54 research outputs found

    Structural state inspection using dual-tree quaternion wavelet transform

    Get PDF
    The dual-tree quaternion wavelet transform (QWT) was used in conjunction with quaternion-based three-channel joint transmissibility (QTJT) for state inspection. Multiple QTJTs from the same structural state were used to construct a state matrix, which was considered as a feature image. Then QWT coefficients of the feature image were calculated. It supported one magnitude and three phases, in particular, the low-frequency magnitude-phase was set as state feature index. Ultimately, the difference of the state feature indexes were utilized as the state indicator. This method reduced the influence on state inspection caused by measurement uncertainty of single testing sample, because it took overall consideration of multiple testing samples and described the similarity from multiple directions. The availability of suggested method was demonstrated by a real experiment, in which the state changing was realized by loosening fasteners and altering the longitudinal force of rail. This method was also compared with method based on Karhunen-Loeve Transform (K-LT) and artificial neural network (ANN). Experimental result indicated that the suggested method was integrated optimal, moreover, the resolution of the longitudinal force of rail was less than 10 MPa which was equivalent to temperature change of 1.75 °C for full-lock rail

    Multi-Band Frequency Window for Time-Frequency Fault Diagnosis of Induction Machines

    Full text link
    [EN] Induction machines drive many industrial processes and their unexpected failure can cause heavy producti on losses. The analysis of the current spectrum can identify online the characteristic fault signatures at an early stage, avoiding unexpected breakdowns. Nevertheless, frequency domain analysis requires stable working conditions, which is not the case for wind generators, motors driving varying loads, and so forth. In these cases, an analysis in the time-frequency domain¿such as a spectrogram¿is required for detecting faults signatures. The spectrogram is built using the short time Fourier transform, but its resolution depends critically on the time window used to generate it¿short windows provide good time resolution but poor frequency resolution, just the opposite than long windows. Therefore, the window must be adapted at each time to the shape of the expected fault harmonics, by highly skilled maintenance personnel. In this paper this problem is solved with the design of a new multi-band window, which generates simultaneously many different narrow-band current spectrograms and combines them into as single, high resolution one, without the need of manual adjustments. The proposed method is validated with the diagnosis of bar breakages during the start-up of a commercial induction motor.This research was funded by the Spanish "Ministerio de Ciencia, Innovacion y Universidades (MCIU)", the "Agencia Estatal de Investigacion (AEI)" and the "Fondo Europeo de Desarrollo Regional (FEDER)" in the framework of the "Proyectos I+D+i - Retos Investigacion 2018", project reference RTI2018-102175-B-I00 (MCIU/AEI/FEDER, UE).Burriel-Valencia, J.; Puche-Panadero, R.; Martinez-Roman, J.; Riera-Guasp, M.; Sapena-Bano, A.; Pineda-Sanchez, M. (2019). Multi-Band Frequency Window for Time-Frequency Fault Diagnosis of Induction Machines. Energies. 12(17):1-18. https://doi.org/10.3390/en12173361S118121

    A survey on artificial intelligence-based acoustic source identification

    Get PDF
    The concept of Acoustic Source Identification (ASI), which refers to the process of identifying noise sources has attracted increasing attention in recent years. The ASI technology can be used for surveillance, monitoring, and maintenance applications in a wide range of sectors, such as defence, manufacturing, healthcare, and agriculture. Acoustic signature analysis and pattern recognition remain the core technologies for noise source identification. Manual identification of acoustic signatures, however, has become increasingly challenging as dataset sizes grow. As a result, the use of Artificial Intelligence (AI) techniques for identifying noise sources has become increasingly relevant and useful. In this paper, we provide a comprehensive review of AI-based acoustic source identification techniques. We analyze the strengths and weaknesses of AI-based ASI processes and associated methods proposed by researchers in the literature. Additionally, we did a detailed survey of ASI applications in machinery, underwater applications, environment/event source recognition, healthcare, and other fields. We also highlight relevant research directions

    Advancements and Breakthroughs in Ultrasound Imaging

    Get PDF
    Ultrasonic imaging is a powerful diagnostic tool available to medical practitioners, engineers and researchers today. Due to the relative safety, and the non-invasive nature, ultrasonic imaging has become one of the most rapidly advancing technologies. These rapid advances are directly related to the parallel advancements in electronics, computing, and transducer technology together with sophisticated signal processing techniques. This book focuses on state of the art developments in ultrasonic imaging applications and underlying technologies presented by leading practitioners and researchers from many parts of the world

    Advances in Vibration Analysis Research

    Get PDF
    Vibrations are extremely important in all areas of human activities, for all sciences, technologies and industrial applications. Sometimes these Vibrations are useful but other times they are undesirable. In any case, understanding and analysis of vibrations are crucial. This book reports on the state of the art research and development findings on this very broad matter through 22 original and innovative research studies exhibiting various investigation directions. The present book is a result of contributions of experts from international scientific community working in different aspects of vibration analysis. The text is addressed not only to researchers, but also to professional engineers, students and other experts in a variety of disciplines, both academic and industrial seeking to gain a better understanding of what has been done in the field recently, and what kind of open problems are in this area

    Bibliography of Lewis Research Center technical publications announced in 1992

    Get PDF
    This compilation of abstracts describes and indexes the technical reporting that resulted from the scientific and engineering work performed and managed by the Lewis Research Center in 1992. All the publications were announced in the 1992 issues of STAR (Scientific and Technical Aerospace Reports) and/or IAA (International Aerospace Abstracts). Included are research reports, journal articles, conference presentations, patents and patent applications, and theses

    The Impact of Digital Technologies on Public Health in Developed and Developing Countries

    Get PDF
    This open access book constitutes the refereed proceedings of the 18th International Conference on String Processing and Information Retrieval, ICOST 2020, held in Hammamet, Tunisia, in June 2020.* The 17 full papers and 23 short papers presented in this volume were carefully reviewed and selected from 49 submissions. They cover topics such as: IoT and AI solutions for e-health; biomedical and health informatics; behavior and activity monitoring; behavior and activity monitoring; and wellbeing technology. *This conference was held virtually due to the COVID-19 pandemic

    Improving Access and Mental Health for Youth Through Virtual Models of Care

    Get PDF
    The overall objective of this research is to evaluate the use of a mobile health smartphone application (app) to improve the mental health of youth between the ages of 14–25 years, with symptoms of anxiety/depression. This project includes 115 youth who are accessing outpatient mental health services at one of three hospitals and two community agencies. The youth and care providers are using eHealth technology to enhance care. The technology uses mobile questionnaires to help promote self-assessment and track changes to support the plan of care. The technology also allows secure virtual treatment visits that youth can participate in through mobile devices. This longitudinal study uses participatory action research with mixed methods. The majority of participants identified themselves as Caucasian (66.9%). Expectedly, the demographics revealed that Anxiety Disorders and Mood Disorders were highly prevalent within the sample (71.9% and 67.5% respectively). Findings from the qualitative summary established that both staff and youth found the software and platform beneficial

    Annual report / IFW, Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden

    Get PDF
    corecore