1,443 research outputs found

    Multidisciplinary perspectives on Artificial Intelligence and the law

    Get PDF
    This open access book presents an interdisciplinary, multi-authored, edited collection of chapters on Artificial Intelligence (‘AI’) and the Law. AI technology has come to play a central role in the modern data economy. Through a combination of increased computing power, the growing availability of data and the advancement of algorithms, AI has now become an umbrella term for some of the most transformational technological breakthroughs of this age. The importance of AI stems from both the opportunities that it offers and the challenges that it entails. While AI applications hold the promise of economic growth and efficiency gains, they also create significant risks and uncertainty. The potential and perils of AI have thus come to dominate modern discussions of technology and ethics – and although AI was initially allowed to largely develop without guidelines or rules, few would deny that the law is set to play a fundamental role in shaping the future of AI. As the debate over AI is far from over, the need for rigorous analysis has never been greater. This book thus brings together contributors from different fields and backgrounds to explore how the law might provide answers to some of the most pressing questions raised by AI. An outcome of the Católica Research Centre for the Future of Law and its interdisciplinary working group on Law and Artificial Intelligence, it includes contributions by leading scholars in the fields of technology, ethics and the law.info:eu-repo/semantics/publishedVersio

    Wearable Sensors as a Preoperative Assessment Tool: A Review

    Get PDF
    Surgery is a common first-line treatment for many types of disease, including cancer. Mortality rates after general elective surgery have seen significant decreases whilst postoperative complications remain a frequent occurrence. Preoperative assessment tools are used to support patient risk stratification but do not always provide a precise and accessible assessment. Wearable sensors (WS) provide an accessible alternative that offers continuous monitoring in a non-clinical setting. They have shown consistent uptake across the perioperative period but there has been no review of WS as a preoperative assessment tool. This paper reviews the developments in WS research that have application to the preoperative period. Accelerometers were consistently employed as sensors in research and were frequently combined with photoplethysmography or electrocardiography sensors. Pre-processing methods were discussed and missing data was a common theme; this was dealt with in several ways, commonly by employing an extraction threshold or using imputation techniques. Research rarely processed raw data; commercial devices that employ internal proprietary algorithms with pre-calculated heart rate and step count were most commonly employed limiting further feature extraction. A range of machine learning models were used to predict outcomes including support vector machines, random forests and regression models. No individual model clearly outperformed others. Deep learning proved successful for predicting exercise testing outcomes but only within large sample-size studies. This review outlines the challenges of WS and provides recommendations for future research to develop WS as a viable preoperative assessment tool

    Effects of municipal smoke-free ordinances on secondhand smoke exposure in the Republic of Korea

    Get PDF
    ObjectiveTo reduce premature deaths due to secondhand smoke (SHS) exposure among non-smokers, the Republic of Korea (ROK) adopted changes to the National Health Promotion Act, which allowed local governments to enact municipal ordinances to strengthen their authority to designate smoke-free areas and levy penalty fines. In this study, we examined national trends in SHS exposure after the introduction of these municipal ordinances at the city level in 2010.MethodsWe used interrupted time series analysis to assess whether the trends of SHS exposure in the workplace and at home, and the primary cigarette smoking rate changed following the policy adjustment in the national legislation in ROK. Population-standardized data for selected variables were retrieved from a nationally representative survey dataset and used to study the policy action’s effectiveness.ResultsFollowing the change in the legislation, SHS exposure in the workplace reversed course from an increasing (18% per year) trend prior to the introduction of these smoke-free ordinances to a decreasing (−10% per year) trend after adoption and enforcement of these laws (β2 = 0.18, p-value = 0.07; β3 = −0.10, p-value = 0.02). SHS exposure at home (β2 = 0.10, p-value = 0.09; β3 = −0.03, p-value = 0.14) and the primary cigarette smoking rate (β2 = 0.03, p-value = 0.10; β3 = 0.008, p-value = 0.15) showed no significant changes in the sampled period. Although analyses stratified by sex showed that the allowance of municipal ordinances resulted in reduced SHS exposure in the workplace for both males and females, they did not affect the primary cigarette smoking rate as much, especially among females.ConclusionStrengthening the role of local governments by giving them the authority to enact and enforce penalties on SHS exposure violation helped ROK to reduce SHS exposure in the workplace. However, smoking behaviors and related activities seemed to shift to less restrictive areas such as on the streets and in apartment hallways, negating some of the effects due to these ordinances. Future studies should investigate how smoke-free policies beyond public places can further reduce the SHS exposure in ROK

    Desarrollo de nuevos dispositivos y algoritmos para la monitorización ambulatoria de personas con epilepsia

