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ABSTRACT 
 

EXPLORING EMOTION RECOGNITION FOR VR-EBT USING A DEEP LEARNING 

ARCHITECTURE ON A MULTIMODAL PHYSIOLOGICAL FRAMEWORK 

 

Nicholas Dass      Advisor: 

Sheridan College, 2019    Dr. Khaled Mahmud 

 

Post Traumatic Stress Disorder is a mental health condition that affects a growing number 

of people. A variety of PTSD treatment methods exist, however current research indicates that 

virtual reality exposure-based treatment has become more prominent in its use. Yet the treatment 

method can be costly and time consuming for clinicians and ultimately for the healthcare system. 

PTSD can be delivered in a more sustainable way using virtual reality. This is accomplished by 

using machine learning to autonomously adapt virtual reality scene changes. The use of machine 

learning will also support a more efficient way of inserting positive stimuli in virtual reality scenes. 

Machine learning has been used in medical areas such as rare diseases, oncology, medical data 

classification and psychiatry. This research used a public dataset that contained physiological 

recordings and emotional responses. The dataset was used to train a deep neural network, and a 

convolutional neural network to predict an individual’s valence, arousal and dominance. The 

results presented indicate that the deep neural network had the highest overall mean bounded 

regression accuracy and the lowest computational time. 

 

Keywords:  Machine Learning, Deep Neural Network, Virtual Reality Exposure-Based 

Treatment, Emotion Recognition, Physiological Signals, Multimodal. 
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CHAPTER ONE 

1. Introduction  
 
 

1.1 The Problem Context 

 
The current version of virtual reality exposure-based treatment (VR-EBT) for treating PTSD, 

is a manual process that involves setting up a traumatic virtual reality scene that a patient will 

experience. A clinician inserts positive stimuli at trauma points in the scene to help a patient 

desensitize from the traumatic event. The patient undergoes this treatment several times for the 

treatment to be effective. While VR-EBT is widely acknowledged and validated as a method of 

treatment for PTSD, as supported by (Urella, et al, 2017) (Botella, et al., 2015) (Gavhane, et al., 

2016), the delivery of VR-EBT is still based on manual processes (Urella, et al, 2017), which can 

make this treatment exceedingly expensive (Botella, et al., 2015) and therefore, unsustainable in 

the long run.  

 
1.2 Terms and Definitions 

 
Table 1. Terms and Definitions 

 

 
Affective States 
 

 
An individual’s experience of emotion. 
 

 
Arousal 
 

 
Level of awareness based on psychological indicators, which also 

affects perception. 

 
Brain Waves 
 

 
Patterns of neural activity that represent electrical impulses in the 

brain. 
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Circumplex Theory  
 
of Emotion 
 

Two-dimensional emotional space. Dimensions include arousal 

and valence. Intersection is the neutral state. 

 
Clinician 
 

 
A health care practitioner who works with a patient who suffers 

from PTSD. In the context of virtual reality exposure-based 

treatment, the clinician delivers the treatment to the patient. 

 
Convolutional 

Neural Network 

 
A type of deep learning network that uses a mathematical 

operation called convolution. 

 
DEAP Dataset 
 

 
Dataset that contains physiological indicator recordings of several 

participants. 

 
Deep Neural 
  
Network 
 

 
A machine learning method that can be supervised or un-

supervised. 

 
Dominance 

 
The level of dominance or submissiveness of an emotional state. 

 
ECG 
 

 
Electrocardiography is used to record electrical activity of the 

heart. 

 
EEG 
 

 
Electroencephalogram is used to monitor brain waves. 

 
Emotion 

 
State of mind that is affected by current environment. 
 

 
Eye  
 
Movement 
 

 
The frequency of eye movement. 
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Heart Rate 
 

 
The number of times the heart contracts per minute. 

 
MAHNOB-HCI 
 
Tagging Dataset 
 

 
Dataset that contains physiological indicator recordings and 

emotion responses of several participants. 

 
Patient 
 

 
A person who suffers from PTSD and receives virtual reality 

exposure-based treatment. 

 
Physiological  
 
Indicators 
 

 
Physiological indicators refer to heart rate, respiration rate, rapid 

eye movement, and brain waves data that will be used to train the 

machine learning algorithms. 

 
PPG 
 

 
Photoplethysmography measures blood volume changes in 

microvascular skin tissue. 

 
PTSD 

 
Post Traumatic Stress Disorder is a mental health disease that a  
 
patient suffers from. PTSD is triggered by a traumatic event. 
 

 
Respiration Rate 
 

The number of times the lungs contract, or the number of times a 

person breathes per minute. 

 
Signal Channel 
 

 
Signals produced from recorded physiological indicator activity, 

such as brain waves. 

 
 
SVM 
 

 
Support Vector Machine uses machine learning algorithms for 

classification and regression. 
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Valence 
 

Refers to positive or negative feelings that a person experience in 

their current environment. 

 
Virtual Reality 
  
Exposure Based  
 
Treatment (VR-
EBT) 
 

 

A treatment method that uses virtual reality to treat patients who 

suffer from PTSD. 

 
Vivo Exposure 
 

 
A form of Cognitive Behaviour Therapy to reduce fears. Two 

types are flooding and systematic desensitization. 

 
 
1.3 Problem Statement 

Patients who suffer from PTSD seek the use of virtual reality exposure-based treatment. 

However, the labor-intensive nature of clinician intervention hinders the ability to scale the use of 

this treatment. The labour-intensive nature can be attributable to two main areas – manual 

deduction of human emotion and insertion of positive stimuli. Deduction of human emotion by a 

clinician involves reviewing a patient’s vitals to determine how the patient feels. Manually 

inserting positive stimuli by adapting a virtual scene, helps a patient desensitize from trauma This 

requires the clinician to distribute time between assessing the patient’s vitals and responding with 

the insertion of positive stimuli. The scarcity of research applying deep learning in VR-EBT does 

not provide medical or health practitioners an opportunity to translate research into an improved 

delivery system. 

 
1.4 Purpose 

The purpose of this research is to contribute to a larger effort in realizing an autonomous way 

of delivering VR-EBT. The high-level overview of an autonomous VR-EBT system is depicted in 
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Fig 1. It illustrates how an autonomous VR-EBT system would intuitively create VR scenes that 

are specific to each patient’s trauma. Furthermore, it depicts how physiological data is collected 

from a patient using wearables. For the purpose of this research, it is important to note that an 

individual’s emotional state affects their physiological state and vice versa. In light of this, 

individuals who suffer from PTSD experience more pronounced emotional and physiological 

states than individuals who are not diagnosed with PTSD. The physiological data collected from 

the patient is used to train a deep neural network to predict a patient’s approximate grouping of 

emotional states. The results of the prediction can then be used to adapt the virtual reality traumatic 

scene, which can also be described as automatically inserting positive stimuli.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 1. A high-level overview of an autonomous virtual reality exposure-based system. The light green 

dotted area highlights the critical problem that will be explored in this research. 
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The critical part of this research is illustrated in Fig 2. Data that depicts physiological indicators 

was used to train a deep neural network to predict the valance, arousal and dominance of a test 

subject. 

 

 

 

 

 

 

 

 

 

  

 
Figure 2. The critical problem area. Features from a dataset will be used to train the deep neural network. 

 

1.5 Motivation 

This research aims to contribute to a larger effort to improve the delivery of virtual reality 

exposure-based treatment, which will improve the quality of life for patients who suffer from 

PTSD. As discussed previously, this is achieved through automating virtual reality exposure-based 

treatment. However, the current process of developing exposure-based treatment for virtual reality 

is tedious and costly. The motivation to pursue this research is driven by three reasons – improve 

the delivery method, reduce manual tasks required by the clinician, and successful applications of 
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machine learning in medicine. Improving the delivery method can be accomplished by creating a 

sustainable version of virtual reality exposure-based treatment that is scalable. This can have a 

greater impact on treating a growing number of patients who suffer from PTSD, while lowering 

costs related to sustaining virtual reality exposure-based treatment within the healthcare system.  

Reducing manual tasks such as the assessment of emotional state or modifying virtual reality 

scenes will help the clinician. It will help clinicians focus more of their attention on other parts of 

the treatment process. Successful applications of machine learning in medical diagnosis can be 

found in oncology (Turki, 2018), medical data classification (Seera & Lim, 2014), psychiatry 

(Omurca & Ekinci, 2004), as well as the assessment of Parkinson’s (Eskofier B. M. et al., 2016). 

Therefore, it is worthy to explore the use of machine learning to determine its efficacy in its use to 

predict human emotion, which is explored in the rest of this research.  

 
1.6 Proposed Work 

This research did investigate the prediction accuracy of a deep neural network using 

multimodal physiological signals. The first part reviewed existing research that discuss 

physiological indicators and its correlation to human emotion. The second part used a public 

dataset, which consists of participants physiological signals and an approximate grouping of 

emotional states. The dataset was used to train a deep neural network and a convolutional neural 

network. The prediction accuracy of the deep neural network will be compared to the convolutional 

neural network to determine its performance with emotion recognition. 
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1.7 Thesis Statement 

An individual’s valance, arousal and dominance affect their physiological state and vice versa. 

A deep neural network can be used to predict human valence, arousal and dominance using 

physiological indicators such as heart rate, respiration rate, rapid eye movement and brain waves. 

This research will develop a deep neural network and investigate the prediction accuracy of the 

network in emotion recognition. 

 
1.8 Contributions 

This research explored the use of a deep neural network and compared it with a convolutional 

network to determine the prediction accuracy for emotion recognition. The following was executed 

as part of this research; 

• Explored current research to determine an overview of physiological indicator bounds 

for; heart rate, respiration rate, rapid eye movement, brain waves that correlate to 

emotional states. 

• Extracted physiological data and an approximate grouping of emotional states from a 

dataset to train and test a deep neural network. 

• Constructed a deep neural network and a convolutional neural network. 

• Presented performance results on the DNN and CNN. 

 
1.9 Organization of Thesis 

This research will first begin with an overview of virtual reality exposure-based treatment. 

