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Abstract

Selected Topics in Bayesian Image/Video Processing

Qiang Hao

In this dissertation, three problems in image deblurring, inpainting and virtual content in-

sertion are solved in a Bayesian framework.

Camera shake, motion or defocus during exposure leads to image blur. Single image

deblurring has achieved remarkable results by solving a MAP problem, but there is no

perfect solution due to inaccurate image prior and estimator. In the first part, a new non-

blind deconvolution algorithm is proposed. The image prior is represented by a Gaussian

Scale Mixture(GSM) model, which is estimated from non-blurry images as training data.

Our experimental results on a total twelve natural images have shown that more details are

restored than previous deblurring algorithms.

In augmented reality, it is a challenging problem to insert virtual content in video streams

by blending it with spatial and temporal information. A generic virtual content inser-

tion(VCI) system is introduced in the second part. To the best of my knowledge, it is

the first successful system to insert content on the building facades from street view video

streams. Without knowing camera positions, the geometry model of a building facade is

established by using a detection and tracking combined strategy. Moreover, motion stabi-

lization, dynamic registration and color harmonization contribute to the excellent augmented

performance in this automatic VCI system.

Coding efficiency is an important objective in video coding. In recent years, video coding

standards have been developing by adding new tools. However, it costs numerous modi-

fications in the complex coding systems. Therefore, it is desirable to consider alternative

standard-compliant approaches without modifying the codec structures. In the third part,

an exemplar-based data pruning video compression scheme for intra frame is introduced.

Data pruning is used as a pre-processing tool to remove part of video data before they are

encoded. At the decoder, missing data is reconstructed by a sparse linear combination of

similar patches. The novelty is to create a patch library to exploit similarity of patches. The

scheme achieves an average 4% bit rate reduction on some high definition videos.
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Notation

We use the following notation and symbols throughout this thesis.

µ : Mean of Gaussian Distribution
σ2 : Variance of Gaussian distribution
(·)T : Transpose matrix
(·)−1 : Inverse matrix
‖ · ‖p : p norm operator
• : Inner product
| · | : Absolution value
[a]×b : The line passing through the point a and b
~a : Vector a
〈·, ·〉 : Inner product
⊗ : Convolution operation
p(x|y) : Conditional probability of x given y
N(x|µ, σ2) : Gaussian distribution of x∏

: Multiple multiplication
∂ : Derivation
F : Fourier transform
F−1 : Inverse fourier transform

(·) : Conjugate operator
◦ : Array multiplication
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Chapter 1

Introduction

From Bayesian perspectives [3], the prior knowledge of image and video signals plays

an important role in solving problems in the image and video processing field. In this

dissertation, I will solve three problems such as image deblurring, inpainting and virtual

content insertion in a Bayesian framework.

Image deblurring is investigated as a long-standing problem in photography. During the

image acquisition process, a blurry image is obtained due to camera shake, motion blur

or defocus of lens. The task of image deblurring algorithms is to remove blur from blurry

images. In the proposed algorithm, a MAP problem is generated from the linear blur model

and natural image statistics. Then the optimization problem is solved by applying a data-

driven approach to estimate the image prior from unblurry images.

Augmented reality (AR) is getting closer to our lives as the cloud computing services

come true. The real world and the cyberspace are integrated by GPS and compass data

from mobile phones and tablet computers. The enhanced content is overloaded to the devices

and then users will better comprehend and enjoy the real scene when they are visiting a place

of interest, watching a sports broadcasting or working in an office.

In augmented reality, it is a challenging problem to insert virtual content in video streams

by blending it with spatial and temporal information. In chapter 3, an image or a movie

is inserted in the specific region of tennis video streams and street view video streams. A

novel detection and tracking combined approach is proposed to analyze and estimate the

camera parameters in each frame. The inserted positions are determined from a Bayesian
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perspective with the prior knowledge of standard tennis court model or the 3D geometry

model of buildings.

The quality of video streams is related to the video compression techniques. Analog

broadcast TV and VCR movies have been replaced by HDTV, DVD and Blu-ray. Fur-

thermore, the ultra-high definition video is emerging on the way. Therefore, video coding

standards have been developing rapidly to follow the trend of high resolution demands. Cod-

ing efficiency has been improved tremendously in the past decades from MPEG2, H.264/AVC

to the on-going HEVC by adopting new tools in the codec structures.

However, it costs numerous modifications in the complex coding systems. Therefore, it

is desirable to consider alternative standard-compliant approaches without modifying the

codec structures. In chapter 4, an exemplar-based data pruning video compression scheme

for intra frame is introduced. Data pruning is used as a pre-processing tool to remove part

of video data before they are encoded. At the decoder, missing data is reconstructed by

a sparse linear combination of similar patches. This process is regarded as an inpainting

problem, which is solved in a Bayesian framework with a sparseness image prior.

1.1 Prior Work

1.1.1 Image Deblurring

Single image deblurring has been extensively studied in the image processing and com-

puter vision field. A blurry image comes from the real image acquisition process due to the

camera shake, object motion or defocus of lens. One way to eliminate camera shake is using

a tripod or other specific devices such as hardware in [4, 5], but it’s inconvenient to carry

them around especially when smartphones and small cameras are favored these days. By

contrast, there is another way to remove blur by applying the image deblurring algorithms.

The task of image deblurring is to remove blur from the blurry image and recover the

sharp latent image. When blur kernel is spatial invariant, the deblurring problem is equiva-

lent to the deconvolution problem. It is divided into non-blind deconvolution when the blur

kernel is known and blind deconvolution when the blur kernel is unknown. In blind deconvo-
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lution, the estimation of blur kernel and latent image are often separated. Therefore, blind

deconvolution is converted to the non-blind deconvolution when blur kernel is estimated. In

this dissertation, I will discuss the non-blind deconvolution problem.

Various non-blind deconvolution approaches for single images have been proposed in

the literature. Classical methods such as Wiener filtering [6], Kalman filtering [7] and

Richardson-Lucy method [8] were widely used, but they yielded severe ringing artifacts

because they didn’t take image statistics into account.

In order to suppress ringing effects and recover the image details, an optimization model

in a Bayesian framework has been proposed as the main approach to attack this problem.

There were several algorithms, such as the total variation (TV) regularization [9] and sparse

image prior method [5, 10]. They were different in terms of image priors and regularization

methods. The ringing artifacts were suppressed well when the observed image contained

only a small amount of noise which was approximated as a Gaussian distribution. However,

these methods had limited restoration performances because the Gaussian noise model was

failed when a large amount of noise existed.

Another non-blind deconvolution method by Yuan [11] was built on the bilateral Richardson-

Lucy (BRL) filter which could recover the edge details and handle a large blur. A progres-

sively solution was proposed to recover the image from coarse to fine. The ringing artifacts

were largely reduced from their experimental results.

Blind deconvolution is more difficult than non-blind deconvolution due to the uncertainty

of both kernel and latent image. The maximum a posteriori (MAP) approach is usually

established at the assumptions that the image and kernel prior obey some specific distribu-

tions. Several blind deconvolution algorithms had achieved a tremendous improvement of

deblurring quality in the past years.

The first camera shake removal algorithm is Fergus’s deblurring algorithm [12]. It adopted

a Gaussian Scale Mixture model as the image prior in a MAP framework to estimate the

blur kernel. It assumed that gradients of natural images typically obeyed a heavy-tailed

distribution. Then a variational Bayesian approach was proposed to achieve a good blur

kernel estimation. Unfortunately, the latent image was recovered by the RL method, so it

still had some space to improve. This approach also required users to manually select a small
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patch with rich edge structures, which was not a completely automatical method.

Shan et al. [13] proposed a unified probabilistic model to estimate both the blur kernel

and latent image. A noise model of spatial randomness and local smoothness constraints

were proposed. Remarkable results were obtained when the kernel was small but the ringing

effects will showed up again for a large blur kernel. Furthermore, the image prior didn’t

represent the actual statistics of natural images. Our non-blind deconvolution algorithm is

partially based on this work.

In [14], Levin evaluated these two blind deconvolution algorithms and some derived

ones theoretically and experimentally. Fergus’s method achieved best deblurring results on

the test images. The conclusion that both image prior and optimization algorithm were

important shed some light for the future research.

How to describe the characteristics of natural images is a very important issue in deblur-

ring algorithms. Most algorithms assume a single prior for the whole image and it usually

works well. However, the heavy-tailed distribution of gradients sometimes doesn’t describe

the textures well. Cho in [15] proposed a content-aware image prior to better deal with

different structures.

The blur kernel is often regarded as spatial invariant to make the deblurring easier to

solve, but removing the partial blur is more common in practice. Levin in [16] used a sparse

image prior to remove motion blur. Dai in [17, 18] proposed a novel recovery technique to

simultaneously recover both foreground and background layers with the help of the matting

technique and user assistance.

In all the above deconvolution algorithms, the generation of blurry image is usually

regarded as a linear blur model. The assumption may not hold in practice due to various

types of outliers including pixel saturation and non-Gaussian noise in [19, 20]. Cho et al.

[20] proposed a novel nonlinear blur model that explicitly taken these outliers into account

and it efficiently reduced the visual artifacts caused by outliers.
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1.1.2 Augmented Reality

Augmented reality has been shown industrial potentials in recent years. It is related to a

more general concept called mediated reality in which a view of reality is modified (possibly

even diminished rather than augmented) by computer vision techniques. Augmented reality

allows us to learn more about the buildings, people or other things we are looking at, or to

see alternative views of the world. For example, arrows will float over roads when we use

GPS to find the destination. Price of property for sale will display on it when we review the

real properties on smart phones. Links to a person’s Twitter or Facebook account will float

above people’s head when we google people.

Virtual ads insertion or more generally virtual content insertion is an application of

augmented reality. The basic concept consists of identifying specific places in the real scene,

tracking them and augmenting the scene with virtual content. Specific region detection

relies on scene analysis and understanding. The challenging issues are how to less intrusively

insert the contextually relevant content (what) at the right place (where) and the right time

(when) with the attractive representation (how) in videos.

Some researchers attacked these issues of virtual content insertion in the past years. For

example, H.Liu proposed a general VCI system in [21] which performed attention analysis

to detect the higher attentive shot as the insertion time and lower attention region as the

insertion place. Unfortunately, the structure information of each frame was not utilized

to find the meaningful object for content augmentation. Moreover, their insertion is only

occurred in images and it had inevitaly annoying warp noises. In [22], an approach to insert

virtual ads on the billboard of a video was proposed. They tried to automatically find and

segment the planar surfaces in the scene as the insertion places. It had a poor performance

because even the state-of-art segmentation techniques couldn’t prove good performance in

planar surface recognition.

Inserting an image in sports videos has been studied for its large commercial profits. The

general way to add virtual content in a live video is manually inserting it by professional

editors. One example is using the inserted lines or images to denote the starting positions in

the football broadcastings. However, it is very labor-intensive and inefficient for broadcasting
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real-time sports videos in this way. Compared to the general system [21, 22], automatic

content insertion in sports videos looks easier because of the known domain knowledge. For

example, Wan et al. in [23] selected the region above the goalmouth bar or the soccer

central ellipse for placing virtual ads. It only worked for still images and the detection was

not reliable. Chang et al. in [24] applied the tennis court model fitting and tracking to

dynamically insert ads, in which visual acuity was analyzed and color harmonization was

performed to reduce disturbance of virtual ads to viewers.

Similar to insertions in sports videos, inserting an image into street view videos also

shows potential values especially with the cloud computing development. However, it is

more challenging to implement it in street scenes due to difficulties of detecting the building

facades. Especially, building or street recognition in [25] provides a clue for relevant content

selection. If we know the (registered) user’s information who is watching or capturing (via

a mobile device) the video, targeted ads is enabled to be much more appealing. Alvarez

et al. in [26] proposed an interactive system that allowed inserting a virtual picture in the

architecture or extracting a poster from a certain building facade. This tool needed a few user

interactions such as selecting two groups of parallel lines for vanishing points identification

and camera calibration. It didn’t address how to insert new elements in videos, which is

obviously more difficult.

Extracting regions in a 2D image that corresponded to a very rich class of regular patterns

on a planar surface in 3D world is an interesting topic in computer vision. One work to

address this problem is Zhang’s work in [27]. The basic idea of their approach is to view

each image as a matrix and seek a transformation that gives rise to a low-rank matrix

subject to sparse errors. By solving a `0 norm regularization problem, the homography

matrix is estimated without estimating the vanishing points which may cause many outliers.

