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Abstract

Performance Optimization of Cloud Radio Access Networks

Mohamed Labana

The exponential growth of cellular data traffic over the years imposes a hard challenge on

the next cellular generations. The cloud radio access network (CRAN) is an emerging cellular archi-

tecture that is expected to face that challenge effectively. The main difference between the CRAN

architecture and the conventional cellular architecture is that the baseband units (BBUs) are aggre-

gated at a centralized baseband unit pool, hence, enabling statistical multiplexing gains. However, to

acquire the several advantages offered by the CRAN architecture, efficient optimization algorithms

and transmission techniques should be implemented to enhance the network performance. Hence, in

this thesis, we consider jointly optimizing user association, resource allocation and power allocation

in a two tier heterogeneous cloud radio access network (H-CRAN). Our objective is to utilize all

the network resources in the most efficient way to maximize the network average throughput, while

keeping some constraints such as the quality of service (QoS), interference protection to the de-

vices associated with the Macro remote radio head (MRRH), and fronthaul capacity. In our system,

we propose using coordinated multi-point (CoMP) transmissions to utilize any excess resources to

maximize the network performance, in contrast to the literature, in which CoMP is usually used

only to support edge users. We divide our joint problem into three sub-problems: user association,

radio resource allocation, and power allocation. We propose matching game based low complexity

algorithms to tackle the first two sub-problems. For the power allocation sub-problem, we pro-

pose a novel technique to convexify the non-convex original problem to obtain the optimal solution.

Given the conducted simulations, our proposed algorithms proved to enhance the network average

weighted sum rate significantly, compared to the state of the art algorithms in the literature.

The high computational complexity of the optimization techniques currently proposed in the
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literature prevents from totally reaping the benefits of the CRAN architecture. Learning based

techniques are expected to replace the conventional optimization techniques due to their high per-

formance and very low online computational complexity. In this thesis, we propose tackling the

power allocation in CRAN via an unsupervised deep learning based approach. Different from the

previous works, user association is considered in our optimization problem to reflect a real cellu-

lar scenario. Additionally, we propose a novel scheme that can enhance the deep learning based

power allocation approaches, significantly. We provide intensive analysis to discuss the trade-offs

faced when employing our deep learning based approach for power allocation. Simulation results

prove that the proposed technique can obtain a very close to optimal performance with negligible

computational complexity.
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Chapter 1

Introduction

1.1 Cloud Radio Access Networks

There is a massive evolution in communications industry. New applications that require reli-

able network connectivity, such as high definition (HD) videos, live video streaming, voice over IP

(VoIP), and virtual reality are introduced everyday. Moreover, billions of internet of things (IoT)

devices are expected to be fully operating by 2022 [1]. Thus, these IoT devices will also have their

share from the cellular networks resources. The diverse types of applications also need different

network requirements, and reliability metrics. For instance, IoT devices may be related to fire alarm

systems or medical applications, so they will require ultra low latency requirements. Consequently,

with this diversity in applications and different requirements, current research have been focused

on developing new cellular architectures and network technologies that can face these challenges.

Owing to these research efforts, the cloud radio access network (CRAN), an evolutionary cellular ar-

chitecture was proposed, and is expected to play a key role in the upcoming cellular generations [2].

The CRAN architecture divides the base stations in the traditional cellular networks into remote

radio heads (RRHs), which usually perform only the basic radio frequency functions; and baseband

units (BBUs) that are usually aggregated in a centralized position [3]. This architecture enables

supporting higher capacities with much lower costs. Additionally, the centralized processing at

the BBU pool enables achieving much better network performance and lower power consumption,

thanks to the statistical multiplexing gain.
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1.2 Coordinated Multi-point Transmissions

Coordinated multipoint (CoMP) is a technique that enables serving a user by more than one

base station in a cellular network. It helps to improve the network performance, such as enhancing

the network throughput, increasing the coverage probability, and improving the quality of service

(QoS) for the cell edge users [4].

In one of our contributions, we consider combining both emerging technologies, CRAN and

CoMP. In particular, we consider a downlink heterogeneous H-CRAN system while implementing

CoMP. We focus on jointly optimizing the user association, resource allocation, and power alloca-

tion to maximize the network throughput and utilize any available resources to enhance the network

performance in the most efficient way.

1.3 Optimization in CRAN

Optimization techniques are essential for cellular networks. The main aim of optimization is to

ensure that the network resources are utilized in the most efficient way to maximize the network per-

formance. Several metrics can be considered for optimization according to the type of users of the

network. The most important metrics that are usually considered by researchers as the optimization

objectives are maximizing the network weighted sum rate, minimizing power consumption, or min-

imizing network latency. The ultimate goal of optimization is to achieve the optimal performance,

according to the metric being optimized, subject to some constraints that must be satisfied. For

instance, in green networks, the objective is usually to minimize the power consumption, subject

to a condition that each user must achieve a minimum data rate that is determined according to the

user’s target quality of service (QoS).

1.4 Motivations

The CoMP transmission technique was initially limited to serve the network edge users, which

usually suffer high interference. Following that, researchers started to remove this limitation and use

CoMP transmissions to serve generic users in order to improve the network performance. However,
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the number of remote radio heads (RRHs) serving a specific user was usually limited (or fixed) in

the proposed works. Differently, we propose using generalized CoMP transmissions to utilize any

excess resources in the network to obtain higher throughput. In our work, the number of RRHs

serving some user is not limited, such that it is decided according to the network status to obtain the

best possible performance.

One of the main challenges that prevents from totally reaping the benefits of the centralized

optimization is the high computational complexity of the conventional optimization algorithms in-

troduced in the literature. This high complexity results in increased costs in the required hardware;

high latency, since these algorithms require large time to be processed; and less power efficiency.

Moreover, in ultra dense network settings, where the network might have several thousands of small

cells and huge number of users, the implementation of these algorithms might be infeasible.

Due to the aforementioned drawbacks of the conventional optimization techniques, recent re-

search has been focused on developing novel low complexity optimization techniques that can offer

performance close to, or outperform the conventional ones. Game theoretic based algorithms proved

to be efficient in solving optimization problems with integer variables that are usually intractable

and can be solved optimally, solely, through the exhaustive search technique [5,6]. One of the most

promising solutions is to opt for techniques based on machine learning and artificial intelligence.

The main advantage of machine learning based optimization is that its computational complexity is

only experienced during the model training phase [7]. Once a machine learning model is trained

successfully, it can be used for prediction with negligible computational complexity. Thus, utilizing

machine learning based optimization techniques in cellular networks can alleviate the huge burden

on the cellular baseband units [8], and reduce the latency significantly [9]. Particularly, reducing

the latency is a superior advantage for networks serving IoT users [10]. Moreover, the hardware

requirements, and accordingly the costs of construction of baseband units will highly decrease, as

the training of the machine learning models does not have to be done in each BBU. Rather, these

models can be trained in a different location then transmitted to be utilized in several BBUs.

Tackling the power allocation optimization problem in wireless networks via deep neural net-

works (DNNs) was proposed in the literature. However, a cellular network scenario where users

have the possibility to associate with several RRHs was not considered. Here and different from
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previous works, we consider optimizing the power allocation in a CRAN with DNNs, while consid-

ering user association to reflect a real cellular scenario, where users have the possibility to associate

with several RRHs, and the locations of the users are highly random.

1.5 Thesis Contributions

Based on the previous discussions, and motivated by the void in the literature, the contributions

of this thesis can be divided into two main parts. Firstly, we consider solving a joint user association,

resource allocation, and power allocation optimization problem in H-CRAN, while implementing

CoMP. To the best of our knowledge, no research work considered a similar problem while utilizing

CoMP transmissions. Our contributions in this part can be summarized as follows:

• We propose using generalized CoMP transmissions to utilize any excess resources in the

network to obtain higher throughput.

• We propose matching game based low complexity algorithms to tackle the user association

and resource allocation sub-problems. Matching game was also proposed in [11] to solve a

similar optimization problem. However, CoMP was not supported in their proposed algo-

rithms.

• Our user association algorithm proved to realize a good tradeoff between the cooperation

gain and fronthaul consumption, to achieve a cooperation gain even in case of tight fronthaul

constraints.

• Furthermore, we propose a novel approach to convexify the power allocation sub-problem to

obtain an optimal solution.

Regarding the second part, we aim to combine the benefits of both, the CRAN architecture and

the deep learning based optimization algorithms. Specifically, we consider jointly optimizing the

user association and power allocation in CRAN downlink transmission, where the power allocation

sub-problem will be tackled via a deep neural network (DNN) based algorithm. The contributions

of this part can be summarized as follows:
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• We optimize the power allocation in a CRAN with DNNs, while considering user association

to reflect a real cellular scenario.

• We provide intensive simulations to discuss the trade-off between the ability of the DNNs to

obtain high performance, and their ability to predict solutions that satisfy the optimization

problem constraints (in our case, QoS constraints).

• Furthermore, we propose a novel approach to enhance the ability of the DNNs to obtain higher

performance and better constraint preservation capability.

1.6 Thesis Organization

The rest of this thesis will be organized as follows:

In chapter 2, we give a background about the CRAN architecture and coordinated multi-point

transmissions. Moreover, we explain the optimization objectives and optimization parameters tar-

geted by researchers in CRAN. Finally, we review some related works.

We discuss our proposed generalized CoMP scheme in chapter 3. A detailed explanation of the

system model, problem formulation and proposed algorithms will be provided. Furthermore, we

prove by simulations the superiority of the proposed algorithms, compared to the literature.

In chapter 4, our proposed DNNs based power allocation scheme will be introduced. We provide

a detailed explanation of the proposed DNNs architecture, training process, and prediction process.

Additionally, we provide extensive simulations to explain the trade-offs associated with utilizing

our proposed algorithm. Moreover, we compare the proposed algorithm to the state-of-the-art con-

ventional optimization algorithms available in the literature in terms of the achieved performance

and the computational complexity. We prove that the proposed algorithm clearly outperforms the

conventional ones.

Finally, in chapter 5, we draw our conclusions; discuss the challenges facing the CRAN perfor-

mance optimization, and the possible research directions.
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Chapter 2

Background and Literature Review

2.1 Introduction

The evolution in the telecommunications industry has led to developing novel cellular technolo-

gies and architectures. One of the proposed promising technologies is the software defined network

(SDN), in which the network control plane is disassociated from the network devices and trans-

ferred to a logical control center to be centrally managed using software applications. Integrating

the concept of SDNs with cellular networks allows the network resources to be centrally managed

and allocated to the users based on a comprehensive view of the network, which helps significantly

in improving the users’ QoE (quality of experience). The authors in [12] gave a comprehensive

overview on SDNs, and proposed a method to enhance the QoE of software defined multi-tier Long

Term Evolution-Advanced (LTE-A) networks’ users. In addition to SDNs, the cloud radio access

network (CRAN), an evolutionary cellular architecture was proposed, and is expected to have a key

role in the upcoming cellular generations [2].

The main contribution in the CRAN architecture was that the regular basestations in the ordinary

cellular networks were decoupled into two units. The first unit is the remote radio head, which

performs mainly the RF functions, while the second is the baseband unit (BBU) that performs the

baseband signal processing functions. Moreover, the baseband units (BBUs) of numerous RRHs are

aggregated at a centralized position, namely, baseband unit pool (BBU pool) [11].