The critical problem that this research paper seeks to address will then be discussed. More 

specifically, exploring the use of a deep neural network with multimodal physiological signals and 

an approximate grouping of emotional states for emotion recognition. Furthermore, the prediction 
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accuracy of the deep neural network will be examined. The structure of this thesis will consist of 

a literature review, methodology, results, analysis and conclusion. The literature review will 

discuss previous work in the area of virtual reality exposure based-treatment, applications of 

machine learning in medical diagnosis, and the relationship between physiological indicators and 

emotional states in the context of emotion recognition.  

The methodology section of this research will discuss how the critical problem can be 

addressed. More specifically, how the public dataset that contains physiological data and an 

approximate grouping of emotional states will be used to train a deep neural network for emotion 

recognition. In addition, the prediction accuracy of the deep neural network will be evaluated. The 

results and analysis section will discuss the performance of the deep neural network in emotion 

recognition, and limitations of the methodology. Furthermore, it will also discuss future work that 

this research can be used to build upon. 
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CHAPTER TWO 

2. LITERATURE REVIEW 

 

The use of virtual reality exposure-based treatment has become a validated approach in 

treating post traumatic stress disorder. A keyword search for the treatment will generate numerous 

journals that discuss the validity of VR-EBT. In a study by (Srivastava, et. al., 2014), the authors 

state that VR related scientific articles grew from 45 in 1995 to 3,203 in 2010. While the treatment 

method will provide long-term benefits for the patient, the ability to scale this treatment to cater to 

a growing number of patients who suffer from PTSD is costly (Botella, et al., 2015). Furthermore, 

psychiatric treatment can be expensive for patients in a fee for service healthcare system and can 

also be a burden within a universal healthcare system. Even with a semi-autonomous system which 

attempts to automatically re-create virtual reality scenes based on real life images of a patient’s 

trauma (Urella, et al, 2017), the treatment method is still labour intensive, and only targets one part 

of the delivery framework.  

To reach a more autonomous method of delivering VR-EBT, machine learning can play an 

important role in emotion recognition, which can work alongside semi-autonomous virtual reality 

scene creation. Emotion recognition can act as positive stimuli, by adapting virtual reality scenes 

to desensitize the negative feelings that a patient has towards a traumatic scene. This is an 

important component to realize a more autonomous VR-EBT system, as the efficacy of this critical 

part can either work in favor of acting as positive stimuli or be a detriment. Support for the use of 

machine learning in medical applications is a growing trend, some examples are; the assessment 

of Parkinson’s disease (Eskofier B. M. et al., 2016), cancer identification (Turki, 2018), medical 

data classification (Seera & Lim, 2014), and closer to the domain of this research paper is the 
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evaluation of PTSD in individuals using machine learning (Omurca & Ekinci, 2004). The literature 

reviewed will cover three main areas. The first will discuss literature that supports the use of VR-

EBT as valid treatment method for PTSD. This is the foundation to which the goal of this research 

aims to improve upon. The second will discuss medical applications that use machine learning as 

part of prediction and assessment. The third will discuss literature that presents the relationship 

between physiological indicators and human emotion in the context of using emotion recognition. 

Understanding this relationship will be paramount in training a deep neural network, which will 

use physiological signals as data inputs. Physiological indicators that are explored are; hear rate, 

respiration, eye movement, and brain waves.  

2.1 Virtual Reality Exposure Based-Treatment 

Traditional methods of treating post-traumatic stress disorder, include prolonged-exposure 

therapy, and cognitive processing therapy. According to (Gavhane, et. al., 2016), prolonged-

exposure therapy refers to a delivery method where a clinician instructs a patient to recall traumatic 

memories. This invokes feelings associated with the trauma. With respect to cognitive processing 

therapy, (Gavhane, et. al., 2016) states that this treatment method involves altering a person’s 

thought process, as a result of the traumatic event. While traditional methods are effective, there 

are some limitations that (Mishkind, et. al., 2017) and (Banerjee D. et al., 2017) discuss. They 

include; 

• Limited control of the traumatic experience. 

• Privacy concerns during the delivery of treatment. 

• Difficulty in accessing stimuli. 

• Financial and time resource scarcity. 
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• Patient inability and reluctance to recall traumatic memories. 

• Patient is reluctant to use treatment method. 

In contrast, virtual reality exposure-based treatment is accomplished by helping a patient 

recall traumatic events through virtual reality scenes. According to (Jerdan, et. al., 2018), the 

authors refer to this as an illusion of reality. The authors state that even though patients are aware 

of their virtual environment, patients perceive the images and sound to be real stimuli, which is 

still effective in the treatment of PTSD. This is consistent with (Freeman, et. al., 2017), who 

describe VR-EBT treatment as a substitution of real-world sensory experience with virtual stimuli.  

The use of this treatment method provides clinicians the ability to monitor traumatic events, 

and manually insert positive stimuli by altering virtual reality scenes. This will help a patient 

desensitize from the traumatic event. VR-EBT typically involves 6 to 13 sessions or more, which 

is dependent on the profile of the patient, their related mental health condition, as well as frequency 

in terms of how consistent a patient is with treatment (Rothbaum, et. al., 2014) (Georgina, et. al., 

2013). Virtual reality exposure-based treatment addresses most of the limitations of traditional 

treatment methods and is proven to be successful in its use (Gavhane, et. al., 2016) (Wiederhold, 

et. al., 2018). This is consistent with a study by (Rizzo, et. al., 2014), where one trail of 20 active 

duty service members from the Iraq war, experienced a 50% decrease in PTSD related symptoms. 

In another trial of 24 active service members, 45% of participants no longer experienced PTSD, 

and 62% had made modest improvement.  

Similarly, (Srivastava, et. al., 2014) states that after 6 months, patients who followed up, 

experienced a reduction in PTSD symptoms that ranged between 15% to 67%. Furthermore, 

(Rothbaum, et. al., 2014) reports that in their study of Iraq and Afghanistan War veterans, PTSD 

symptoms significantly improved after 6 sessions of virtual reality treatment. The improvement 
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reported was maintained at 3, 6 and 12 months. In another study that explores the use of VR-EBT 

on Mexican victims of criminal violence, (Georgina, et. al., 2013) states that after 13 sessions of 

treatment, a group of 20 victims (55% had acute PTSD and 45% had chronic PTSD) no longer 

meet the diagnostic criteria of PTSD. 

2.2 Machine Learning Applications in Medical Diagnosis 

The assessment of Parkinson’s disease using deep learning on sensor data by (Eskofier B. 

M. et al., 2016), focused on detecting bradykinesia, which is a Parkinson’s disease that affects the 

motor system. According to the authors, the algorithms include boosting, decision trees, k-nearest 

neighbours, and support vector machines. The classification method that (Eskofier, et. al., 2016) 

used, includes pre-processing of data, feature extraction, and classifier training. For pre-

processing, the authors extract non-overlapping segments from sensor data, which relates to 

individual tasks. Feature extraction involved the use of 8 standard machine learning features, and 

for classifier training the authors used AdaBoost.M1, PART, k-nearest neighbors (kNN), and 

support vector machines (SVM). According to (Eskofier, et. al., 2016), the deep learning 

framework consists of an input layer, two convolutional neural networks layers that use rectified 

linear units (ReLUs), with max pooling, and a soft-max output layer for classification. 

The classification accuracy based on the observed results by (Eskofier, et. al., 2016) are; 

AdaBoost.M (86.3%), PART (81.7%), kNN (67.1%), SVM (85.6%), and Deep Learning (90.9%). 

The authors also discuss some of the following advantages of deep learning; 

• Expert defined features for signal classification are not required. 

• Resembles analysis done by human experts, as the input signal is assessed as one 

output. 
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• Adapting deep learning network to a single patient is possible. 

• Deep learning networks produce better classification results with large datasets, 

which is consistent with findings by (Banerjee, et al. (2017). 

Another crucial part of this study that (Eskofier, et. al., 2016) discuss, is the limitation that 

researches faced. The first limitation pertains to a non-optimized machine learning pipeline and 

deep learning parameters, which was done to carry out a fair comparison with deep learning. The 

second limitation relates to a limited database. The reason this is crucial, is that machine learning 

algorithms in general require a sufficiently large dataset to be trained with, so that more accurate 

classification can be made. Similarly, it would be crucial to gather as much input data as possible 

on physiological indicators, so that classification is more accurate with emotion recognition. 

The research that relates to cancer identification (Turki, 2018), uses machine learning 

algorithms such as AdaBoost, Deepboost, Xgboost, and Support Vector Machines (SVM) on 

datasets pertaining to thyroid cancer, colon cancer, and liver cancer. Some of the algorithms are 

used by (Eskofier, et. al., 2016) in their study. According to (Turki, 2018), support vector machines 

showed promising results over other machine learning algorithms explored.  

With respect to medical data classification, (Seera & Lim, 2014) state that medical 

knowledge and treatment therapy, such as new diseases and available drugs, are advancing at a 

rapid pace. In light of this, physicians find it increasingly difficult to keep up. The authors propose 

a hybrid intelligent system, that helps physicians focus on pertinent medical data, to make more 

informed decisions on medical prognosis and diagnosis. The proposed system by (Seera & Lim, 

2014), employ the use of neural networks. The authors state that the advantages of neural networks 

support medical decision applications. This is in contrast with expert systems, that can be taxing 

in its ability to establish relationships between ever growing input symptoms and target diseases. 
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According to (Seera & Lim, 2014), the neural network has three models in their hybrid intelligent 

system, which include; Fuzzy Min-Max (FMM), Classification and Regression Tree (CART), and 

Random Forest (RF). In the context of the proposed hybrid system, the authors explain that FMM 

is primarily concerned with medical decision support by learning from data samples, CART and 

RF are incorporated to strengthen FMM, to explain predicted output, and attain high classification 

performance respectively. 

