17 research outputs found

    In-band-full-duplex integrated access and backhaul enabled next generation wireless networks

    Get PDF
    In sixth generation (6G) wireless networks, the severe traffic congestion in the microwave frequencies motivates the exploration of the large available bandwidth in the millimetre-wave (mmWave) frequencies to achieve higher network capacity and data rate. Since large-scale antenna arrays and dense base station deployment are required, the hybrid beamforming architecture and the recently proposed integrated access and backhaul (IAB) networks become potential candidates for providing cost and hardware-friendly techniques for 6G wireless networks. In addition, in-band-full-duplex (IBFD) has been recently paid much more research attention since it can make the transmission and reception occur in the same time and frequency band, which nearly doubles the communication spectral efficiency (SE) compared with state-of-the-art half-duplex (HD) systems. Since 6G will explore sensing as its new capability, future wireless networks can go far beyond communications. Motivated by this, the development of integrated sensing and communications (ISAC) systems, where radar and communication systems share the same spectrum resources and hardware, has become one of the major goals in 6G. This PhD thesis focuses on the design and analysis of IBFD-IAB wireless networks in the frequency range 2 (FR2) band (≥ 24.250 GHz) at mmWave frequencies for the potential use in 6G. Firstly, we develop a novel design for the single-cell FR2-IBFD-IAB networks with subarray-based hybrid beamforming, which can enhance the SE and coverage while reducing the latency. The radio frequency (RF) beamformers are obtained via RF codebooks given by a modified matrix-wise Linde-Buzo-Gray (LBG) algorithm. The self-interference (SI) is cancelled in three stages, where the first stage of antenna isolation is assumed to be successfully deployed. The second stage consists of the optical domain-based RF cancellation, where cancellers are connected with the RF chain pairs. The third stage is comprised of the digital cancellation via successive interference cancellation followed by minimum mean-squared error (MSE) baseband receiver. Multiuser interference in the access link is cancelled by zero-forcing at the IAB-node transmitter. The proposed codebook algorithm avoids undesirable low-rank behaviour, while the proposed staged-SI cancellation (SIC) shows satisfactory cancellation performance in the wideband IBFD scenario. However, the system performance can be affected by the hardware impairments (HWI) and RF effective channel estimation errors. Secondly, we study an FR2-IBFD-ISAC-IAB network for vehicle-to-everything communications, where the IAB-node acts as a roadside unit performing sensing and communication simultaneously (i.e., at the same time and frequency band). The SI due to the IBFD operation will be cancelled in the propagation, analogue, and digital domains; only the residual SI (RSI) is reserved for performance analysis. Considering the subarray-based hybrid beamforming structure, including HWI and RF effective SI channel estimation error, the unscented Kalman filter is used for tracking multiple vehicles in the studied scenario. The proposed system shows an enhanced SE compared with the HD system, and the tracking MSEs averaged across all vehicles of each state parameter are close to their posterior Cramér-Rao lower bounds. Thirdly, we analyse the performance of the multi-cell wideband single-hop backhaul FR2-IBFD-IAB networks by using stochastic geometry analysis. We model the wired-connected next generation NodeBs (gNBs) as the Matérn hard-core point process (MHCPP) to meet the real-world deployment requirement and reduce the cost caused by wired connection in the network. We first derive association probabilities that reflect how likely the typical user-equipment is served by a gNB or an IAB-node based on the maximum long-term averaged biased-received-desired-signal power criteria. Further, by leveraging the composite Gamma-Lognormal distribution, we derive results for the signal to interference plus noise ratio coverage, capacity with outage, and ergodic capacity of the network. In order to assess the impact of noise, we consider the sidelobe gain on inter-cell interference links and the analogue to digital converter quantization noise. Compared with the HD transmission, the designated system shows an enhanced capacity when the SIC operates successfully. We also study how the power bias and density ratio of the IAB-node to gNB, and the hard-core distance can affect system performance. Overall, this thesis aims to contribute to the research efforts of shaping the 6G wireless networks by designing and analysing the FR2-IBFD-IAB inspired networks in the FR2 band at mmWave frequencies that will be potentially used in 6G for both communication only and ISAC scenarios