There are several perks for the CRAN architecture, due to the statistical multiplexing gain.
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Firstly, there is a large reduction in construction costs when compared to the conventional cellular

networks, as the BBUs are aggregated at one place; hence, they need only a single cooling unit.

This also results in a significant reduction in the power consumption. Furthermore, since the BBU

pool controls numerous RRHs, more complicated tasks can be synchronized and performed co-

operatively and smoothly between the RRHs, such as coordinated multi-point transmissions, and

multi-connectivity, in which a user can be served by multiple RRHs.

To reap the benefits of the CRAN architecture, high performance optimization techniques must

be used to obtain the important system parameters. Several research works were proposed in the

literature focusing on CRAN performance optimization, some of which can obtain significant per-

formance improvements.

In this chapter, we aim to give an overview of the CRAN architecture. Then, we explain the

CoMP technique and discuss how it significantly improves the network performance. Moreover,

we discuss the important optimization objectives targeted by researchers in CRAN, which reflect

the key performance metrics of the network. Additionally, we discuss the important parameters

that should be optimized, and how they affect the CRAN performance. Furthermore, we review

some of the important research works on CRAN performance optimization with single association,

and coordinated multi-point techniques. Finally, we review some research works utilizing machine

learning based techniques for CRAN performance optimization, where it is known that learning

based techniques have very low computational complexity.

2.2 H-CRAN Architecture

A CRAN usually consists of multiple network tiers. The first tier is formed of a macro RRH

(MRRH), while the inner tiers can include micro, femto or pico RRHs. Fig. 4.2 shows a two-tier

H-CRAN. Note that the macro RRH users are denoted as MUs, while the small RRHs users are

denoted as SUs in the figure. It can be seen in Fig. 4.2 that BBUs are decoupled from the RRHs and

aggregated in the BBU pool. Fronthaul links are used to connect the RRHs to the BBU pool. The

most common method to deploy these links is through optical fibers [13]. However, the fronthaul

links can be also in the form of microwave wireless links, or deployed using the Ethernet standard
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to be shared among different RRHs [13]. The presence of the inner tiers allows the network to

serve much more users, compared to the number served by the MRRH solely; hence, significantly

improving the network coverage and spectral efficiency. Moreover, the inner-tier RHHs can be

turned off when not serving any user, resulting in higher power efficiency. However, the presence

of multiple network tiers causes inter-tier interference, if the radio resources are not orthogonal.

Accordingly, optimization techniques are needed to reap the benefits of the H-CRAN architecture,

while mitigating the inter-tier interference.

Fortunately, the CRAN architecture, which aggregates the baseband units (BBUs) together in

the BBU pool, gives the opportunity to implement more centralized optimization techniques. This

allows achieving much higher performance gains. Additionally, centralized optimization facilitates

the implementation of interference mitigation techniques such as coordinated multi-point transmis-

sion.

Figure 2.1: Two-tier H-CRAN Architecture
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2.3 Coordinated Multi-point Technique

Coordinated multi-point (CoMP) technique is expected to be a key factor in 5G systems and

beyond. It allows a user to be served by numerous basestations (RRHs in our case) simultaneously

using the same frequency block. This helps to significantly improve the QoS, especially for the

network edge users. Consequently, utilizing CoMP can enhance the network performance greatly

[4]. Fig. 2.2 shows a typical implementation of CoMP, in which the edge users, who usually suffer

high interference are served with multiple RRHs. Noting that a user equipment is denoted as UE in

the figure.

Figure 2.2: Coordinated multi-point transmission

To illustrate more how CoMP improves the system performance, consider a network consisting

of numerous RRHs which belong to the set J = {1, 2, 3...M} and users belonging to the set U =

{1, 2, 3...K}. If CoMP is not used, the signal to interference plus noise ratio (SINR) received by

user i served by RRH j can be expressed as:

SINRi =
Pjgji∑

m∈J/{j} Pmgmi + σ2
, (2.1)
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where Pj is the transmission power of RRH j, gji is the channel gain between user i and RRH j,

and σ2 is the noise variance. Now, assume that CoMP is adopted, and RRHs j1, j2, j3 are serving

user i. Hence, SINRi can be rewritten as:

SINRi =
Pj1gj1i + Pj2gj2i + Pj3gj3i∑
m∈J/{j1,j2,j3} Pmgmi + σ2

, (2.2)

Obviously, it can be seen that the received useful signal power at i is much higher at the second case.

Moreover, the interference power has been significantly decreased. Thus, the CoMP technique

simply maps the interference signals into useful signals. It can be easily deduced that receiving

higher SINR means larger data rates received by user i.

Ri = F log2(1 + SINRi), (2.3)

where F is the bandwidth of the utilized radio resource block.

2.4 Optimization Objectives

The optimization metrics are usually chosen according to the users. For instance, if the users

are mainly IoT devices related to critical applications, such as fire detection, then minimizing the

network latency is the most important optimization objective to consider. Another important metrics

that are usually considered by researchers as the optimization objectives are maximizing the network

weighted sum rate and minimizing power consumption. This section reviews some of the popular

optimization objectives introduced in the literature.

• Maximizing the network weighted sum rate (throughput): with the evolution of the new cellu-

lar applications that require very high date rates such as high definition (HD) and 4K videos,

it is logical that one of the most important metrics to optimize is the total rate achieved by the

network users. Thus, if the CRAN or the cellular network in general is intended to mainly

serve these types of applications, then maximizing the weighted sum rate is the best optimiza-

tion objective to consider, in order to guarantee a good quality of experience (QoE).
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• Minimizing network latency: some applications are delay critical, such as the medical com-

munications, or vehicular security critical messages...etc. In general, communications in-

cluding internet of things (IoT) devices are usually sensitive to the network delay, and do not

require high data rates. Consequently, networks serving these type of devices should consider

minimizing the network latency as the optimization metric.

• Minimizing total transmission power: using less power means less recurring costs for the net-

work operator; and hence more profit. Additionally, reducing power consumption and energy

saving is becoming a trend in many manufacturing sectors. Thus, green communications

has received much importance recently, in which the main concern is reducing the energy

consumption while maintaining the QoS.

• Maximizing the ratio between weighted sum rate and total transmission power: this objective

function achieves a very good trade-off between the network throughput and the power con-

sumption. Thus, the task here is to obtain the best performance with the lowest cost in terms

of transmission power.

• Maximizing fairness among users: this can be achieved through several methods. One of the

most popular optimization objective functions that ensure fairness is the max-min fairness

function, in which the minimum achievable signal to interference plus noise ratio (SINR) for

each user is maximized.

These are the most important optimization objectives usually considered in the literature, as they

play a pivotal role in determining the network performance. In the next section, we discuss the most

important parameters that should be optimized in order to achieve the optimization objectives.

2.5 Optimization Parameters

To achieve a superior performance, several parameters need to be optimized in a cellular net-

work, according to the required performance metrics explained in the last section. In this section,

we discuss the most important optimization parameters that should be taken into consideration in

CRAN.
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2.5.1 RRH-User Association

This is one of the most important parameters [14]. Users should be associated to the RRHs that

can provide them with the best performance. One of the most popular user association techniques

is to simply associate each user with the RRH providing the highest signal power. This technique

can achieve acceptable performance with low computational complexity. Also, many algorithms

based on game theory were proposed for the same purpose. Moreover, norm approximation meth-

ods proved to be efficient in solving optimization problems with integer values, in which RRH-user

association is one of them. The idea of norm approximation methods is to relax the integer values

in the combinatorial optimization problem [15], then iteratively solve the relaxed problem. How-

ever, algorithms based on game theory are the best candidates for the user association optimization

problems, due to their low complexity and high performance. Game theoretic based algorithms con-

verge after reaching the Nash Equilibrium [16], in which the players reach the maximum possible

utility according to the game scenario. The concerned players can be the base stations (RRHs in our

case) [17], users [18], or both [19]. One of the important gaming models introduced in the literature

is the bargaining game [20,21], where players negotiate with each others to obtain the highest possi-

ble mutual gains. Another gaming model is the matching game considered in [11], where each user

should be matched to the RRH offering the highest data rate, while taking the fronthaul capacity

into consideration.

2.5.2 Radio Resource Allocation

Optimization problems including radio resource allocation usually include integer values. Thus,

they can be tackled via the classic non-convex optimization, where the binary variables can be re-

laxed with numerous techniques including the norm approximation methods [15, 22]. In general,

a user should be assigned the radio resource with highest channel gain to obtain the best perfor-

mance. Another way to tackle the radio resource allocation optimization problems is through the

game theoretic based techniques. The gaming models utilized in the literature are similar to the

used models for user association, such as the bargaining game [20, 21], matching game [11], and

coalition game [23]. While the matching game and bargaining game were discussed in the previous
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subsection, the idea of the coalition game is to divide the players into different sets (coalitions).

The players in each coalition form a cooperative team that aims to maximize their gains during the

game, while competing against the other coalitions.

2.5.3 Power Allocation

Optimizing the values of the signal powers allocated from each RRH to each user can help in

reducing the intra-tier and inter-tier interference significantly. Consequently, power allocation is one

of the critical parameters to be optimized in CRAN. Nevertheless, power allocation is usually a non-

convex optimization problem. Thus, it is usually tackled with some high complexity algorithms.

Some of the popular algorithms used for power allocation are: genetic algorithm [24], successive

convex approximation [25], and weighted minimum mean square error [26]. These algorithms are

highly iterative with significant computational complexity, such that their application in networks

with large number of users and RRHs (ultra-dense networks) might be infeasible.

2.5.4 RRH Activation

In optimization problems with the objective of minimizing power consumption, or maximizing

the power efficiency, switching off some RRHs that are not going to highly affect the performance

can cause significant power efficiency gain. Thus, the main task of RRH activation optimization

is to save power while causing a minimal effect on the network performance, and maintaining

the quality of service (QoS) constraints. Numerous approaches were proposed to optimize the

RRH activation in CRAN. In [27], authors proposed using norm approximation methods to jointly

optimize RRH activation and beamforming. Researchers in [28] considered jointly optimizing RRH

activation and user association, where they adopted the max-sum algorithm to efficiently tackle their

problem. Another work in [29] considered utilizing Benders decomposition to optimally tackle a

joint optimization problem considering RRH activation, user association, and power allocation.

2.5.5 RRH-BBU Mapping

BBUs are aggregated in the BBU pool. Each BBU can be modeled as a virtual machine in the

optimization process and mapped to serve multiple RRHs. Optimizing RRH-BBU mapping can
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help reduce the latency significantly. Moreover, some BBUs can be turned off to increase system

power efficiency, if this will not affect the performance subject to the system constraints. Some

works were proposed to deal with RRH-BBU mapping optimization. There are several optimization

objectives to consider for problems involving RRH-BBU mapping such as load balancing [30], or

minimizing power consumption [31]. In [30], authors proposed a particle swarm technique for the

RRH-BBU mapping in order to minimize the number of blocked calls and balance the load between

BBUs. Load balancing is a very important metric as it can prevent the network congestion [32].

Additionally, researchers in [32] proposed a borrow-lend approach for RRH-BBU mapping that can

improve the load balancing and prevent network congestion. Regarding power efficiency, authors in

[31] formulated RRH-BBU mapping as a bin-packing problem, then proposed a heuristic algorithm

to minimize the power consumption while maintaining users’ QoS.