More specifically, the rectangular structure detection on the building facade is investigated

in [28, 29]. The corner and dominant direction verification are proposed by Zhang in [28],

which achieves a robust and plausible result. The rectangular verification in my proposed

VCI system adopts similar approaches to delete invalid rectangulars.
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1.1.3 Video Compression

G.Sullivan in [30] introduced the recent developments in video coding standardization

organized by a new Joint Collaborative Team on Video Voding (JCT-VC ) formed by ITU-T

VCEG and ISO/IEC MPEG. The on-going High Efficiency Video Coding (HEVC ) aims to

reduce the bit rate by half with equal subjective quality compared to the AVC high profile.

HEVC is targeted at the next-generation HDTV display and content capture systems which

feature progressive scanned frame rates and display resolutions from QVGA(320×240) at

the low end up to 2560×1600 cropped from 4K×2K Ultra HDTV at the high end.

HEVC has released the HEVC Test Model (HM ) software [31] as the basic framework

and expect to complete the first version in 2012 or 2013. There are several new features

in current HM5.0 version. One of the most beneficial elements for higher compression

performance comes from the introduction of larger block structures with flexible mechanisms

of sub-partitioning. Instead of macroblock structure in previous video coding standards,

coding units (CUs) which define a sub-partitioning of a picture into rectangular regions

with variable sizes are adopted. CUs contain several prediction units (PUs) and transform

units (TUs). Either the intra-picture or inter-picture prediction is selected at the level of

PU. An integer spatial transform is adopted with a selectable block size ranging from 4×4 to

64×64 for inter modes. A new mode-dependent directional transform (MDDT ) with block

sizes 4×4 and 8×8, and a rotational transform for block sizes larger than 8×8 are adopted

for intra modes at the level of TU. In addition, two context-adaptive entropy coding schemes

for low-complexity and high-complexity cases are used to accommodate different complexity

requirements.

Currently HEVC achieved at least 40% bit rate reduction with equal subjective quality

as reported in [30] and the coding efficiency will be further improved in the near future.

Adding new and feasible tools in video coding structures is one way to achieve the goal of bit

rate reduction, but it costs numerous modifications in the complex coding system. There-

fore, it is desirable to use the processing techniques while maintaining the codec structures

unchangeable.

There have been some prior efforts in using pruning and recovering tools to achieve such
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goal. For example, a texture replacement based method was used to remove texture regions

in a movie before sending it to the encoder, and re-synthesize the texture regions after de-

coding the bitstream in [32, 33]. Compression efficiency was enhanced because only synthesis

parameters were sent to the decoder, which were smaller than the regular transformation

coefficients of those regions. However, the texture synthesis was too weak to obtain good

reconstruction results. In [34, 35, 36], a texture synthesis and edge-based inpainting scheme

was proposed to remove some regions at the encoder side. The removed content was recov-

ered at the decoder with the help of region masks. The idea that separating the edges from

textures was a good attempt to combine high-level and low-level vision problems together,

but the representation of edges was too tricky to obtain gains.

Liu in [37] proposed a patch-based inpainting image compression scheme. Some patches

were removed at encoder and recovered at decoder. The differences of similar patches were

sent to the decoder too. It achieved a better performance than JPEG. However, encoder and

decoder syntax were modified so as to code the non-removed regions correctly. Therefore,

it was not an exact out-of-loop approach and difficult to be implemented in practice. In

[38, 39], a line removal based method was proposed to rescale a video to a smaller size

by selectively removing some horizontal and vertical lines in a least-square minimization

framework. It was an out-of-loop approach, and did not require modifying codec structures.

However, completely removing certain lines may damage the natural image characteristics

and it failed to achieve compression gain according to their experimental results.

All the above schemes only had limited sources to recover the missing data and hence

constrained coding efficiency improvement. Technicolor conducted some research on data

pruning for video compression. For example, in [40], Zhang proposed a data pruning scheme

using sampling-based super-resolution techniques. The full resolution frame was sampled

into several smaller-sized frames, and hence the resolution was reduced. At the decoder, the

high-resolution frame was re-synthesized from downsampled frames with the help of metadata

received from the encoder side. In [41], an exemplar-based video compression scheme with

super-resolution method was proposed. A representative patch library was trained from the

original video. Afterwards, the video was downsized to a smaller size. The downsized video

and the patch library were both sent to the decoder. The full resolution video was derived
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from the downsized video by exemplar-based super-resolution [42] using the patch library.

However, there was little gain from experiments, because a substantial redundancy existed

in the patch library and downsized frames.

1.2 Contributions of This Dissertation

In this dissertation, three work will be introduced on non-blind deconvolution, augmented

reality and video compression from a Bayesian perspective. A non-blind deconvolution algo-

rithm is proposed to remove blur from a blurry image by solving a MAP problem. A generic

virtual content insertion system is proposed to insert an image or a movie on a specific region

of sports and street view video streams. The inserted positions are estimated through line

detection and vanishing points extraction in a Bayesian framework. An exemplar-based data

pruning video compression scheme for intra frame is proposed to improve the video coding

efficiency without modifying the codec structures. In pruned data recovery process, a `1

norm regularization problem is established to reconstruct the missing data.

The contributions of this dissertation are applying the Bayesian perspective to solve some

problems in image and video processing.

• A data-driven non-blind deconvolution algorithm is proposed. In the Bayesian frame-

work, the image prior is an important part. It is represented by the Gaussian Scale

Mixture (GSM ) model and learned from related unblurry images in the proposed al-

gorithm. The GSM model represents the natural image statistics well, and therefore

more image details are recovered.

• Inserting virtual content in sports video streams is quite mature. However, the insertion

was usually controlled by professional editors and only lasted for several frames. More

importantly, cameras were setup by themselves and then camera calibration was not

a problem. By contrast, in my VCI system, virtual content is inserted in the video

streams from the Internet or digital camcorders. The difficulty is that camera positions

are totally unknown. Therefore, camera calibration is automatically estimated frame

by frame with a detection and tracking combined approach, and virtual content is
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analyzed and inserted in feasible regions with a standard court prior in a Bayesian

framework.

• Compared to sports videos, virtual content insertion in street view videos is much

more challenging, because there is no standard model of building facades. I attack

the problem to estimate the inserted rectangular in a Bayesian framework with the 3D

geometry model of building facades through vanishing points extraction. Moreover,

motion stabilization is applied to remove the jittering effects. To the best of my

knowledge, this is the first successful system to automatically insert an image or a

movie in street view video streams.

• Adding new tools in video coding standards is a normal way to improve the coding

efficiency, but it’s very complex to modify the codec structures. Therefore, I try to

use the pre- and post- processing techniques to achieve such goal without modifying

codec structures. In the proposed exemplar-based data pruning (EDP) scheme for

intra frame, some video data is removed and replaced with a constant value before

encoding. A patch library is created from original video data and it helps to determine

the pruning decision. Assistant metadata containing the pruning information is sent to

the decoder as well. At the decoder, the pruned data is reconstructed by a sparse linear

combination of similar patches from the established patch library with non-pruned

decoded video data. It benefits from the sparseness prior to reconstruct textures.

1.3 Roadmap

In chapter 2, a data-driven non-blind deconvolution algorithm is introduced in a Bayesian

framework. How to represent the image prior from related unblurry images is discussed in

details. The first-order derivative of natural images obeys a heavy-tailed distribution. The

GSM model fits it well and serves as the image prior. Therefore, an optimization problem is

derived from likelihood and image prior, and is solved in an iterative approach.

In chapter 3, a novel automatic virtual content insertion system for sports and street

view video streams is proposed. The system starts from detecting specific regions, such as
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the soccer goalmouth, tennis court or building facades at the first meaningful frame. Visual

tracking are then executed to calibrate camera in the following frames. Inserted positions

are estimated in a Bayesian framework with the standard court model and 3D geometry

model as the image prior. Then virtual content is warped and blended into detected regions.

Two typical VCI systems are discussed respectively for sports and street view video streams

to insert an image or a movie above the soccer goalmouth bar, on tennis court and on the

modern building facades.

In chapter 4, an EDP video compression scheme for intra frame is introduced. In this

scheme, data pruning is used as a pre-processing technology to remove part of video data

before they are encoded. A pruning strategy based on rate-distortion optimization is intro-

duced. The generation of metadata containing the pruning decision and position information

is also explained.

At the decoder, pruned data is recovered by inferring from the generated patch library

with non-pruned decoded data and the assisted metadata. Instead of copying the most

similar patch from the patch library, a novel post-processing method is proposed. The

patch to be filled is represented by a sparse linear combination of candidate patches under

some constraints. Linear combination coefficients are obtained through solving a `1 norm

regularization by a novel Bregman iteration algorithm [43].

Finally in chatper 5, I will make some conclusions on the data-driven non-blind decon-

volution algorithm, the automatic VCI system and the EDP video compression scheme for

intra frame. In addition, limitations and future work are discussed.

1.4 Notes

Chapter 3 is implemented during my internship at Huawei US Technology (Bridgewater,

NJ). Part of its content is from the patent [44] and the ICIP paper [45].

The pre-processing part in chapter 4 is implemented during my internship at Technicolor

Research Center (Princeton, NJ). Part of its content is from the patent [46].

Chapter 2 and the post-processing part of chapter 4 are implemented during my PhD

studies. Two manuscripts are prepared for submission.
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Chapter 2

Non-blind Deconvolution

Image deblurring has been extensively studied in the image processing and computer

vision field for decades. During image acquisition, camera shake, object motion or defocus

of lens all cause blurry images. The elimination of camera shake may be obtained by a

tripod or other specific devices such as hardware in [4], but it’s inconvenient to carry a

tripod especially when smartphones and small cameras are favored these days. Therefore,

it’s a usual way to apply image deblurring algorithms on blurry images. The task is to

remove blur from a blurry image and recover the sharp latent image. For example, the left

image in Figure 2.1 is a blurry image captured by a camera. The right image is the restored

result with the image deblurring algorithm in [13].

The generation of blurry images is often regarded as a linear blur model, that is, a blurry

image is obtained through a convolution operation between the latent image and blur ker-

nel. Therefore, the deblurring problem is equivalent to the deconvolution problem. Image

deconvolution is divided into non-blind deconvolution when the blur kernel is known and

blind deconvolution when the blur kernel is unknown. In a blind deconvolution algorithm,

the estimation of blur kernel and latent image are often separated. Therefore, blind deconvo-

lution is converted to the non-blind deconvolution when blur kernel is estimated, and hence

non-blind deconvolution serves as an important step in blind deconvolution algorithms. In

this chapter, only non-blind deconvolution is discussed.

Single image deconvolution has been investigated for several years. However, there is no

perfect solution due to inaccurate image prior and optimization algorithms. In this chapter,
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(a) Blurry image (b) Recovered image

Figure 2.1: Image deblurring is to remove blur from (a) to recover (b)

a data-driven non-blind deconvolution is proposed in a MAP model. The image prior is

represented by the GSM model learned from related unblurry images. For example, the

clear left view image will help to remove blur from the blurry right view image, since the

GSM model extracted from it represents the image statistics of the right view latent image.

Details of generating and solving the MAP problem are introduced in the following sections.

2.1 Natural Images Characteristics

In low level vision problems such as image denoising, deblurring, interpolation and in-

painting, the statistics of natural images are extensively studied as an important factor to

solve these problems. The distribution of a natural image processed by a band-pass filter

has a distinctive form across many different images, that is, the distribution has a sharp

peak at the zero and a heavy tail at large values. Figure 2.2 shows that the Log histogram

of the first order derivative of an image is a heavy-tailed distribution. It reflects the fact

that intensities of neighboring pixels are usually similar in smooth area while different in

structural area in natural images.

This consistent property makes it invaluable to the low level vision applications as a

statistical prior of images. Roth [47] proposed a Field of Experts (FOE ) framework in image

denoising and inpainting. Tappen [48, 49] used a sparse image prior in super-resolution and
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(a) Natural Image (b) Distribution of gradients

Figure 2.2: Distribution of gradients of an image. Right: The y-axis has a logarithmic scale to

show the heavy tails of the distribution. The x-axis is gradient values

demosaicing. Simoncelli [50] used this sparse prior as the basis of denoising algorithm and

also applied this statistical model to compression. Levin [51] used an exponential family

model of image statistics in image inpainting. Apostoloff [52] applied the image statistics in

video matting.

