used to quantify the most likely probability that a user becomes 

infected. Infection implied a traffic session generated by a user’s device created a 

threat alert on the university’s Intrusion Detection/Prevention System. Features 

extracted from network traffic were used as the evidence to make the reputation 

assessments. The results of any reputation assessment are only as good as the 

evidence, and in this study, using network traffic alone still left uncertainty in the 

predictions. As discussed previously in this dissertation, research has tied individual 

differences in people - such as demographics, personality, and so on - to things such 

as poor security practices, susceptibility to phishing victimization, the likelihood of 

malware encounters or infections, and more. So, as a next step to strengthen our 

reputation predictions, we are working with the Division of Information and 

Technology and various human resource groups to pair user network traffic with 
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university-collected demographics, to include age, gender, place of birth, status at the 

university (student, faculty staff), and more. We will examine if the incorporation of 

these features can reduce the uncertainty in our predictions.  

9.5.2 Expanding the Social Media Case Study  

Chapters 7 and 8 presented a case study motivated by work in public health 

that leverages user-reported social media data to study and make predictions about 

people. We collected user reports about device and account compromise and then 

extracted various activity-based features and demographics of age and gender from 

the Twitter data. As in the network traffic case study, we first tested the feasibility of 

using these features as evidence through a supervised classification problem. Our 

long-term goal for this study is to apply the full reputation evaluation methodology 

once we have refined and automated our data collection and cleaning process, 

expanded our feature set, and addressed reviewer feedback to the conference paper 

versions of these chapters. 

There are several additional research problems nested within the effort to 

expand the social media case study. This includes human-focused cybersecurity 

research to develop deeper understandings of the relationship between various human 

traits and victimization. It also includes some timely social media research problems: 

conducting bot and fake account detection in order to better filter and clean our 

dataset and making text-based predictions about users in order extract additional 

demographics and other human traits from the Twitter data.  
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9.5.3 Improving the Reputation Evaluation Methodology  

Additional future work includes addressing the limitations and determining 

how the methodology can be used in practice.  

First, as discussed in our limitations section, in its current state the proposed 

methodology does not address the issue of reputation manipulation. For the two case 

studies presented in this dissertation, this was not necessarily an issue since users 

were unaware their reputation was being evaluated and therefore could not actively 

attempt to manipulate any score. However, in a setting where a user knows their 

score, the methodology must be able to handle the fact that reputation fraud may be 

occurring. Detecting cheaters in reputation systems has been explored in settings such 

as e-commerce; this problem was outside the scope of this dissertation but will be key 

in future work.  

Second, the next major area of improvement will be ensuring that the 

reputation system is fair and does not unintentionally favor or punish certain users. 

We will explore how to ensure no behavior or trait associated with a user can 

automatically or substantially hurt or help a score; this may also help prevent 

reputation manipulation. This is a challenging problem, especially if demographics 

are used as evidence of a propensity toward certain behaviors or characteristics. This 

was highlighted previously in the discussion section of this chapter: how do we 

ensure we are not accidentally profiling users in a harmful manner or using biases 

(either our own or ones in the data) to make determinations about users?  

A third area of improvement is using the absence of data as input to a 

reputation score. In some cases, the absence of data about a particular user may be 
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just as telling as actual data. For example, consider the problem of bot or fake account 

detection on social media: a lack of user information or activity on a profile may 

signal an account is not actually authentic. For certain applications of reputation 

scoring, looking at the absence of data may help address the system’s dependency on 

‘good’ data, as discussed previously in the limitations section.  

Another immediate area of future work to improve the methodology is 

exploring how it can be used in an operational setting. Reputation can obviously 

change over time, so a system used in practice must be able to dynamically update 

user reputation scores. What triggers this update? How much importance is newer 

evidence given over older evidence? Additionally, how can reputation scores (and the 

uncertainty associated with them) be used to make decisions?    

Finally, we will also explore additional case studies. In the two case studies 

presented here, the focus was primarily on reputation related to victimization. Testing 

our methodology’s applicability to other characteristics may help uncover a need for 

additional improvements or alterations to the methodology. We will also explore if 

the methodology generalizes to settings not immediately pertinent to cybersecurity. 

For example, we may apply the methodology to online social networks to assess the 

amount of influence or authority an entity has in an online community. 

9.5.4 Long Term Cyber Reputation Research  

Long-term research will include exploring the applications of user cyber 

reputation, applying concepts of reputation to other cyber entities, and exploring 

additional properties of reputation. One potential application is using reputation to 

combat the spread of misinformation.   Misinformation is a major problem in many 
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online communities. Whether it is used to deepen political divides between people or 

propagate inaccurate health information, it can have devastating real world 

implications. Just as in the physical world where one might consider a professional’s 

credentials before trusting their advice or actions, attaching reputation scores to the 

entity propagating information or the information itself can provide an accessible way 

to quickly vet the source or quality of information. While techniques for assigning 

reputation scores to users were explored in this dissertation, assigning reputation 

scores to information is a different, complicated problem. How is a score assigned to 

a new piece of information? How does the reputation of the information change as it 

moves between people and across online platforms? How do slight changes in the 

wording of the information, redactions, or additions alter the reputation? This touches 

on the idea of exploring additional properties of reputation. For example, can/how 

does an entity’s reputation change when interacting with different entities or on 

different platforms? Is reputation, like trust, transitive, i.e. does entity A’s reputation 

tell us something about entity B’s reputation if the two are somehow connected? As 

technology and concepts of identity in cyberspace evolve, it is likely that many new 

questions and areas of research in this space will arise.  

