346 research outputs found

    Enhancing State Estimator for Autonomous Race Car : Leveraging Multi-modal System and Managing Computing Resources

    Full text link
    This paper introduces an innovative approach to enhance the state estimator for high-speed autonomous race cars, addressing challenges related to unreliable measurements, localization failures, and computing resource management. The proposed robust localization system utilizes a Bayesian-based probabilistic approach to evaluate multimodal measurements, ensuring the use of credible data for accurate and reliable localization, even in harsh racing conditions. To tackle potential localization failures during intense racing, we present a resilient navigation system. This system enables the race car to continue track-following by leveraging direct perception information in planning and execution, ensuring continuous performance despite localization disruptions. Efficient computing resource management is critical to avoid overload and system failure. We optimize computing resources using an efficient LiDAR-based state estimation method. Leveraging CUDA programming and GPU acceleration, we perform nearest points search and covariance computation efficiently, overcoming CPU bottlenecks. Real-world and simulation tests validate the system's performance and resilience. The proposed approach successfully recovers from failures, effectively preventing accidents and ensuring race car safety.Comment: arXiv admin note: text overlap with arXiv:2207.1223

    Multisensory 3D saliency for artficial attention systems

    Get PDF
    In this paper we present proof-of-concept for a novel solution consisting of a short-term 3D memory for artificial attention systems, loosely inspired in perceptual processes believed to be implemented in the human brain. Our solution supports the implementation of multisensory perception and stimulus-driven processes of attention. For this purpose, it provides (1) knowledge persistence with temporal coherence tackling potential salient regions outside the field of view, via a panoramic, log-spherical inference grid; (2) prediction, by using estimates of local 3D velocity to anticipate the effect of scene dynamics; (3) spatial correspondence between volumetric cells potentially occupied by proto-objects and their corresponding multisensory saliency scores. Visual and auditory signals are processed to extract features that are then filtered by a proto-object segmentation module that employs colour and depth as discriminatory traits. We consider as features, apart from the commonly used colour and intensity contrast, colour bias, the presence of faces, scene dynamics and also loud auditory sources. Combining conspicuity maps derived from these features we obtain a 2D saliency map, which is then processed using the probability of occupancy in the scene to construct the final 3D saliency map as an additional layer of the Bayesian Volumetric Map (BVM) inference grid

    Robust Scene Estimation for Goal-directed Robotic Manipulation in Unstructured Environments

    Full text link
    To make autonomous robots "taskable" so that they function properly and interact fluently with human partners, they must be able to perceive and understand the semantic aspects of their environments. More specifically, they must know what objects exist and where they are in the unstructured human world. Progresses in robot perception, especially in deep learning, have greatly improved for detecting and localizing objects. However, it still remains a challenge for robots to perform a highly reliable scene estimation in unstructured environments that is determined by robustness, adaptability and scale. In this dissertation, we address the scene estimation problem under uncertainty, especially in unstructured environments. We enable robots to build a reliable object-oriented representation that describes objects present in the environment, as well as inter-object spatial relations. Specifically, we focus on addressing following challenges for reliable scene estimation: 1) robust perception under uncertainty results from noisy sensors, objects in clutter and perceptual aliasing, 2) adaptable perception in adverse conditions by combined deep learning and probabilistic generative methods, 3) scalable perception as the number of objects grows and the structure of objects becomes more complex (e.g. objects in dense clutter). Towards realizing robust perception, our objective is to ground raw sensor observations into scene states while dealing with uncertainty from sensor measurements and actuator control . Scene states are represented as scene graphs, where scene graphs denote parameterized axiomatic statements that assert relationships between objects and their poses. To deal with the uncertainty, we present a pure generative approach, Axiomatic Scene Estimation (AxScEs). AxScEs estimates a probabilistic distribution across plausible scene graph hypotheses describing the configuration of objects. By maintaining a diverse set of possible states, the proposed approach demonstrates the robustness to the local minimum in the scene graph state space and effectiveness for manipulation-quality perception based on edit distance on scene graphs. To scale up to more unstructured scenarios and be adaptable to adversarial scenarios, we present Sequential Scene Understanding and Manipulation (SUM), which estimates the scene as a collection of objects in cluttered environments. SUM is a two-stage method that leverages the accuracy and efficiency from convolutional neural networks (CNNs) with probabilistic inference methods. Despite the strength from CNNs, they are opaque in understanding how the decisions are made and fragile for generalizing beyond overfit training samples in adverse conditions (e.g., changes in illumination). The probabilistic generative method complements these weaknesses and provides an avenue for adaptable perception. To scale up to densely cluttered environments where objects are physically touching with severe occlusions, we present GeoFusion, which fuses noisy observations from multiple frames by exploring geometric consistency at object level. Geometric consistency characterizes geometric compatibility between objects and geometric similarity between observations and objects. It reasons about geometry at the object-level, offering a fast and reliable way to be robust to semantic perceptual aliasing. The proposed approach demonstrates greater robustness and accuracy than the state-of-the-art pose estimation approach.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/163060/1/zsui_1.pd

