163 research outputs found

    Image enhancement methods and applications in computational photography

    Get PDF
    Computational photography is currently a rapidly developing and cutting-edge topic in applied optics, image sensors and image processing fields to go beyond the limitations of traditional photography. The innovations of computational photography allow the photographer not only merely to take an image, but also, more importantly, to perform computations on the captured image data. Good examples of these innovations include high dynamic range imaging, focus stacking, super-resolution, motion deblurring and so on. Although extensive work has been done to explore image enhancement techniques in each subfield of computational photography, attention has seldom been given to study of the image enhancement technique of simultaneously extending depth of field and dynamic range of a scene. In my dissertation, I present an algorithm which combines focus stacking and high dynamic range (HDR) imaging in order to produce an image with both extended depth of field (DOF) and dynamic range than any of the input images. In this dissertation, I also investigate super-resolution image restoration from multiple images, which are possibly degraded by large motion blur. The proposed algorithm combines the super-resolution problem and blind image deblurring problem in a unified framework. The blur kernel for each input image is separately estimated. I also do not make any restrictions on the motion fields among images; that is, I estimate dense motion field without simplifications such as parametric motion. While the proposed super-resolution method uses multiple images to enhance spatial resolution from multiple regular images, single image super-resolution is related to techniques of denoising or removing blur from one single captured image. In my dissertation, space-varying point spread function (PSF) estimation and image deblurring for single image is also investigated. Regarding the PSF estimation, I do not make any restrictions on the type of blur or how the blur varies spatially. Once the space-varying PSF is estimated, space-varying image deblurring is performed, which produces good results even for regions where it is not clear what the correct PSF is at first. I also bring image enhancement applications to both personal computer (PC) and Android platform as computational photography applications

    Recent Progress in Image Deblurring

    Full text link
    This paper comprehensively reviews the recent development of image deblurring, including non-blind/blind, spatially invariant/variant deblurring techniques. Indeed, these techniques share the same objective of inferring a latent sharp image from one or several corresponding blurry images, while the blind deblurring techniques are also required to derive an accurate blur kernel. Considering the critical role of image restoration in modern imaging systems to provide high-quality images under complex environments such as motion, undesirable lighting conditions, and imperfect system components, image deblurring has attracted growing attention in recent years. From the viewpoint of how to handle the ill-posedness which is a crucial issue in deblurring tasks, existing methods can be grouped into five categories: Bayesian inference framework, variational methods, sparse representation-based methods, homography-based modeling, and region-based methods. In spite of achieving a certain level of development, image deblurring, especially the blind case, is limited in its success by complex application conditions which make the blur kernel hard to obtain and be spatially variant. We provide a holistic understanding and deep insight into image deblurring in this review. An analysis of the empirical evidence for representative methods, practical issues, as well as a discussion of promising future directions are also presented.Comment: 53 pages, 17 figure

    Selected Topics in Bayesian Image/Video Processing

    Get PDF
    In this dissertation, three problems in image deblurring, inpainting and virtual content insertion are solved in a Bayesian framework.;Camera shake, motion or defocus during exposure leads to image blur. Single image deblurring has achieved remarkable results by solving a MAP problem, but there is no perfect solution due to inaccurate image prior and estimator. In the first part, a new non-blind deconvolution algorithm is proposed. The image prior is represented by a Gaussian Scale Mixture(GSM) model, which is estimated from non-blurry images as training data. Our experimental results on a total twelve natural images have shown that more details are restored than previous deblurring algorithms.;In augmented reality, it is a challenging problem to insert virtual content in video streams by blending it with spatial and temporal information. A generic virtual content insertion (VCI) system is introduced in the second part. To the best of my knowledge, it is the first successful system to insert content on the building facades from street view video streams. Without knowing camera positions, the geometry model of a building facade is established by using a detection and tracking combined strategy. Moreover, motion stabilization, dynamic registration and color harmonization contribute to the excellent augmented performance in this automatic VCI system.;Coding efficiency is an important objective in video coding. In recent years, video coding standards have been developing by adding new tools. However, it costs numerous modifications in the complex coding systems. Therefore, it is desirable to consider alternative standard-compliant approaches without modifying the codec structures. In the third part, an exemplar-based data pruning video compression scheme for intra frame is introduced. Data pruning is used as a pre-processing tool to remove part of video data before they are encoded. At the decoder, missing data is reconstructed by a sparse linear combination of similar patches. The novelty is to create a patch library to exploit similarity of patches. The scheme achieves an average 4% bit rate reduction on some high definition videos

    Bayesian Optimization for Image Segmentation, Texture Flow Estimation and Image Deblurring

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore