435 research outputs found

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    Review on Radio Resource Allocation Optimization in LTE/LTE-Advanced using Game Theory

    Get PDF
    Recently, there has been a growing trend toward ap-plying game theory (GT) to various engineering fields in order to solve optimization problems with different competing entities/con-tributors/players. Researches in the fourth generation (4G) wireless network field also exploited this advanced theory to overcome long term evolution (LTE) challenges such as resource allocation, which is one of the most important research topics. In fact, an efficient de-sign of resource allocation schemes is the key to higher performance. However, the standard does not specify the optimization approach to execute the radio resource management and therefore it was left open for studies. This paper presents a survey of the existing game theory based solution for 4G-LTE radio resource allocation problem and its optimization

    Game Theory for Multi-Access Edge Computing:Survey, Use Cases, and Future Trends

    Get PDF
    Game theory (GT) has been used with significant success to formulate, and either design or optimize, the operation of many representative communications and networking scenarios. The games in these scenarios involve, as usual, diverse players with conflicting goals. This paper primarily surveys the literature that has applied theoretical games to wireless networks, emphasizing use cases of upcoming multiaccess edge computing (MEC). MEC is relatively new and offers cloud services at the network periphery, aiming to reduce service latency backhaul load, and enhance relevant operational aspects such as quality of experience or security. Our presentation of GT is focused on the major challenges imposed by MEC services over the wireless resources. The survey is divided into classical and evolutionary games. Then, our discussion proceeds to more specific aspects which have a considerable impact on the game's usefulness, namely, rational versus evolving strategies, cooperation among players, available game information, the way the game is played (single turn, repeated), the game's model evaluation, and how the model results can be applied for both optimizing resource-constrained resources and balancing diverse tradeoffs in real edge networking scenarios. Finally, we reflect on lessons learned, highlighting future trends and research directions for applying theoretical model games in upcoming MEC services, considering both network design issues and usage scenarios