    Exploring Emotion Recognition for VR-EBT Using Deep Learning on a Multimodal Physiological Framework

    Get PDF
    Post-Traumatic Stress Disorder is a mental health condition that affects a growing number of people. A variety of PTSD treatment methods exist, however current research indicates that virtual reality exposure-based treatment has become more prominent in its use.Yet the treatment method can be costly and time consuming for clinicians and ultimately for the healthcare system. PTSD can be delivered in a more sustainable way using virtual reality. This is accomplished by using machine learning to autonomously adapt virtual reality scene changes. The use of machine learning will also support a more efficient way of inserting positive stimuli in virtual reality scenes. Machine learning has been used in medical areas such as rare diseases, oncology, medical data classification and psychiatry. This research used a public dataset that contained physiological recordings and emotional responses. The dataset was used to train a deep neural network, and a convolutional neural network to predict an individual’s valence, arousal and dominance. The results presented indicate that the deep neural network had the highest overall mean bounded regression accuracy and the lowest computational time

    Real-time RGB-Depth preception of humans for robots and camera networks

    Get PDF
    This thesis deals with robot and camera network perception using RGB-Depth data. The goal is to provide efficient and robust algorithms for interacting with humans. For this reason, a special care has been devoted to design algorithms which can run in real-time on consumer computers and embedded cards. The main contribution of this thesis is the 3D body pose estimation of the human body. We propose two novel algorithms which take advantage of the data stream of a RGB-D camera network outperforming the state-of-the-art performance in both single-view and multi-view tests. While the first algorithm works on point cloud data which is feasible also with no external light, the second one performs better, since it deals with multiple persons with negligible overhead and does not rely on the synchronization between the different cameras in the network. The second contribution regards long-term people re-identification in camera networks. This is particularly challenging since we cannot rely on appearance cues, in order to be able to re-identify people also in different days. We address this problem by proposing a face-recognition framework based on a Convolutional Neural Network and a Bayes inference system to re-assign the correct ID and person name to each new track. The third contribution is about Ambient Assisted Living. We propose a prototype of an assistive robot which periodically patrols a known environment, reporting unusual events as people fallen on the ground. To this end, we developed a fast and robust approach which can work also in dimmer scenes and is validated using a new publicly-available RGB-D dataset recorded on-board of our open-source robot prototype. As a further contribution of this work, in order to boost the research on this topics and to provide the best benefit to the robotics and computer vision community, we released under open-source licenses most of the software implementations of the novel algorithms described in this work

    Modeling cognition with generative neural networks: The case of orthographic processing

    Get PDF
    This thesis investigates the potential of generative neural networks to model cognitive processes. In contrast to many popular connectionist models, the computational framework adopted in this research work emphasizes the generative nature of cognition, suggesting that one of the primary goals of cognitive systems is to learn an internal model of the surrounding environment that can be used to infer causes and make predictions about the upcoming sensory information. In particular, we consider a powerful class of recurrent neural networks that learn probabilistic generative models from experience in a completely unsupervised way, by extracting high-order statistical structure from a set of observed variables. Notably, this type of networks can be conveniently formalized within the more general framework of probabilistic graphical models, which provides a unified language to describe both neural networks and structured Bayesian models. Moreover, recent advances allow to extend basic network architectures to build more powerful systems, which exploit multiple processing stages to perform learning and inference over hierarchical models, or which exploit delayed recurrent connections to process sequential information. We argue that these advanced network architectures constitute a promising alternative to the more traditional, feed-forward, supervised neural networks, because they more neatly capture the functional and structural organization of cortical circuits, providing a principled way to combine top-down, high-level contextual information with bottom-up, sensory evidence. We provide empirical support justifying the use of these models by studying how efficient implementations of hierarchical and temporal generative networks can extract information from large datasets containing thousands of patterns. In particular, we perform computational simulations of recognition of handwritten and printed characters belonging to different writing scripts, which are successively combined spatially or temporally in order to build more complex orthographic units such as those constituting English words