The authors state that the proposed hybrid system achieves two practical key objectives; 

the first relates to the system’s ability to explain and justify the predictions; this is key as medical 

practitioners need to be confident in the system’s ability to accurately provide medical prognosis 

and diagnosis, which is critical with respect to safety. The second, relates to accuracy; if the system 

is not accurate in its classification, it can put patients at risk by either denying them medical 

attention or receiving improper medical prognosis and diagnosis. It can also place undue stress on 

patients and end up being a burden on resources. Otherwise, the authors state that the system can 

reduce costs, and provide efficiencies in healthcare delivery. Observed results by (Seera & Lim, 

2014) note that the combination of the three models that are employed in the hybrid system range 

between 95% and 99% in terms of accuracy, sensitivity and specificity when examining the Breast 

Cancer Wisconsin data set. The authors also state that FMM-CART-RF offer promising results in 

other data sets.  

In another study, (Omurca & Ekinci, 2004) evaluate the use of machine learning in 

diagnosing post-traumatic stress disorder. They attribute the use of machine learning in diagnosis 

as a result of its high capability and effective classification ability. The authors explore three 

different machine algorithms; Sequential Minimal Optimization, Multilayer Perceptron, and Naïve 

Bayes. And offer useful insight into characteristics of each of these machine learning algorithms. 
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According to (Omurca & Ekinci, 2004), the proposed system that evaluates PTSD, begins with 

processing data from a PTSD database. This step entails feature selection that uses chi-square, 

principal component analysis, and correlation based-feature selection. This includes class 

conditional independence, which refers to features being independent of each other. The next step 

in the system, classifies the pre-processed data set using three classification algorithms; Sequential 

Minimal Optimization, Multilayer Perceptron, and Naïve Bayes. The following is an overview of 

the characteristics of each classification algorithm discussed by (Omurca & Ekinci, 2004); 

Sequential Minimal Optimization: Is an advanced version of support vector machines, solves real-

time problems, is easy to implement, offers fast classification, and is best suited for large datasets. 

Multilayer Perceptron: Is highly accurate and can generalize well. The authors note that it is crucial 

to define network structure, functions and parameters for this classification algorithm. Once this 

is done, training can be executed. 

Naïve Bayes: Is known as an inductive learning algorithm. Performs fast and can classify complex 

dimensional data sets. It is preferred in real world applications, particularly in medical diagnosis.  

 (Omurca & Ekinci, 2004) observed an accuracy range between 74% and 79% in the 

system’s ability to distinguish between individuals with or without PTSD. Furthermore, the 

authors describe the proposed assessment system as flexible and easily adaptable to other use cases 

in medical diagnosis. 

2.3 Physiological Indicators and Emotional States 

 The purpose of investigating physiological indicators are two-fold; 1. Physiological 

indicators determine emotions expressed by individuals, which is consistent with studies by 

(Verma & Tiwary, 2014) and (Vijayan, et. al., 2015) and 2. Data extracted from the relationship 
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between physiological indicators and human emotion, will be used to train a deep neural network 

for emotion recognition. There are several physiological indicators that can be used for emotion 

recognition. However, this research will focus on heart rate, respiration, eye movement, and brain 

waves. With respect to emotional indicators, arousal and valence will be explored. 

 Based on circumplex model of emotion, (Posner, et. al., 2009) state that valance (Pleasure 

to displeasure | x-axis) and arousal (Activated to deactivated | y-axis) form a two-dimensional axis 

to depict four main emotional areas seen in Fig 3. 

 

 

 

 

 

 

 

 

 

Figure 3. Circumplex theory of emotions segregates the approximate grouping of emotions into 
four quadrants (Posner, et. al., 2009). 

 

• High Valance & High Arousal (High intensity of positive feelings, and high awareness 

of emotional and physiological responses) – Top right of the x and y axis correspond 

to being excited, joyous, and happy. 
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• High Valence & Low Arousal (High intensity of positive or negative feelings and low 

awareness of emotional and physiological responses) – Bottom right of the x and y axis 

correspond to being content, calm and idle. 

• Low Valance & High Arousal (Low intensity of positive or negative feelings and high 

awareness of emotional and physiological responses) – Top left of the x and y axis 

correspond to being afraid, angry and distressed. 

• Low Valance & Low Arousal (Low intensity of positive or negative feelings and low 

awareness of emotional and physiological responses) – Bottom left of the x and y axis 

correspond to being depressed, sad, and bored. 

2.3.1 Heart Rate 

Heart rate is one of four physiological indicators explored in this research as part of a 

multimodal framework in emotion recognition. In the DEAP dataset (Koelstra, S., et al., 2012), 

heart rate is extracted using plethysmography which is accomplished by using a probe and light 

source to detect cardio-vascular pulse waves (Elgendi, 2012). Before delving into emotion 

recognition using heart rate in the context of machine learning, it is fundamentally important to 

understand how the acceleration and deceleration of heart rate corelates to emotion. Research 

presented by (Shi, et. al., 2017), discuss heart rate variability (HRV) on two emotional states; 

happiness and sadness. The research explores how the automatic nervous system would affects six 

emotional states; disgust, surprise, anger, fear, and sadness. According to (Shi et. al., 2017), heart 

rate variability refers to tiny variations between intervals in sinus heart beats. Furthermore, the 

authors state that time-domain, frequency domain, as well as non-linear indices of heart rate 

variability are used in establishing a relationship between HRV and emotion. 
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The base line heart rate according to (Shi, et. al, 2017) is approximately 71 beats per minute 

for females, and approximately 74 beats per minute for males. This base line is important, as it is 

used to establish the context in which the authors describe the increase and decrease in heart rate 

with respect to emotion. The results described by (Shi, et. al., 2017) show that when participants 

were happy, their heart rate decelerated, and when they were sad, their heart rate accelerated. These 

results are consistent with (Ekman, et. al., 1983). However, research presented by (Etzel, et. al., 

2006) indicate otherwise. The authors hypothesize that cardiovascular and respiration rate induced 

by music, can affect mood changes. Based on this, (Etzel, et. al., 2006) observed that heart rate 

decelerated during sadness and accelerated during fear. 

With respect to emotion recognition in the context of machine learning, the relationship 

between heart rate and emotion is more evident. Research presented by (Kim, et. al., 2004) propose 

a physiological signal-based emotion recognition system. The first step in the system according to 

the authors, is to implement characteristic waveform detection, and obtain relevant data features 

for pattern classification. Pre-processed data is then feed into a support vector machine, which is 

used to classify patterns. The authors state that the purpose of using SVM in their study, is to 

resolve issues with pattern classification. This was a result of feature variation within the same 

class, as well as overlapping classes. Subsequently, the results shown by (Kim, et. al., 2004) state 

that SVM had a classification accuracy of 78.4% for 3 emotional states; sadness, anger and stress, 

and 61.8% for four emotional states; sad, stressed, angry and surprised.  

A study by (Yu & Chen, 2015), present a method for emotion recognition using ECG, more 

specifically heart rate variability (HRV), to recognize feeling neutral, happy, stressed and sad. The 

authors state that four features of heart rate variability (HRV) are used; time-domain, frequency-

domain, Poincare plot, and differential features.  With respect to a classification algorithm, (Yu & 
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Chen, 2015) use support vector machine (SVM) for the following reasons; it is a statistical 

classifier, it uses the structural risk minimization principle of machine learning and can handle 

linearly inseparable data. Furthermore, the authors evaluate each feature against each emotion, 

which is known as a one-against-all approach. 

Based on the results of the study, (Yu & Chen, 2015) note that when Genetic Algorithm 

(GA) was not used with feature selection, classification accuracy ranged between 37.5% to 52.2% 

when features were not combined. The results were the same when features were combined 

without the use of GA. However, when GA was used with feature selection, classification accuracy 

ranged between 42.5% to 60% for each feature. When features were combined, and GA was used, 

classification accuracy increased to 90%. In light of the observed results, (Yu & Chen, 2015) 

conclude that Genetic Algorithm feature selection must be part of an emotion recognition system 

to achieve high classification accuracy. 

2.3.2 Respiration 

 Emotional state has been known to affect respiration and vice versa (Jerath & Crawford, 

2015) (Wu, et. al., 2012). Like other physiological indicators discussed in this review, respiration 

can be used in emotion recognition (Zhang, et. al., 2017). In a study that examines the relationship 

between respiration and psychological activity, (Zhang, et. al., 2017) propose a deep learning 

framework to classify emotion using respiration data. The authors focus on the use of a deep neural 

network because of its ability to extract features automatically and its low computational resource 

outlay. This contrasts with manually extracting features, which have a few limitations. According 

to (Zhang, et. al., 2017) these limitations include;  

• Poor domain knowledge in feature creation to capture properties of a signal channel.  
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• No certainty that an algorithm used for feature selection will produce an optimal feature 

set. 

• Loss of information as manual feature selection uses statistics, which can’t depict signal 

channel details. 

(Zhang, et. al., 2017) also provide scenarios that describe the relationship between the pace 

and intensity of breathing to emotion, which are also consistent with (Jerath & Crawford, 2015). 

The authors state the following; 

• Deep & Fast Breathing – Relates to excitement, which can depict the following emotional 

states; happy, angry or afraid.  

• Shallow & Fast Breathing – Relates to tension. 

• Deep & Slow Breathing – Relates to relaxation 

• Shallow & Slow Breathing – Relates to clam or negative states. 

With respect to respiration rates, (Zhang, et. al., 2017) state that individuals who experience 

excitement typically respire between 40 – 50 times per minute, while individuals who respire 20 

times per minute are typically calm. Feeling tension and relaxion fall between the upper range of 

40 – 50 times per minute and 20 times per minute respectively. To conduct the evaluation, (Zhang, 

et. al., 2017) use the dataset for emotion analysis using EEG, physiological and video signals 

(DEAP) database (Koelstra, S., et al., 2012), which is evaluated against the circumplex theory of 

emotion.  

With respect to classification, (Zhang, et. al., 2017) hypothesize that the use of a sparse 

auto encoder, which is a deep learning method part of a broader deep learning framework, will 

extract the best characteristics of automatic feature selection from unlabeled data. The authors state 
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that this will provide a high level of classification accuracy. The next step in the process according 

to (Zhang, et. al., 2017) is pre-training, which occurs on the first sparse auto encoder hidden layer. 

Further training can be applied to the second layer, as well as other hidden layers. The other part 

of the deep learning framework involves feeding features into two logistic regression algorithms, 

that will classify valence and arousal. The observed results by (Zhang, et. al., 2017) indicate that 

the use of a deep learning framework (Sparse auto encoder with logistic regression algorithms), 

provide classification accuracy of 73.06% for valence, and 80.76% for arousal. These results are 

similar to a study by (Zheng, et. al., 2019), who use a Deep Neural Network (DNN) to classify 

emotion using EEG and Eye movement.  

In another study by (Wu, et. al., 2012), the authors propose a more accurate method in 

determining the relationship between respiration and the following affective states (emotion); love, 

sadness, joy, fear, and anger. According to (Wu, et. al., 2012), the proposed method focuses on 

extracting Emotion Elicited Segments (EES) from the respiration signal. According to (Wu, et. al., 

2012), this involves the use of Mutual Information-Based Emotion Relevance Feature Ranking 

based on Dynamic Time Warping Distance (MIDTW), and Constraint-based Elicited Segment 

Density (CESD) analysis. The authors state that the purpose of proposing a more accurate method 

is to remove distortion from the respiration signal. (Wu, et. al., 2012) state that this is especially 

true when non-invasive biosensors, used to track physiological indicators, are more susceptible to 

distortion. The authors note that this may negatively affect accuracy results. (Wu, et. al., 2012) 

continue to state that respiration is not only affected by affective states, but also by the following; 

• Transition between emotion 

• Level of body self-regulation 

• Effects of voluntary breathing, 
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• Bodily motions; laughing, talking, sneezing, coughing etc. 

In the context of distortion, (Wu, et. al., 2012) refer to bodily motions as motion artifacts 

that distort the affective state. Furthermore, motion artifacts are represented as low-frequency 

noise in the respiration signal, which cannot be removed. To remedy this, (Wu, et. al., 2012) focus 

on separating the respiration signal into quasi-homogenous segments. This enables the authors to 

detect and remove ambiguous emotion transition periods and motion artifacts. Once this is done, 

(Wu, et. al., 2012) are then able to use emotion recognition on the non-distorted segments. The 

authors state that they can accomplish this by using Respiratory Quasi-Homogeneity Segmentation 

(RHS), which is a three-step iterative process; 

• Step 1: Signal Transformation – Sum the acceleration values of the squared original 

signal. 

• Step 2: Top-down Splitting – Identify change points in the transformed signal. 

• Step 3: Quasi-homogenous Test: Test sub-intervals that are coupled with nearby 

change points, against significance conditions described in the study. 

According to (Wu, et. al., 2012), a comparative analysis using two nearest neighbor 

classifiers; k-Nearest Neighbor (KNN) and Probabilistic Neural Network (PNN), were used to 

evaluate the Emotion Elicited Segments. The approach applied by (Wu, et. al., 2012) involve the 

use of Emotion Elicited Segments (EES), for a specific emotion from a single subject, for each 

experiment as test data. The remaining clusters were used to train the classification algorithms. 

The authors also distinguish between length voting; emotion with greatest total segment length, 

and number-voting; greatest number of segments. Both cases provided the dominant emotion. 
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Observed results by (Wu, et. al., 2012) show that with Emotion Elicited Segments (EES), 

both k-Nearest Neighbor (KNN) and Probabilistic Neural Network (PNN) perform well, with PNN 

performing slightly better than KNN. The authors note that on average the classification accuracy 

for KNN on length-voting and number-voting is 86.09% and 90.43% respectively. In addition, the 

classification accuracy for PNN on length-voting and number-voting is 87.83% and 92.17% 

respectively. In contrast, (Wu, et. al., 2012) observe that when Emotion Elicited Segments (EES) 

are not applied, both k-Nearest Neighbor (KNN) and Probabilistic Neural Network (PNN) perform 

slightly lower. The classification accuracy for KNN on length-voting and number-voting is 86% 

and 82% respectively. In addition, the classification accuracy for PNN on length-voting and 

number-voting is 86% and 88% respectively. 

2.3.3 Eye Movement 

Eye movement has been identified as another important physiological indicator of human 

emotion. In a study by (Zheng, et. al., 2019), the authors investigate a multimodal framework to 

predict human emotion using EEG and eye movement. The authors describe brain signals and eye 

movement as an encouraging way to model cognitive states. They investigate the strength of 

classification on emotional states such as being neutral, sad, fearful and happy. With respect to eye 

movement, the authors state that the pupil is a window into the brain. More specifically, the pupil 

responds by expanding or contracting based on an emotional response to a given situation. This is 

described as a natural way to observe human emotion. This view is supported by (Schurgin, et. al., 

2014), who state that the eyes widen when facial expression of fear is perceived, and the eyes 

contract when facial expression of joy is perceived. In addition, (Wang, et. al., 2018) state that a 

person’s eye movement reflects their perceived emotion from a given scene.   
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With respect to success rates in the accuracy of determining emotion through eye 

movement alone, (Schurgin, et. al., 2014) state that participants in their study had an overall 

accuracy range between 66% to 86.8% when judging emotional states of joy, disgust, fear, anger, 

sadness, and shame. A study by (Shields, et. al., 2012) discuss findings in a related study within 

their research, of emotion recognition using eye tracking. The study found an accuracy rate of 

86.9% in classifying disgust and 86.1% in classifying anger, when a participant responded to 

corresponding facial expressions.  

  Some features that (Zheng, et. al., 2019) use as parameters in corelating dilation of the 

pupil with emotion include; pupil diameter, saccade (constant movement of the eyes), fixation 

(eyes are in fixed position), blink (rapid eye movement), and event statistics, which is also 

consistent in a study by (Wang, et. al., 2018).  In terms of classification, the authors compare the 

efficacy of predicting emotion using the following scenarios; 

• Eye movement (SVM).  

• EEG using (SVM). 

• EEG & Eye Movements into one feature (SVM).  

• EEG & Eye Movements into one feature (DNN). 

  Similarly, (Wang, et. al., 2018) implement the use of SVM for feature and decision level 

fusion to classify emotional states of positive, neutral and negative from EOG and eye movement. 

The results observed by (Wang, et. al., 2018) show classification success ranged between 84.62% 

to 90.82%. However, the results provided by (Zheng, et. al., 2019) are more robust and offer a 

comparative analysis between the use of unimodal and multimodal physiological indicators; 
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Eye Movement (SVM): Confusion matrix values for the target to predicted class are; sadness = 

0.58, fear = 0.67, happy = 0.67, and neutral = 0.80. 

EEG (SVM): Confusion matrix values for the target to predicted class are; sadness = 0.63, fear = 

0.65, happy = 0.80, and neutral = 0.78. 

Eye Movement & EEG (SVM): Confusion matrix values for the target to predicted class are; 

sadness = 0.69, fear = 0.79, happy = 0.73, and neutral = 0.82. 

Eye Movement & EEG (DNN): Confusion matrix values for the target to predicted class are; 

sadness = 0.85, fear = 0.85, happy = 0.74, and neutral = 0.92. 

Based on the results, using a Deep Neural Network performed better overall than other 

scenarios. The authors note that using a multimodal approach to emotion recognition showed an 

85.11% accuracy rate in emotion recognition. In contrast, a unimodal approach for EEG alone 

showed a 70.33% classification accuracy rate, and eye movement showed a 67.82% classification 

accuracy rate. Extracting multimodal physiological data provides a more wholesome approach to 

emotion recognition over a unimodal approach. The research done by (Zheng, et. al., 2019) 

supports the research conducted in this paper, where 4 different physiological indicators are used 

to predict human emotion. 

2.3.4 Brain Waves 

Compared to other physiological indicators such as facial, vocal and body indicators, brain 

waves are far more transparent and concrete in its correlation to emotion. According to (Liu, et. 

al., 2018), brain waves offer an immediate response to emotional stimuli, which is difficult for a 

person to mask based on their EEG signals. With respect to emotion, (Liu, et. al., 2018) and 

(Mouhannad, et. al., 2018) describe two models;   
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• Discrete – Emotional space is limited to several basic emotions that consist of; joy, 

sadness, surprise, fear, anger and disgust. 

• Dimensional – Two-dimensional space consists of valence (Negative/Positive 

characteristics)-arousal (Cognisant level of emotion and physiological indicators), 

and three-dimensional space consists of pleasure (Positive characteristics)-arousal-

dominance (In control or being controlled). 

(Liu, et. al., 2018) state that the use of the above models, are dependent on the number of 

emotions explored, as well as the level of difference between emotions. For example, if two 

emotions are significantly different such as being happy or sad, the dimensional model would 

work, as each of these emotions occupy different dimensional space. However, when emotions 

such as anxiety and anger are explored, the use of the discrete model its best suited, as the 

dimensional model is un-reliable in distinguishing between two emotions that are very close in 

dimensional space. This is fundamental, particularly with respect to how responsive and accurate 

a proposed emotion recognition system is.  

Similar to previous studies discussed, the proposed framework by (Liu, et. al., 2018) 

consists of the following components; data acquisition, data processing to remove distortion, and 

feature extraction. According to the authors, support of a multiclass classification requires Library 

for Support Vector Machines (LIBSVM) to classify eight discrete emotions; joy, amusement, 

tenderness, anger, sadness, fear and disgust.  

The emotions explored are also consistent in a study by (Shin, et. al., 2017).  Furthermore, 

(Liu, et. al., 2018) improves upon the classification algorithm by creating three levels of 

classification. The authors first group similar emotions, three positive (joy, amusement, 

tenderness) and four negative emotions (anger, sadness, fear and disgust). Level 1 consists of 
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neural and non-neural emotions. Level 2 consists of non-neural positive and negative emotions. 

And level 3 consists of two groups positive and negative emotions. According to (Liu, et. al., 

2018), the improvement to LIBSVM by including three levels of classification, showed a 

significant difference in classification accuracy. The following were the observed results; 

• Default LIBSVM classification of eight emotions - 32.31%.  

• Level 1 - 92.26 percent 

• Level 2 – 86.63% 

• Level 3 – Positive Emotion – 86.43%, Negative Emotion – 65.09% 

A wealth of information can be found in a study by (Ismail, et. al., 2016), who explore the 

detection of human emotion through brain waves. The authors make a distinction between different 

types of brain waves, which is crucial in determining which parts of the brain are associated with 

human emotion experienced;  

Delta Wave. Frequency Range: 0.5 – 3 Hz – Related to recovery and good sleep. 