The statistical model of images has been used in many deblurring algorithms. Shan in

[13] used a simple two piece-wise function to estimate the distribution of gradients. Levin in

[16] used the statistics of derivative filters in blurry images to remove the motion blur from

different part of a blurry image. Fergus in [12] used the Gaussian Scale Mixture (GSM )

model as the image prior to estimate the blur kernel in a Bayesian framework. Cho in

[15] proposed a content-aware image prior to better deal with the texture area because the

heavy-tailed distribution is not a good model for textures.

2.1.1 Gaussian Scale Mixture Model

The heavy-tailed distribution of natural image gradients is obviously not a Gaussian dis-

tribution, but it is well fit by the GSM model in [53]. In addition, the student T distribution

used in the successful FOE model [47] is a variation of GSM. In my non-blind deconvolution

algorithm, the image prior is represented by the GSM model in the MAP generation. A
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Figure 2.3: Natural images for GSM model learning

GSM potential is expressed by a mixture of zero mean Gaussians:

Ψ(x) =
J∑
j=1

cj√
2πσj

exp(− x2

2σ2
j

) (2.1)

The GSM model is composed of multiplications of GSM potentials as follows:

Pr(x; {ωk}) =
1

Z({ωk})
∏
i,k

Ψ(ωTikx) (2.2)

where {ωk} is the filters passing through x. Z({ωk}) is a normalization term. Although this

term is intractable, it’s usually ignored in the MAP problem since it is a constant value in

posterior comparisons.

2.1.2 GSM Parameters Learning

Parameters of a GSM potential Θ = {cj, σj}Jj=1 are estimated from data set {x1, x2, · · · , xN}

by the Expectation-Maximization(EM ) algorithm.

EM algorithm is a general iterative algorithm for parameter estimation by maximum

likelihood when some of the random variables involved are not observed, which is considered

as missing or incomplete. EM algorithm is based on the intuitive idea that repeating replacing

missing data by estimated values until convergence will result parameter estimation. There

are two steps in EM algorithm. E-Step uses estimated parameters as true values to calculate

the expectation of a conditional probability and M-Step is to maximize the expectation from

E-Step. The details are found in [54].
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Each xn is generated from one of the J hidden states with the corresponding gaussian

probability. Let hn denotes the state of xn and hn ∈ {1, · · · , J}. We get the following

equation.

logP (X|Θ) = log

N∏
n=1

P (xn|Θ) =
N∑
n=1

log
J∑
j=1

cjN(xn|0, σ2
j ) (2.3)

Given values of H:

logP (X ,H|Θ) =
N∑
n=1

log(P (xn|hn)P (hn)) =
N∑
n=1

log(chnN(xn|0, σ2
hn)) (2.4)

• E-step

In the E-step, the conditional expectation EH|X ,Θ{logP (X ,H|Θ)} is determined.

Q(Θ|Θt) =
∑
h∈H

logP (X ,H|Θ)P (h|X ,Θt) (2.5)

=
J∑
j=1

N∑
n=1

log(cjN(xn|0, σ2
j ))P (j|xn,Θt)

=
J∑
j=1

N∑
n=1

log(cj)P (j|xn,Θt) +
J∑
j=1

N∑
n=1

log(N(xn|0, σ2
j ))P (j|xn,Θt)

where P (j|xn,Θt) is denoted by ωnj as:

ωnj = P (j|xn,Θt) (2.6)

=
P (xn|j,Θt)P (j|Θt)

P (xn|Θt)

=
P (xn|j,Θt)P (j|Θt)
J∑
k=1

P (xn|k,Θt)P (k|Θt)

=
ctjN(xn|0, σtj

2
)

J∑
k=1

ctkN(xn|0, σtk
2)

In conclusion, the E-step is given by:

Q(Θ|Θt) =
J∑
j=1

N∑
n=1

log(cj)ω
n
j +

J∑
j=1

N∑
n=1

log(N(xn|0, σ2
j ))ω

n
j (2.7)
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• M-step

In the M-step, the parameters cj and σ2
j are obtained respectively by maximizing this

Equation (2.7) with respect to Θ.

(1) M-step for cj:

arg max
{cj}

J∑
j=1

N∑
n=1

log(cj)ω
n
j , s.t.

J∑
j=1

cj = 1; (2.8)

By differentiating the above equation with a Lagrange multiplier λ, the weight cj is

obtained as:

∂

∂cj

[
J∑
j=1

N∑
n=1

log(cj)ω
n
j + λ(1−

J∑
j=1

cj)

]
= 0 (2.9)

cj =
1

λ

N∑
n=1

ωnj (2.10)

The solution is given by Equation (2.10). λ is obtained by normalizing
J∑
j=1

cj = 1, then

1
λ

N∑
n=1

1 = 1, λ = N . Therefore, weight cj is obtained by

cj =
1

N

N∑
n=1

ωnj (2.11)

(2) M-step for σ2
j :

arg min
{σ2

j }

N∑
n=1

(
1

2
logσ2

j +
x2
n

2σ2
j

)
ωnj (2.12)

Taking the derivative with respect to σ2
j and equating it to zero, the variances are

obtained as:

N∑
n=1

[
1

σ2
j

− 1

(σ2
j )

2
x2
n

]
ωnj = 0

σ2
j =

N∑
n=1

x2
nω

n
j

N∑
n=1

ωnj

(2.13)
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(a) Empirical distribution (b) Estimated GSM model

Figure 2.4: Illustrations of empirical distribution in red and estimated GSM model in green: GSM

model can well fit the empirical distribution

The first-order derivative of natural images in both horizontal and vertical directions

{∂xI, ∂yI} is treated as the input data {x}. Then the GSM model is obtained by EM

algorithm from the above steps. The empirical distribution from ten test images (shown

in Figure 2.3) is well fit by the GSM model. In Figure 2.4, the empirical distribution and

the estimated GSM model are denoted by the red and green curves respectively. From

experimental data, GSM is a good description of natural images statistics.

2.2 Non-blind Deconvolution Formulation

During natural image acquisition, camera shake, object moving or defocus of lens all

cause a degraded photograph. In the math modeling, the blurry image B is regarded as

coming from a convolution process by the latent image L and a point spread function (PSF )

f . Due to ubiquitous noises in camera systems, some noises are also involved in this process.

In conclusion, the blurry image generation is modeled as:

B = L⊗ f + n (2.14)

According to this blur model, the non-blind deconvolution is to recover L when B and

f are known; while the blind deconvolution is to estimate both L and f when only B is

known. In this chapter, the non-blind deconvolution is discussed under this blur model. The
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(a) Stereo images generation

(b) Left view image

(c) Right view image

Figure 2.5: Illustrations of stereo images generation that the left view image (b) is in focus while

the right view image (c) is blurry. Removing blur from a blurry image will benefite from the related

unblurry images

blur kernel f is assumed as a known shift-invariant value. However, it’s not true in practice

and f is varied with regions. How to deal with the shift variant blur kernel is a topic in the

future research.

2.3 Proposed Algorithm

Single image deconvolution has been extensively studied, but no perfect solution exists

due to inaccurate image prior and optimization algorithm. Model-driven and data-driven

approaches are two main methods for solving image restoration problems. In order to repre-

sent the image prior accurately, a data-driven non-blind deconvolution is proposed. A lot of

related images are available in real world, which makes the data-driven approach feasible in

removing blur from a blurry image. For example, stereo images are getting more attentions

now as there are many 3D applications emerging on smartphones and 3DTV. Two view
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images have some common scenes. Therefore, if the left view image is captured clear but the

right view image is blurry, the left view image will help in deblurring the right view image.

The above scenario is similar to the amblyopia in medicine science. Amblyopia or “lazy

eye” is a disorder of the visual system that one eye has a vision deficiency but the other

eye acts normally. Although it needs treatments, a person with amblyopia could still view

and understand the scenes without any problem, because human beings have an ability to

automatically correct the disordered eye with the help of the other eye. It aspired us to

adopt a data-driven approach to utilize the related image pairs.

Similar to most of image deblurring algorithms, a Maximum A Posterior (MAP) model

is applied to estimate the latent image L when the blur kernel f and the clear related image

IL are given. In Equation (2.15), the posterior p(L|B, f) is maximized, where p(B|L, f) rep-

resents the likelihood and p(L) is the image prior. Therefore, how to describe the likelihood

and image prior and how to solve this optimization problem are fundamental components of

the proposed algorithm. The details are introduced in the following sections.

p(L|B, f) ∝ p(B|L, f)p(L) (2.15)

2.3.1 Likelihood Representation

The likelihood p(B|L, f) is determined by the noise model, because n = B − L⊗ f and

hence p(B|L, f) = p(n). In the previous work such as Fergus [12], image noise n was usually

treated as the white Gaussian noise, but such model didn’t match the actual noises and

caused serious ringing effects. In Shan’s paper [13], higher-order derivatives were used to

represent the noise model, in order to capture the spatial randomness of noises. I use the

same noise model as Shan’s in my algorithm.

Image noise n is regarded as an independent and identically distributed (i.i.d) Gaussian

variable in each pixel. The white Gaussian model
∏
i

N(ni|0, ζ0), the first-order
∏
i

N(Oni|0, ζ1)

and second-order
∏
i

N(O2ni|0, ζ2) derivative of noises are combined to represent the spatial

random noises.

Derivatives are defined in the horizontal and vertical directions. For example, the first-

order derivative is expressed by ∂xn and ∂yn respectively. Since n is a Gaussian variable in
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(a) (b) (c)

(d) (e) (f)

Figure 2.6: Effects of likelihood (a) Ground truth image. (d) Blurry image. (b) Estimated latent

image using Gaussian noise model. (e) Estimated latent image using mixed-order Gaussian noise

model. (c) Noise from (b). (f) Noise from (e)

each pixel, ∂xn and ∂yn also follow the i.i.d Gaussian distribution.

∂xn(x, y) = n(x+ 1, y)− n(x, y) (2.16)

∂yn(x, y) = n(x, y + 1)− n(x, y)

The second-order derivative is represented by ∂xxn, ∂xyn and ∂yyn. They are also the i.i.d

Gaussian variables and the definitions are as follows:

∂xxn(x, y) = n(x+ 2, y)− 2n(x+ 1, y) + n(x, y) (2.17)

∂xyn(x, y) = n(x+ 2, y)− n(x+ 1, y)− n(x, y + 1) + n(x, y)

∂yyn(x, y) = n(x, y + 2)− 2n(x, y + 1) + n(x, y)

Assume the standard variance (SD) of n as ζ0, then the SD of ∂n and ∂2n are ζ1 =
√

2ζ0,

ζ2 =
√

2ζ1 =
√

22ζ0.
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In order to explicitly express the higher-order derivatives of noises, ∂∗ denotes the op-

erator of any partial derivative and κ(∂∗) denotes the order. For instance, ∂∗ = ∂xx and

κ(∂∗) = 2. If κ(∂∗) = q, the SD of gaussian variable ∂∗n is ζq =
√

2qζ0.

In conclusion, the noise model is represented by a combination of i.i.d Gaussian variables

∂∗n of zero-order, first-order and second-order derivative. The likelihood is denoted as:

p(B|L, f) =
∏
i

∏
∂∗∈Θ

N
(
∂∗ni|0, ζκ(∂∗)

)
(2.18)

=
∏
i

∏
∂∗∈Θ

N
(
∂∗Bi|∂∗(L⊗ f)i, ζκ(∂∗)

)
where Bi ∈ B denotes pixel intensity in the blurry image. Θ = {∂0, ∂x, ∂y, ∂xx, ∂xy, ∂yy} is

the set of all the derivative operators from zero-order to second-order. ∂0ni = ni denotes the

white Gaussian variable.

By comparing the estimated noise n = B−L⊗ f , the deconvolution algorithm with less

structure information exceeds the one with more structures. The ideal noises should have

spatial randomness. Figure (2.6) illustrates the effects of different likelihood. (a) and (d)

are the ground truth and blurry image. (b) is the recovered image using the Gaussian noise

model
∏
i

N(ni|0, ζ0). (e) is recovered image in higher-order noise model in my algorithm. As

we can see, the noise n = B − L ⊗ f in (f) has less structure than in (e). Therefore, the

likelihood in proposed algorithm is better than the simple white Gaussian noise model.

2.3.2 Image Prior Representation

The image prior p(L) describes the natural image statistics and determines the details of

the recovered latent image. In section (2.1), the heavy-tailed distribution of natural image

gradients is well fit by the GSM model. Therefore, the image prior is represented by the

GSM model in the proposed algorithm.