2.5.6 Cache Allocation

The types of content that are frequently requested by mobile network users should be cached in

the CRAN cloud to reduce the burden on the core network and backhaul links. Moreover, since the

cached content becomes closer to the users, the network performance can be improved significantly

in terms of latency and QoS. Therefore, cache allocation optimization has significant attention lately

from researchers. There are important factors to consider when optimizing cache allocation such

as the associated user preferences and mobility, as well as the available hardware resources for

caching [33].

As it can be noticed, most of the previously mentioned parameters are related to each other, and

the way one of them is tuned will affect other parameters, and the whole network performance. Ac-

cordingly, numerous researches focus on solving joint optimization problems that consider several

optimization parameters. Jointly considering these parameters improves the network performance

significantly. Several examples will be discussed in the upcoming sections.
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2.6 Optimization in CRAN With Single Association

Communication networks in which each user can only be associated with only one basestation

are the simplest type of networks. The main advantage of this type of network operation is that

the complexity of the optimization algorithms is relatively lower. In this section, we review some

of the recent research works that focused on optimizing the CRAN performance under the single

association constraint.

Authors in [11] aimed to maximize the weighted sum rate in a heterogeneous CRAN. They pro-

posed jointly optimizing the RRH-user association, radio resource allocation, and power allocation.

They proposed a novel scheme to tackle the joint problem, in which it was divided into three sub-

problems. The first two sub-problems, namely, RRH-user association, and radio resource allocation

were tackled through matching game based algorithms. The third sub-problem, power allocation,

was relaxed via the high SINR regime to a convex problem and solved by updating the Lagrangian

multipliers iteratively.

With a different optimization objective to minimize the network latency, researchers in [2] pro-

posed solving a joint optimization problem including communication and computing resource allo-

cation. The communication resources taken into consideration in their model included RRH-user

association, radio resource block allocation, and power allocation. Regarding the computing re-

sources, each BBU in their system was divided into virtual machines (VMs), each of them can

serve one RRH. Thus, the computing resources considered in their optimization were namely, the

RRH-BBU mapping, and VM allocation for the RRHs. To overcome the intractability of their opti-

mization problems, they proposed new algorithms inspired from the auction theory. Tactile Internet

(TI) is one of the services that are expected to be provided in the upcoming cellular generations.

However, to provide such a service, URLLC (ultra reliable low latency communication) is required.

Fortunately, the CRAN architecture allows researchers to look forward to achieving this type of

communications. Thus, some research aimed to reap the benefits of CRAN architecture to satisfy

the strict requirements of the TI applications. Authors of [34] considered a system model in which

a CRAN is serving several pairs of tactile users, each of which are communicating together. They

proposed a queuing model that is especially designed to fit the TI applications. The objective of
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their optimization problem was formulated to minimize the overall power consumption, while sat-

isfying the stringent delay constraints for the TI. The optimization parameters being considered in

their system were mainly power allocation and radio resource allocation. In their model, they con-

sidered the queuing delay in addition to the fronthaul delay. In order to tackle the NP-hardness

and non-convex nature of their formulated problem, they utilized techniques based on successive

convex approximation (SCA), and the difference between two convex functions. Their algorithms

proved to reduce the network power consumption while satisfying the strict latency requirements of

the Tactile Internet.

These aforementioned works in CRAN optimization have improved the performance signifi-

cantly, and opened the door for more developments. However, restricting the system to single asso-

ciation schemes prevents the network from achieving better performances that can be achieved using

multiple association techniques. Especially that the architecture of the CRAN facilitates centralized

optimization, which is the ideal environment to perform these techniques. In the next section, we

discuss the recent advances in performance optimization of coordinated multi-point enabled CRAN.

2.7 Optimization in CoMP-Enabled CRAN

The high ability of CoMP to cancel the inter-tier and intra-tier interference, and transferring the

interfering signals into useful ones, has driven many research works to start exploring how to use

CoMP in the most efficient way. The authors in [35] proposed optimizing the resource and power

allocation problems in a fronthaul constrained H-CRAN. They used a price-based outer iteration

scheme to control the fronthaul capacity, and weighted minimum mean square error-based inner

iteration approach to obtain the power allocation. In [20], the authors solve the clustering problem

through a cooperative bargaining game, while ensuring fairness amongst users. They utilized CoMP

transmission in order to mitigate the interchannel interference (ICI). Nevertheless, their solution is

only applicable to CRANs with high capacity fronthaul links. The clustering problem was also

tackled in [36], in which a CoMP heuristic user association was proposed to maximize the energy

efficiency. Their algorithm showed enhancement in the system energy performance when compared

to the baseline nearest RRH user association scheme. However, they only focused on a single
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tier CRAN. Similar to [20], authors in [37] jointly optimized the user association, precoding and

power allocation in a single tier CRAN, with an objective function aiming at minimizing the power

consumption of the network. They proposed an iterative linear relaxed algorithm to approximate

the fronthaul capacity constraint function then solving the corresponding linear problem, and hence

obtaining a sub-optimal solution. In [5], authors proposed an algorithm to optimize the CoMP

selection and resource allocation joint problem, where they considered only a single tier CRAN.

The authors in [38] also considered the downlink power allocation problem in a single tier CRAN.

They managed to reach the optimal solution but in a system model in which only one UE is served

by multiple RRHs. Thus, there was no interference in their model, and the performance was only

related to SNR.

In order to tackle the void in the literature, in the next chapter, we propose a generalized CoMP

scheme that aims to maximize the network weighted sum rate. A two tier H-CRAN is considered.

Thus, constraints to limit inter-tier interference are added, in addition to the QoS constraints. We

consider all possibilities regarding the fronthaul links, which can be individual or shared links with

a limited capacity, or high capacity links.

2.8 Deep Learning-Based Optimization in CRAN

As mentioned before, many optimization techniques are highly complex. This can cause a

huge burden on the hardware performing the optimization in the cellular sites (in our case BBU

pool). Additionally, it can lead to high latency, as the processing may take time to reach acceptable

solutions. Consequently, more research should be carried in order to have less complex optimization

algorithms that can perform accurately. The application of machine learning and deep learning

algorithms in optimization can alleviate significantly its complexity. The key idea behind using

machine learning in optimization is that the computational complexity due to machine learning

comes only during the model training phase, which is performed offline. The machine learning

model is said to be trained successfully if a target prediction accuracy can be reached. After the

model training is accomplished, the online computational complexity due to prediction is very small

and can be neglected. As we propose a deep learning based power allocation scheme in chapter 4,
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we review here some related works.

Tackling the power allocation optimization problem in wireless networks via DNNs was pro-

posed in the literature. Authors in [39] considered a joint problem of power allocation, scheduling,

and flow allocation in a static wireless network. Their optimization objective was to maximize the

weighted sum rate of the network under fairness constraints. To tackle their problem, they utilized

supervised machine learning, in which they aimed to train their learning model to approximate the

optimal solutions obtained from offline computations. Their learning based algorithm consisted

of both support vector machines (SVMs) and deep belief networks (DBNs). The performance of

their model proved to be superior to some of the other popular optimization algorithm. However,

their static wireless network system model and proposed algorithms cannot be applied to a cellular

environment where the users’ locations are always varying, and users have many possibilities to as-

sociate with several base stations. Researchers in [40] also considered the power allocation problem

in distributed antenna systems (DAS). Their system model consisted of several remote access units

(RAUs) connected to their corresponding users on orthogonal radio resources. Thus, there was no

interference in their model. They used DNNs trained through supervised learning to approximate

the optimal solutions obtained offline via the sub-gradient technique. Their algorithm showed a

high ability in obtaining performance close to the optimal. However, the fact that their model did

not include interference effects prevents it from being considered in real cellular scenarios. A joint

resource allocation and power allocation problem was considered in [41], with an objective function

to minimize the total transmission power, while maintaining the QoS of users. In [41], the system

model consisted of a single base station connected to numerous users through the multi-carrier non-

orthogonal multiple access (MC-NOMA) technique. However, the considered system model does

not reflect a practical scenario for a cellular network, since it is based only on one base station.

Authors in [42] considered a power allocation problem in a generic wireless network consisting

of multiple pairs of transmitters/receivers. They considered the two cases in which the transmit-

ters/receiver pairs can have either fixed or random locations. They utilized unsupervised DNNs to

tackle their power allocation problem. Their simulation results showed that unsupervised learning

technique can outperform the traditional optimization algorithms. However, their generic system

model cannot be directly applied to a cellular network, since they did not consider user association.
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Different from the previous works, in this thesis, we consider a deep learning based power

allocation algorithm while taking into account the fact that a user has the possibility to associate with

different RRHs. Moreover, to reflect a real cellular scenario, our proposed deep learning models are

trained with independent channel realizations, in which the users and RRHs have random locations

in each realization.

2.9 Conclusions

Cloud radio access networks are expected to play a great role in the next generation cellular

systems. They have a unique architecture in which BBUs are aggregated in a centralized BBU

pool, enabling much lower power consumption, less costs, and more efficient optimization. In this

chapter, we explained the CRAN architecture and how CoMP transmissions can highly enhance the

network performance. Furthermore, we discussed the main optimization objectives and optimiza-

tion parameters in CRAN. Several research works proposed techniques for CRAN performance

optimization. Some of the proposed techniques can reach very high efficiencies and significant

performance gains. However, there are still challenges that face improving the conventional perfor-

mance optimization techniques and reducing their complexity. As noted, machine learning based

techniques are highly qualified candidates that have negligible computational complexity.
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Chapter 3

Joint User Association and Resource

Allocation in CoMP-Enabled

Heterogeneous CRAN

3.1 Introduction

As previously discussed, the exponential growth of the cellular traffic over the years has led the

researchers to think about novel architectures that can handle this hard challenge. Hence, the CRAN

was proposed. In typical cellular architectures, performing CoMP is considered a challenge, as high

synchronization is required between the serving basestations (BSs). Nevertheless, in the CRAN

architecture, synchronization is no more a severe issue, as the the centralized BBU pool controls

numerous RRHs. Thus, synchronization can be performed smoothly [43].

Since CoMP transmission technique and CRAN architecture are well suited together, we com-

bine both technologies in this chapter. Related works were reviewed in section 2.7. Different

from the previous works, we propose using generalized CoMP transmissions to utilize any excess

resources in the network to obtain higher weighted sum rate. A joint optimization problem is con-

sidered, where the optimization parameters are namely, user association, resource allocation, and

power allocation. We tackle the user association and resource allocation sub-problems via matching
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game based low complexity algorithms. Our user association algorithm proved to realize a good bal-

ance between cooperation gain and fronthaul consumption, such that a cooperation gain is achieved

even in case of tight fronthaul constraints. Moreover, we propose a novel approach to convexify the

power allocation sub-problem to obtain an optimal solution.

The rest of this chapter is organized as follows: in section 3.2, we discuss the system model

and formulate our problem; our proposed algorithms are presented in section 3.3; the performance

analysis and numerical results are investigated in section 3.4; and finally, our conclusions are drawn

in section 3.5.

3.2 System Model and Problem Formulation

We consider the downlink transmission in a H-CRAN with the architecture shown in figure 3.1.