Theta Wave. Frequency Range: 3 – 8 Hz – Deep relaxation, mediation, and improved Memory. 

Alpha Wave. Frequency Range: 8 – 12 Hz – Creativity, relaxation, and visualization. 

Beta Wave. Frequency Range: 12 – 27 Hz – Awareness and concentration. 

Gamma Wave. Frequency Range: 27 Hz – Regional learning, memory language preprocessing, 

and ideation. 

The above brain wave categorization is also consistent with a study conducted by (Heraz, 

et. al., 2007) (Liu, et. al., 2018) (Vijayan, et. al., 2015). According to (Ismail, et. al., 2016) the 

process of gathering data begins with pre-processing data by eliminating unwanted data. This 
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involves removing disorder and movement, which refers to noise from static electricity or 

electromagnetic fields, and reference data. The next step that (Ismail, et. al., 2016) describe, is 

feeding the pre-processed brain wave data into a neural network to classify emotion. The following 

are observed results provided by (Ismail, et. al., 2016) with respect to the correlation between 

emotion and the brain wave activity; 

Anger: High amount of activity in the theta brain wave. The brain wave activity here presents the 

opposite of deep relaxation, which is pressure placed on an individual. 

Sadness:  The delta brain wave had a higher amount of activity than the theta brain wave. With 

this emotion, the authors attribute the delta brain wave activity with males who 

experience empathy and emotion. On the other hand, the theta brain wave is associated 

with sadness experienced from memories.  

Happiness: High amount of activity in the alpha brain wave. The authors attribute this to activities 

related to being well rested, which increases the flow of energy, and as a result 

increases an individual’s ability to be creative. 

Surprised:  The authors note that brain wave activity is present in most regions of the brain. 

However, the delta and theta brain wave show the highest amount of activity. With 

this emotion, the authors attribute the activity in the delta brain wave to healing. And 

the activity in the theta brain wave to varying levels of stress. 

In a similar study by (Heraz, et. al., 2007), the authors explore the use of brain waves to classify 

emotional states that include anger, boredom, confusion, contempt, curious, disgust, eureka, and 

frustration. In this study, (Heraz, et. al., 2007) use IBK, which is also known as instance-based 

learning with parameter k. According to (Heraz, et. al., 2007), IBK is a k-nearest neighbour 
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classification algorithm. Based on the implemented classifier, classification precision on each 

emotional state ranges between 79.2% to 83.5%. 

• Anger = 81%, Boredom = 80%, Confusion = 79.2%, Contempt = 79.8%, Curious = 81.4%, 

Disgust = 82.9%, Eureka = 84%, and Frustration = 82.5%. 

(Heraz, et. al., 2007) also note that the performance of their implemented classifier ranges between 

79.2% to 83.5%. The overall classification of all emotional states is relatively equal. Based on the 

confusion matrix observed by (Heraz, et. al., 2007), the values in the diagonal are greatest for each 

emotion predicted. 

 An alternative approach to EEG emotion recognition is described by (Vijayan, et, al., 

2015). The authors in this study propose the use of a statistical measure known as Shannon entropy 

with cross correlation and auto regressive modeling. A multi-modal dataset consists of EEG 

signals from 32 participants. The process of the novel approach described by (Vijayan, et. al., 

2015), begins with pre-processing data to remove distortion. The next step is feature extraction for 

classification, which consist of wavelet packets, also known as wavelet decomposition. According 

to (Vijayan, et. al., 2015), wavelet packets (pre-processed data) are then passed to a multi-class 

Support Vector Machine classifier. The classification falls into four categories of emotion; excited, 

happy, sad, and hate. Based on ML-SVM, (Vijayan, et. al., 2015) observed classification accuracy 

of 94.097%. Th authors also note that the observed accuracy level, is comparable to classification 

accuracy levels in other studies where the following were employed; 

• Common Spatial Patterns using two emotions – 93.5% 

• Linear SVM on two emotions – 93% 

• K-Nearest Neighbours (KNN) on five emotions (62 channels of data) – 83.26% 
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• Short Time Fourier Transform (STFT) & Multi-Class SVM (MC-SVM) on three emotions 

– 93.85% 

However, (Vijayan, et. al., 2015) conclude that the epochs (emotion characteristic data) obtained 

using Shannon entropy, along with auto-regression coefficients from cross correlation that were 

used in the Multi-Class Support Vector Machine, are a high-caliber algorithm compared to other 

algorithms used. 

 To further understand the use of machine learning algorithms in emotion recognition, 

(Shin, et. al., 2017) develop a complex biological emotion recognition system. This system blends 

two physiological indicators using ratios; ECG (Records activity of the heart) and EEG (Brain 

waves). The system aims to classify the following emotions; amusement, fear, sadness, joy, anger, 

and disgust, which is consistent with previous studies discussed. Input data (Blended ratio of ECG 

& EEG) are split into two streams; a training stream and a test stream. The data in the training 

stream is used to create a user profile in the Data Map Model List, which contains correlation 

information between a user’s EEG and ECG activity and their emotion.  

Furthermore, (Shin, et. al., 2017) explain that a weight is attached to a specific channel to 

improve the classification accuracy. The purpose of doing this, will accommodate how each user 

develops an emotion. As a result of this difference, the Data Map revaluates the EEG and ECG 

input, and only applies a new probability when it receives new EEG data. The new probability, 

which accounts for the user’s highest active emotion, is used to update the probability weights on 

each channel on the data map. According to (Shin, et. al., 2017), this process repeats, which 

improves the accuracy of the classification. 
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 The types of machine learning algorithms (Shin, et. al., 2017) use to evaluate their emotion 

recognition system consist of Multilayer Perceptron (MLP), Support Vector Machines (SVM), and 

Bayesian Networks (BN). Based on observed results, (Shin, et. al., 2017) note that when EEG is 

only considered, classification accuracy for each of the algorithms performed poorly; MLP 

(44.86%), SVM (24.99), and BN (62.28). However, when the complex bio-signal system (ECG & 

EEG) are considered, the classification accuracy performs significantly better; MLP (83.97%), 

SVM (63.97%), and BN (98.06%). The confusion matrix for MLP and SVM, had a diagonal with 

the highest values, and some outliers. The confusion matrix for BN has a similar diagonal with 

extremely minimal outliers. The observed outcomes are consistent with (Wang, et. al., 2018) and 

(Zheng, et. al., 2019), in that higher accuracy classification rates are seen in multimodal systems, 

that use more than one physiological indicator for emotion recognition. 

In the literature reviewed, the DEAP dataset (Koelstra, S., et al., 2012) which is the dataset 

for emotion analysis using EEG, physiological and video signals, was used by (Zhang, et. al., 

2017) and (Vijayan, et. al., 2015).  This dataset provides a wealth of information with respect to 

physiological signals and emotional responses by participants. Furthermore, the DEAP dataset 

(Koelstra, S., et al., 2012) will be examined to determine how it can be used to train a deep neural 

network. The dataset consists of; 

1. 14 – 16 volunteers who rated one-minute extracts of 120 music video recordings on arousal, 

valence and dominance, using an online-self assessment platform.  

2. Of the 120 one-minute music videos, 32 participants watched and rated a subset of 40 

videos. Each participant had their EEG and physiological signals recorded. Of the 32 

participants, 22 participants had their face reaction recorded. 
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Furthermore, the DEAP dataset (Koelstra, S., et al., 2012) includes the following files described 

from the DEAP website. The files illustrate information that is valuable in this research;  

1. Online ratings – Individual ratings form online self-assessment.  

2. Video list – Names and links of YouTube videos from online self assessment, experiment 

and stats of individuals who rated the videos using the online self-assessment tool. 

3. Participant ratings – Video ratings by participants. 

4. Participant questionnaires – Questionnaire answers that participants provided before the 

experiment. 

5. Face video recordings – Front facial records of 22 participants. 

6. Original data – Physiological data that was unprocessed from the experiment (BioSemi.bdf 

format). 

7. Pre-processed data – Preprocessed data that includes; down-sampling, EOG removal, 

filtering, segmenting etc. Physiological recordings are available in MATLAB and Python-

NumPy formats. 

Comparing various prediction algorithms and their application in emotion recognition is 

crucial. The reason for this is that it provides a fundamental understanding of the types of scenarios 

that a prediction algorithm might be best suited for. Furthermore, the comparative analysis between 

unimodal and multimodal emotion recognition system, provides insight into the relationship to 

prediction accuracy. Based on the literature reviewed, Deep Neural Networks, and Bayesian 

Networks offer promising results with respect to prediction algorithm accuracy. The studies by 

(Zhang, et. al., 2017), (Eskofier B. M. et al., 2016), and (Zheng, et. al., 2019), show that the 

prediction accuracy of using a Deep Neural Network range between 73.06% to 92.9%.  
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With respect to Bayesian Networks, (Shin, et. al., 2017) observe a prediction accuracy rate of 

98.06%. The prediction accuracy rates described above, are dependent on the number of 

physiological signals and the type of feature enhancers used. As reviewed in the literature, a 

multimodal physiological framework provides a more robust system, which has a positive effect 

on prediction accuracy. The focus on using a Deep Neural Network relates to its prediction 

performance when using a large dataset, and its ability to learn using high-level data. This is 

beneficial when using the DEAP dataset (Koelstra, S., et al., 2012).  
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CHAPTER THREE 

3. METHODOLOGY 

 As mentioned in Chapter 1, this research concentrates on the critical section depicted in 

Fig 4. The methodology describes the process of developing and testing the deep neural network 

and convolutional neural network. The use of a deep neural network is attributable to the strong 

prediction rates observed by (Zhang, et. al., 2017), (Eskofier B. M. et al., 2016), and (Zheng, et. 

al., 2019), its effectives when using a large dataset, and its ability to learn using high-level data. 