    Uplink Transceiver Design and Optimization for Transmissive RMS Multi-Antenna Systems

    Full text link
    In this paper, a novel uplink communication for the transmissive reconfigurable metasurface (RMS) multi-antenna system is investigated. Specifically, a transmissive RMS-based receiver equipped with a single receiving antenna is first proposed, and a far-near field channel model is also given. Then, in order to maximize the system sum-rate, we formulate a joint optimization problem over subcarrier allocation, power allocation and RMS transmissive coefficient design. Since the coupling of optimization variables, the problem is non-convex, so it is challenging to solve it directly. In order to tackle this problem, the alternating optimization (AO) algorithm is used to decouple the optimization variables and divide the problem into two subproblems to solve. Numerical results verify that the proposed algorithm has good convergence performance and can improve system sum-rate compared with other benchmark algorithms.Comment: arXiv admin note: text overlap with arXiv:2109.0546

    A Comprehensive Study of Multiple Access Techniques in 6G Networks

    Get PDF
    With the proliferation of numerous burgeoning services such as ultra-reliable low-latency communication (URLLC), massive machine type communications (mMTC), enhanced mobile broadband (eMBB), among others, wireless communication systems are expected to face daunting challenges. In order to satisfy these ever-increasing traffic demands, diverse quality-of-services (QoS) requirements, and the massive connectivity accompanied by these new applications, various innovative and promising technologies, and architectures need to be developed. Novel multiple-access techniques are currently being explored in both academia and industry in order to accommodate such unprecedented requirements. Non-orthogonal multiple access (NOMA) has been deemed as one of the vital enabling multiple access techniques for the upcoming six-generation (6G) networks. This is due to its ability to enhance network spectral efficiency (NSE) and support a massive number of connected devices. Owing to its potential benefits, NOMA is recognized as a prominent member of next-generation multiple access (NGMA). Several emerging techniques such as full-duplex (FD) communication, device-to-device (D2D) communications, reconfigurable intelligent surface (RIS), coordinated multipoint (CoMP), cloud radio access networks, are being gradually developed to address fundamental problems in future wireless networks. In this thesis, and with the goal of converging toward NGMA, we investigate the synergistic integration between NOMA and other evolving physical layer technologies. Specifically, we analyze this integration aiming at improving the performance of cell-edge users (CEUs), mitigating the detrimental effect of inter-cell interference (ICI), designing energy-efficient multiple access toward ``green’’ wireless networks, guarantying reliable communication between NOMA UEs and base stations (BSs)/remote radio heads (RRHs), and maintaining the required QoS in terms of the minimum achievable data rate, especially at CEUs. Regarding the ICI mitigation in multi-cell NOMA networks and tackling the connectivity issue in traditional CoMP-based OMA networks, we first investigate the integration between location-aware CoMP transmission and NOMA in downlink heterogeneous C-RAN. In doing so, we design a novel analytical framework using tools from stochastic geometry to analyze the system performance in terms of the average achievable data rate per NOMA UE. Our results reveal that CoMP NOMA can provide a significant gain in terms of network spectral efficiency compared to the traditional CoMP OMA scheme. In addition, with the goal of further improving the performance of CEUs and user fairness, cooperative transmission with the aid of D2D communication and FD or half-duplex (HD) transmission, has been introduced to NOMA, which is commonly known as cooperative NOMA (C-NOMA). As a result, we extend our study to also investigate the potential gains of investigating CoMP and C-NOMA. In such a framework, we exploit the cooperation between the RRHs/BSs and the successive decoding strategy at NOMA UEs that are near the RRHs/BSs. Specifically, we investigate both performance analysis and resource management optimization (power control and user pairing). Our results show that the transmit power at the BS, the transmit power at the relay user, and the self-interference (SI) value at the relay user determine which multiple access technique, CoMP NOMA, CoMP HD C-NOMA, and CoMP FD C-NOMA, should be adopted at the BSs. Now, to assist in designing energy-efficient multiple access techniques and guarantying reliable communication for NOMA UEs, this thesis explores the interplay between FD/HD C-NOMA and RIS. We show that the proposed model has the best performance in terms of network power consumption compared to other multiple access techniques in the literature, which leads to ``green'' future wireless networks. Moreover, our results show that the network power consumption can be significantly reduced by increasing the number of RIS elements. A more significant finding is that the location of the RIS depends on the adopted multiple access techniques. For example, it is not recommended to deploy the RIS besides the BS if the adopted multiple access is HD C-NOMA. Another insight that has been unveiled is the FD C-NOMA with the assistance of RIS has more resistance to the residual SI effect, due to the FD transmission, and can tolerate high SI values compared to the same scheme without RIS. Although much work has been conducted to improve the network spectral efficiency of multi-cell NOMA cellular networks, the required QoS by the upcoming 6G applications, in terms of the minimum achievable rate, may not be guaranteed at CEUs. This is due to their distant locations from their serving BSs, and thus, they experience severe path-loss attenuation and high ICI. This thesis addresses this research gap by studying the synergistic integration between RIS, NOMA, and CoMP in a multi-user multi-cell scenario. Unlike the developed high-complexity optimal solutions or the low-complexity sub-optimal solutions in the literature for the power allocation problem, we derive a low-complexity optimal solution in a such challenging scenario. We also consider the interdependency between the user clustering policies in different coordinated cells, which has been ignored in the literature. Finally, we prove that this integration between RIS, NOMA, and CoMP can attain a high achievable rate for CEUs, ameliorate spectral efficiency compared to existing literature, and can form a novel paradigm for NGMA