Our system model includes a Macro remote radio head (MRRH) associated with some users denoted

as MUs, and belong to the set UMUs. Within the area of the MRRH coverage, several Pico remote

radio heads (PRRHs) are deployed to serve a set of devices denoted as PUs, and belong to the set

UPUs. The MRRH and the PRRHs are assigned the same orthogonal radio resources from the set

N = 1, 2, 3..N . All the RRHs are connected to a baseband unit (BBU) pool via fronthaul links.

It can be noticed that the devices served by different PRRHs will suffer high interference from

the MRRH and the non-serving PRRHs that use the same radio resources. Consequently, we im-

plement the CoMP transmission technique to ensure that the QoS is satisfied for the PRRHs users

(PUs), and to utilize the additional resources to optimize the network performance.

One of the great advantages of the CRAN architecture is that RRHs are connected to a central

BBU pool, where computations can be done in a centralized manner; and hence, obtaining sig-

nificant performance gain. Thus, in our model, the processing of all the proposed algorithms is

performed at the BBU pool assuming perfect channel state information (CSI). The rate achieved by

PU i on radio resource n:

Rni = Bn log2(1 + SINRni ), (3.1)

whereBn is the bandwidth of radio resource n, SINRni is the signal to interference plus noise ratio
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Figure 3.1: Our Network Architecture
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where i, j and n are the indices for PUs, PRRHs and radio resources, respectively; yij is the asso-

ciation coefficient, where yij = 1 if PU i is served by PRRH j, and yij = 0 otherwise; Υ is the set

of PRRHs; the index M is used to denote the MRRH; Pnj and PnM are the transmission powers of

PRRH j and the MRRH on radio resource n, respectively; ρin is the set of PRRHs which use radio

resource n and do not serve PU i. Finally, gnji, and gnMi are the channel gains on radio resource n

between PU i and PRRH j or the MRRH, respectively.

To guarantee the required QoS, a constraint must be defined. Accordingly, the data rate assigned

for each PU must be greater than or equal to a predefined threshold Rmini . Thus,

∑
n∈ℵ
∝ni Rni ≥ Rmini ,∀i ∈ UPUs, (3.3)

where ∝ni is the binary resource allocation coefficient. ∝ni = 1 only if the radio resource n is

assigned to PU i. Another constraint must be set in order to protect the MRRH users (MUs) from
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the interference caused by the PRRHs. Consequently, the interference on the MUm that is allocated

radio resource n must be less than a predefined threshold Inm.

∑
j∈Υ

Pnj g
n
jm ≤ Inm, ∀n ∈ ℵ, m ∈ UMUs. (3.4)

Additionally, we set a constraint to ensure that the sum of the achievable rates of the PUs associated

with each PRRH j is less than the fronthaul capacity CaPRRHj .

∑
n∈ℵ

∑
i∈UPUs

∝ni yijRni ≤ CaPRRHj , ∀j ∈ Υ. (3.5)

Consequently, with an objective function to maximize the weighted sum rate of the network, our

joint user association, resource allocation, and power allocation optimization problem can be for-

mulated as follows:

P1 : max
(y,∝,P)

.
∑
j∈Υ

∑
i ∈UPUs

∑
n∈ℵ

∝ni Rni (3.6)

s.t. (3.3), (3.4), (3.5),∑
n∈ℵ

∝ni ≤ 1,∀i ∈ UPUs (3.7)

Pmin
j ≤

∑
n∈ℵ

Pnj ≤ Pmax
j , ∀ j ∈ Υ (3.8)

yij = {0, 1} (3.9)

∝ni = {0, 1} (3.10)

Note that the constraint (3.7) indicates that a user can only be assigned one resource block (RB).

Nevertheless, such a RB can be served by numerous PRRHs, according to the network status. On

the other hand, constraint (3.8) limits the total power of PRRH j to some maximum value. Finally,

constraints (3.9), and (3.10) indicate that yij and ∝ni are binary coefficients. Thus we can easily

conclude that P1 is NP-Hard problem, which is computationally intractable. Therefore, we con-

sider a sub-optimal solution by dividing P1 to three sub-problems considering the user association

(P1−UA), resource allocation (P1−RA), and power allocation (P1−PA), respectively.
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P1−UA max
y

.
∑
j∈Υ

∑
i ∈UPUs

Rni (3.11)

s.t. (3.5), (3.9).

The first sub-problem will consider the user association using a many-to-many matching game

[44] between PUs and PRRHs, while considering the fronthaul capacity constraint.

P1−RA max
∝

.
∑
j∈Υ

∑
i ∈UPUs

∑
n∈ℵ

∝ni Rni (3.12)

s.t. (3.4), (3.7), (3.10).

The second sub-problem that considers the resource allocation is solved using a many-to-many

matching game between PUs and radio resources, while taking the interference protection on MUs

into account

P1−PA max
P(ωn)

.
∑
i∈ωn

Rni . (3.13)

s.t. (3.3), (3.4), (3.5), (3.8).

The third sub-problem is the power allocation, where ωn is the set of PUs using radio resource n

and their serving PRRHs. The power allocation sub-problem is in general non-convex. However, we

will introduce an additional constraint to transform the problem to be a convex one. The additional

constraint and the proof of convexity of the new problem will be discussed later on.

The fronthaul communications in CRAN architectures can be based on several technologies. For

instance, wireless fronthaul networks were proposed based on microwave links, or WiFi standard

in indoor environments [13]. Optical fiber based networks are always very efficient candidates due

to their large capacities [13]. In many of these fronthaul network architectures, the transmission

medium might be shared, especially among the RRHs serving at the same geographical area.

In what follows, it will be more convenient to reformulate the fronthaul capacity constraint as a
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sum fronthaul constraint. Thus, our new constraint can be represented as follows:

∑
i∈UPUs

∑
n∈ℵ

∑
j∈Υ

∝ni yijRni ≤ CaTotal, (3.14)

where CaTotal is the total capacity of the fronthaul network.

3.3 Proposed Algorithms

In CRAN, all RRHS are connected to a centralized BBU pool, where our algorithms are as-

sumed to be implemented, with PRRHs and PUs being mapped to virtual nodes. In the rest of

this, section we will discuss the matching game algorithms used to solve the user association and

resource allocation sub-problems. Finally, we introduce our novel approach to convexify the power

allocation sub-problem.

3.3.1 Many-to-many Matching Game Based User Association

We use a matching game based on the deferred acceptance scheme [44]. Algorithm 3.1 simply

works as follows: each PU i proposes to be matched to its preferred PRRH j, which initially

accepts the proposal if there is enough capacity to serve i in its fronthaul link, according to the

minimum data rate needed for i, Rmini . If there is not enough capacity, j starts to sequentially

reject the previously initially accepted PUs which are less preferred than i until there is enough

fronthaul capacity to admit i or there are not other PUs to reject. If the latter case occurs, i and

all the rejected PUs will have to remove j from their preference lists, and the same should be done

by j. These steps should be repeated multiple times until convergence is reached. Additionally,

the whole previously mentioned steps should also be repeated while updating the preference lists to

ensure that the already matched PUs will not be considered again for matching with PRRHs they

are associated with. The outputs are the user association sets Θj , and Θi.

To determine the preferred PRRHs for each PU, the utility of each PU i with respect to each

PRRH j (uji ) and the utility of each PRRH j with respect to each PU i (uij) must be calculated. The

25



result is applied as an input to the algorithm, where,

uji = log2(1 +
∑
n∈ℵ

SINRnij) (3.15)

uij =
∑
n∈ℵ

Pmaxj gnji. (3.16)

Consequently, the preference list for each PU i (PLi) is simply calculated by arranging the

PRRHs in a descending order according to the values of uji . The same process is done to calculate

the preference list of each PRRH j (PLj). Hence, each PU ranks PRRHs according to which will

serve it with the highest rate, averaged on all radio resources. Also, each PRRH ranks PUs according

to which will receive the highest power form it, averaged over all radio resources. During the user

association and the radio resource allocation phases of our problem, the PRRHs will be virtually

assumed to be operating with the maximum power Pmaxj

When the fronthaul capacity is limited, we can approximately assume that the rates achieved by

the PUs connected to a specific PRRH is tied by the capacity of its fronthaul. Thus, one can roughly

approximate the initial rate that will be achieved by PU i from PRRH j as:

Rji = max(Rmini ,
CaPRRHj

|Θj |
) (3.17)

where |Θj | is the number of PUs associated to PRRH j. Now assume that i is associated to some

PRRHs j1, j2, j3...etc. The rate achieved by i will be tied by the lowest rate it can achieve at

j1, j2, j3...etc, according to their fronthaul capacities, and the number of PUs associated to each.

This rate can be initially approximated as:

Riniti = min(Rj1i , R
j2
i , R

j3
i , ...). (3.18)

Consequently, we can avoid cooperations that will actually lead to data rate loss based on the ap-

proximate equations (3.17), and (3.18). In algorithm 3.1, the term Co is true only if a cooperation

gain is expected. Thus, no PU will be associated with more than one PRRH, unless cooperation

gain is guaranteed, or in the worst case, no performance degradation will occur.
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Algorithm 3.1: Many to many matching user association

Input: uji , u
i
j , PLi, PLj , ∀j ∈ Υ, i ∈ UPUs

1 Initialize: t1 = 0, t2 = 0, Θj(0) = ∅ ∀j ∈ Υ, Caavj = CaPRRHj

2 do
3 t1 ← t1 + 1
4 for j ∈ Υ do
5 for i ∈ UPUs do
6 if i ∈ Θj(t1) then
7 uji (t1)← 0, uij(t1)← 0

8 else
9 uji (t1)← uji (t1 − 1) , uij(t1)← uij(t1 − 1)

10 PLi(t1)← update(PLi(t1 − 1))
11 PLj(t1)← update(PLj(t1 − 1))
12 do
13 Ψj ← ∅ ∀j ∈ Υ
14 t2 ← t2 + 1
15 for j ∈ Υ do
16 for i with j as its most preferred in PLi do
17 while i /∈ Ψj do
18 if Caavj ≥ Rmini then
19 Ψj(t2)← Ψj(t2) ∪ i, Caavj ← Caavj −Rmini

20 else
21 PL′j(t2)← {i′ ∈ Ψj(t2) |i �j i′}
22 Remove least preferred i′ ∈ PL′j(t2) from Ψj(t2) till (PL′j(t) = ∅)

Or (Caavj ≤ Rmini )

23 if Caavj ≥ Rmini then
24 do step 19
25 else
26 DLp ← i
27 zj ← {z ∈ PLj(t2) |DLp �j z} ∪DLp

28 for z ∈ zj do
29 PLi(t2)← PLi(t2) \ {j}
30 PLj(t2)← PLj(t2) \ {z}
31 while Ψj(t2) 6= Ψj(t2 − 1), ∀j ∈ Υ
32 for j ∈ Υ do
33 for i ∈ UPUs do
34 if (i ∈ Ψj(t1)) ∩ (i /∈ Θj(t1), ∀j ∈ Υ) then
35 Θj(t1)← Θj(t1) ∪ {i}
36 else if (i ∈ Ψj(t1)) ∩ (i /∈ Θj(t1)) ∩ Co then
37 Θj(t1)← Θj(t1) ∪ {i}
38 while Θi

j(t1) 6= Θi
j(t1 − 1)

Output: Θj ,Θi, ∀j ∈ Υ, i ∈ UPUs
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3.3.2 Many-to-one Matching Game Based Resource Allocation

Regarding the resource allocation (RA) algorithm, it will follow procedures similar to the user

association (UA) algorithm that is already explained in details in Algorithm 3.1, and it is also based

on deferred acceptance [44]. The utilities that will be input to the algorithm are:

uin =
∑
j∈ Θji

Pmaxj gnjm (3.19)

uni = log2(1 +
∑
j∈ Θji

SINRnij) (3.20)

ujn = Pmaxj gnjm (3.21)

u
(n)(j)
i = log2(1 + SINRnij) (3.22)

where uin is the utility of each n with respect to each PU i which is equal to the interference caused

on MU m (allocated radio resource n) by the PRRHs associated with i. uni is, similarly, the utility

of each PU i with respect to each radio resource n and is equal to the rate achieved on n using

CoMP transmissions from the associated PRRHs. ujn is the interference caused on MUm by PRRH

j. u(n)(j)
i is the rate achieved by PU i when allocated radio resource n and associated with PRRH j.