The first part of the methodology discuses the dataset used. Thereafter, the following sections – 

processing data and research design will discuss the remaining parts of the methodology.  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4. Critical section explored in this research. 
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3.1 Data Source 

The DEAP dataset (Koelstra, S., et al., 2012) was used as the data source to train the neural 

networks. This dataset was complied by researchers from the following academic institutions; 

• Queen Mary University of London – United Kingdom 

• University of Twente – Netherlands 

• University of Geneva – Switzerland 

• EPLF (École polytechnique fédérale de Lausanne) – Switzerland 

Access to the dataset was granted once an end user license agreement was submitted by an 

established senior research faculty member who supervised this research. The use of the dataset is 

only permitted for academic research use. Each of the 32 participants also indicated their consent 

to redistribute their physiological recordings, and whether their audio-visual recordings may be 

published. The physiological indicators used from this dataset are heart rate (plethysmograph), 

respiration, eye movement, and brain waves by real-life participants. Emotional responses from 

videos watched by real-life participants were also used.  

The linkage between the physiological data and emotional responses from these 

participants will prove crucial in this research. While participants watched a 1-minute video clip, 

their physiological readings were recorded. Each video provides 8,064 data samples which have 

been down sampled to 128Hz. A summary of the DEAP (Koelstra, S., et al., 2012) data files is 

seen in Table 2.  
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Table 2. Data Summary 

Title Description 

Number of participants 32 

Total number of physiological signal channels 
40 (32 – EEG and 12 – Remaining 

Physiological channels) 

Number of physiological channels used as 
inputs 

36 (32 – EEG, 2 – EOG, 1 – Respiration, 1 – 
Plethysmograph) 

Sample rate of original signals 512Hz 

Down sampled rate of preprocessed signals  128Hz 

Arousal range 1 – 9 

Valence range 1 – 9  

Dominance range 1 – 9 

Length of each channel and video recording  63 seconds 

Data samples from channel recording 8,064 

Array shape of participant data file 
Data – 40 (video/trial) x 40 (channel) x 8064 
(data). Labels – 40 (video/trial) x 4 (labels – 
valence, arousal, dominance and liking). 

Array shape of participant data file used 
Data – 40 (video/trial) x 36 (channel) x 8064 
(data). Labels – 40 (video/trial) x 3 (labels – 
valence, arousal, dominance). 
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3.2 Processing Data 

As the DEAP dataset (Koelstra, S., et al., 2012) offers pre-processed data, it provides an 

opportunity to expedite the use of the dataset for regression without processing all the data first. 

The preprocessed and segmented version of the data files has been down sampled from 512Hz to 

128Hz. To get a sense of the physiological readings, the data file for participant number 6 was 

used to depict readings for respiration, plethysmograph, horizontal and vertical eye movement, 

and brain waves. The x-axis represents samples taken at 128Hz. Each of the physiological 

recordings provide 63 seconds of measurements, which produce 8,064 data samples. In Fig 5. the 

participant was fitted with a respiration belt that monitored the participants lung capacity. The blue 

wave represents tidal volume, and the area under the blue line is functional residual capacity. 

 
 

 

 

 

 

 

 

 

 

Figure 5. Respiration readings over 63 seconds of participant number 6. 
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Heart rate and cardiac cycle is measured using finger plethysmography. This is typically 

accomplished by using a pulse oximeter, which can monitor fluctuations in blood volume through 

pressure on the finger.  Participant number 6 has plethysmography readings depicted in in Fig 6. 

 

 

 

 

 

 

 

 

 

 

Figure 6. Plethysmograph readings over 63 seconds of participant number 6. 

 
Both horizontal and vertical eye movements were recorded for 22 out of the 32 participants. 

This is accomplished by using electrodes that are placed around the eye. To record horizontal eye 

movement, electrodes are placed on both the right and left temple. For vertical eye movement, 

electrodes are placed above and below the eye to record horizontal eye movements. This setup 

enables eye tracking for visual objects. Horizontal and vertical eye movements recordings for 

participant number 6 are seen in Fig 7 and Fig. 8. 
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Figure 7. Horizontal eye movement readings over 63 seconds of participant number 6. 

 

 

 

 

 

 

 

 

 

 

 
Figure 8. Vertical eye movement readings over 63 seconds of participant number 6. 
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Each of the 32 participants had their brain waves recorded over 63 seconds. A total of 32 

EEG channels were used to record delta, theta, alpha, and beta brain waves. The data from the 

recordings were down sampled to 128 Hz. Brain wave recordings for participant number 6 is seen 

in Fig 9. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. Brain wave readings from 32 channels over 63 seconds of participant number 6. 

 

3.3 Research Design 

 The research design section illustrates steps taken to execute the development and testing 

of both the deep neural network and convolutional neural network. The remaining part of this 

section will discuss the architecture of the deep neural network and convolutional neural network, 

and justifications behind the architecture design choices. Summary of steps taken to execute the 

research design; 

1. Selected features that were used for prediction. 

2. Concatenated all 32 participant data files. 
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3. Developed a deep neural network and convolutional neural network to compare 

prediction performance. 

4. Trained the deep neural network and a convolutional neural network to determine 

prediction accuracy at; 

a.  25 Epochs  

b. 50 Epochs 

c. 100 Epochs 

In the first step, features selected include physiological indicators – heart rate, respiration, 

eye movement, and brain waves. And approximate grouping of emotional states – arousal, valence 

and dominance. Based on the number of features selected, a total of 36 physiological recordings, 

3 approximate grouping of emotional states (arousal, valance and dominance), and 8,064 data 

points were used as inputs into the deep neural network and convolutional neural network.  

The second step combined all 32 participant data files. This was done to enable both neural 

networks to generalize predictions on arousal, valence and dominance. Up till now, arousal and 

valence are understood to exist on the 2-dimensional circumplex theory of emotion seen in Fig 10. 

However, dominance requires an additional dimension, which is illustrated in the PAD 3-

dimentional emotion representation seen in Fig 11. 
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Figure 10. Circumplex theory of emotions 2-dimension model (Liu, et. al., 2018). The 2-dimensional 
representation does not depict dominance. 

 

Dominance in the 3-dimensional model is represented by the D(Z)-axis. This axis 

represents how dominant (positive values) or submissive (negative values) an emotion is. For 

example, if a participant experiences high arousal, low pleasure (valance) and high dominance, the 

individual may be feeling hostile. This feeling is a dominant feeling compared to feeling anxious, 

which is a submissive feeling seen in Fig 11. 
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Figure 11. PAD (Pleasure/Valence Arousal Dominance) emotional 3-dimension representation model. 
(Kołakowska, A., et. al., 2015). 

 

The third step of the research design involved developing a deep neural network and a 

convolutional neural network. The implementation of both the DNN and CNN were created using 

TensorFlow with Keras in Python. The deep neural network developed used 8 hidden layers seen 

in Fig 12. The first 7 layers used a ReLU (Rectified Linear Unit) activation function and the 8th 

layer used a linear function. The use of the ReLU function primarily performs best with prediction 

problems.  
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Figure 12. Deep Neural Network Architecture. 

Each neuron in the deep neural network is connected to every output from the previous 

layer. The flatten layer initially flattens all the data into a single dimensional array of numbers. 

Since there are 36 physiological channels with 8,064 samples each, it provides 298,368 (36 * 

8,064) data points as seen in Table 3. Each of the 298,368 has 32 connections, one for each neuron 

in the next layer. In the first dense layer there are 9,289,728 (32 * 290,304) parameters. The number 

of parameters reduces at the second layer as the filter capacity is set at 64.  

The number of parameters is constant from the 3rd layer till the 7th layer as the filter capacity 

is 64. On the last layer, the filter capacity is reduced to 3 to account for the three labels (valence, 
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arousal and dominance. This reduces the number of parameters to 195 (3 * 64). A batch size of 10 

was used during model compilation. This would randomly process 10 training samples at a time 

until a total of 896 samples were processed on each training epoch. The use of batch size minimized 

error values and variance between loss and validation loss functions.  

 
Table 3. Deep Neural Network Model Architecture 

Layer (type) Output Parameters Activation 

Flatten 290,304 0 - 

Dense 32 9,289,728 ReLU 

Dense 64 2,048 ReLU 

Dense 64 4,096 ReLU 

Dense 64 4,096 ReLU 

Dense 64 4,096 ReLU 

Dense 64 4,096 ReLU 

Dense 64 4,096 ReLU 

Dense 3 192 Linear 

 

A convolutional neural network was chosen as a comparison to the deep neural network as 

it has been identified by (Yang, H., et al., 2019) as a strong contender in predicting valence and 

arousal using pattern recognition. The dataset that was used to in the study by (Yang, H., et al., 

2019) also used the DEAP dataset (Koelstra, S., et al., 2012). The CNN developed in this research 

features 5 convolutional layers, 4 max pooling layers and 2 fully connected dense output layers. 

Similar to the deep neural network, a batch size of 10 training samples was set during model 
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compilation. The convolutional neural network does not use a multi-column structured model as 

presented in the study by (Yang, H., et al., 2019). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 13. Convolutional Neural Network Architecture. 

The filter in the first convolutional layer (32) is applied to the input (36 x 8064, along with the 

activation function) as the filter is moved along. The stride determines how large of a movement 

the filter is moved along by. The max-pooling layer reduces the size of the input. This process 
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continues until the flatten layer. The flatten layer converts the pooled layer representation into a 

column that is passed to the dense layer. 

 
Table 4. Convolutional Neural Network Model Architecture 

Layer (type) Kernel/Pool Stride Outputs Activation 

Reshape - - 36 x 8064 x 1 - 

Convolution 1 x 4 1 x 1 36 x 8061 x 32 ReLU 

Max Pooling 1 x 2 1 x 2 36 x 4030 x 32 - 

Convolution 1 x 8 1 x 2 36 x 2012 x 64 ReLU 

Max Pooling 1 x 2 1 x 2 36 x 1006 x 64 - 

Convolution 1 x 8 1 x 2 36 x 500 x 64 ReLU 

Max Pooling 1 x 2 1 x 2 36 x 250 x 64 - 

Convolution 1 x 64 1 x 2 36 x 94 x 64 ReLU 

Max Pooling 1 x 2 1 x 2 36 x 47 x 64 - 

Convolution 1 x 8 1 x 1 36 x 40 x 64 ReLU 

Flatten - - 92,160 - 

Dense - - 64 ReLU 

Dense - - 3 Linear 

 

The fourth step of the experiment involved training and testing the deep neural network and 

the convolutional neural network at 25, 50 and 100 epochs. The length of the epochs was selected 

to compare prediction accuracy over time and to analyze convergence and divergence of loss and 

validation loss functions. Based on the prediction results and the MAE (Mean Absolute Error), the 

ratio for training and validating that minimized the MAE, was set at 70% for training (896 
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samples), and 30% for validation (384 samples) for a total of 1,280 samples (32 participants * 40 

videos). This was applied to both the deep neural network and convolutional neural network. 