9.6 Conclusion  

Reputation has emerged as an important factor in the field of cybersecurity 

and is used to identify domain names, IP addresses, files, binaries, and users that may 

threaten or harm a network. However, in order for reputation to be used as a reliable 

tool in cybersecurity, there is a need for foundational research that transforms 

reputation quantification and prediction into a science. This dissertation presented a 
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mathematical interpretation of user reputation in a network security context, a 

methodology to evaluate user cyber reputation, and case studies to illustrate the 

proposed mathematical definition and scoring methodology. From a broader 

perspective, this dissertation contributed to the science of security, proposed new 

techniques to understand and evaluate users, and emphasized the importance of 

human-focused cybersecurity research.  

The Internet is a hostile landscape. Online fraud, identity theft, bots and fake 

accounts, and digital influence operations are just a few of the many threats to 

cybersecurity, user privacy, and information integrity. The need for reputation 

systems and techniques to evaluate and validate online identities will likely continue 

to grow; this dissertation represents an initial exploration of this complicated space.  
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Appendices 

Appendix A  

This appendix presents additional tables from Chapter 5. Values have been 

rounded to the third decimal place.  

 

30:70 infected to uninfected ratio; 36 original features 

Classifier 
80/20 Train/Test Split 70/30 Train/Test Split 

Accuracy FPR FNR ROC 
AUC Accuracy FPR FNR ROC 

AUC 

KNeighbors 0.798 0.202 0.202 0.87 0.79 0.203 0.225 0.858 

Logistic 
Regression 0.793 0.206 0.21 0.86 0.779 0.221 0.222 0.853 

Random Forest 0.793 0.205 0.21 0.848 0.783 0.217 0.218 0.836 

Ada Boost 0.786 0.211 0.22 0.858 0.781 0.217 0.225 0.846 

Gradient Boost 0.801 0.199 0.199 0.868 0.784 0.216 0.218 0.858 

Extra Tree 0.787 0.186 0.275 0.848 0.794 0.156 0.326 0.842 

Bagging 0.795 0.203 0.21 0.861 0.784 0.215 0.22 0.856 

Voting 0.79 0.21 0.21 0.854 0.781 0.219 0.22 0.843 

Neural 
Network 1 0.713 0.286 0.29 0.773 0.685 0.315 0.316 0.738 

Neural 
Network 2 0.79 0.21 0.21 0.864 0.785 0.215 0.216 0.854 

Table 27: Supervised classification results for the 30:70 ratio using the 36 original features for classification 
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30:70 infected to uninfected ratio; principal components 

Classifier 
80/20 Train/Test Split 70/30 Train/Test Split 

Accuracy FPR FNR ROC 
AUC Accuracy FPR FNR ROC 

AUC 

KNeighbors 0.787 0.212 0.215 0.859 0.781 0.219 0.22 0.852 

Logistic 
Regression 0.787 0.212 0.215 0.858 0.782 0.218 0.22 0.853 

Random Forest 0.796 0.203 0.207 0.834 0.782 0.216 0.222 0.827 

Ada Boost 0.791 0.208 0.212 0.861 0.785 0.213 0.22 0.853 

Gradient Boost 0.795 0.204 0.207 0.864 0.785 0.215 0.216 0.856 

Extra Tree 0.806 0.166 0.259 0.853 0.796 0.165 0.298 0.844 

Bagging 0.795 0.204 0.207 0.86 0.781 0.217 0.225 0.855 

Voting 0.785 0.215 0.215 0.849 0.778 0.222 0.22 0.842 

Neural 
Network 1 0.776 0.223 0.225 0.848 0.753 0.247 0.246 0.831 

Neural 
Network 2 0.795 0.204 0.207 0.863 0.787 0.213 0.215 0.851 

Table 28: Supervised classification results for the 30:70 ratio using the principal components for 
classification 
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50:50 infected to uninfected ratio; 36 original features 

Classifier 
80/20 Train/Test Split 70/30 Train/Test Split 

Accuracy FPR FNR ROC 
AUC Accuracy FPR FNR ROC 

AUC 

KNeighbors 0.788 0.208 0.216 0.857 0.776 0.223 0.225 0.847 

Logistic 
Regression 0.778 0.221 0.223 0.857 0.763 0.237 0.238 0.839 

Random Forest 0.778 0.218 0.226 0.852 0.769 0.23 0.231 0.837 

Ada Boost 0.768 0.164 0.301 0.856 0.767 0.183 0.282 0.842 

Gradient Boost 0.782 0.216 0.221 0.868 0.782 0.216 0.219 0.853 

Extra Tree 0.5 0.5 0.5 0.775 0.497 0.497 0.503 0.764 

Bagging 0.79 0.203 0.218 0.865 0.776 0.222 0.225 0.85 

Voting 0.783 0.216 0.218 0.861 0.774 0.229 0.224 0.847 

Neural 
Network 1 0.757 0.242 0.244 0.827 0.739 0.26 0.262 0.795 

Neural 
Network 2 0.796 0.203 0.205 0.868 0.779 0.22 0.222 0.847 

Table 29: Supervised classification results for the 50:50 ratio using the 36 original features for classification 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 209 
 