    Neuromorphic Learning Systems for Supervised and Unsupervised Applications

    Get PDF
    The advancements in high performance computing (HPC) have enabled the large-scale implementation of neuromorphic learning models and pushed the research on computational intelligence into a new era. Those bio-inspired models are constructed on top of unified building blocks, i.e. neurons, and have revealed potentials for learning of complex information. Two major challenges remain in neuromorphic computing. Firstly, sophisticated structuring methods are needed to determine the connectivity of the neurons in order to model various problems accurately. Secondly, the models need to adapt to non-traditional architectures for improved computation speed and energy efficiency. In this thesis, we address these two problems and apply our techniques to different cognitive applications. This thesis first presents the self-structured confabulation network for anomaly detection. Among the machine learning applications, unsupervised detection of the anomalous streams is especially challenging because it requires both detection accuracy and real-time performance. Designing a computing framework that harnesses the growing computing power of the multicore systems while maintaining high sensitivity and specificity to the anomalies is an urgent research need. We present AnRAD (Anomaly Recognition And Detection), a bio-inspired detection framework that performs probabilistic inferences. We leverage the mutual information between the features and develop a self-structuring procedure that learns a succinct confabulation network from the unlabeled data. This network is capable of fast incremental learning, which continuously refines the knowledge base from the data streams. Compared to several existing anomaly detection methods, the proposed approach provides competitive detection accuracy as well as the insight to reason the decision making. Furthermore, we exploit the massive parallel structure of the AnRAD framework. Our implementation of the recall algorithms on the graphic processing unit (GPU) and the Xeon Phi co-processor both obtain substantial speedups over the sequential implementation on general-purpose microprocessor (GPP). The implementation enables real-time service to concurrent data streams with diversified contexts, and can be applied to large problems with multiple local patterns. Experimental results demonstrate high computing performance and memory efficiency. For vehicle abnormal behavior detection, the framework is able to monitor up to 16000 vehicles and their interactions in real-time with a single commodity co-processor, and uses less than 0.2ms for each testing subject. While adapting our streaming anomaly detection model to mobile devices or unmanned systems, the key challenge is to deliver required performance under the stringent power constraint. To address the paradox between performance and power consumption, brain-inspired hardware, such as the IBM Neurosynaptic System, has been developed to enable low power implementation of neural models. As a follow-up to the AnRAD framework, we proposed to port the detection network to the TrueNorth architecture. Implementing inference based anomaly detection on a neurosynaptic processor is not straightforward due to hardware limitations. A design flow and the supporting component library are developed to flexibly map the learned detection networks to the neurosynaptic cores. Instead of the popular rate code, burst code is adopted in the design, which represents numerical value using the phase of a burst of spike trains. This does not only reduce the hardware complexity, but also increases the result\u27s accuracy. A Corelet library, NeoInfer-TN, is implemented for basic operations in burst code and two-phase pipelines are constructed based on the library components. The design can be configured for different tradeoffs between detection accuracy, hardware resource consumptions, throughput and energy. We evaluate the system using network intrusion detection data streams. The results show higher detection rate than some conventional approaches and real-time performance, with only 50mW power consumption. Overall, it achieves 10^8 operations per Joule. In addition to the modeling and implementation of unsupervised anomaly detection, we also investigate a supervised learning model based on neural networks and deep fragment embedding and apply it to text-image retrieval. The study aims at bridging the gap between image and natural language. It continues to improve the bidirectional retrieval performance across the modalities. Unlike existing works that target at single sentence densely describing the image objects, we elevate the topic to associating deep image representations with noisy texts that are only loosely correlated. Based on text-image fragment embedding, our model employs a sequential configuration, connects two embedding stages together. The first stage learns the relevancy of the text fragments, and the second stage uses the filtered output from the first one to improve the matching results. The model also integrates multiple convolutional neural networks (CNN) to construct the image fragments, in which rich context information such as human faces can be extracted to increase the alignment accuracy. The proposed method is evaluated with both synthetic dataset and real-world dataset collected from picture news website. The results show up to 50% ranking performance improvement over the comparison models

    Monitoring the waste to energy plant using the latest AI methods and tools

    Get PDF
    Solid wastes for instance, municipal and industrial wastes present great environmental concerns and challenges all over the world. This has led to development of innovative waste-to-energy process technologies capable of handling different waste materials in a more sustainable and energy efficient manner. However, like in many other complex industrial process operations, waste-to-energy plants would require sophisticated process monitoring systems in order to realize very high overall plant efficiencies. Conventional data-driven statistical methods which include principal component analysis, partial least squares, multivariable linear regression and so forth, are normally applied in process monitoring. But recently, latest artificial intelligence (AI) methods in particular deep learning algorithms have demostrated remarkable performances in several important areas such as machine vision, natural language processing and pattern recognition. The new AI algorithms have gained increasing attention from the process industrial applications for instance in areas such as predictive product quality control and machine health monitoring. Moreover, the availability of big-data processing tools and cloud computing technologies further support the use of deep learning based algorithms for process monitoring. In this work, a process monitoring scheme based on the state-of-the-art artificial intelligence methods and cloud computing platforms is proposed for a waste-to-energy industrial use case. The monitoring scheme supports use of latest AI methods, laveraging big-data processing tools and taking advantage of available cloud computing platforms. Deep learning algorithms are able to describe non-linear, dynamic and high demensionality systems better than most conventional data-based process monitoring methods. Moreover, deep learning based methods are best suited for big-data analytics unlike traditional statistical machine learning methods which are less efficient. Furthermore, the proposed monitoring scheme emphasizes real-time process monitoring in addition to offline data analysis. To achieve this the monitoring scheme proposes use of big-data analytics software frameworks and tools such as Microsoft Azure stream analytics, Apache storm, Apache Spark, Hadoop and many others. The availability of open source in addition to proprietary cloud computing platforms, AI and big-data software tools, all support the realization of the proposed monitoring scheme
    corecore