To analyze prediction accuracy, the following metrics were used; 

• Loss – The level of variation from actual values. 

• Mean Absolute Error – Mean of the absolute values of prediction errors. 

• Validation Loss – Error value reported after running validation dataset against training 

dataset. 

• Validation Mean Absolute Error – Mean of the absolute values of prediction errors based 

on the validation dataset. 

• Difference between predicted and real values – How close predicted values are from 

actual values with respect to arousal, valence and dominance. 

• Bounded Regression Accuracy – Determines prediction accuracy as a percentage of the 

range of possible y-values. The formula is given by; 

 

𝐵𝑜𝑢𝑛𝑑𝑒𝑑	𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛	𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 	
1 − |	𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛	𝑉𝑎𝑙𝑢𝑒 − 𝑅𝑒𝑎𝑙	𝑉𝑎𝑙𝑢𝑒	|

𝑅𝑎𝑛𝑔𝑒	𝑉𝑎𝑙𝑢𝑒 ∗ 100%  
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CHAPTER FOUR 

4. RESULTS AND ANALYSIS 

This section will present findings from compiling the deep neural network and 

convolutional neural network. It will discuss prediction performance on arousal, valence and 

dominance. Three training time intervals were used – 25, 50 and 100 epochs, to compare the 

prediction performance of the deep neural network against the convolutional neural network. 

4.1 CNN & DNN Training – 25 Epochs 

The convolutional neural network trained at 25 epochs initially shows the loss and 

validation loss functions converging at approximately 2 epochs seen in Fig 14. This convergence 

is not consistent as the loss and validation loss functions start to diverge. Based on the divergence 

of the loss and validation loss functions, it can be inferred that the convolutional neural network 

requires more data to train the model. It also requires more than 25 epochs to narrow the gap 

between the loss and validation loss functions. 
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Figure 14. Convolutional Neural Network trained for 25 epochs. 

Table 5. summarizes performance metric values for the convolutional neural network at 5, 

10, 15 and 25 epochs. Values in the loss function reduce while values in the validation loss function 

increase. The difference between the loss function and validation loss function at 25 epochs is 

7.6498. While the mean absolute error values reduce with each epoch up till 25 epochs, the 

significantly large difference between the loss and validation loss functions can be explained with 

overfitting. 

Table 5. CNN Performance Metrics – 25 Epochs  

Epoch Loss MAE Validation Loss Validation MAE 

5 3.6841 1.5663 7.0124 1.8905 

10 2.5524 1.1897 6.6501 1.9625 

15 2.0178 0.9673 6.8810 1.9440 

25 0.5502 0.4887 8.2000 1.9631 

 

 Prediction accuracy as a percentage is seen in Fig. 15. Each set of valence, arousal and 

dominance prediction represents an approximate group of emotional states felt by the participant 

while watching a video for 63 seconds. While overfitting is evident at 25 epochs, the overall mean 

bounded regression accuracy for valance arousal and dominance is 74.13%, 75.30% and 76.96% 

respectively. The overall mean bounded regression accuracy for the model at 25 epochs is 75.46%. 

This can be explained by the decline in the mean absolute error values with every epoch cycle. It 

is important to note that given overfitting is evident with 25 epochs, the model needs more data to 

train on to reduce the likelihood of overfitting. 
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Figure 15. CNN prediction accuracy of valance, arousal and dominance at 25 epochs. Valence, arousal 
and dominance value range from 1 – 9. 

 

In comparison, the deep neural network indicates a momentary convergence between the 

loss and validation loss functions at approximately 3 epochs seen in Fig 16. This convergence does 

not stay consistent and overfitting occurs immediately.  While the difference between the loss and 

validation functions are significantly large, both functions show a downward trend after 15 epochs. 

Similar to the convolutional neural network, more data and training at 25 epochs would alleviate 

overfitting seen in the deep neural network.  
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Figure 16. Deep Neural Network trained for 25 epochs. 

The values depicted in Table 6. are consistent with the graph in Fig 16. The loss and 

validation loss function show significant swings upwards and downwards from epochs 5 to 15. 

The values for the loss and validation loss function start a downward trend after 15 epochs. The 

mean absolute error steadily declines through each epoch cycle. In comparison to the convolutional 

neural network, the values are significantly higher for the deep neural network for each epoch 

cycle up till 25 epochs.  

Table 6. DNN Performance Metrics – 25 Epochs  

Epoch Loss MAE Validation Loss Validation MAE 

5 18.6222 3.3918 25.7804 3.7487 

10 9.9603 2.5228 40.8092 3.4722 

15 13.0411 2.8688 27.9236 3.4605 

25 6.1428 1.8942 28.5146 3.0575 
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In terms of prediction accuracy, the deep convolutional neural network does not perform 

as well as the convolutional neural network at 25 epochs. The mean bounded regression accuracy 

for valance, arousal and dominance is 59.69%, 62.79% and 62.86% respectively. In the 

convolutional neural network at 25 epochs, the mean bounded regression accuracy for valance 

arousal and dominance is 74.13%, 75.30% and 76.96%. The overall mean bounded regression 

accuracy for the deep neural network model is 61.78% which does not perform as well as the 

convolutional neural network at which has an overall mean bounded accuracy of 75.46%.  

 

 

 

 

 

 

 

 

 

 

Figure 17. DNN prediction accuracy of valance, arousal and dominance at 25 epochs. Valence, arousal 
and dominance value range from 1 – 9. 
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4.2 CNN & DNN Training – 50 Epochs 

At 50 epochs the loss and validation loss functions of the convolutional neural network 

converges just after epoch 0 seen in Fig 18., which is slightly earlier than the 25-epoch scenario. 

However, both the loss and validation loss functions diverge immediately after the initial 

convergence. Similar to the convolutional neural network trained for 25 epochs, the model 

experiences overfitting. Even as loss and validation loss functions approach the 50-epoch cycle, 

there is no clear indication that overfitting converges.  

 

 

 

 

 

 

 

 

 

Figure 18. Convolutional Neural Network trained for 50 epochs. 

The performance metric values for the convolutional neural network trained for 50 epochs 

is seen in Table 7. The values in the loss column decline at approximately epoch 30 but increase 

after approximately 35 epochs. However, these values are comparatively lower than the loss values 

in the convolutional neural network trained for 25 epochs. This is explained by the increase in 

training from 25 to 50 epochs. Similar to the loss values, the validation loss function experienced 

fluctuations in its values, which corresponds to the validation loss function trend seen in Fig. 18.  
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Table 7. CNN Performance Metrics – 50 Epochs  

Epoch Loss MAE Validation Loss Validation MAE 

30 0.3579 0.3592 8.4978 1.9588 

35 0.2736 0.2955 8.5119 1.9528 

40 0.3003 0.3452 8.3764 1.9448 

50 0.3612 0.3777 6.5174 1.8795 

 

The overall bounded regression accuracy for valence, arousal, and dominance is 75.43%, 

76.67%, and 77.42% respectively. The overall mean bounded regression accuracy for the model 

trained for 50 epochs is 76.51%.  

 

 

 

 

 

 

 

 

 

 

Figure 19. CNN prediction accuracy of valance, arousal and dominance at 50 epochs. Valence, arousal 
and dominance values range from 1 – 9.  



 

57 
 

This represents a slight increase in performance when compared to training the convolutional 

neural network for 25 epochs. The slight increase in prediction accuracy when the model is trained 

for 50 epochs can be explained by the further reduction in mean absolute error values seen in Table 

7. 

 The deep neural network trained for 50 epochs indicates that its first convergence of the 

loss and validation loss functions occur approximately 25 epochs after the convolutional neural 

network seen in in Fig 20. Unlike the convolutional neural network trained for 50 epochs, the loss 

and validation loss functions in the deep neural network trained for 50 epochs converge again at 

approximately 30 epochs. While overfitting exists, the variance between the loss and validation 

loss function is significantly less than the convolutional neural network trained for 50 epochs.  

 

 

 

 

 

 

 

 

 

Figure 20. Deep Neural Network trained for 50 epochs. 
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 The performance metrics seen in Table 8. supports the overfitting difference between the 

convolutional neural network and the deep neural network trained for 50 epochs. Based on the 

metrics, the difference in loss and validation loss at 30, 35, 40 and 50 epochs are 0.3425, 0.567, 

0.5778 and 0.7966 respectively. In comparison the difference in loss and validation loss for the 

convolutional neural network at 30, 35, 40 and 50 epochs are 8.1399, 8.2383, 8.0761, and 6.1562 

respectively. The variance in loss is wider than the deep neural network. 

 
Table 8. DNN Performance Metrics – 50 Epochs 

Epoch Loss MAE Validation Loss Validation MAE 

30 7.2251 2.1854 6.8826 2.0860 

35 4.3482 1.7104 4.9152 1.8268 

40 4.2627 1.6913 4.8405 1.8146 

50 4.1026 1.6648 4.8992 1.8300 

 

The prediction accuracy of the deep neural network is seen in Fig 21. The bounded 

regression accuracy for valance, arousal and dominance is 77.22%, 77.36%, and 76.79% 

respectively. The overall mean bounded regression accuracy for the deep neural network trained 

for 50 epochs is 77.12%. In comparison the bounded regression accuracy for valance, arousal and 

dominance for the convolutional neural network trained for 50 epochs is 75.43%, 76.67%, 77.42%. 