In addition to the utilities, PLn, PLi, Θi , Θj should also be input to the resource allocation

(RA) algorithm, in which PLn, PLi are the preference lists that can be obtained as explained

before, and Θi, Θj are the user association sets obtained from Algorithm 3.1.

Now, we illustrate the operation of the RA algorithm. Firstly, matching is done between PUs

and radio resources based on the interference caused by the PRRHs associated with i, according

to the predefined interference threshold Inm. If a PU is initially accepted on a radio resource n, it

competes with the PUs that were previously initially accepted on the same n and associated with

the same PRRHs. The PU that achieves higher rate from each PRRH will be associated with it on

radio resource n. If a PU losses all its associated PRRHs on a specific radio resource n, the radio

resource will be removed from its preference list, and this PU will propose its second preferred n in

the subsequent cycle. Additionally, all the utilities and preference lists should be updated after any
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change in the user association set. These steps will be repeated until convergence. The output from

the RA algorithm will be the set κn containing the PUs assigned each radio resource n, and their

serving PRRHs.

3.3.3 Power Allocation (PA) Algorithm

Given that the set κn was obtained by applying the user association and resource allocation

algorithms, the power allocation problem can now be solved. We can write the objective function

of our power allocation sub-problem as:

∑
n∈ℵ

∑
i∈κn

Rni =
∑
n∈ℵ

∑
i∈κn

Bn log2(1 + SINRni ) =

∑
n∈ℵ

∑
i∈κn

Bn log2(1 +

∑
j∈τi P

n
j g

n
ji

PnMg
n
Mi +

∑
j /∈τi P

n
j g

n
ji + σ2

)

(3.23)

where τi is the set of PRRHs serving PU i. To transform (P1−PA) to a convex problem, we

introduce an additional constraint. Thus, the resultant modified problem (P1−PA) can be stated

as follows:

P1−PA max
(P(κn)

.
∑
n∈ℵ

∑
i∈κn

Rni (3.24)

s.t. (3.3), (3.4), (3.8),

PnMg
n
Mi +

∑
j /∈τi

Pnj g
n
ji + σ2 ≤

∑
j∈τi

Pnj g
n
ji ∀ i ∈ κn, n ∈ ℵ. (3.25)

Constraint (3.25) is simply stating that SINR ≥ 1 for all the associated PUs. The proof of the

convexity of (P1−PA) is provided in appendix A. Since our new problem is convex, it can be

solved with any of the well known convex optimization tools to obtain the optimal solution.

For the fronthaul capacity constraint in (3.5) to be satisfied, after applying the UA, RA, and PA

algorithms, each PRRH checks the total rate of its associated PUs. Then PRRHs start to reject the

ones with the smallest achievable rates until the constraint is satisfied.

It is important to note that, for the special cases when the fronthaul links are shared among

the RRHs or the fronthaul capacity is unlimited, the same algorithms and steps are employed to
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solve the problem. However, in the user association algorithm, PUs can freely be associated with

numerous PRRHs, as using CoMP will not result in overloaded fronthaul links. In contrast, it will

help achieving much higher network throughput.

3.4 Simulation Results

Our simulation model considers six PRRHs of a maximum transmission power of 20dBm

placed inside the coverage area of a single MRRH with a constant transmission power of 46dBm.

The PRRHs and PUs are uniformly distributed at an indoor area of 300m2. The MUs are placed out-

doors directly beside the 300m2 indoor area, in order to have the worst case inter-tier interference

scenario. The MRRH and the PRRHs use the same orthogonal six radio resources, each of which

is 180KHz bandwidth. We assume that each radio resource is already allocated to a MRRH user

(MU), and that the interference threshold of each of the six MUs is −100dBm. The noise power

spectral density (PSD) is −174 dBm/Hz. The wireless channel follows a Rayleigh fading model,

with the path-loss and shadowing models implemented as [45]. The distance between the MRRH

and the indoor area is 600m.

In Fig. 3.2, we consider that our network has fronthaul links with unlimited capacity. Thus,

constraints (3.5) or (3.14) are not taken into account. To assess the performance of our proposed al-

gorithms, we compare the performance of our network while implementing three different settings:

• Our proposed generalized CoMP with matching game UA and RA algorithms

• No CoMP, user association is done with the high SINR algorithm, and resource allocation

with greedy algorithm.

• No CoMP, with matching game UA and RA algorithms [11]

In the three settings, the optimal power allocation is obtained.

We can see that significantly higher throughput could be obtained with CoMP, as the excess

resources are utilized to achieve much higher rate for the connected PUs. The network performance

with CoMP tends to become closer to the non-CoMP algorithms as the number of the served PUs in-

creases, due to the decrease in the available excess resources. Thus, when the network is overloaded,
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Figure 3.2: Weighted sum rate of the network versus number of PUs- large fronthaul capacity

our generalized CoMP algorithm is equivalent to non-CoMP algorithms.

To assess the performance of our network in the case of limited capacity fronthaul, we con-

sider both cases of either individual or shared fronthaul links. The capacity of the shared fronthaul

CaTotal = 9Mbps. On the other hand, the capacity of each individual fronthaul link CaPRRHj =

1.5Mbps. Fig. 3.3 represents the weighted sum rate of the network versus the number of served

PUs. We can see that our proposed CoMP algorithms can achieve considerable gains even in the

case of tight individual fronthaul constraints. This is due to the fact that our user association algo-

rithm can create a good tradeoff between fronthaul consumption and cooperation gain.

To further assess the performance of our algorithms in more random environments, our pa-

rameters will be changed such that the PRRHs will be Poisson distributed with density λPRRH =

6PRRHs, and the PUs will also follow the same distribution with λPU = 16PUs. The efficiency

of our generalized CoMP algorithm can be more realized from Fig. 3.4, in which the weighted sum

rate of the network is plotted against the number of radio resources available for each PRRH. It can

be seen that the performance of our CoMP algorithm is close to the non-CoMP algorithms when

the number of available resources is small. However, as the number of available resources, and

accordingly, excess resources increase, the throughput of the network becomes much higher when
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Figure 3.3: Weighted sum rate of the network versus number of PUs- limited fronthaul capacity

Figure 3.4: Weighted sum rate of the network versus number of radio resources- large fronthaul
capacity
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employing the proposed algorithms.

3.5 Conclusions

We proposed generalized CoMP in order to utilize any excess resources in the network to im-

prove the throughput. The simulation results proved the significant improvements in the network

performance when utilizing our proposed algorithms. The performance of our generalized CoMP

scheme becomes more superior when excess radio resources and high capacity fronthaul links are

available in the network. Moreover, our proposed user association algorithm proved to achieve

cooperation gains even with very tight fronthaul constraints.
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Chapter 4

Unsupervised Deep Learning Approach

for Near Optimal Power Allocation in

CRAN

4.1 Introduction

Most of the research works targeting CRAN performance optimization utilize the conventional

optimization techniques. The joint problem of user association to each RRH, BBU, and fronthaul

link, in addition to power allocation is studied in [46]. To solve their optimization problem, they

propose a two level iterative algorithm, in which at the first level the problem is solved two times

with one of the variables fixed at each, while at the lower level the problem is divided into many

sub-problems and solved via the successive convex approximation technique. Their algorithms

could achieve an enhancement in the network throughput, but with high computational complexity.

Regarding the energy efficiency and the green CRAN concept, authors in [26, 47] considered min-

imizing the power consumption in CRANs, while maintaining some constraints such as the QoS.

Nevertheless, to tackle their problems, they used online optimization techniques with relatively high

computational complexities, such as the weighted minimum mean square error (WMMSE) and La-

grangian relaxation. Another research in [48] considered jointly optimizing user association and
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precoding in CRAN. To deal with the NP-hardness of their problem, they utilized the successive

convex approximation technique to approximate the non-convex constraints in their problem. How-

ever, since their algorithm is based on solving a convex problem multiple times, it suffers from high

computational complexity.

To tackle the problem of the high computational complexity of the conventional optimization

algorithms, in this chapter, we propose a deep learning based power allocation algorithm. Particu-

larly, we consider a joint optimization problem of user association and power allocation in CRAN

downlink transmission, with an objective to maximize the network weighted sum rate, while main-

taining the users’ QoS constraints. We divide our joint problem into two sub-problems. The first

is the user association, which will be tackled through a low complexity matching game based algo-

rithm [11, 49], while the second sub-problem is the power allocation which will be solved through

a deep neural network (DNN) based algorithm. The contributions of this chapter can be stated as

follows:

• we optimize the power allocation in a CRAN with DNNs, while taking user association into

account to reflect a real cellular scenario, where users have the possibility to associate with

several RRHs, and the locations of the users are highly random.

• In this work, we consider the unsupervised learning approach for power allocation employed

in [42]. Also, we add the QoS constraints to the DNN’s loss function through a ReLU

penalty term as in [42, 50]. However, there is a trade-off between the ability of the DNN

to obtain high data rates, and its ability to maintain the QoS of the users [42]. There is a

hyperparameter that controls this trade-off. We call this parameter the QoS coefficient. In this

work, we provide intensive simulations to show how the QoS coefficient can affect the DNN

performance significantly. Moreover, we define a novel performance metric to measure the

QoS preservation capability of the DNNs based scheme.

• Furthermore, we propose a novel approach to enhance the ability of the DNNs to obtain

higher data rates with better QoS preservation capability, through directly inputting the QoS

requirements of the users to the DNN.

The rest of this chapter is organized as follows: in section 4.2, we present our system model
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and formulate the optimization problem; section 4.3 presents our proposed algorithms; numerical

analysis is presented in section 4.4; finally, we draw our conclusions in section 4.5.

4.2 System Model and Problem Formulation

4.2.1 System Model

A downlink scenario in a CRAN is considered. Our system architecture (Fig.4.1) consists of

M RRHs and R users, in which RRHs communicate with their associated users utilizing the same

radio resource block. Hence, high interference is anticipated and efficient optimization algorithms

are required to achieve acceptable performance. The RRHs are connected to the centralized BBU

pool via high capacity fronthaul links. In our system, we consider the single association scheme,

where each user can be served by maximally one RRH. The RRHs belong to the set J = 1, 2, 3...M

and denoted by j, while the users belong to the set U = 1, 2, 3...R and denoted by i. To cohere with

the CRAN architecture, which enables efficient centralized optimization, we assume that our opti-

mization algorithms are implemented in the BBU pool, and that perfect channel state information

(CSI) is available.