P (L) =
∏
i

J∑
j=1

cjN
(
∂Li|0, σ2

j

)
(2.19)

When only the blurry image exists, parameters of GSM model {cj, σ2
j} must be learned

from training images. However, such prior represents an average image statistic and it may

not describe a certain image accurately. By contrast, when related unblurry images exist,
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(a) (b)

Figure 2.7: Illustrations of different image priors. (a) Empirical distribution and fitted GSM

model; (b) Proposed image prior and Shan’s image prior

they share some common scenes and thus the image gradients follow a similar distribution.

Therefore, the image prior learned from the clear images is also a good description of this

blurry image. In my algorithm, the GSM model is extracted from the related unblurry images

and it serves as the image prior in the MAP model. In all, J = 4 mixtures of Gaussian

model are adopted in the GSM model and parameters are obtained by EM algorithm shown

in section (2.1.2).

In the MAP method, the log-prior log
∏
i

J∑
j=1

cjN
(
∂Li|0, σ2

j

)
is usually taken. However,

it’s very difficult to find the optimized values when using this term because
∑

is in the

logarithm. In Shan’s method, a simple two piece-wise function is modeled to fit the empirical

distribution, which is not accurate enough to describe the latent image statistic. In order to

attack the problem, a convex function Φ(x) is used to fit the GSM model in the proposed

algorithm.

J∑
j=1

cjN
(
∂Li|0, σ2

j

)
= eΦ(∂Li) (2.20)

Now the logarithm of prior is represented by
∑
i

Φ(∂Li), so that this MAP problem has

a closed-form solution. The image prior is represented by the following expression:

p(L) =
∏
i

eΦ(∂Li) (2.21)
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The convex function Φ(x) is a three piece-wise function and the parameters are calculated

from the corresponding GSM model.

Φ(x) =


−k1|x| − c1 |x| ≤ l1

−k2|x| − c2 l1 < |x| ≤ l2

−(ax2 + b) |x| > l2

(2.22)

For example, the GSM model and empirical distribution from ten natural images are

illustrated in Figure 2.7 (a). The x-axis is the gradient values ranging from [−200, 200] and

y-axis is the logarithm scale of the GSM model log Ψ(∂L) and probability density function

(pdf ) log p(∂L). The fitted convex function Φ(x) and the image prior used in Shan’s method

are also shown in (b). It clearly shows that Shan’s image prior didn’t match the heavy-tailed

empirical distribution. On the other hand, the proposed Φ(x) fits the GSM model well and

represents the natural image statistics accurately.

2.4 Algorithm Description

We analyzed the likelihood and image prior in above sections. The next step is to solve the

MAP problem p(L|B, f). By taking the logarithm operation, it is transformed to an energy

minimization problem E(L) = − log(p(L|B, f)). An optimization problem is obtained by

substituting the likelihood and prior into above definitions.

E(L) ∝ (
∑
∂∗∈Θ

ωκ(∂∗)‖∂∗L⊗ f − ∂∗B‖2
2) + λ1‖Φ(∂xL) + Φ(∂yL)‖1 (2.23)

The parameters are defined as follows:

ωκ(∂∗) =
1

ζ2
κ(∂∗)τ

, λ1 =
1

τ
(2.24)

Since κ(∂∗) = q > 0, ωκ(∂∗) = 1/(ζ2
0 · τ · 2q). In my implementation, 1/(ζ2

0 · τ) = 50. λ1 is

defined by users and the default value is 0.01. It will be automatically updated during the

iterative process.

This MAP problem could be solved using gradient descent method, but it’s very slow

and sometimes doesn’t converge to the global minimum. Shan proposed a novel method
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which divided this problem into tractable sub-problems in their blind deconvolution algo-

rithm. I use a similar strategy to estimate the latent image L in my non-blind deconvolution

algorithm.

The energy minimization problem E(L) is a highly non-convex function including high-

dimension unknown variables. More importantly, it consists of several convolution opera-

tions, which makes it difficult to be solved directly. In order to separate the complex convo-

lutions from the other terms, a variable substitution scheme is adopted. A set of auxiliary

variables Ψ = (Ψx,Ψy) is added to take place of the first-order derivative ∂L = (∂xL, ∂yL).

At the same time, a new term Ψ ≈ ∂L is added to guarantee that the substitution doesn’t

change the minimum value of E(L). Therefore, this problem is equivalent to the following

one:

E(L) ∝ (
∑
∂∗∈Θ

ωκ(∂∗)‖∂∗L⊗ f − ∂∗B‖2
2) + λ1‖Φ(Ψx) + Φ(Ψy)‖1+

γ(‖Ψx − ∂xL‖2
2 + ‖Ψy − ∂yL‖2

2)
(2.25)

where γ is a weight whose value will be iteratively increased from 2 until it is very large when

{Ψx,Ψy} converges to their global minimum. Therefore, in the final iteration step, Ψ = ∂L,

which guarantees that an optimized L is the solution of E(L) minimization problem.

The non-blind deconvolution algorithm is executed in iterations. When λ1 is a certain

value, optimization is iterated between Ψ and L. Firstly, optimize {Ψx,Ψy} when L is

fixed. Secondly, optimize L when {Ψx,Ψy} are fixed. This process will end when the values

converge to the global minimum. It usually converges within 16 iterations. Then λ1 is

updated to a smaller value and such iteration process will execute again until L converging.

In all, this algorithm is a fast and efficient method since each iteration can be executed

efficiently by separating the convolution operations apart. Table(2.1) is descriptions of this

iterative optimization algorithm.

• Updating Ψ

Fix the values of L and ∂∗L, update Ψ. The energy minimization problem (2.25) is

converted as:

Et
Ψ = λ1‖Φ(Ψx) + Φ(Ψy)‖1 + γ‖Ψx − ∂xL‖2

2 + γ‖Ψy − ∂yL‖2
2 (2.26)
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Algorithm: Non-blind deconvolution of stereo images
Input: Blurry image B, a related clear image LL and blur kernel f
Learn the image prior from LL
Initialize L ⇐ B
Repeat optimizing L with updated λ1

Repeat optimizing L
Update Ψ by minimizing the energy defined in (2.26).
Calculate L in (2.28)

until ‖∆L‖2 < 1× 10−5 and ‖∆Ψ‖2 < 1× 10−5 or 16 iterations performed
Update λ1

until ‖∆L‖2 < 1× 10−5 or 36 iterations performed
Output: L

Table 2.1: Descriptions of the proposed algorithm

Decompose Ψ to all elements ψi,x and ψi,y, then Et
Ψ is sum of sub-energy terms.

Et
Ψ =

∑
i

(
Et
ψi,x

+ Et
ψi,y

)
(2.27)

Et
ψi,v

= λ1|Φ(ψi,v)|+ γ(ψi,v − ∂vLi)2

Each Et
ψi,v

, v ∈ {x, y} is a quadratic differential function in (2.28). Therefore, Ψ is

obtained by getting the closed-form solution for each pixel independently. For example,

when 0 < ψi,v < l1, the above equation becomes λ1|k1ψi,v + c1| + γ(ψi,v − ∂vLi)2, it

has a closed-form optimized solution ψi,v = γ × ∂vLi − λ1k1/(2γ). Similarly, the other

cases are also solved in an efficient way. In conclusion, this step is completed quickly

and result in a global minimum of {Ψx,Ψy}.

• Updating L

Once {Ψx,Ψy} are obtained, the energy minimization problem is represented as follows:

Et
L = (

∑
∂∗∈Θ

ωκ(∂∗)‖∂∗L⊗ f − ∂∗B‖2
2) + γ‖Ψx − ∂xL‖2

2 + γ‖Ψy − ∂yL‖2
2 (2.28)

There are several convolution operations in this equation, so it’s difficult to solve it

directly. It’s a natural way to convert it to Fourier domain because a convolution in

spatial domain will convert to a multiplication in Fourier domain. Moreover, according

to Plancherel’s theorem [55], sum of the square of a function equals the sum of the
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(a) Blurry image (b) 1st iteration (c) 6th iteration (d) 16th iteration

Figure 2.8: Illustrations of iterative optimization process. (a) blurry image (b)-(d) recovered latent

image in the 1st, 6th and 16th iteration. The details are recovered from coarse to fine during this

process.

square of its Fourier transform. Therefore, Et
L is converted to its Fourier expression:

Et
F(L) = (

∑
∂∗∈Θ

ωκ(∂∗)‖F(∂∗) ◦ F(L) ◦ F(f)−F(∂∗) ◦ F(B)‖2
2)+

γ‖F(Ψx)−F(L) ◦ F(∂x)‖2
2 + γ‖F(Ψy)−F(L) ◦ F(∂y)‖2

2

(2.29)

By minimizing Et
F(L), the optimized value F(L∗) is the Fourier transformation of L∗

to minimize Et
L.

L∗ = F−1

(
arg min
F(L)

Et
F(L)

)
(2.30)

F(L∗) is easily obtained by setting the first-order derivative of Et
F(L) to zero. The

closed-form solution is represented by:

L∗ = F−1(
F(f) · F(B) ·∆ + γF(∂x) · F(Ψx) + γF(∂y) · F(Ψy)

F(f) · F(f) ·∆ + γF(∂x) · F(∂x) + γF(∂y) · F(∂y)
) (2.31)

where ∆ =
∑
∂∗∈Θ

ωκ(∂∗)F(∂∗) · F(∂∗)

In order to iteratively update Ψ and L, γ is automatically increased to control the similarity

of Ψ and ∂L. If γ is a large value, the convergence will be quite slow. If γ is set to a small

value, the convergence doesn’t hold. In current implementation, the initial value is 2. The

value of λ1 is also updated and hence the details are recovered gradually. Figure 2.8 is an

example to show that blur is removed and latent image is recovered gradually during the

iterative process.

Last but not least, how to deal with the boundary area is also important to the restoration

quality. Because this algorithm needs operations in Fourier domain, it will cause ringing
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Image Image 1 Image 2 Image 3 Image 4 Image 5 Image 6
Blurry 0.621 0.727 0.546 0.301 0.493 0.382

RL 0.889 0.833 0.812 0.563 0.692 0.692
Shan 0.788 0.647 0.664 0.160 0.395 0.291

Proposed 0.921 0.887 0.882 0.720 0.742 0.740

Table 2.2: Objective comparisons of three algorithms in terms of SSIM (Part I)

effects in the boundary. The Matlab command “edgetaper” is used to avoid the ringing

effects in the boundary. It will smooth the boundary by calculating weights of neighboring

patches before the Fourier transformation.

2.5 Experiments

In the proposed non-blind deconvolution algorithm, the image prior is represented by the

GSM model, which is extracted from the related clear image. Then an energy minimization

problem is established and solved with an iterative approach. This iterative restoration

process will recover the latent image from coarse to fine until this optimization problem

converges. Although the iterative approach is similar as the one in Shan’s blind deconvolution

method, a different image prior and energy minimization problem are used in my algorithm.

2.5.1 Different Algorithms Comparisons

I test the proposed algorithm on twelve stereo images. The blurry image is generated

from ground truth right view image using four commonly used blur kernel respectively. The

Gaussian white noise is added with different variance such as σ = 0.01, 0.05, 0.1. The

conventional RL non-blind deconvolution method is tested with 20 iterations, which also

serves as the image restoration in Fergus’s blind deconvolution method. Moreover, the non-

blind deconvolution part from Shan’s blind deconvolution algorithm is also tested using their

released executable file. The results are obtained using the best parameters as I can. In my

algorithm, the initial λ1 is defined by users such as [0.01, 0.2] and all the other parameters

use the default values.

Both objective and subjective measurements are evaluated. Since the ground-truth im-
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Image Image 7 Image 8 Image 9 Image 10 Image 11 Image 12
Blurry 0.476 0.688 0.615 0.610 0.556 0.780

RL 0.851 0.911 0.805 0.881 0.752 0.903
Shan 0.627 0.822 0.532 0.700 0.517 0.823

Proposed 0.913 0.942 0.862 0.922 0.749 0.918

Table 2.3: Objective comparisons of three algorithms in terms of SSIM (Part II)

ages are available, errors between original and restored images are represented by MSE or

SSIM [56]. Table (2.2, 2.3) list the objective comparisons of three algorithms in term of

SSIM for 12 test images. The proposed result is the best of three for all the images except

the Image 11. However, the visual quality of my result is the best for all the test images even

for Image 11. As seen in Figure 2.19, the proposed result has the most pleasant restoration

quality especially for characters and ropes.