    Get PDF
    La epilepsia es una enfermedad crónica con un enorme impacto sociosanitario. Aunque en la actualidad se dispone de una gran cantidad de fármacos antiepilépticos y de otros tratamientos más selectivos como la cirugía o la estimulación cerebral, un porcentaje considerable de pacientes no están controlados y continúan teniendo crisis epilépticas. Estas personas suelen vivir condicionadas por la posibilidad de un ataque epiléptico y sus posibles consecuencias, como accidentes, lesiones o incluso la muerte súbita inexplicable. En este contexto, un dispositivo capaz de monitorizar el estado de salud y avisar de un posible ataque epiléptico contribuiría a mejorar la calidad de vida de estas personas. La presente Tesis Doctoral se centra en el desarrollo de un novedoso sistema de monitorización ambulatoria que permita identificar y predecir los ataques epilépticos. Dicho sistema está compuesto por diferentes sensores capaces de registrar de forma sincronizada diferentes señales biomédicas. Mediante técnicas de aprendizaje automático supervisado, se han desarrollado diferentes modelos predictivos capaces de clasificar el estado de la persona epiléptica en normal, preictal (antes de la crisis) e ictal (crisis)

    A Two-Step Approach to Overcoming Data Imbalance in the Development of an Electrocardiography Data Quality Assessment Algorithm: A Real-World Data Challenge

    Get PDF
    Continuously acquired biosignals from patient monitors contain significant amounts of unusable data. During the development of a decision support system based on continuously acquired biosignals, we developed machine and deep learning algorithms to automatically classify the quality of ECG data. A total of 31,127 twenty-s ECG segments of 250 Hz were used as the training/validation dataset. Data quality was categorized into three classes: acceptable, unacceptable, and uncertain. In the training/validation dataset, 29,606 segments (95%) were in the acceptable class. Two one-step, three-class approaches and two two-step binary sequential approaches were developed using random forest (RF) and two-dimensional convolutional neural network (2D CNN) classifiers. Four approaches were tested on 9779 test samples from another hospital. On the test dataset, the two-step 2D CNN approach showed the best overall accuracy (0.85), and the one-step, three-class 2D CNN approach showed the worst overall accuracy (0.54). The most important parameter, precision in the acceptable class, was greater than 0.9 for all approaches, but recall in the acceptable class was better for the two-step approaches: one-step (0.77) vs. two-step RF (0.89) and one-step (0.51) vs. two-step 2D CNN (0.94) (p < 0.001 for both comparisons). For the ECG quality classification, where substantial data imbalance exists, the 2-step approaches showed more robust performance than the one-step approach. This algorithm can be used as a preprocessing step in artificial intelligence research using continuously acquired biosignals.ope

    Stress detection in lifelog data for improved personalized lifelog retrieval system

    Get PDF
    Stress can be categorized into acute and chronic types, with acute stress having short-term positive effects in managing hazardous situations, while chronic stress can adversely impact mental health. In a biological context, stress elicits a physiological response indicative of the fight-or-flight mechanism, accompanied by measurable changes in physiological signals such as blood volume pulse (BVP), galvanic skin response (GSR), and skin temperature (TEMP). While clinical-grade devices have traditionally been used to measure these signals, recent advancements in sensor technology enable their capture using consumer-grade wearable devices, providing opportunities for research in acute stress detection. Despite these advancements, there has been limited focus on utilizing low-resolution data obtained from sensor technology for early stress detection and evaluating stress detection models under real-world conditions. Moreover, the potential of physiological signals to infer mental stress information remains largely unexplored in lifelog retrieval systems. This thesis addresses these gaps through empirical investigations and explores the potential of utilizing physiological signals for stress detection and their integration within the state-of-the-art (SOTA) lifelog retrieval system. The main contributions of this thesis are as follows. Firstly, statistical analyses are conducted to investigate the feasibility of using low-resolution data for stress detection and emphasize the superiority of subject-dependent models over subject-independent models, thereby proposing the optimal approach to training stress detection models with low-resolution data. Secondly, longitudinal stress lifelog data is collected to evaluate stress detection models in real-world settings. It is proposed that training lifelog models on physiological signals in real-world settings is crucial to avoid detection inaccuracies caused by differences between laboratory and free-living conditions. Finally, a state-of-the-art lifelog interactive retrieval system called \lifeseeker is developed, incorporating the stress-moment filter function. Experimental results demonstrate that integrating this function improves the overall performance of the system in both interactive and non-interactive modes. In summary, this thesis contributes to the understanding of stress detection applied in real-world settings and showcases the potential of integrating stress information for enhancing personalized lifelog retrieval system performance

    The effects of running, cycling, and duathlon exercise performance on cardiac function, haemodynamics and regulation