Figure 4.1: Network Architecture
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4.2.2 Problem Formulation

Recall that the data rate achieved by user i associated to RRH j can be calculated through (2.3)

and (2.1). In order to achieve the QoS requirements of each user, a constraint must be defined,

similar to our approach in chapter 3:

∑
j∈J

yjiR
j
i ≥ R

min
i ,∀i ∈ U, (4.1)

where Rmini is the minimum required data rate for user i, and yji is the user association coefficient.

yji = 1 if the user i is associated to RRH j, and yji = 0 otherwise. Thus, (4.1) states that each user

must obtain at least its minimum required data rate (Rmini ).

Considering user association and power allocation, our weighted sum rate maximization prob-

lem can be formulated as follows:

P2 : max
(y,P)

.
∑
j∈J

∑
i∈U

yji R
j
i (4.2)

s.t. (4.1),∑
j∈J

yji ≤ 1,∀i ∈ U (4.3)

Pmin
j ≤ Pj ≤ Pmax

j , ∀ j ∈ J (4.4)

yji = {0, 1} ∀i ∈ U, j ∈ J (4.5)

The constraint (4.3) restricts the system to the single association scheme. On the other hand,

constraint (4.4) limits the transmission power of RRH j to some maximum value Pmax
j . Lastly, con-

straint (4.5) restricts the association coefficient yji to binary values. Accordingly, it can be observed

that P2 is a mixed integer programming NP-Hard problem that can be tackled optimally, solely,

via the exhaustive search technique which has exponential computational complexity. Therefore,

we consider sub-optimal solutions. To tackle our problem P2, we firstly divide it into two sub-

problems namely, (P2−UA) which considers the user association, and (P2−PA) considering

the power allocation.

37



4.2.3 Sub-problem Formulation

The first sub-problem considers the user association, and will be tackled using the matching

game algorithm [49], while restricting the system to the single association scheme.

P2−UA : max
y

.
∑
j∈J

∑
i∈U

yji R
j
i (4.6)

s.t. (4.1), (4.3), (4.5).

The second sub-problem considers the power allocation. The set θ represents the active RRHs,

while βj is the user associated with RRH j. Generally, P2−PA is a non-convex optimization

problem that is usually tackled in the literature through high complexity techniques. Nevertheless,

we utilize DNN models, that are trained offline, to predict the power profile P (θ). The online

computational complexity of DNNs is negligible compared to the other optimization algorithms.

In the upcoming sections, we will discuss thoroughly how to train the DNNs, such that they reach

performance that can be superior to the high complexity optimization algorithms. Furthermore,

we provide an extensive review of the trade-offs faced during DNNs training, and how to tune the

different parameters according to our desired performance.

P2−PA : max
P(θ)

.
∑
j∈θ

Rjβj (4.7)

s.t. (4.1), (4.4).

4.3 Proposed Algorithms

4.3.1 Matching Game Based User Association

As previously mentioned, the user association sub-problem is undertaken with the matching

game algorithm. The objective is simply to match each user with the RRH expected to provide the

highest data rate. Our matching game algorithm is presented in Algorithm 4.1. Note that Algorithm

4.1 is similar to Algorithm 3.1, but customized to match our system model presented in this chapter.

The inputs to the algorithm are the preference lists (Lj), (Li) of the RRHs and users, respectively.
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The preference list of each user represents the RRHs providing the highest SINR arranged from the

best to the worst, while the preference list of each RRH also represents the users receiving the high-

est SINR from that RRH arranged in a descending order. Now, we illustrate briefly the operation

of the matching game based user association. In each iteration, every user i proposes to be matched

with its best preferred RRH j. The proposal of user i is initially accepted if no users are associated

with RRH j, or if the user i precedes in the preference list Lj the user that is associated with j at the

current iteration. If none of the aforementioned conditions is true, j will reject user i, which will

have to remove j from its preference list Li. Then, user i will propose its second preferred RRH in

the subsequent iteration, in which the previous steps will be repeated. The operation continues for

all users and RRHs until convergence is reached. The outputs of the matching game algorithm are

the sets θ = {θ1, θ2, θ3, ...θK} and β = {βθ1 , βθ2 , βθ3 , ...βθK} representing the active RRHs, and

the user associated with each of them, respectively. Accordingly, we will have K RRH-user pairs.

Algorithm 4.1: Matching game based user association
Input: Li, Lj , ∀j ∈ J, i ∈ U

1 Initialize: t = 0, βj(0) = ∅ ∀j ∈ J
2 do
3 t← t+ 1
4 for j ∈ J do
5 i′ ← βj(t)
6 for i with j as its most preferred in Li do
7 if (i′ = ∅) ∪ (i precedes i′ in Lj) then
8 βj(t)← i
9 else

10 Li(t)← Li(t) \ {j}
11 Lj(t)← Lj(t) \ {i}
12 while β(t) 6= β(t− 1)

Output: θ, β

Given the sets θ and β have been obtained, the power profile can be calculated with a trained

DNN model. The input vector to the DNN can be expressed as:

VDNN = [gθ1βθ1 , gθ2βθ1 , ....gθKβθ1 , gθ1βθ2 , gθ2βθ2 , ....gθKβθ2 , ....gθ1βθK , gθ2βθK , ....gθKβθK ,

Rminβθ1
, Rminβθ2

, ....RminβθK
]T (4.8)
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where gθ1βθ1
is the main channel gain from RRH θ1 to user βθ1 , gθ2βθ1

is the interference channel

gain from RRH θ2 to user βθ1 , and so forth. Additionally, we adopt a novel approach to input the

QoS requirements of each user Rmin
i to the DNN, in which we will prove later on that it enhances

the DNNs’ ability to maintain the QoS constraints and achieve higher data rates, significantly.

4.3.2 DNNs Architecture

Figure 4.2: The structure of DNN

We consider the conventional fully connected deep neural networks. Our proposed DNN ar-

chitecture (Fig. 4.2) consists of an input layer, (D − 2) hidden layers, and an output layer. The

input layer consists of (K2 + K) nodes, such that the first K2 nodes correspond to the channel

coefficients, while the other K nodes correspond to the QoS minimum requirements for the users

(Rmin
i ). The output layer consists of K nodes corresponding to the normalized power profile. Our

DNN layers are denoted by x = {1, 2, 3, 4...D}, where layer 1 is the input layer, and layer D is the

output layer. The number of nodes in each layer is denoted by nx, such that n1 = K2 +K.

We adopt the ReLU(.) as the activation function for the hidden layers of our DNNs. Activation

functions are critical as they introduce non-linearity to the deep learning models [51], otherwise

the resultant DNN models will be equivalent to linear regression. Hence, the output of an arbitrary
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hidden layer x can be calculated as:

Bx = ReLU(WxBx−1 + bx), (4.9)

whereReLU(u) = max(0, u); Bx is the output vector of layer x and has a size of nx×1, such that

each element in Bx is the output of its corresponding node; Wx is weights matrix with dimensions

nx × nx−1; and bx is the nx × 1 bias vector.

Considering that the output of the ReLU(.) activation is unbounded, while the transmission

power of RRH j must be confined to a maximum value Pmaxj , we utilize the sigmoid activation

function for the output layer. Consequently, the DNN output vector can be expressed as:

BD = Sig(WDBD−1 + bD), (4.10)

in which:

Sig(u) =
1

1 + e−u
. (4.11)

Thus, the elements of the output vector of our DNN (BD) are always in the range [0, 1]. Finally, we

can calculate the allocated powers vector P = [Pθ1 , Pθ2 , Pθ3 , ....PθK ]T as:

P = Pmax �BD, (4.12)

in which Pmax = [Pmaxθ1
, Pmaxθ2

, ....PmaxθK
]T represents the maximum powers of the active RRHs.

Hence, (4.12) is simply the element-wise product between Pmax and BD.

Before the formed DNN can be used for prediction, it must be trained with a sufficient number

of data points in order to obtain high performance. This is discussed in details in the upcoming

subsection.

4.3.3 Training DNNs

The training process of DNNs is crucial to obtain high performance. Previous research works

in [52] and [53] utilized supervised training to train their DNNs. The main idea of the supervised
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training is to generate labeled data, which acts as the ground truth, via one of the well known online

optimization algorithms such as WMMSE, as adopted in [52]. Then, the DNN training process is

done on the basis of minimizing an error function between the predicted power profile and the data

labels. However, this approach has several limitations. Considering that DNNs usually require very

large data sets to be trained accurately, generating such data sets of labeled training data will be an

expensive process in terms of computational complexity, required hardware, and required time to

accomplish the process. Moreover, the trained DNNs cannot outperform the optimization algorithm

used to generate the ground truth data labels. Thus, we opt for the unsupervised learning. For

the unsupervised training, we directly utilize the objective function in problem P2-PA as the loss

function of our DNN, in addition to embedding the QoS constraints (4.1) in that loss function via

ReLU penalty terms, as in [42] and [54]. To this point, we can express our loss function as:

LoDNN = E
[
−R(VDNN ,W, b) + q

∑
i∈β

ReLU(Rmini −Ri(VDNN ,W, b))
]
, (4.13)

where q is the QoS coefficient; R(VDNN ,W, b) and Ri(VDNN ,W, b) are the weighted sum rate

of the network, and the data rate achieved by user i, respectively. The terms R(VDNN ,W, b) and

Ri(VDNN ,W, b) are functions of the DNN’s weights matrix (W ), biases vector (b), and vector

VDNN representing a specific channel realization along with the QoS requirements of the users.

Thus, each ReLU penalty term will have a positive value only if the QoS requirement of the corre-

sponding user i is violated, enforcing the training process towards satisfying the given requirement.

Otherwise, the value of the ReLU term will be zero and will not affect the DNN training process.

To be noted that the parameter q can be considered as a critical hyperparameter that needs to be

tuned according to our target performance. In general, there is no analytical method to calculate the

optimal values of the hyperparameters related to the DNNs’ training process. Therefore, we pro-

vide intensive experimental results to discuss how to tune q according to our desired performance.

Broadly speaking, when the value of q is chosen to be very high, the DNN training process will be

highly biased towards maintaining QoS constraints, rather than maximizing the weighted sum rate.

On the other hand, if q is set to have a very small value, the opposite occurs and the training process

will have much higher tendency to increase the sum rate on the cost of violating some users’ QoS
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constraints. Thus, the manner in which q is tuned provides a tradeoff between the total achieved

sum rate and QoS satisfaction for users.

It is to be noted that the loss function LoDNN in (4.13) represents an expected value that is

related to the distribution of the elements in the DNN input vector VDNN in (4.8). Thus, it is quite

challenging to directly compute LoDNN . We adopt the widely used approach, mini-batch stochastic

gradient descent [55]. Hence, the generated offline training data will be divided into numerous equal

sized mini-batches. Assume that the channel realizations related to a specific mini-batch belong to

the set ψ. Thus, the number of VDNN vectors in each mini-batch is equal to |ψ|, which is called the

batch size. The loss function in (4.13) can be approximated as:

LoDNN ≈
1

|ψ|
∑

VDNN∈ψ

[
−R(VDNN ,W, b) + q

∑
i∈β

ReLU(Rmini −Ri(VDNN ,W, b))
]
. (4.14)

In each training step, the approximate (4.14) is used instead of (4.13) to calculate the loss func-

tion for each mini-batch, and then update the DNN’s weights and biases. One training epoch is

completed after a training step is done on each of the formed mini batches. The batch size is an

important hyperparameter for the DNNs’ training process. In deep learning, a common practice is

to choose small batch sizes, as this improves the generalization capability of the DNN models [56].