50:50 infected to uninfected ratio; principal components 

Classifier 
80/20 Train/Test Split 70/30 Train/Test Split 

Accuracy FPR FNR ROC 
AUC Accuracy FPR FNR ROC 

AUC 

KNeighbors 0.786 0.216 0.213 0.859 0.775 0.225 0.225 0.84 

Logistic 
Regression 0.781 0.218 0.221 0.858 0.766 0.234 0.234 0.845 

Random Forest 0.791 0.205 0.213 0.835 0.773 0.225 0.229 0.819 

Ada Boost 0.791 0.208 0.21 0.865 0.782 0.216 0.219 0.843 

Gradient Boost 0.796 0.203 0.205 0.865 0.786 0.213 0.215 0.848 

Extra Tree 0.788 0.197 0.226 0.85 0.769 0.159 0.303 0.83 

Bagging 0.795 0.203 0.208 0.859 0.776 0.215 0.232 0.846 

Voting 0.773 0.226 0.229 0.845 0.763 0.236 0.239 0.836 

Neural 
Network 1 0.786 0.213 0.216 0.85 0.734 0.264 0.269 0.811 

Neural 
Network 2 0.797 0.2 0.205 0.864 0.771 0.229 0.229 0.842 

Table 30: Supervised classification results for the 50:50 ratio using the principal components for 
classification 
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Appendix B 

This appendix presents additional tables from Chapter 8. Values have been 

rounded to the third decimal place.  

Ada Boost, 30:70 Case to Control Ratio Results, 
80/20 Train/Test Split 70/30 Train/Test Split 
Feature Importance Feature Importance 

Average number of words 0.18 Account age in months 0.43 
Favorite count 0.16 Tweet count 0.14 
Average number of links 0.14 Average number of links 0.13 
Tweet count 0.12 Favorite count 0.11 
Average number of mentions 0.1 Average number of words 0.07 
Followers count 0.08 Followers count 0.05 
Account age in months 0.08 Average number of mentions 0.04 
Age 0.08 Age 0.03 
Friends count 0.02 Friends count 0.01 
Listed count 0.02 Gender 0.01 
Gender 0.02 Listed count 0.00 

Table 31: Feature importance values for the Ada Boost classifier for the 30:70 ratio 

 
Ada Boost, 50:50 Case to Control Ratio Results, 

80/20 Train/Test Split 70/30 Train/Test Split 
Feature Importance Feature Importance 

Account age in months 0.625 Account age in months 0.526 
Tweet count 0.121 Average number of words 0.138 
Favorite count 0.094 Tweet count 0.111 
Average number of links 0.064 Favorite count 0.107 
Average number of words 0.051 Average number of links 0.071 
Average number of mentions 0.022 Average number of mentions 0.021 
Followers count 0.022 Followers count 0.015 
Friends count 0.0 Gender 0.005 
Listed count 0.0 Age 0.005 
Age 0.0 Friends count 0.0 
Listed count 0.0 Listed count 0.0 

Table 32: Feature importance values for the Ada Boost classifier for the 50:50 ratio 
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Extra Tree, 30:70 Case to Control Ratio Results, 

80/20 Train/Test Split 70/30 Train/Test Split 
Feature Importance Feature Importance 

Account age in months 0.33 Account age in months 0.48 
Favorite count 0.22 Favorite count 0.22 
Followers count 0.13 Tweet count 0.09 
Tweet count 0.11 Average number of links 0.08 
Average number of words 0.07 Average number of words 0.04 
Average number of links 0.06 Average number of mentions 0.02 
Average number of mentions 0.03 Listed count 0.02 
Age 0.02 Age 0.02 
Friends count 0.02 Followers count 0.02 
Listed count 0.01 Friends count 0.01 
Gender 0.0 Gender 0.00 

Table 33: Feature importance values for the Extra Tree classifier for the 30:70 ratio 

 
 

Extra Tree, 50:50 Case to Control Ratio Results, 
80/20 Train/Test Split 70/30 Train/Test Split 
Feature Importance Feature Importance 

Account age in months 0.44 Account age in months 0.406 
Favorite count 0.267 Favorite count 0.266 
Tweet count 0.103 Tweet count 0.117 
Average number of words 0.072 Average number of words 0.088 
Average number of links 0.037 Followers count 0.03 
Listed count 0.024 Average number of links 0.028 
Age 0.018 Average number of mentions 0.021 
Average number of mentions 0.017 Age 0.017 
Gender 0.009 Listed count 0.016 
Friends count 0.006 Friends count 0.011 
Followers count 0.006 Gender 0.0 

Table 34: Feature importance values for the Extra Tree classifier for the 50:50 ratio 
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