Dominance is the only category that performed slightly better in the convolutional neural network 

trained at 50 epochs. The overall mean bounded regression accuracy for the convolutional neural 

network is 76.51%, which doesn’t perform as well at the deep neural network. It is also worthy to 

note that the variance in loss with the deep-neural network is significantly less than the 

convolutional neural network. For these reasons, the deep neural network performs better than the 

convolutional neural network trained for 50 epochs. 
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Figure 21. DNN prediction accuracy of valance, arousal and dominance at 50 epochs. Valence, arousal 
and dominance values range from 1 – 9.  

 

4.3 CNN & DNN Training – 100 Epochs 

The convolutional neural network trained for 100 epochs seen in Fig 22., appears to have 

no significant improvement since its last training boundary at 50 epochs. Both the loss and 

validation functions continue to indicate a significant difference in variance up till epoch 100. This 

infers that any additional training does not significantly improve the model. 
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Figure 22. Convolutional Neural Network trained for 100 epochs. 

The performance metrics seen in Table 9. Indicate a modest improvement in the 

convolutional neural network trained for 100 epochs compared to 50 epochs. While the mean 

absolute values are lower, the variance between the loss and validation loss functions are still 

significant. More training appears to have made a slight improvement to overfitting. It is possible 

that the model requires more data in order to make a significant reduction in overfitting with an 

increase in training epochs. 

Table 9. CNN Performance Metrics – 100 Epochs 

Epoch Loss MAE Validation Loss Validation MAE 

70 0.1515 0.2580 6.1339 1.8792 

80 0.0878 0.1966 6.2619 1.8676 

90 0.2494 0.3566 5.9862 1.8708 

100 0.1078 0.2315 5.8295 1.8774 
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The prediction performance for the convolutional neural network trained for 100 epochs is 

seen in Fig 23. It supports the explanation that no significant improvement was made by increasing 

the number of training epochs to 100. The mean regression accuracy for valance, arousal and 

dominance is 74.83%, 76.88%, 77.89% and 76.53% respectively when trained for 100 epochs. In 

comparison, the mean regression accuracy for valance, arousal and dominance is 75.43%, 76.67%, 

77.42% and 76.51% respectively when trained for 50 epochs. Apart from valence, there is no 

significant improvement in performance for arousal and dominance.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23. CNN prediction accuracy of valance, arousal and dominance at 100 epochs. Valence, arousal 
and dominance values range from 1 – 9.  
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The overall mean bounded regression accuracy between 50 and 100 epochs is 76.51% and 

76.53% respectively. This also supports the explanation that an increase in training epochs from 

50 to 100 does not improve the convolutional neural network.  

The deep neural network trained for 100 epochs seen in Fig 24. appears to have 

significantly improved with an increase in training from 50 epochs. This is supported by the loss 

and validation function converging at approximately 20 epochs. The variance between the loss and 

validation function is minimal. This also infers that overfitting is minimal. In comparison, 

overfitting in the convolutional neural network trained for 100 epochs is significantly more and 

does not improve with every new training epoch. 

 
 

 

 

 

 

 

 

 

 

 
Figure 24. Deep Neural Network trained for 100 epochs. 

The performance metrics for the deep neural network is seen in Table 10. The difference 

in variance for the loss and validation loss function at 70, 80, 90 and 100 epochs are 0.0832, 0.0806, 

0.068, and 0.0348 respectively. This infers that over fitting and underfitting is at a minimal. In 
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comparison, the loss and validation loss function at 70, 80, 90 and 100 epochs for the convolutional 

neural network are 5.9824, 6.1741, 5.7368, and 5.7217 respectively, which are significantly higher 

than the deep neural network. While the mean absolute error values are higher in the deep neural 

network, the deep neural network performs better in in prediction accuracy. 

 
Table 10. DNN Performance Metrics – 100 Epochs 

Epoch Loss MAE Validation Loss Validation MAE 

70 4.2541 1.7076 4.3373 1.7277 

80 4.2466 1.7045 4.3272 1.7238 

90 4.3320 1.7301 4.2640 1.7149 

100 4.2616 1.7076 4.2268 1.7089 

 

The mean bounded regression accuracy for valance, arousal and dominance for the deep 

neural network trained for 100 epochs is 77.58%, 79.22% and 79.22% respectively. In comparison, 

the mean bounded regression accuracy for valance, arousal and dominance for the convolutional 

neural network is 74.83%, 76.88% and 77.89%, which does not perform as well as the deep neural 

network. This is substantiated by the higher overall mean bounded regression accuracy for the 

deep neural network (78.64%), compared to the convolutional neural network (76.53%). 
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Figure 25. DNN prediction accuracy of valance, arousal and dominance at 100 epochs. Valence, arousal 

and dominance values range from 1 – 9. 

 
With an overall mean bounded regression accuracy of 78.64%, the deep neural network 

has the highest prediction accuracy at 100 epochs over all other scenarios discussed. In 

comparison, the best prediction accuracy rate for the convolutional neural network over 25, 50 and 

100 epochs is 76.53%. The mean absolute error is lower in the convolutional neural network at 

0.2315, compared to 1.7076 in the deep neural network when both models are trained for 100 

epochs. This training cycle provides the lowest mean absolute error for both neural networks. This 

infers that the deep neural network is unable to accurately predict an emotion when it comes across 

new data by 1.7076. Based on the DEAP dataset (Koelstra, S., et al., 2012), the absolute mean 

error for the deep neural network of 1.7076 is on the lower end of the range for valance, arousal 
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and dominance, which is from 1 – 9. For these reasons, the error value for the deep neural network 

is reasonable. In addition, the deep neural network has minimal overfitting and underfitting 

compared to the convolutional neural network. 

 
4.4 Computational Time 

The convolutional neural network and deep neural network were compiled on two separate 

machines. The system hardware specifications that the models were tested on are seen in Table 11. 

The convolutional neural network was compiled on machine 1, which had the TensorFlow GPU 

running on CUDA (Compute Unified Device Architecture). CUDA is NVIDIA’s parallel 

computing platform, which increases computing performance. This was used to reduce the 

processing time of the convolutional neural network. The GPU specifications are seen in Table 12. 

The deep neural network was compiled on machine 2, which did not utilize CUDA. 

 
Table 11. Specifications for system hardware used to compile CNN and DNN. 

Specification Machine 1 – CNN Machine 2 – DNN 

Processor Intel® Core™ i7-6700HQ 
CPU @ 2.60GHz  

Intel® Core™ i7-6600U CPU 
@ 2.60GHz 

Cores 4 2 

Logical Processors 8 4 

Installed Memory (RAM) 16 GB 16 GB 

System Type 64-bit Operating System, 
x64-based processor 

64-bit Operating System, 
x64-based processor 
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Based on the hardware specifications in Table 11., machine 1 has the capacity to perform 

better than machine 2. The convolutional neural network took approximately 1 hour and 25 

minutes to train 100 epochs (45 seconds on average to process each epoch). If CUDA was not 

enabled on machine 1, the computing time to process the convolutional neural network for 100 

epochs would increase substantially. The GPU specifications for machine 1 where CUDA was 

enabled are seen in Table 12. 

 
Table 12. Specifications for NVIDIA GeForce GTX 960M (CUDA Enabled) 

Specification GeForce GTX 960M- CNN 

Cuda Cores 640 

Base Clock 1096 + Boost 

Memory Clock 2500 MHz 

Memory Interface GDDR5 

Memory Interface Width 128-bit 

Memory Bandwidth 80 

 

In comparison, the computing time for the deep neural network was approximately 13 

minutes for 100 epochs (8 seconds on average to process each epoch) on machine 3, which did not 

utilize CUDA. In terms of computational time, the deep neural network preforms better as a model 

for prediction compared to the convolutional deep neural network.   
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4.5 Mapping DNN & CNN Model Predictions to PTSD Patients 

 The prediction results produced from the deep neural network and convolutional neural 

network are based on participants who are not diagnosed with PTSD. This is a crucial point as 

physiological readings and emotional responses may be more pronounced in participants who are 

diagnosed with PTSD. The pronounced physiological readings and emotional responses may also 

produce prediction results that defer from the overall bounded regression accuracy prediction 

results for valence, arousal and dominance observed in each of the three epoch training scenarios 

(25, 50 and 100) in this research.  

To scale the prediction results from the deep neural network and convolutional neural 

network, a dataset that uses physiological readings and emotional responses from participants with 

PTSD should be used. The physiological readings and emotional responses will be used as inputs 

to train both the deep neural network and convolutional neural network discussed in this research.  
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CHAPTER FIVE 

5. CONCLUSION 

5.1 Conclusion 

This research has discussed existing literature that supports VR-EBT as an effective and 

popular method used to treat post traumatic stress disorder. The research has also provided a high-

level overview of an autonomous virtual reality exposure-based system. A deep neural network 

and a convolutional neural network was developed to compare prediction performance. Based on 

the results the deep neural network provides the highest overall mean bounded regression accuracy 

of 78.64% of all compared scenarios. While the mean absolute error rate was higher in the deep 

neural network, overfitting and underfitting was at a minimal compared to the convolutional neural 

network. The computational time was also found to be significantly lower for the deep neural 

network. 

 
5.2 Limitations 

Some of the limitations and restrictions faced in this research are concerned with the use 

of the DEAP dataset (Koelstra, S., et al., 2012). The first limitation is with respect to the number 

of data samples. For the model to make better predictions, more data is needed to improve 

prediction accuracy. The second relates to participants involved in the databased. As the 

participants are not diagnosed with PTSD, physiological readings and emotional responses may 

be more pronounced than participants who are diagnosed with PTSD. This may affect prediction 

results from the DNN and CNN. The dataset also relies on self-reporting, which is susceptible to 

emotional ambiguity. While the model was developed to generalize predictions based on a broader 

group of people, results produced may differ for individualized models.  
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5.3 Future Work 

Future work could be expanded by classifying specific emotional states based on the 

prediction values of valance, arousal and dominance identified in this research. The use of 

wearables to extract physiological signals or an alternative data source could also be explored such 

as the MAHNOB HCI-Tagging database, to determine performance accuracy of both the deep 

neural network and convolutional neural network discussed in this research. Individualized models 

can also be explored and compared against the generalized models discussed in this research, and 

how well individualized models work on mobile devices such as health applications. 
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