    Performance Optimization of Cloud Radio Access Networks

    Get PDF
    The exponential growth of cellular data traffic over the years imposes a hard challenge on the next cellular generations. The cloud radio access network (CRAN) is an emerging cellular architecture that is expected to face that challenge effectively. The main difference between the CRAN architecture and the conventional cellular architecture is that the baseband units (BBUs) are aggregated at a centralized baseband unit pool, hence, enabling statistical multiplexing gains. However, to acquire the several advantages offered by the CRAN architecture, efficient optimization algorithms and transmission techniques should be implemented to enhance the network performance. Hence, in this thesis, we consider jointly optimizing user association, resource allocation and power allocation in a two tier heterogeneous cloud radio access network (H-CRAN). Our objective is to utilize all the network resources in the most efficient way to maximize the network average throughput, while keeping some constraints such as the quality of service (QoS), interference protection to the devices associated with the Macro remote radio head (MRRH), and fronthaul capacity. In our system, we propose using coordinated multi-point (CoMP) transmissions to utilize any excess resources to maximize the network performance, in contrast to the literature, in which CoMP is usually used only to support edge users. We divide our joint problem into three sub-problems: user association, radio resource allocation, and power allocation. We propose matching game based low complexity algorithms to tackle the first two sub-problems. For the power allocation sub-problem, we propose a novel technique to convexify the non-convex original problem to obtain the optimal solution. Given the conducted simulations, our proposed algorithms proved to enhance the network average weighted sum rate significantly, compared to the state of the art algorithms in the literature. The high computational complexity of the optimization techniques currently proposed in the literature prevents from totally reaping the benefits of the CRAN architecture. Learning based techniques are expected to replace the conventional optimization techniques due to their high performance and very low online computational complexity. In this thesis, we propose tackling the power allocation in CRAN via an unsupervised deep learning based approach. Different from the previous works, user association is considered in our optimization problem to reflect a real cellular scenario. Additionally, we propose a novel scheme that can enhance the deep learning based power allocation approaches, significantly. We provide intensive analysis to discuss the trade-offs faced when employing our deep learning based approach for power allocation. Simulation results prove that the proposed technique can obtain a very close to optimal performance with negligible computational complexity

    A Comprehensive Overview on 5G-and-Beyond Networks with UAVs: From Communications to Sensing and Intelligence