    Get PDF
    This thesis examined the effects of prolonged exercise, specifically Olympic Distance (OD)duathlon upon ultrasound derived indices of cardiac function, cardiac autonomic regulation measured via heart rate variability (HRV), and high-sensitivity cardiac troponin T (hs-cTnT)release. The primary aims were to (1) ascertain the influence of Olympic distance (OD) duathlon performance on cardiac function; (2) to investigate potential relationships between autonomic regulation, hs-cTnT release, and cardiac function, and (3) to investigate the effect of the individual legs of an OD duathlon on post-exercise cardiac function and to quantify the potential performance reserve of highly-trained endurance athletes when completing standalone legs of the duathlon. Findings from a systematic review and meta-analysis(Chapter 1) on research that performed serial echocardiographic and troponin measurements before and after exercise, intensity predicted changes in post-exercise cardiac troponin release and diastolic function. The findings agreed with previous meta-analyses using a more recent sample of studies; however, the recommendation for future studies to implement advanced cardiac imaging techniques, such as myocardial speckle tracking into their data collection would provide a more sensitive measure of post-exercise cardiac function. Whilst a large degree of heterogeneity in the results exists, this was in part explained by study exercise heart rate, participant age, and the prevalence of cardiac troponin release above the clinical detection threshold. The study performed in Chapter 3 was the first to investigate the effects of OD duathlon exercise on immediate and 24 hours post-exercise cardiac function. Additionally, a second OD duathlon was performed by participants with intra-leg measurements of cardiac function. In a highly trained cohort, there was evidence of transient post-exercise reductions in cardiac function and elevated serum high-sensitivity cardiac troponin T (hs-cTnT) above the clinical reference value, which was largely resolved within 24h of recovery. This study also demonstrated the reliability of lab-based duathlon exercise in a highly trained cohort and identified the pacing features of experienced multi-sport athletes that partially explained the different findings between the running and cycling legs of the duathlon. By investigating each leg of the duathlon individually (10k run, 5k run, 40k cycle), both at duathlon race-pace (DM) and maximal (Max) intensity on separate occasions, the performance reserve of the highly-trained cohort was quantified and further explored. The studies presented in Chapters 4 and 5 revealed that experienced duathletes were able to improve their speed across each leg by between 5-15% in a laboratory setting, compared to the duathlon effort. Additionally, the maximal effort 10k run leg provoked the most persistent changes to cardiac function that were present at 6h of recovery. Changes in cardiac function post DM 10k confirmed the findings of Chapter 3 that the greatest magnitude of cardiac perturbations occur following the initial 10k run leg. Aside from the Max 10k run and 40k cycle trials, all perturbations had resolved within 6h of recovery after each bout of exercise, highlighting the importance of recovery following maximal intensity efforts. The lack of 6h and 24h recovery data in Chapter 4, and Chapters 5 and 6, respectively is a shortcoming of these findings and therefore limits interpretation in the context of providing athletic guidance. Future research in this area should endeavour to include 6h and 24h recovery measures as standard, as multi-sport athletes typically perform multiple daily training sessions. The implications of substantial cardiac fatigue accumulation over many years of endurance training history are still unclear, and athletes may benefit from preventingits occurrence

    Electrocardiogram Monitoring Wearable Devices and Artificial-Intelligence-Enabled Diagnostic Capabilities: A Review

    Get PDF
    Worldwide, population aging and unhealthy lifestyles have increased the incidence of high-risk health conditions such as cardiovascular diseases, sleep apnea, and other conditions. Recently, to facilitate early identification and diagnosis, efforts have been made in the research and development of new wearable devices to make them smaller, more comfortable, more accurate, and increasingly compatible with artificial intelligence technologies. These efforts can pave the way to the longer and continuous health monitoring of different biosignals, including the real-time detection of diseases, thus providing more timely and accurate predictions of health events that can drastically improve the healthcare management of patients. Most recent reviews focus on a specific category of disease, the use of artificial intelligence in 12-lead electrocardiograms, or on wearable technology. However, we present recent advances in the use of electrocardiogram signals acquired with wearable devices or from publicly available databases and the analysis of such signals with artificial intelligence methods to detect and predict diseases. As expected, most of the available research focuses on heart diseases, sleep apnea, and other emerging areas, such as mental stress. From a methodological point of view, although traditional statistical methods and machine learning are still widely used, we observe an increasing use of more advanced deep learning methods, specifically architectures that can handle the complexity of biosignal data. These deep learning methods typically include convolutional and recurrent neural networks. Moreover, when proposing new artificial intelligence methods, we observe that the prevalent choice is to use publicly available databases rather than collecting new data

    The 2023 wearable photoplethysmography roadmap

    Get PDF
    Photoplethysmography is a key sensing technology which is used in wearable devices such as smartwatches and fitness trackers. Currently, photoplethysmography sensors are used to monitor physiological parameters including heart rate and heart rhythm, and to track activities like sleep and exercise. Yet, wearable photoplethysmography has potential to provide much more information on health and wellbeing, which could inform clinical decision making. This Roadmap outlines directions for research and development to realise the full potential of wearable photoplethysmography. Experts discuss key topics within the areas of sensor design, signal processing, clinical applications, and research directions. Their perspectives provide valuable guidance to researchers developing wearable photoplethysmography technology

    30th European Congress on Obesity (ECO 2023)

    Get PDF
    This is the abstract book of 30th European Congress on Obesity (ECO 2023
    corecore