    Efficient sharing mechanisms for virtualized multi-tenant heterogeneous networks

    Get PDF
    The explosion in data traffic, the physical resource constraints, and the insufficient financial incentives for deploying 5G networks, stress the need for a paradigm shift in network upgrades. Typically, operators are also the service providers, which charge the end users with low and flat tariffs, independently of the service enjoyed. A fine-scale management of the network resources is needed, both for optimizing costs and resource utilization, as well as for enabling new synergies among network owners and third-parties. In particular, operators could open their networks to third parties by means of fine-scale sharing agreements over customized networks for enhanced service provision, in exchange for an adequate return of investment for upgrading their infrastructures. The main objective of this thesis is to study the potential of fine-scale resource management and sharing mechanisms for enhancing service provision and for contributing to a sustainable road to 5G. More precisely, the state-of-the-art architectures and technologies for network programmability and scalability are studied, together with a novel paradigm for supporting service diversity and fine-scale sharing. We review the limits of conventional networks, we extend existing standardization efforts and define an enhanced architecture for enabling 5G networks' features (e.g., network-wide centralization and programmability). The potential of the proposed architecture is assessed in terms of flexible sharing and enhanced service provision, while the advantages of alternative business models are studied in terms of additional profits to the operators. We first study the data rate improvement achievable by means of spectrum and infrastructure sharing among operators and evaluate the profit increase justified by a better service provided. We present a scheme based on coalitional game theory for assessing the capability of accommodating more service requests when a cooperative approach is adopted, and for studying the conditions for beneficial sharing among coalitions of operators. Results show that: i) collaboration can be beneficial also in case of unbalanced cost redistribution within coalitions; ii) coalitions of equal-sized operators provide better profit opportunities and require lower tariffs. The second kind of sharing interaction that we consider is the one between operators and third-party service providers, in the form of fine-scale provision of customized portions of the network resources. We define a policy-based admission control mechanism, whose performance is compared with reference strategies. The proposed mechanism is based on auction theory and computes the optimal admission policy at a reduced complexity for different traffic loads and allocation frequencies. Because next-generation services include delay-critical services, we compare the admission control performances of conventional approaches with the proposed one, which proves to offer near real-time service provision and reduced complexity. Besides, it guarantees high revenues and low expenditures in exchange for negligible losses in terms of fairness towards service providers. To conclude, we study the case where adaptable timescales are adopted for the policy-based admission control, in order to promptly guarantee service requirements over traffic fluctuations. In order to reduce complexity, we consider the offline pre­computation of admission strategies with respect to reference network conditions, then we study the extension to unexplored conditions by means of computationally efficient methodologies. Performance is compared for different admission strategies by means of a proof of concept on real network traces. Results show that the proposed strategy provides a tradeoff in complexity and performance with respect to reference strategies, while reducing resource utilization and requirements on network awareness.La explosion del trafico de datos, los recursos limitados y la falta de incentivos para el desarrollo de 5G evidencian la necesidad de un cambio de paradigma en la gestion de las redes actuales. Los operadores de red suelen ser tambien proveedores de servicios, cobrando tarifas bajas y planas, independientemente del servicio ofrecido. Se necesita una gestion de recursos precisa para optimizar su utilizacion, y para permitir nuevas sinergias entre operadores y proveedores de servicios. Concretamente, los operadores podrian abrir sus redes a terceros compartiendolas de forma flexible y personalizada para mejorar la calidad de servicio a cambio de aumentar sus ganancias como incentivo para mejorar sus infraestructuras. El objetivo principal de esta tesis es estudiar el potencial de los mecanismos de gestion y comparticion de recursos a pequei\a escala para trazar un camino sostenible hacia el 5G. En concreto, se estudian las arquitecturas y tecnolog fas mas avanzadas de "programabilidad" y escalabilidad de las redes, junto a un nuevo paradigma para la diversificacion de servicios y la comparticion de recursos. Revisamos los limites de las redes convencionales, ampliamos los esfuerzos de estandarizacion existentes y definimos una arquitectura para habilitar la centralizacion y la programabilidad en toda la red. La arquitectura propuesta se evalua en terminos de flexibilidad en la comparticion de recursos, y de mejora en la prestacion de servicios, mientras que las ventajas de un modelo de negocio alternativo se estudian en terminos de ganancia para los operadores. En primer lugar, estudiamos el aumento en la tasa de datos gracias a un uso compartido del espectro y de las infraestructuras, y evaluamos la mejora en las ganancias de los operadores. Presentamos un esquema de admision basado en la teoria de juegos para acomodar mas solicitudes de servicio cuando se adopta un enfoque cooperativo, y para estudiar las condiciones para que la reparticion de recursos sea conveniente entre coaliciones de operadores. Los resultados ensei\an que: i) la colaboracion puede ser favorable tambien en caso de una redistribucion desigual de los costes en cada coalicion; ii) las coaliciones de operadores de igual tamai\o ofrecen mejores ganancias y requieren tarifas mas bajas. El segundo tipo de comparticion que consideramos se da entre operadores de red y proveedores de servicios, en forma de provision de recursos personalizada ya pequei\a escala. Definimos un mecanismo de control de trafico basado en polfticas de admision, cuyo rendimiento se compara con estrategias de referencia. El mecanismo propuesto se basa en la teoria de subastas y calcula la politica de admision optima con una complejidad reducida para diferentes cargas de trafico y tasa de asignacion. Con particular atencion a servicios 5G de baja latencia, comparamos las prestaciones de estrategias convencionales para el control de admision con las del metodo propuesto, que proporciona: i) un suministro de servicios casi en tiempo real; ii) una complejidad reducida; iii) unos ingresos elevados; y iv) unos gastos reducidos, a cambio de unas perdidas insignificantes en terminos de imparcialidad hacia los proveedores de servicios. Para concluir, estudiamos el caso en el que se adoptan escalas de tiempo adaptables para el control de admision, con el fin de garantizar puntualmente los requisitos de servicio bajo diferentes condiciones de trafico. Para reducir la complejidad, consideramos el calculo previo de las estrategias de admision con respecto a condiciones de red de referenda, adaptables a condiciones inexploradas por medio de metodologias computacionalmente eficientes. Se compara el rendimiento de diferentes estrategias de admision sobre trazas de trafico real. Los resultados muestran que la estrategia propuesta equilibra complejidad y ganancias, mientras se reduce la utilizacion de recursos y la necesidad de conocer el estado exacto de la red.Postprint (published version

    Defining and Surveying Wireless Link Virtualization and Wireless Network Virtualization

    Get PDF
    Virtualization is a topic of great interest in the area of mobile and wireless communication systems. However, the term virtualization is used in an inexact manner which makes it difficult to compare and contrast work that has been carried out to date. The purpose of this paper is twofold. In the first place, this paper develops a formal theory for defining virtualization. In the second instance, this theory is used as a way of surveying a body of work in the field of wireless link virtualization, a subspace of wireless network virtualization. The formal theory provides a means for distinguishing work that should be classed as resource allocation as distinct from virtualization. It also facilitates a further classification of the representation level at which the virtualization occurs, which makes comparison of work more meaningful. This paper provides a comprehensive survey and highlights gaps in the research that make for fruitful future work