However, choosing a very small batch size can result in a dramatic increase in the DNNs needed

training time due to the loss of vectorization effect [57]. Thus, the choice of the batch size should

balance the complexity and accuracy.

It is important to note: there is no guarantee that the power profiles predicted through the DNN

will always be feasible, regardless of the value of q. This is due to the fact that the DNN mainly

makes predictions according to the input channel realizations and QoS requirements, unlike the

other optimization algorithms which solve the problem online. Moreover, for some channel real-

izations and QoS requirements, the problem may initially be infeasible. For instance, in case some

users have relatively high QoS requirements that cannot be satisfied because of the interference

level.

To investigate more the effect of the way q is tuned on the DNNs performance, we introduce a
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new performance metric:

PQV = Pr[QoS is V iolated]. (4.15)

It can be easily deduced that PQV is the probability that the QoS requirements of some user in

the network will be violated. Unfortunately, we currently do not have an analytical approach to

calculate PQV . However, in our simulations, we provide intensive analysis on how the method q is

tuned can affect PQV . Moreover, we prove that our novel approach to input the QoS requirements

to the DNN can achieve high data rates with significantly reduced values of PQV , regardless of the

value of q.

After the DNN models are trained offline, according to the target performance, they can be

effectively used for online prediction. Our complete online scheme is presented in Algorithm 4.2.

Regarding the training process, several thousands of channel realizations and QoS requirements

should be generated offline. Then steps from 1 to 4 in Algorithm 4.2 should be used to calculate

VDNN corresponding to each of the generated realizations. Finally, the calculated vectors should be

used for the offline training process.

Algorithm 4.2: The complete online algorithm
Input: U, J, Rmini ∀i ∈ U , and gji ∀j ∈ J, i ∈ U

1 Calculate SINRji ∀j ∈ J, i ∈ U
2 Calculate Li, Lj , ∀j ∈ J, i ∈ U
3 Run Algorithm 4.1 to get the outputs θ and β
4 Calculate VDNN
5 Load the appropriate trained DNN model, according to the value of K
6 Use the loaded model to calculate the normalized powers vector BD
7 Calculate the power profile vector P from (4.12)

Output: P

4.4 Numerical Analysis

In this section, we present our numerical results to verify the great enhancement in the network

performance when employing the proposed DNNs for power allocation. Our simulations related

to training DNNs and validating their performance were implemented with Python programming

language, utilizing TensorFlow, the open source library. The rest of our simulations related to the
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other optimization techniques, we compare against, were accomplished via MATLAB. Without loss

of generality, all the trained models in our simulations had 8 hidden layers, where each hidden

layer was composed of nx = 100 nodes. To obtain DNN models with high performance for

each scenario, several hundreds of training epochs were run, and the best performing models on

the validation data, according to our target performance were saved. Adam optimizer with initial

learning rate of η = 0.001 was used in the training due to its well known high performance [58]. For

each model, we used 150, 000 data points for training, and 50, 000 for validation. The data points

were divided into equal sized mini-batches. To provide a good balance between the training time and

complexity, we chose batch size = 100 for all our trained models. The reason behind using a large

number of data points for validation is to verify that our trained models can perfectly generalize over

any random inputs they have not experienced. All the values provided in our numerical analysis are

based on the performance of the DNN models on the validation data.

Independent channel realizations and QoS requirements were used to generate each data vector

VDNN , for both the training and validation data. The users and RRH were assumed to be placed

randomly with a uniform distribution at an area of 600m2. The QoS requirements of the users were

randomly selected from a uniform distribution in the range [0, 300] Kbps. The Rayleigh fading

channel model was assumed, with a path-loss and shadowing models as deployed in [11], [45],

according to the 3GPP standards. A 600KHz radio resource was utilized in our simulations. The

same settings were used for the schemes we compare against.

Note that the matching game based user association in Algorithm 4.1 was applied before our pro-

posed DNNs based power allocation scheme, and before the power allocation schemes we compare

against. Hence, we will have: number of RRHs=number of users=number of RRH-user pairs=K.

To validate the efficiency of our power allocation algorithm based on DNNs, we compare against

three different power allocation schemes:

• genetic algorithm (GA),

• global search (optimal power allocation),

• the conventional deep learning based scheme [42, 50, 59, 60].

The idea of the global search method is to solve the power allocation problem numerous times
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through one of the convex optimization techniques, where each time the algorithm uses a different

initial point. Following that, the best achieved solution is selected. The number of examined initial

points is chosen to be sufficiently large such that an optimal solution is guaranteed, with a high

computational complexity. The genetic algorithm is a random based heuristic algorithm [24]. It

belongs to a class named "evolutionary algorithms". The idea of the genetic algorithm is to generate

numerous feasible solutions for the problem being tackled each iteration, in which this set of points

is called "population". From the produced population, higher quality solutions can be reproduced

utilizing some biologically inspired operations, replacing the previous population. Each popula-

tion of solutions can be called a generation. These generations continue evolving till an acceptable

solution is produced. The genetic algorithm can reach high quality solutions for optimization prob-

lems, but an optimal solution is not guaranteed. There are two parameters that play a key role in

the performance of GA, the population size (PS) and the maximum number of generations. The

population size is simply the number of solutions produced each generation. The algorithm stops

after the maximum number of generations is reached. Increasing either of the population size or

the maximum number of generations will result in higher quality solutions that can be close to op-

timal when their values are sufficiently high. However, increasing the values of the aforementioned

parameters will also result in much higher computational complexity. In our simulations, we used

max number of generations = 100×K, and different values of PS for comparison. Regarding

the conventional deep learning based scheme, it is implemented with almost the same settings as our

proposed algorithm. The only difference is that for the conventional scheme, the QoS requirements

of the users are only considered in the loss function but not fed to the DNN’s architecture.

4.4.1 Achieved Data Rate Performance

Firstly, we compare the performance of our proposed DNNs based power allocation algorithm

against the GA and the global search method. For the DNNs based algorithm, we consider three

cases:

• high QoS preservation

• moderate QoS preservation
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• flexible QoS preservation.

In the first case, the value of the QoS coefficient q is chosen to be very high (106), such that the DNN

training is extremely biased towards maintaining the QoS constraints, on the cost of the achieved

data rates. Regarding the second case "moderate QoS preservation" , the values of q are chosen

in order to achieve a trade-off between the achieved data rates and QoS preservation performance.

Lastly, for the case of "flexible QoS preservation", q is tuned more flexibly to achieve higher data

rates, while keeping reasonable QoS preservation performance.

In Fig. 4.3, the achieved average data rate per user is plotted versus the number of RRH-user

pairs in the network. It can be seen that the proposed DNNs based power allocation scheme can

highly outperform the genetic algorithm for the "flexible QoS preservation" scheme. Moreover, this

scheme can achieve a performance that is very close to the optimal, since the unsupervised learning

is not upper bounded, unlike the supervised technique which cannot outperform the optimization

algorithm used to obtain the ground truth data labels. It can be also noticed that the "moderate

QoS preservation" scheme achieves a performance that is close to or even outperforming the ge-

netic algorithm for all population size (PS) values employed in our simulations. Additionally, from

Fig. 4.3, we can see that the performance of the genetic algorithm deteriorates when using smaller

population sizes, which is expected. Likewise, the DNN models trained to have "high QoS preser-

vation" were expected to have poor performance in-terms of the achieved data rates. In Fig. 4.4,

a bar-chart of the achieved average weighted sum rates is plotted for the same schemes as before.

The results confirm our conclusions from Fig. 4.3, where our DNN based scheme outperforms the

genetic algorithm and can obtain a performance close to the optimal.

As pointed before, the main drawback of the DNN based power allocation is that a feasible

solution is not always guaranteed, since its performance mainly relies on prediction. In tables 4.1,

4.2, and 4.3, the utilized values of q, along with the achieved data rates, and the probability that

a user’s QoS constraint is not satisfied (PQV ) are presented. We can notice that PQV values were

very small for the highly preservative case. Then, there was a noticeable increase in PQV values for

the moderate case when compared to the highly preservative. Finally, there was a slight increase in

PQV when comparing the flexible case against the moderate.
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Figure 4.3: Average data rate per user in Mbps Vs. Number of RRH-user pairs

Figure 4.4: Average weighted sum rate of the network Vs. Number of RRH-user pairs
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Generally, increasing the value of q results in trained DNN models that are more preservative

regarding PQV . Nevertheless, in some cases, using the same values of q, it is possible to achieve

DNN models that have different performance regarding the achieved data rates and the resultant

PQV . For instance, in the case we had 4 RRH-user pairs, the same value of q = 40 was used to

obtain both of the models which have the moderate QoS preservation, and flexible QoS preservation.

However, the trade-off is always fixed: higher value of PQV is equivalent to higher achieved data

rates, and the reverse. This is in fact due to the high experimental nature of deep learning, where

many values of the different hyperparameters should be tested for several training epochs, and the

best performing models, according to the pre-defined performance metrics should be saved for

further usage.

K q Av. Weighted Sum Rate (Mbps) PQV

2 106 3.08223 0.00065

3 106 2.56918 0.0189

4 106 2.52191 0.0357

6 106 2.86308 0.0729

8 106 3.30492 0.1061

Table 4.1: High QoS preservation

K q Av. Weighted Sum Rate (Mbps) PQV

2 240 4.3800 0.08279

3 100 3.9156 0.108

4 40 3.9196 0.12286

6 40 4.4204 0.14614

8 60 4.9196 0.16811

Table 4.2: Moderate QoS preservation
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K q Av. Weighted Sum Rate (Mbps) PQV

2 200 4.5681 0.09599

3 80 4.2050 0.1359

4 40 4.2765 0.1529

6 20 4.7781 0.16675

8 40 5.1820 0.17956

Table 4.3: Flexible QoS preservation

Remark: In our system model, we assumed only one radio resource for simplicity. However, our

trained DNN models can be also utilized if the system has more than one radio resource, since they

have the same probability distribution. Note that if the radio resources have different bandwidths,

then DNN models should be trained for each bandwidth value.

4.4.2 Computational Complexity Analysis

It is well known that the DNNs training process is expensive in terms of computational com-

plexity and required hardware [42]. Additionally, several values of the different hyperparameters

need to be experimented such that the best performance can be obtained, which further increases the

complexity of the process. However, the main motivation to use DNNs for optimization in cellular

networks is that the training complexity is only experienced offline. Thus, after the DNNs models

are trained, their online computational complexity becomes negligible. In this subsection, we com-

pare the online computational complexity of the proposed DNNs for power allocation against the

genetic algorithm and global search.

The DNNs online prediction process (based on forward propagation) is simply a series of vector-

matrix multiplications that can be performed in a highly efficient way, thanks to the vectorization

technique [57], in the modern platforms such as TensorFlow and MATLAB. With respect to other

online optimization algorithms used in the literature, they are highly iterative in nature, in which

each step is dependent on the previous, such that vectorization is not possible. Accordingly, it

is naive and unrealistic to compare the online computational complexity of DNNs against those
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algorithms only in terms of the number of floating-point operations performed. Thus, we compare

practically the online computational complexity of our DNN based algorithm against the global

search and genetic algorithms. For a fair comparison, we imported our trained DNN models from

TensorFlow to MATLAB. Consequently, the same hardware and software platforms were used to

run our online simulations to measure the computational complexity. Table 4.4 shows the average

running time in seconds for the different algorithms for different values of RRH-user pairs K. It is

clear that the global search has the highest computational complexity, which is expected. Regarding

the genetic algorithm, as population size PS increases, the complexity increases significantly, but

we obtain higher data rates as shown in the previous subsection. We can also see that the least

complex case for the genetic algorithm (PS = 3), which has a poor performance in terms of

data rate, still has computational time that is orders of magnitude higher than the DNN models.