In Figure (2.9, 2.10, 2.11), the blurry image is generated from the same kernel (size

27 × 19) with variance 0.01, 0.05 and 0.1 respectively. Compared with RL method, the

proposed result is much better since ringing effects are largely suppressed and more details are

restored. Compared with Shan’s method, the proposed result still achieves better restoration

quality even though their method works very well. For example, the enlarged introduction

of the book in Figure 2.9 (g-i) clearly shows that the proposed result consists of more details

and less ringing effects. The characters on the egg box are recovered best in my algorithm

as well. The enlarged part is shown in Figure 2.10 (g-i). In Figure 2.11, my result has the

best restoration result among three methods, especially for the doodle on the wall. In Figure

(2.12, 2.13, 2.14), the blurry image is generated from the same kernel (size 27 × 27) with

variance 0.01, 0.01 and 0.05 respectively. My algorithm exceeds RL and Shan’s method when

removing blur from texture regions. As we see, the dots, cloth texture and wood grain are

recovered with more details in my algorithm.

In Figure (2.15, 2.16, 2.17), the blurry image is generated from the same kernel (size

25 × 25) with variance 0.01, 0.01 and 0.05 respectively. Although my result in Figure 2.15

has a little more ringing effects than Shan’s result, more details are recovered such as on

the statue and cone. The proposed algorithm is much better than the other two methods in

Figure 2.16 and 2.17.
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(a) Blurry image (b) Related clear image (c) Blur kernel

(d) RL result (e) Shan’s result (f) Proposed result

(g) Details in RL (h) Details in Shan (i) Details in proposed

Figure 2.9: Comparisons of non-blind deconvolution for Image 1 (a) Blurry image. (b) Related

clear image (c) Blur kernel. (d)-(f) Recovered images by RL, Shan’s and proposed algorithm. (g)-(i)

Enlarged details in the three methods respectively
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(a) Blurry image (b) Related clear image (c) Blur kernel

(d) RL result (e) Shan’s result (f) Proposed result

(g) Details in RL (h) Details in Shan’s (i) Details in proposed

Figure 2.10: Comparisons of non-blind deconvolution for Image 2 (a) Blurry image. (b) Related

clear image (c) Blur kernel. (d)-(f) Recovered images by RL, Shan’s and the proposed algorithm.

(g)-(i) Enlarged details in the three methods respectively

The proposed algorithm achieves a very good restoration quality on the above test images.

However, those blur kernels are rather small when compared to the image size. What about

the deblurring quality with serious blur? In Figure (2.18, 2.19, 2.20), the blurry image is

generated from the same kernel (size 99× 99) with variance 0.01, 0.01 and 0.05 respectively.

RL’s restoration is the worst with serious ringing effects. In Figure 2.18, details such as

keyboard in Shan’s method are a little better than ours, but some part such as multimeter

is recovered with saturated values and it looks like distorted in Shan’s result. In Figure 2.19,

Shan’s result is too smooth to lose details and RL’s method has serious ringing and ghost

effects. The proposed result is the best among three methods for these two images.
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(a) Blurry image (b) Related clear image (c) Blur kernel

(d) RL result (e) Shan’s result (f) Proposed result

Figure 2.11: Comparisons of non-blind deconvolution for Image 3

(a) Blurry image (b) Related clear image (c) Blur kernel

(d) RL result (e) Shan’s result (f) Proposed result

Figure 2.12: Comparisons of non-blind deconvolution for Image 4
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(a) Blurry image (b) Related clear image (c) Blur kernel

(d) RL result (e) Shan’s result (f) Proposed result

Figure 2.13: Comparisons of non-blind deconvolution for Image 5

(a) Blurry image (b) Related clear image (c) Blur kernel

(d) RL result (e) Shan’s result (f) Proposed result

Figure 2.14: Comparisons of non-blind deconvolution for Image 6
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(a) Blurry image (b) Related clear image (c) Blur kernel

(d) RL result (e) Shan’s result (f) Proposed result

Figure 2.15: Comparisons of non-blind deconvolution for Image 7

(a) Blurry image (b) Related clear image (c) Blur kernel

(d) RL result (e) Shan’s result (f) Proposed result

Figure 2.16: Comparisons of non-blind deconvolution for Image 8



Qiang Hao Chapter 2. Non-blind Deconvolution 35

(a) Blurry image (b) Related clear image (c) Blur kernel

(d) RL result (e) Shan’s result (f) Proposed result

Figure 2.17: Comparisons of non-blind deconvolution for Image 9

(a) Blurry image (b) Related clear image (c) Blur kernel

(d) RL result (e) Shan’s result (f) Proposed result

Figure 2.18: Comparisons of non-blind deconvolution for Image 10
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(a) Blurry image (b) Related clear image (c) Blur kernel

(d) RL result (e) Shan’s result (f) Proposed result

Figure 2.19: Comparisons of non-blind deconvolution for Image 11

(a) Blurry image (b) Related clear image (c) Blur kernel

(d) RL result (e) Shan’s result (f) Proposed result

Figure 2.20: Comparisons of non-blind deconvolution for Image 12
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2.5.2 Complexity Analysis

In the proposed algorithm, only λ1 is defined by users from [0.005, 0.02] and the default

value is 0.01. The other parameters are assigned default values. The maximum iteration

number is 16 when updating the Ψ in step 1. The overall iteration number of step 1 and step

2 are determined by the convergent speed of estimated latent image L. It usually doesn’t

exceed 30 times.

The proposed algorithm and RL method are implemented in Matlab 2011a Version.

Shan’s method is executed from their released exe file in C++ language. The results are

compared on Intel 2.2GHz duo CPU. For example, it took 130s and 96s to deblur the Image 1

(size463×370) in RL and proposed algorithm. Since Shan’s executed file is an optimized code

in C++, it’s fast and took 32s to deblur the same size image. However, by comparing the

actual operations of algorithms, the proposed algorithm is more efficient than Shan’s method.

The two algorithms adopt the similar likelihood representation and iterative approach, but

my minimization problem contains two terms while Shan’s contains three terms. Moreover,

a binary mask is needed and updated in every iteration in Shan’s method. Therefore, the

proposed algorithm is an efficient method and the computational time is acceptable.

2.6 Summary

In this chapter, a data-driven non-blind deconvolution algorithm is proposed. A MAP

problem is established to estimate the latent image. In this inverse problem, the likelihood

with mixed-order Gaussian noise model is used to describe the spatial randomness of noises.

In addition, the GSM model is used as an accurate image prior of the blurry image. The

GSM model is estimated from the related clear images. By separating the convolution oper-

ations with other terms, the energy minimization problem is solved in an efficient iterative

approach. More details are recovered in the proposed algorithm from experimental results.

Moreover, compared to Richardson-Lucy and Shan’s algorithm, ringing effects are suppressed

better in proposed algorithm. In conclusion, the proposed algorithm is an efficient non-blind

deconvolution method with high restoration quality.
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Chapter 3

Augmented Reality

Augmented reality (AR) is a new and promising application of video processing and

computer vision techniques [57, 58]. The overall revenue generated by AR on smartphones

is predicted to exceed $1.5 billion by 2015 in [59]. Some applications on innovative cameras

and compasses are beginning to prove that AR is coming into reality and changing the way

we view the world. For example, Google unveiled the “Project Glass” in April 2012, which

applies the AR technology to take all the functionality of a smartphone. The augmented

content will appear on a wearable device according to environment and demands.

There are many AR apps on the smartphones in recent years. For example, an AR app

for iPhone uses Apple GPS compass to tell you where you parked your car and also provides

an alert of due time. Wikipedia has an AR app which lets you view the wikipedia entries on

an object or landmark simply by pointing your phone at it. When you walked by a famous

building and was interested in the history of the building, you could point your phone at it

and then found out the answer promptly without an Internet connection.

AR blends the virtual information with the real scene and hence improves the visual

experiences of consumers. In this chapter, a generic virtual content insertion (VCI ) system

is introduced as an example of AR. It will analyze and insert an image or a movie on specific

regions of broadcast sports or street view video streams. The challenging issues of VCI are

how to less intrusively insert the contextually relevant content (what) at the right place

(where) and the right time (when) with the attractive representation (how) in videos. In the

proposed VCI system for sport and street view videos, (what) problem is not addressed. An
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Figure 3.1: VCI examples in football broadcasting

image or a movie is randomly chosen and inserted as the appropriate virtual content.

3.1 Challenges of Virtual Content Insertion

Implementing the virtual content insertion in video streams is not an easy task in terms

of the following aspects:

• Although inserting virtual content in sport videos is quite mature and already applied

in soccer and football broadcasting, insertion in the compressed video streams from

the Internet or digital camcorders is rather difficult. For example, there are usually

inserted lines or images to denote the starting positions in the football broadcastings

which are shown in Figure 3.1. In this case, the insertion usually lasts for several frames

and involves user interactions. Moreover, the cameras are setup by the broadcasting

companies and then the camera calibration is not a problem. By contrast, video streams

are from the Internet or camcorders in the proposed system. Therefore, we don’t know

anything about the camera positions and have to estimate the camera parameters.

• Inserting virtual content in street view videos is more challenging than in sport videos.

In sport videos, the standard court model is served as the image prior to estimate the

inserted positions. By contrast, in street view videos, there is no such prior knowledge

of buildings. In addition, detecting the building facade is also a difficult task. There

was an interactive system that allowed inserting a virtual picture in the architecture
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or extracting a poster from a certain building facade. This tool required a few user

interactions such as selecting two groups of parallel lines for vanishing points identifi-

cation and camera calibration. On the contrary, the proposed system doesn’t involve

user interactions and it will automatically analyze and implement the insertion on the

building facades.

• Insertion a virtual content on a still image is not that difficult, but it’s more challenging

to do it in a video stream because video contains both spatial and temporal information.

Therefore, it not only needs to calibrate the camera for one frame, but also needs to

track the motions of camera in a video sequence. Then the inserted image seems to be

pasted as it’s real and should move with the camera.

• There are several other factors affecting the performance of this system. For instance,

the inserted image should not be pasted on the players. At the same time, it should

not be inserted in such frames which are the close-up of players and audiences or even

advertisements. How to reduce the warping noise when converting the processed result

to the current view also affects this system. Jittering effects caused by the estimation

errors should be reduced as much as possible.

In this chapter, I propose a generic VCI system that satisfies all the requirements. A novel

detection and tracking strategy is proposed to process the insertion task with a high efficiency.

In a sport game (soccer, tennis, baseball, volleyball etc.), a playfield constrains the players

action region and also makes it easier to find a good place for virtual content insertion, so

playfield modeling is applied to extract the court area. The standard court model is used

as the image prior to detect the specific region as the right place, like soccer center circle

and goalmouth bar, tennis and volleyball court etc. In a street view video, the building

facade looks appropriate to post an image. The modern building shows structured visual

elements, like parallel straight lines with repeated window patterns. Therefore, it makes

sense to determine the orientation of the architecture by estimating vanishing points. More

importantly, the 3D geometry model derived from vanishing points extraction is served as

the image prior to estimate inserted positions. Then a valid rectangular is determined. If it
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also lasts for several frames, virtual content are inserted in these frames passing through a

Wiener filter to suppress jittering effects.

It is important to accurately align the virtual content with the real scene by registration.

The visual tracking method is either feature-based or region-based, extensively discussed in

the computer vision field. Sometimes GPS or information from other sensors (inertial for

the camera) is used together to make tracking much more robust. The failure in tracking

may cause jittering and drifting which cause bad viewing impression for reviewers. The

virtual-real blending should take into account the differences of contrast, color and resolution

between inserted image and current frame. Therefore, color harmonization is adopted to

make inserted content coordinated with the background.

3.2 Framework of VCI System

Figure 3.2 shows the generic diagram of the proposed VCI system in sports videos or in

street building videos. The task is finding an appropriate region for insertion, such as the

goalmouth bar in soccer videos and play court in tennis videos. It applies a detection and

tracking combined strategy. In the first frame or frame when specific region is not tracked,

VCI system tries to detect the specific regions. Inserted regions are estimated in a Bayesian

framework. Different targets are detected in sports and street view video streams, because

different image priors are used in these two scenes. For example, in sports videos, lines

composing the tennis court are detected. Then the standard tennis court is served as the

image prior. In street view videos, a 3D geometry model of building facade is established

through vanishing points estimation and is used as the image prior to estimate the inserted

region.