    Full text link
    Due to the advancements in cellular technologies and the dense deployment of cellular infrastructure, integrating unmanned aerial vehicles (UAVs) into the fifth-generation (5G) and beyond cellular networks is a promising solution to achieve safe UAV operation as well as enabling diversified applications with mission-specific payload data delivery. In particular, 5G networks need to support three typical usage scenarios, namely, enhanced mobile broadband (eMBB), ultra-reliable low-latency communications (URLLC), and massive machine-type communications (mMTC). On the one hand, UAVs can be leveraged as cost-effective aerial platforms to provide ground users with enhanced communication services by exploiting their high cruising altitude and controllable maneuverability in three-dimensional (3D) space. On the other hand, providing such communication services simultaneously for both UAV and ground users poses new challenges due to the need for ubiquitous 3D signal coverage as well as the strong air-ground network interference. Besides the requirement of high-performance wireless communications, the ability to support effective and efficient sensing as well as network intelligence is also essential for 5G-and-beyond 3D heterogeneous wireless networks with coexisting aerial and ground users. In this paper, we provide a comprehensive overview of the latest research efforts on integrating UAVs into cellular networks, with an emphasis on how to exploit advanced techniques (e.g., intelligent reflecting surface, short packet transmission, energy harvesting, joint communication and radar sensing, and edge intelligence) to meet the diversified service requirements of next-generation wireless systems. Moreover, we highlight important directions for further investigation in future work.Comment: Accepted by IEEE JSA

    Multiple Access in Aerial Networks: From Orthogonal and Non-Orthogonal to Rate-Splitting

    Get PDF
    Recently, interest on the utilization of unmanned aerial vehicles (UAVs) has aroused. Specifically, UAVs can be used in cellular networks as aerial users for delivery, surveillance, rescue search, or as an aerial base station (aBS) for communication with ground users in remote uncovered areas or in dense environments requiring prompt high capacity. Aiming to satisfy the high requirements of wireless aerial networks, several multiple access techniques have been investigated. In particular, space-division multiple access(SDMA) and power-domain non-orthogonal multiple access (NOMA) present promising multiplexing gains for aerial downlink and uplink. Nevertheless, these gains are limited as they depend on the conditions of the environment. Hence, a generalized scheme has been recently proposed, called rate-splitting multiple access (RSMA), which is capable of achieving better spectral efficiency gains compared to SDMA and NOMA. In this paper, we present a comprehensive survey of key multiple access technologies adopted for aerial networks, where aBSs are deployed to serve ground users. Since there have been only sporadic results reported on the use of RSMA in aerial systems, we aim to extend the discussion on this topic by modelling and analyzing the weighted sum-rate performance of a two-user downlink network served by an RSMA-based aBS. Finally, related open issues and future research directions are exposed.Comment: 16 pages, 6 figures, submitted to IEEE Journa

    Energy and Delay Efficient Computation Offloading Solutions for Edge Computing

    Get PDF
    This thesis collects a selective set of outcomes of a PhD course in Electronics, Telecommunications, and Information Technologies Engineering and it is focused on designing techniques to optimize computational resources in different wireless communication environments. Mobile Edge Computing (MEC) is a novel and distributed computational paradigm that has emerged to address the high users demand in 5G. In MEC, edge devices can share their resources to collaborate in terms of storage and computation. One of the computational sharing techniques is computation offloading, which brings a lot of advantages to the network edge, from lower communication, to lower energy consumption for computation. However, the communication among the devices should be managed such that the resources are exploited efficiently. To this aim, in this dissertation, computation offloading in different wireless environments with different number of users, network traffic, resource availability and devices' location are analyzed in order to optimize the resource allocation at the network edge. To better organize the dissertation, the studies are classified in four main sections. In the first section, an introduction on computational sharing technologies is given. Later, the problem of computation offloading is defined, and the challenges are introduced. In the second section, two partial offloading techniques are proposed. While in the first one, centralized and distributed architectures are proposed, in the second work, an Evolutionary Algorithm for task offloading is proposed. In the third section, the offloading problem is seen from a different perspective where the end users can harvest energy from either renewable sources of energy or through Wireless Power Transfer. In the fourth section, the MEC in vehicular environments is studied. In one work a heuristic is introduced in order to perform the computation offloading in Internet of Vehicles and in the other a learning-based approach based on bandit theory is proposed
    corecore