Consequently, we can verify that our proposed DNNs can obtain superior performance that is close

to the optimal with negligible computational complexity.

Algorithm K=2 K=3 K=4 K=6 K=8

GL Search 1.5962 4.9141 6.8890 17.5236 37.7127

GA PS=10 0.5642 1.1226 1.6493 3.5816 5.8616

GA PS=5 0.3863 0.6241 0.8465 1.5934 3.0056

GA PS=3 0.1933 0.1968 0.2088 0.2702 0.3620

DNNs 0.00174 0.00175 0.0018 0.00181 0.00187

Table 4.4: Computation time in seconds

4.4.3 Proposed Scheme Vs. Conventional Deep Learning Based Scheme

In this subsection, we discuss the added value obtained when feeding the QoS requirements of

the users to the DNN structure. We prove numerically how our novel scheme outperforms the con-

ventional deep learning based scheme. To compare against the conventional scheme, we consider

the same settings employed regarding the DNNs architectures; number of data points and validation

points, and their probability distribution. The only difference is that for the conventional scheme,

the number of nodes in the input layer n1 = K2, which represent only the channel gains of the
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network, since the QoS requirements are not inputted to the DNN structure.

In Fig. 4.5, the value of the validation loss function after each training epoch is plotted against

the epoch number. It can be seen that our proposed scheme can converge to much smaller values of

validation loss. Our interpretation for the improved performance is that in our proposed architecture,

the DNN can have a comprehensive view of the relationship between the input QoS requirements

and the loss function, since the loss function is dependent on the QoS requirements. Hence, during

training, the DNN becomes able to learn better how to tune its trainable parameters (weights and

biases) according to the input QoS requirements, such that a better performance can be achieved.

Obviously, achieving smaller values of the loss function results in producing DNN models that can

achieve higher data rates and less probability that the QoS requirement of a user is violated (PQV ).

This is clearly shown in Fig. 4.6, in which the achieved data rates from the resulting DNN models

are plotted against the corresponding value of PQV . It can be noticed that the same trade-off holds

as before: higher data rate results in higher PQV . However, our proposed scheme outperforms the

conventional scheme, such that significantly higher data rates can be achieved with smaller values

of the resultant PQV .

To discuss more how our proposed modification enhances the performance of the DNNs based

power allocation schemes, we consider the "high QoS preservation" case, in which the value of the

QoS coefficient is chosen to be very high (q = 106) such that the ultimate goal is to maintain the

QoS constraints, as previously mentioned. Fig. 4.7 represents a comparison between our proposed

scheme and the conventional DNNs based scheme in-terms of the minimum achieved values of

PQV for the underlaying case. To obtain the results in Fig. 4.7, DNN models were trained for each

value of K (number of RRH-user pairs), such that each model’s training process was run for 300

Epochs, and the model achieving the minimum value of PQV for the validation data was saved. It

can be seen from the figure that employing our proposed scheme can offer significant reduction in

the proportion of devices with violated QoS constraints, when compared to conventional scheme.

The efficiency of our proposed scheme becomes more significant with the increase in the number

of RRH-user pairs K, since it becomes more challenging for the DNNs to predict power profiles

satisfying the QoS requirements of larger number of users. However, as our scheme enhances the

learning capability of DNNs, this challenge can be faced more efficiently. Thus, we can confirm that
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our scheme enhances the learning capability and performance of the DNNs, such that less values

of PQV (probability QoS of a user is violated) were achieved when the training process was biased

towards maintaining the QoS constraints.

(a) K = 6, q = 40

(b) K = 4, q = 80

(c) K = 8, q = 80

Figure 4.5: Validation Loss Vs Epoch Number
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(a) K = 6, q = 40

(b) K = 4, q = 80

(c) K = 8, q = 80

Figure 4.6: Average Weighted Sum Rate Vs PQV
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Figure 4.7: PQV Vs. Number of RRH-user pairs, q = 106

4.5 Conclusions

We proposed a deep learning based power allocation scheme, while considering user associa-

tion to reflect a real cellular scenario. It was shown that the proposed algorithm could achieve a

performance close to optimal with negligible computational complexity. Moreover, we proposed

a novel approach that can enhance the learning capability of DNNs through directly feeding the

QoS requirements of the users to the DNN structure, which proved to outperform the traditional ap-

proach in the literature. However, the sole drawback associated with using the deep learning based

algorithm for power allocation is that a feasible solution is not always guaranteed. The trade-off

between achieved data rates and QoS preservation performance was discussed thoroughly in the

provided simulation results. One remedy for that issue is to opt for the traditional optimization al-

gorithms whenever the DNNs predictions are not feasible. In such case, we can reap the advantages

of deep learning, while avoiding its main drawback.
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Chapter 5

Conclusions and Future Works

5.1 Conclusions

In this thesis, we proposed enhancing the performance of cloud radio access networks. We

considered various optimization techniques based on game theory, and convex optimization. More-

over, to overcome the computational complexity of the conventional optimization techniques, we

proposed utilizing deep neural networks for power allocation.

First, we proposed a generalized CoMP transmission technique, in which the number of RRHs

serving a specific user is unlimited and determined according to the network status. We focused on

optimizing the user association, radio resource allocation, and power allocation. The user associa-

tion and resource allocation sub-problems were tackled via novel matching game based algorithms.

A novel approach was proposed to convexify the power allocation sub-problem. We considered

three scenarios for the H-CRAN fronthaul network: individual fronthaul links with limited capac-

ity, shared fronthaul links with limited capacity, and fronthaul links with unlimited capacity. Our

proposed algorithms proved to achieve significant cooperation gain with CoMP, even with very tight

fronthaul constraints.

Finally, we proposed optimizing the power allocation in CRAN via unsupervised deep learn-

ing, in order to maximize the network weighted sum rate. We provided intensive simulations to

discuss the trade-off between the QoS preservation performance and the achieved data rates. Also,

we explained how to tune the QoS coefficient hyperparameter to obtain the desired performance.

56



Our proposed algorithm proved to outperform the conventional online optimization algorithms, with

negligible computational complexity. Moreover, we proposed a modification to enhance the learn-

ing capability of the DNNs based power allocation algorithms. Our proposed modification proved

to provide a significant performance gain regarding the achieved data rates and users’ QoS preser-

vation.

5.2 Future Works

CoMP can achieve magnificent network performance improvements. However, in a CRAN

with limited fronthaul capacity constraints, where the network radio capacity is much higher than

the fronthaul capacity, CoMP can actually cause performance deterioration. The reason is that

with CoMP, the data of the served user must be sent from the BBU pool to all the serving RRHs,

which causes a high burden on the fronthaul links. Consequently, the network coverage and spectral

efficiency may be reduced, as the number of served users will decrease because of the limited

fronthaul capacity. In chapter 3, we proposed a generalized CoMP scheme with an objective to

maximize the weighted sum rate of the network, where our user association algorithm could achieve

cooperation gain, even with tight fronthaul constraints. However, more research is needed to develop

similar algorithms for other optimization objectives such as minimizing latency, maximizing power

efficiency, and maximizing fairness, among others.

The scarcity in the available radio resources has driven the researchers to investigate the uti-

lization of millimeter wave (mmWave) frequencies in wireless communications. However, due to

their extremely small wavelengths, communications with mmWave are vulnerable, and can never

be accomplished without a line of sight (LoS) between the source and destination, which can-

not be guaranteed in cellular networks. Consequently, researchers proposed the concept of multi-

connectivity [61], in which a user can be associated with several basestation (RRHs) while using

different radio access technologies. This means that a user can be allocated mmWave and micro

wave frequencies simultaneously. The usage of mmWave with multi-connectivity can enhance the

CRAN performance significantly through improving the coverage, enhancing QoS, and providing

much higher data rates. Currently, research has been focused on the performance optimization of
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multi-connectivity enabled CRAN. For instance, authors of [62] proposed a heuristic algorithm to

tackle a user association problem, with an objective to minimize the network power consumption.

However, more research works are still needed to tackle the optimization problems in such CRANs.

The main challenge is that with multi-connectivity, these problems become much more complex,

which requires more advanced optimization algorithms. One idea is to opt-for machine learning

based algorithms to deal with such problems. In chapter 4, we proposed a deep learning based

power allocation for CRAN with single association. A possible expansion to our work is to con-

sider a system model that includes multi-connectivity. Another possible expansion is to consider

deep learning based power allocation algorithms for a system model utilizing CoMP transmissions.
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Appendix A

Proof of convexity of P1-PA

To prove the convexity of our maximization optimization problem, we need to prove that the

objective function is concave, and inequality constraints are convex functions. For the objective

function of P1-PA (3.23), we can easily rewrite it as follows:

∑
n∈ℵ

Bn
∑
i∈κn

log2(
∑
j∈τi

Pnj g
n
ji + PnMg

n
Mi +

∑
j /∈τi

Pnj g
n
ji + σ2)+

log2(
1

PnMg
n
Mi +

∑
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n
j g

n
ji + σ2

) (A.1)

Apparently, the first logarithmic term in the objective function, log2(
∑

j∈τi P
n
j g

n
ji + PnMg

n
Mi +∑

j /∈τi P
n
j g

n
ji + σ2) is concave, while the second logarithmic term is convex. Thus, the sum of the

two terms is generally neither concave or convex. However, if the additional constraint (3.25) can

be satisfied and our problem is feasible, the first logarithmic concave term will be always greater

that the second logarithmic convex term, and any increase in the second term will result in a higher

increase in the first. Hence, the sum of the two logarithmic terms will be monotonically increasing in

the feasible region, and consequently, concave. Since the sum of concave functions is also concave,

our whole objective function is concave. Regarding the constraints, (3.3) can be easily proved to

be a convex function in a similar way as above; while constraints (3.4), and (3.8) are clearly affine

functions. Accordingly, P1-PA is a convex problem.
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Appendix B

List of Publications

• M. Labana and W. Hamouda, "Advances in CRAN Performance Optimization," in IEEE Net-

work, doi: 10.1109/MNET.011.2000502.

• M. Labana and W. Hamouda, "Joint User Association and Resource Allocation in CoMP-

Enabled Heterogeneous CRAN," GLOBECOM 2020 - 2020 IEEE Global Communications

Conference, Taipei, Taiwan, 2020, pp. 1-6, doi: 10.1109/GLOBECOM42002.2020.9322501.

• M. Labana and W. Hamouda, "Unsupervised Deep Learning for Power Allocation in CRAN,"

ICC 2021 - 2021 IEEE International Conference on Communications (ICC), Montreal, Canada,

2021, Accepted.

• M. Labana and W. Hamouda, “Unsupervised Deep Learning Approach for Near Optimal

Power Allocation in CRAN,” IEEE Transactions on Vehicular Technology, Major Revision.
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