Once the estimated inserted region is verified through the model fitting at a certain frame,

camera calibration is processed to describe the homography transformation between the 3D

planar and front-view planar. In the following frames, object tracking is executed and new

camera parameters are obtained by model refining, such as the playfield model verification in

sports videos, or the corner and dominant direction verification in street view videos. In order

to suppress jittering, motion stabilization is processed before the virtual content is blended
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Figure 3.2: Diagram of generic virtual content insertion system.

with the background. Then in the last step, the inserted content is warped into the specific

regions by the estimated homography transformation. In addition, color harmonization is

applied to reduce disturbance to the viewers.

3.3 Implementation for Sports Video Streams

In this section, a VCI system is proposed for sports scenes such as broadcast soccer

and tennis matches. Soccer goalmouth is typically assumed to be composed by two vertical

and two horizontal white lines. By contrast, tennis court is more complex. It is regarded

as a planar and composed by five horizontal and five vertical white lines. Although some

intersections of lines do not exist in the real world, I still use these virtual intersection points

to estimate the homography transformation. Figure 3.3 illustrates the corresponding lines

of the real scene and court models from [1]. There are two virtual intersection points in this

example.

In Figure 3.4, a detailed description of VCI system for sports videos is illustrated. Line

detection is an important part and it starts from identifying the white pixels because the

actual lines are usually white in the real world. However, sometimes white pixels also appear
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Figure 3.3: Corresponding lines between the real scene and court model in a tennis video (images

courtesy of Farin et al. in [1])

Figure 3.4: Detailed diagram of VCI system for sports videos



Qiang Hao Chapter 3.Augmented Reality 44

on other objects such as player uniforms or advertisements. In order to detect lines correctly,

only white pixels within the playfield are kept. Therefore, the first step of this system is to

extract the playfield through pre-learned Gaussian models. White pixels are then extracted

within the playfield and lines are obtained by Hough line transform.

The inserted positions are estimated in a Bayesian framework. The image prior is the

standard tennis court model. Among all the horizontal and vertical detected lines, the

combination which achieves the minimum error through homogaphy transform with image

prior is regarded as the best case to calibrate the camera in the model fitting process. A

homography transform which maps the world coordinate system to the image coordinate

system is determined by four point-correspondences of detected lines to the ones in the

court model [60]. The virtual content is inserted into the specific region by perspective

transformation. Now specific detection in the first frame is finished.

In the following frames, the plane with goalmouth or the court plane is tracked by optical

flow method in [61] or keypoint tracking KLT method by Shi [62]. The homography matrix

is updated from the tracking process. On one hand, the playfield and white pixels will be

detected more accurately based on the estimated homography matrix. On the other hand,

homography matrix is refined by fitting the lines with goalmouth or tennis court model

in a Bayesian framework. The virtual content is inserted with the new estimated camera

parameters.

In a broadcast sports video, there are always some frames with the players close-up or

shots with audiences or even advertisements. These frames should be ignored in order to

avoid inserting content in false positions. If a playfield is not detected or the detected lines

don’t fit the goalmouth or court model in a certain frame, this frame is not processed. In

order to let the insertion last for several frames, a buffer is set to store some continuous

frames and utilize Wiener filter to remove high frequency noise and reduce jitters, which will

be discussed in section 3.4.3.
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(a) soccer (b) tennis

Figure 3.5: Examples of playfield models learning

3.3.1 Playfield Extraction

The mean and variance in the Gaussian models of playfield RGB values are learned in

advance by manually choosing the playfield region frame by frame in the training videos.

Figure 3.5 is an example of RGB model learning in the playfield of a soccer and tennis video.

The manually chosen regions for learning purpose are denoted by red rectangles. There are

four typical tennis courts from four grand slams, namely, US open, French open, Australian

open and Wimbledon. In US open and Australian open, the colors of inner and outer of the

court are different, therefore in these two cases, there are two Gaussian models for each part.

Assume theR, G, B values of pixel (x, y) in the Image I(x, y) is L(x,y) = {R(x,y), G(x,y), B(x,y)},

The mean and variance of pixels in the selected region S are calculated as:

µ =
1

N

∑
(x,y)∈S

L(x,y), σ
2 =

1

N

∑
(x,y)∈S

(L(x,y) − µ)2, (3.1)

By comparing the RGB values of each pixel with the RGB Gaussian models, a playfield

mask is obtained. The following criteria classifies a pixel (x, y) with the RGB value L(x,y)

into 0 or 1. t is scaling factor in the range [1.0, 3.0]:

G(x,y) =

{
1 if |L(x,y) − µ| < tσ

0 if otherwise
(3.2)

A typical RGB model is listed in Table 3.1 for soccer videos and Table 3.2 for tennis

videos. Figure 3.6 shows the 1st frame and its extracted playfield in a soccer and tennis

video. The playfield remains the same but the non-playfield region is represented in black .
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R G B
Mean 123.67 142.366 89.916
Variance 47.285 26.110 39.976

Table 3.1: Gaussian models of RGB values for soccer videos

Court Type R Mean G Mean B Mean R Variance G Variance B Variance
French 170.73 97.82 70.21 36.85 34.99 29.31
US inner 76.62 98.71 123.11 16.25 16.25 14.33
US outer 125.61 141.82 93.01 14.25 16.80 15.77
Aus inner 88.26 151.41 172.30 24.08 12.44 14.52
Aus outer 60.82 149.02 209.57 29.35 25.85 28.87
wimbledon 126.68 134.09 115.72 43.56 26.25 45.14

Table 3.2: Gaussian models of RGB values for tennis videos

(a) original frame (b) extracted playfield

(c) original frame (d) extracted playfield

Figure 3.6: Playfield extraction in the 1st frame of a test soccer and tennis video
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Figure 3.7: Flowchart of white pixels extraction in the goalmouth scenario

3.3.2 Line Detection

Line detection determines the accuracy of VCI systems. It is executed as follows. Firstly,

white pixels are obtained within the playfield by setting a RGB threshold. For instance, the

threshold is (200, 200, 200) in soccer videos and (140, 140, 140) in tennis videos. Secondly,

these white pixels will be thinned to reduce the errors in hough line detection. Finally, lines

are obtained from Hough transform.

I propose a novel method to obtain the white pixels in the soccer scene, as shown in

Figure 3.7. Firstly, detect the vertical poles in the playfield. Then detect the horizontal

bar between vertical poles in the non-playfield region. Since horizontal lines should have

similar directions, parallel lines in the playfield are detected. They are also intersected with

two vertical poles. Finally two binary masks are obtained for goalmouth and playground.

Although virtual content is only inserted above the goalmouth bar in the demo, it is also

possible to insert the image in the ground since a binary image of the penalty area is also

obtained. Then the lines are detected and corresponded to the real penalty model. The

binary image which illustrates the white pixels extraction from a soccer and tennis video is

shown in Fig 3.8.
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(a) soccer goalmouth (b) tennis court

Figure 3.8: White pixels extraction in the 1st frame of a soccer and tennis video

Lines are detected by Hough transform in these binary images. Not only the desired

lines but also some other close-by lines are detected by applying the Hough line transform

directly. Therefore, initial results are refined by non-maximal suppression. Denote a line

with normal ~n = (nx, ny)
T (||~n|| = 1) and distance d to the origin. Then a points set L

containing all the white pixels (denoted as l(x, y) = 1) near this line is defined as follows:

L = {p = (x, y)T |l(x, y) = 1, |(nx, ny,−d) • p| < σr} (3.3)

By solving the LMS problem of Equation (3.4), a robust line parameters (nx, ny, d) are

obtained. 
x1 y1

x2 y2

...
...

xn yn


(
mx

my

)
=


1

1

1

1


d =

1√
m2
x +m2

y

, nx = mxd, ny = myd, (3.4)

All the candidate lines obtained through the above steps are classified into the horizontal

line set if |arctan(ny/nx)| < 25◦ and the vertical line set otherwise. In the front-view of

goalmouth or tennis court, a valid plane is composed by two horizontal and two vertical

lines. Therefore, any two lines from the horizontal and vertical line set will map to the

corresponding lines in the goalmouth or tennis court model. Figure 3.9 illustrates the initial

and refined line detection results from the 1st frame of a tennis video. Meanwhile, Figure
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(a) Initial lines (b) refined lines

Figure 3.9: Examples of initial and refined line detection on a tennis court

(a) goalmouth (b) penalty region

Figure 3.10: Final line detection in the goalmouth and penalty region

3.10 shows the final line detection on the goalmouth and also on the penalty region from the

1st frame of a test soccer video. The red lines stand for the horizontal lines and green lines

are for the vertical lines.

3.3.3 Camera Calibration

The task of VCI system is looking for an appropriate region for virtual content insertion.

It is estimated in a Bayesian framework with the standard court model as the image prior.

For a combination of detected lines, the goal is to minimize the errors between the transfor-

mations of lines and standard court model. This homography transformation is defined as

the mapping from a planar of the real world to the image and denoted as H. It is a eight-

parameter perspective transformation, mapping a position p
′

in the real coordinate system
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Figure 3.11: Intersections of two horizontal and two vertical lines

to image coordinate p. These positions are represented in the homogeneous coordinates as

(x, y, w)T , and the transformation p = Hp
′

is rewritten as Equation (3.5).
x

y

w

 =


h00 h01 h02

h10 h11 h12

h20 h21 h22



x
′

y
′

w
′

 (3.5)

Homogeneous coordinates are scaling invariant and then the degrees of freedom in H are

reduced from nine to eight. A four-corners correspondence between the current and front

view is enough to determine the eight parameters. Assume the two horizontal lines are hi,

hj and two vertical lines are vm, vn. The four intersections p1, p2, p3, p4 shown in Figure

3.11 are represented as the following:

p1 = hi × vm, p2 = hi × vn, p3 = hj × vm, p4 = hj × vn, (3.6)

Therefore, if the four intersection points from a line combination in the current view

could find their corresponding points in the front view of court model, a homography matrix

describing the transformation between two views is obtained. In order to suppress estimation

errors, the popular random sample consensus (RANSAC ) method in [63] is applied to achieve

a good estimation of this homography matrix.

3.3.4 Model Fitting

Model fitting is an important part to ensure the accuracy of camera calibration. In the

goalmouth scenario, only one case exists if two horizontal and two vertical lines are detected.
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Figure 3.12: Vertical lines ordering(images courtesy of Farin et al. in [1])

However, the tennis scenario is more complex. If CH horizontal lines and CV vertical lines

are detected, the number of possible line combinations will be CHCV (CH − 1)(CV − 1)/4.

Randomly choosing two lines from each line set, this line combination will determine a

homography transformation between this planar and the standard court. The calculation

of the homography matrix H is similar to the algorithm described in 3.3.3. Among all

the combinations, there exists a combination which fit the model court best. In order to

enumerate all the combinations efficiently, the set of vertical lines are ordered from left to

right and the set of horizontal lines are from top to bottom. They are sorted by comparing

the distances from a point in the middle of the left border or the top border to each line.

Figure 3.12 shows that the vertical lines are sorted by the distances of lines to the point in

the middle of the left border.

In the evaluation process, all the line segments from the standard court in the front view

are transformed to the current view with the guessed homography matrix H by p = Hp
′
.

Each model line p
′
1p
′
2 is transformed into the image coordinates p1p2. Pixels are sampled

at discrete positions along the line. Then the evaluation value is increased by one if the

pixel is a white pixel on the candidate court lines, or decreased by 0.5 if it is not. Pixels

outside the image are ignored. Eventually, each parameter set is rated by computing the

score in Equation (3.7). The homography matrix with the highest score is used as the camera
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(a) 5th frame (b) 6th frame

Figure 3.13: Visual tracking between consecutive frames in a soccer video

parameters for later insertion task.

Score =
∑
p1p2

∑
(x,y)


1 if l(x, y) = 1

−0.5 if l(x, y) = 0

0 if others

(3.7)

3.3.5 Visual Tracking

The fundamental part of VCI system is to estimate the inserted positions. In the first

frame, it is achieved by line detection and model fitting in a Bayesian framework. The

following frames could be processed in the same way, but it will be extremely time-consuming.

Since the temporal redundancy is common in a video sequence, object tracking will locate

the new positions of object if camera motion is small. Therefore, a detection and tracking

combined approach is adopted.