    A Dynamic Allocation Mechanism for Network Slicing as-a-Service

    Get PDF
    In my thesis, I explore the design of a market mechanism to socially efficiently allocate resources for network slicing as-a-Service. Network slicing is a novel usage concept for the upcoming 5G network standard, allowing for isolated and customized virtual networks to operate upon a larger, physical 5G network. By providing network slices as-a-Service, where the users of the network slice do not own any of the underlying resources, a larger range of use cases can be catered to. My market mechanism is a novel amalgamation of existing mechanism design solutions from economics, and the nascent computer science literature into the technical aspects of network slicing and underlying network virtualization concepts. The existing literature in computer science is focused on the operative aspects of network slicing, while economics literature is incompatible with the unique problems network slicing poses as a market. In this thesis, I bring these two strands of literature together to create a functional allocation mechanism for the network slice market. I successfully create this market mechanism in my thesis, which is split into three phases. The first phase allows for bidder input into the network slices they bid for, overcoming a trade-off between market efficiency and tractability, making truthful valuation Bayes-Nash optimal. The second phase allocates resources to bidders based on a modified VCG mechanism that forms the multiple, non-identical resources of the market into packages that are based on bidder Quality of Service demands. Allocation is optimized to be socially efficient. The third phase re-allocates vacant resources of entitled network slices according to a Generalized Second-Price auction, while allowing for the return of resources to these entitled network slices without service interruption. As a whole, the mechanism is designed to optimize the allocation of resources as much as possible to those users that create the greatest value out of them, and successfully does so

    MODELING AND RESOURCE ALLOCATION IN MOBILE WIRELESS NETWORKS

    Get PDF
    We envision that in the near future, just as Infrastructure-as-a-Service (IaaS), radios and radio resources in a wireless network can also be provisioned as a service to Mobile Virtual Network Operators (MVNOs), which we refer to as Radio-as-a-Service (RaaS). In this thesis, we present a novel auction-based model to enable fair pricing and fair resource allocation according to real-time needs of MVNOs for RaaS. Based on the proposed model, we study the auction mechanism design with the objective of maximizing social welfare. We present an Integer Linear Programming (ILP) and Vickrey-Clarke-Groves (VCG) based auction mechanism for obtaining optimal social welfare. To reduce time complexity, we present a polynomial-time greedy mechanism for the RaaS auction. Both methods have been formally shown to be truthful and individually rational. Meanwhile, wireless networks have become more and more advanced and complicated, which are generating a large amount of runtime system statistics. In this thesis, we also propose to leverage the emerging deep learning techniques for spatiotemporal modeling and prediction in cellular networks, based on big system data. We present a hybrid deep learning model for spatiotemporal prediction, which includes a novel autoencoder-based deep model for spatial modeling and Long Short-Term Memory units (LSTMs) for temporal modeling. The autoencoder-based model consists of a Global Stacked AutoEncoder (GSAE) and multiple Local SAEs (LSAEs), which can offer good representations for input data, reduced model size, and support for parallel and application-aware training. Mobile wireless networks have become an essential part in wireless networking with the prevalence of mobile device usage. Most mobile devices have powerful sensing capabilities. We consider a general-purpose Mobile CrowdSensing(MCS) system, which is a multi-application multi-task system that supports a large variety of sensing applications. In this thesis, we also study the quality of the recruited crowd for MCS, i.e., quality of services/data each individual mobile user and the whole crowd are potentially capable of providing. Moreover, to improve flexibility and effectiveness, we consider fine-grained MCS, in which each sensing task is divided into multiple subtasks and a mobile user may make contributions to multiple subtasks. More specifically, we first introduce mathematical models for characterizing the quality of a recruited crowd for different sensing applications. Based on these models, we present a novel auction formulation for quality-aware and fine- grained MCS, which minimizes the expected expenditure subject to the quality requirement of each subtask. Then we discuss how to achieve the optimal expected expenditure, and present a practical incentive mechanism to solve the auction problem, which is shown to have the desirable properties of truthfulness, individual rationality and computational efficiency. In a MCS system, a sensing task is dispatched to many smartphones for data collections; in the meanwhile, a smartphone undertakes many different sensing tasks that demand data from various sensors. In this thesis, we also consider the problem of scheduling different sensing tasks assigned to a smartphone with the objective of minimizing sensing energy consumption while ensuring Quality of SenSing (QoSS). First, we consider a simple case in which each sensing task only requests data from a single sensor. We formally define the corresponding problem as the Minimum Energy Single-sensor task Scheduling (MESS) problem and present a polynomial-time optimal algorithm to solve it. Furthermore, we address a more general case in which some sensing tasks request multiple sensors to re- port their measurements simultaneously. We present an Integer Linear Programming (ILP) formulation as well as two effective polynomial-time heuristic algorithms, for the corresponding Minimum Energy Multi-sensor task Scheduling (MEMS) problem. Numerical results are presented to confirm the theoretical analysis of our schemes, and to show strong performances of our solutions, compared to several baseline methods
    • …
    corecore