In the proposed VCI system, specific regions such as tennis court and building facades are

detected every frame until they are detected in a certain frame. Then in the following frames,

camera parameters are updated by visual tracking without detection, because it captures the

motion of camera in continuous several frames when motion is small. If the estimated camera

parameters through visual tracking can’t represent the actual homography transformation

between 2D image and 3D planar, detection process is invoked again. Therefore, each frame

is processed efficiently with the detection and tracking combined strategy.

Assuming the homography matrix in the frame where tennis court is detected as H,

the homography matrix Ht which describes the camera motion in consecutive frames is
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obtained by the optical flow method [61] or KLT tracking method [62]. Then the estimated

homography matrix of the following frame is Ĥ = HHt. Therefore, the model fitting process

will be much simpler and we only need to find the best matching score within a small amount

of line combinations because the estimated homography constraints possible lines positions.

In the proposed VCI system in sport videos, the optical flow method is applied. The

motion vectors of a pixel are calculated within its neighborhoods. Figure 3.13 illustrates the

points chosen from the 5th frame and their tracking results in the 6th frame. Points which

are in the same planar of goalmouth are chosen and denoted in red.

3.4 Implementation for Street View Video Streams

In this section, virtual content insertion in a street view video stream is described. The

modern building facade is usually regarded as a planar and hence suitable for inserting

purpose. However, due to the large variability of building orientations, it is more difficult to

implement the VCI system in street view videos than in sports videos. Generally speaking,

there is no such standard court model when inserting the virtual content on a building facade.

Nevertheless, a 3D geometry model through vanishing points detection is established as the

image prior in the Bayesian framework to estimate inserted positions on a building facade.

It still adopts the detection and tracking combined strategy.

In the detection process, firstly, vanishing points are extracted and the detected lines are

classified into groups corresponding to the different vanishing points. Secondly, similar to

the sports scene, inserted positions are estimated in a Bayesian framework. Among all the

detected lines, the best line combination should represent the mapping from the 3D planar

to the 2D image. Although there are usually more lines in a building scene than in the

tennis scenario, not every line combination is enumerated due to complexity. The task is to

find the largest rectangle on the facade which passes both corners and dominant directions

verifications. Then the virtual content is inserted within this rectangle.

In the tracking process, the KLT tracking method is applied to pursue the corner feature

points in consecutive frames. Then the homography matrix of next frame is estimated by

multiplying the tracking matrix and homography matrix in current frame. Moreover, in order
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Figure 3.14: Flowchart of VCI system in street view video streams

to avoid jitters, a buffer is created to store the latest several (thirty, for instance) frames and

a Wiener filter is applied to remove the high frequency noise in the motion trajectory. Color

harmonization is also applied to blend the inserted image with the background. Figure 3.14

illustrates the diagram of VCI system in street view videos. The vanishing point detection,

rectangular extraction, motion stabilization and color harmonization are described in details

in this section. The algorithms such as camera calibration, visual tracking and virtual content

insertion are found in section 3.3.

3.4.1 3D Geometry Model Establishment

In VCI system in street view videos, inserted positions are estimated in a Bayesian

framework. The image prior is a 3D geometry model extracted from the current view through

vanishing points detection, which describes the geometry properties of the building facades.

A non-iterative approach by Tardif [2] was applied with a slight modification to detect the

vanishing points. This method didn’t need to represent edges on the Gaussian sphere; instead
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Figure 3.15: Flowchart of vanishing points detection

it directly labeled the edges. Figure 3.15 shows the procedures of this method.

In the frame where a building facade is the purpose of detection, this algorithm is executed

as follows. It starts from obtaining the edges by the Canny detector. Then the non-maximal

suppression is followed and a map of one pixel thick edges is obtained. Moreover, junctions

are eliminated and connected components are linked using flood-fill. Afterwards, each com-

ponent is divided into straight lines by browsing the list of coordinates. It will split when

the standard deviation of a line is larger than a one pixel. The separated short segments

which lie on the same line are merged, in order to reduce errors and also reduce computation

complexity in later classification process. Figure 3.16 is an example of canny detection and

the refined edge map is denoted in red.

The vanishing point estimation algorithm is based on the J-Linkage which requires a

measurement of consistency between hypothesized vanishing points and edges that are geo-

metrically meaningful. It treats all vanishing points equally and does not need to distinguish



Qiang Hao Chapter 3.Augmented Reality 56

(a) Edges from Canny Detection

(b) Refined Edges

Figure 3.16: Canny and refined edge map of a building facade
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Entities Definition

εn Edge index n
e1
n,e2

n The two end points of εn
ēn Centroid of the end points
ln Implicit line passing by εn
Sm Subset of edges of ε
|Sm| Size of the set Sm

Table 3.3: Detonation of detected edges

Figure 3.17: Illustrations of a vanishing point and an edge (images courtesy of Tardif in [2])

the finite and infinite vanishing points.

In this part, the notations to present the straight lines are listed in Table 3.3. Besides, a

function denoted as D(v, εj) provides a measurement of the consistency between a vanishing

point v and an edge εj. The function is represented by Equation (3.8).

D(v, εj) = dist(e1
j ,
~l) (3.8)

where ~l = [ēj]×v defines a line passing through the vanishing point and the centroid of

the detected edge. The orthogonal distance from a point p to the line l (illustrated in Figure

3.17 from [2]) is defined as

dist(p, l) =
|lTp|√
l21 + l22

(3.9)

Assuming a set of N edges is obtained, and the consistency measurement is also defined

as Equation (3.8). The next step is to estimate the vanishing points, and classify each edge

such as assigning it to a certain vanishing point or marking as an outlier. The classification

relies on the J-Linkage algorithm. A brief overview of the J-Linkage algorithm in the context
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of vanishing point detection is given as follows. The initial parameters are the consensus

threshold φ and the number of vanishing point hypotheses M (φ = 2, M = 500 for example).

The first step is to randomly choose M minimal sample sets of two edges S1, S2, . . . , SM

and to compute a vanishing point hypothesis vm = V (Sm,~1) for each of them ( ~1 is a vector

of ones, i.e. the weights are equal). The second step is to construct the preference matrix P

which is a N ×M Boolean matrix. Each row corresponds to an edge εn and each column to

a hypothesis vm. The consensus set of each hypothesis is computed and copied to the mth

column of P . Each row of P is called the characteristic function of preference set of edge

εn. P (n,m) = 1 if vm and εn are consistent, that is, D(v, εn) ≤ φ. Otherwise P (n,m) = 0.

The J-Linkage algorithm is based on the assumption that edges corresponding to the same

vanishing point tend to have similar preference sets. It is true that any non-degenerate choice

of two edges corresponding to the same vanishing point should yield solutions with similar,

if not identical, consensus sets. The algorithm represents the edges by their preference sets

and clusters them if they have similar preference sets.

The preference set of a cluster of edges is defined as the intersection of preference sets of

its members. It uses the Jaccard distance between two clusters by Equation (3.10)

dj(A,B) =
|A
⋃
B| − |A

⋂
B|

|A
⋃
B|

(3.10)

where A and B are the preference sets of each of them. It equals 0 if the sets are identical

and 1 if they are disjoint. The algorithm proceeds by placing each edge in its own cluster.

At each iteration, the two clusters with minimal Jaccard distance are merged together. The

operation is repeated until the Jaccard distance among all the clusters equals to 1. Once the

clusters of edges are determined, vanishing points are calculated for each of them. Outlier

edges often appear in the very small clusters, typically of two edges. If no refinement is

performed, small clusters are defined as outliers and ignored.

Vanishing points are calculated for each cluster. In addition, they are refined using the

EM algorithm. An optimal problem is written as Equation (3.11).

v̂ = arg min
v

∑
sj∈S

w2
jdist

2([ēj]×v, e
1
j) (3.11)

which is solved by the Lvenberg-Marquardt minimization algorithm by reference [64]. The
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Figure 3.18: An example of vanishing point detection

function V (S,w) where w is a vector of weights which defines the generation of vanishing

points. A vanishing point is computed from a set of edges S by Equation (3.12).

V (S,m) =

{
l1 × l2 if S contains 2 edges

v̂ if others
(3.12)

The top three vanishing points are chosen by the number of associated edges in the

clusters. These three either finite or infinite vanishing points typically represent the 3D

geometry of this building. An example of detected finite vanishing points in an image is

illustrated in Figure 3.18. The estimated vanishing point is in the position (559, 357) and

all the corresponding edges are marked in green.

3.4.2 Rectangular Planar Extraction

The fundamental component of VCI system in street view videos is to detect a valid

rectangle on the building facade as the inserted region. The rectangular structure is regarded

as composed of two pairs of parallel lines on the same plane, because these two sets of parallel

lines correspond to the orthogonal vanishing points in the real world. This assumption

works for most man-made environments, like the building facades in the street view scenes.
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(a) Before line refinement

(b) After line refinement

Figure 3.19: Detected horizontal lines on a building facade
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Figure 3.20: An example of rectangle failing the corner verification

However, there are many possible combinations of two pairs of lines corresponding to the

orthogonal vanishing points. An improved approach based on the method of verifying the

rectangular structure hypothesis in [28] is applied in our VCI system to determine the biggest

rectangular region for insertion purpose.

Firstly, the separated segments lying on the same line are merged and lines which are

either close-by or too short are removed. Figure 3.19 is the detected horizontal lines denoted

in green before and after the line refinement process. It clearly illustrates that some close

lines are merged and short lines are removed.

Secondly, the valid rectangular planar must pass the model verification such as the corner

points and dominant orientations verification. Similar to the camera calibration in sports

scenes in section 3.3.3, two lines from the “horizontal” line set and two others from the

“vertical” line set are combined together to obtain the homography matrix between the

current rectangular planar and the front view unit model. The “horizontal” and “vertical”

denote the directions associated with two out of three orthogonal vanishing points in the

real world.

A rectangle is generated from this line combination, but not every one lies on a building

facade. Two observation truth are used for rectangular structure hypotheses verifications.

• Corner points verification: The four corner points of this rectangle must be actual
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(a) A rectangle in green (b) Front-view of the rectangu-

lar patch

Figure 3.21: An example of chosen rectangle failing the dominant directions verification

corners in the building facade. Using this criteria, the case that intersections of lines

are in the sky is deleted, as shown in Figure 3.20.

• Dominant directions verification: Since the rectangle is on a building facade, the front-

view of this rectangular patch must only contain the horizontal and vertical directions.

By recalling that any planar mapping between the 3D world planar and the 2D image

plane is represented by Equation (3.5), a normalized front-view of this rectangular

patch is obtained. Therefore, if the dominant directions of it are mainly horizontal

and vertical, this rectangle will pass the second verification. The dominant directions

are estimated by calculating the gradient histogram of canny edges. Figure 3.21 is

an example of rectangle failing the dominant directions verification. The front-view

rectangular patch not only contains horizontal and vertical edges, but also edges in

other directions.

Similar to the lines ordering in the tennis scenario, all the “vertical” lines are sorted

from left to right and the “horizontal lines” are sorted from top to bottom. In order to find

the biggest valid rectangle efficiently, lines are chosen from outer to inner and such process

is repeated until the composed rectangle passes both verifications. Figure 3.22 shows the
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Figure 3.22: Detected valid rectangle in a building scene

detected rectangular region (in blue) with horizontal edges (in pink) and vertical edges (in

green). It also coordinates with the visual observation.

3.4.3 Motion Stabilization

Dynamic registration is a challenging problem in VCI system. Although a closed-loop

detection and tracking strategy is proposed and camera parameters are estimated quite

accurately, there still exists the high frequency noise among the motion trajectory due to

errors of homography matrix estimation. Moreover, a tiny error in KLT tracking may cause

frequent switching between detection and tracking. An annoying jittering effect is observed

in the experiments. Therefore, motion stabilization is required to reduce the jittering effect.

In the proposed VCI system, a buffer is created to store the processed results of several

frames and the Wiener filter is applied to smooth the inserted positions similar to [65].

Assume the inserted positions in current frame are the linear combination of those in the

previous N and following N frames. Let pji denote the four corners of inserted region in the
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Figure 3.23: X values of the first corner using Wiener filter

ith frame (1 ≤ j ≤ 4):

p̂ji =
N∑

k=−N

αi+kp
j
i+k (3.13)

The 2N + 1 coefficients are estimated from training samples. For example, the number of

buffer is M , then the training samples are M − 2N . If the 2N + 1 neighbors of each sample

are packed into a 1× (2N + 1) row vector, a data matrix C with size (M − 2N)× (2N + 1)

and a sample vector ~P with size (M − 2N) × 1 are generated. The optimal coefficients ~α

from a Least Square formulation to minimize ||~P −C~α||2 have the closed-form solution given

by Equation (3.14).

~α = (CTC)−1CT ~P (3.14)

Then the smoothed positions are calculated by Equation (3.13). An estimated homogra-

phy matrix is calculated through camera calibration. Figure 3.23 shows the values of top-left

position in the first 100 frames of a test tennis video when the Wiener filter is used or not.
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(a) without color harmonization (b) with color harmonization

(c) without color harmonization (d) with color harmonization

Figure 3.24: Virtual content insertion with/without color harmonization

It demonstrates that the positions are indeed smoothed and also reflect the changes of data.

In the experiments, the size of buffer and filter tap is defined as M = 50, N = 9.

3.4.4 Virtual Content Insertion

Virtual content (an image or a movie) is inserted seamlessly with the best homography

matrix. In sports videos, the insertion region is determined by users. For example, we

can choose one eighth of the goalmouth height above the goalmouth bar as the inserted

region, or the region formed by two bottom horizontal and two left vertical lines in tennis

videos. In street view videos, it is the biggest valid rectangular region. For a position P (x, y)

in the inserted region, the corresponding position P
′
(x, y) in the model coordinate system

is determined by P
′

= H−1P . If the calculated coordinates are not integer, the bilinear
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interpolation method is used to obtain the intensity from neighboring pixels with integer

coordinates. Moreover, a simple segmentation is applied considering the player positions in

tennis videos in order not to occlude the players. A simple playfield mask obtained from

playfield extraction can help us to handle the pixels in the players.

Besides how to warp the virtual content in specific regions, how to less disturbs the

viewers is also very important. One way is to make the virtual content blending with

the background to reduce the sharp contrast of inserted content and background. A color

harmonization algorithm based on the color model of Chang [24] is introduced in the VCI

system.

Let I(x, y), IAd(x, y) and Î(x, y) are the original image value, virtual content value and

the estimated blending value at pixel (x, y). The playfield mask is IM(x, y), in which it is 1

if (x, y) in the playfield region Φ and 0 if not. Thus we have

IM(x, y) =

{
0 if (x, y) ∈ Φ

1 if others

Î(x, y) = (1− αIM(x, y))I(x, y) + αIM(x, y)IAd(x, y) (3.15)

Based on the contrast sensitivity function, parameter α (normalized opacity) is estimated

by Equation (3.16) [24]:

α = A exp(f0 · f ·
−θ̂e(p, pf )

θ0

)

θ̂e(p, pf ) = max(0, θe(p, pf )− θf )

θe(p, pf ) = arctan(
||p− pf ||

Dv

) (3.16)

where A is the amplitude tuner. f0 is the spatial frequency decay constant (in degrees), f is

the spatial frequency of the contrast sensitivity function (cycles per degree), θ̂e(p, pf ) is the

general eccentricity (in degrees), θe(p, pf ) is the eccentricity, p is the given point in an image,

pf is the fixation point (for example, the player in tennis videos), θ0 is the half resolution

eccentricity constant, θf is the full resolution eccentricity (in degrees) and Dv is the viewing

distance in pixels. We use the following values in our system: A = 0.8, f0 = 0.106, f = 5,

θf = 0.5, θ0 = 2.3, Dv is approximated as 2.6 times of the image width. The parameter α

controls the contrast of inserted content and background. Figure 3.24 illustrates the inserted
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(a) No.1 (b) No.100 (c) No.500

(d) No.1000 (e) No.1500 (f) No.2000

Figure 3.25: Inserting a movie in a US open video

performance with and without color harmonization. The result with color harmonization is

preferred and the blended insertion will reduce the disturbances of inserted content.

3.5 Experiments

3.5.1 VCI System in Sports Videos

I have downloaded several 640× 360 tennis videos from US open, Wimbledon and Aus-

tralia Open from YouTube for test purpose. Not only an image or a logo, but also a movie

is inserted in the proposed VCI system. Figure 3.25 is the insertion result of a cartoon at

frame # 1, 100, 500, 1000, 1500, 2000 in a US open video (2009 US Open Lena Vs Melanie).

Figure 3.26 is another example of inserting a logo in a Wimblendon video ( 2010 Wimbledon

Nadal Vs Soderling) at frame # 1, 100, 500. The frames with players close-up will not be

processed in this system.

3.5.2 VCI System in Street View Videos

I captured some HD (1440 × 1080) street view videos with a hand held camcorder for

test. In Figure 3.27, a poster of “mission impossible” is inserted at frame # 0, 49, 99, 149,
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(a) No.1 (b) No.100 (c) No.500

Figure 3.26: Inserting a logo in a Wimbledon video

199 and 249 in Video A and in Figure 3.28 a logo of Huawei company is inserted at frame

# 99, 199, 299, 599, 749 and 899 in Video B.

3.5.3 Complexity Analysis

The proposed VCI system is implemented in C++ programming language based on

OpenCV library. From the experimental results, the virtual to real registration and visual

acuity looks satisfying, although there is a slight handshaking in street view videos and the

tennis videos downloaded from Internet are not in a high definition format. The inserted

content looks like it is pasted on the tennis court or on the building facade.

This VCI system is not a real time system, because motion stabilization is used to remove

the jitters and some frames are stored in the buffer. However, each frame is processed

efficiently in this system. The most time consuming part is model fitting in sports videos

and rectangle detection in building videos. It usually takes an average one second to process

each frame on Intel 2.2GHz duo CPU. It will automatically analyze the frame content and

ignore those frames with players close-ups or advertisements. Each frame is determined

automatically to be processed in detection or tracking. The percentage of tracking relies on

the content of video sequences, and the difficulty of detecting lines and vanishing points. For

example, the percentage of frames in tracking is 82% and it took about 4min to process the

whole 300 frames in Video A. Therefore, the overall computational time is acceptable.
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(a) No.0 (b) No.49 (c) No.99

(d) No.149 (e) No.199 (f) N0.249

Figure 3.27: Inserting an image in a building scene

(a) No.99 (b) No.199 (c) No.299

(d) No.399 (e) No.499 (f) N0.569

Figure 3.28: Inserting a logo in a building scene
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3.6 Summary

In the proposed VCI system, where, when and how to insert the content so as not to

disturb the viewers are challenging issues. In this chapter, a novel and generic VCI system

for AR is introduced. To achieve a seamless virtual to real blending, a closed-loop detection

and tracking combined approach is proposed to implement insertion in an efficient way. In

the detection process, inserted positions are estimated in a Bayesian framework. In sports

videos, the image prior is represented by the standard court model; While in street view

videos, it is the 3D geometry model learned from the vanishing points extraction. Moreover,

motion stabilization, dynamic registration and color harmonization are used to reduce the

disturbance of inserted content.

The proposed VCI system in tennis video streams achieves a satisfying and robust per-

formance. It works on four typical tennis courts such as US open, Australia open, French

open and Wimbledon. In addition, it achieve a good insertion performance in some simple

building scenes. To the best of my knowledge, it is the first successful system to insert

content in street view video streams.
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Chapter 4

Video Compression

Coding efficiency is an important objective of video codec design. The comparison of two

coding systems is typically represented by the percentage savings in bit rate at equal subjec-

tive quality. Many efforts for improving coding efficiency have been made in the image/video

compression field in the past decades. As the development of compression techniques, the

service providers could send more television channels over the same bandwidth and users

could enjoy more higher quality videos from online broadcasting. In addition, as more images

and videos are transmitted and viewed on smartphones, it also motivates the improvement

of compression techniques.

Video coding standards have been developed from MPEG2, H.264/AVC to the on-going

HEVC, which achieves at least 40% bit rate deduction than H.264 high profile [66, 67]

now. The development benefits from adding new algorithms and powerful tools in the

codec structures. However, it costs numerous modifications in the complex coding system.

Therefore, there is an alternative approach to use processing techniques while maintaining

the encoder and decoder unchangeable.

In this chapter, an exemplar-based data pruning (EDP) video compression scheme for

intra frame is introduced, which falls into the latter category to improve coding efficiency.

It applies the pre- and post- processing techniques without modifying encoder and decoder.

Before encoding, some video data is removed and replaced with a constant value based on

an optimized pruning strategy. A patch library is established to describe the similarity of

patches and guarantee that missing data can be reconstructed from available similar patches.
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In addition, metadata which describes the pruning information is also transmitted to the

decoder.

At the decoder, missing data recovery is regarded as an inpainting problem, although

pruned blocks are replaced with constant values which are not completely missing and the

decoded metadata also provides a side information about the pruning. Inspired by the lat-

est exemplar-based approach in image inpainting, a post-processing method is proposed to

reconstruct the pruned blocks. The patch to be filled is represented by a sparse linear combi-

nation of candidate patches under some constraints such as the neighboring pixels of target

should be the known values. Linear combination coefficients are computed from a `1 norm

regularization problem by the novel Bregman iteration algorithm [43]. This recovery process

is a non-parametric approach with a sparseness image prior in the Bayesian framework.

4.1 EDP Video Compression Scheme

The idea of EDP video compression scheme comes from the consideration that redun-

dancy exists in an image both locally and globally, especially when a repeated pattern or

texture exists. According to the resource of training frame, the EDP video compression

scheme is divided into two scenarios, as illustrated in Figure 4.1.

One scenario shown as Figure 4.1(a) occurs when the encoder and decoder are able

to access to the same video database. This is a general video coding framework and has

industrial potentials. For example, as a large amount of video data available on the Internet

such as videos from YouTube, and the popular cloud computing coming into our lives as

shown in Figure 4.2, the same patch libraries are established from the same training frames

available at both encoder and decoder. Some video data is removed before encoding process.

However, they are reconstructed from the same patch library at the decoder. This “reference

patches” scheme breaks the limitations of hybrid block-based video coding since more shared

resources are available at the encoder and decoder. Therefore, it will be an interesting and

promising topic in the future, although it doesn’t satisfy the current video coding constraints.

The other scenario is that training frames are from the previous decoded frames of a video

sequence, as shown in Figure 4.1(b). The patch library is generated from the previous
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(a) EDP scheme when training frames from public resources

(b) EDP scheme when training frames from decoded frames

Figure 4.1: Diagrams of EDP video compression schemes when (a) training frames from the same

resources and (b) training frames from current video sequence

Figure 4.2: Illustration of cloud computing which shares resources and provides information to

computers and other devices as a utility over a network (image courtesy of Wikipedia)
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decoded frames. In the pre-processing stage, some blocks are removed and replaced with

constant values in the pruning part. The pruning decision is made based on whether the

pruned block could find similar patches in the patch library. The incomplete video sequence

is passed through the encoder and decoder. There are two components in the post-processing

stage: patch library creation and recovery. An exactly the same patch library is generated

to recover the missing video data in the recovery process. Then output the reconstructed

decoded video sequence. This scheme satisfies the current video coding constraints that

original video data is unknown at the decoder. The proposed EDP scheme belongs to this

scenario.

4.1.1 EDP Scheme for Intra Frame

In the proposed EDP video compression scheme, training frames for patch library gen-

eration are from the decoded frames. The first frame of a video sequence is usually encoded

as the Intra frame, which tries to reduce the spatial redundancy. The following frames are

often encoded as the Inter frame, which tries to reduce the temporal redundancy. Inter frame

often needs less bit rates than Intra frame at equal subjective quality.

In this chapter, EDP video compression scheme for Intra frame is discussed. If pruning

occurs in the Inter frame, metadata which tells the decoder pruning information should

contains more information such as which frame the best similar patch of a pruned block is

from. Moreover, the generated inter frames which have some missing data would damage

the temporal redundancy and cause bit burdens when they are encoded. Therefore, how to

apply the pruning technique to Inter frames needs further studies and experiments. This

chapter will only discuss the EDP scheme in Intra frame.

The pre- and post- processing tools are applied in the proposed EDP scheme. In the

pre-processing stage, in order to prune some video data in Intra frame, a patch library is

established from patches in the original frame before encoding. Although the similar patch

founded in the decoded frame by the assisted metadata is not the same patch in the original

frame, there is an assumption that two similar patches in the original frame are still similar for

their decoded patches. Then some blocks are removed and replaced with the average value of
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that block. Encode and decode this synthesized frame and also the metadata which contains

the pruning information. In the post-processing stage, pruned blocks are reconstructed by

inferring from the patch library with metadata. The sparseness of patches is utilized to

represent the pruned patch by a sparse linear combination of other similar patches. This

recovery process is an inpainting problem solved by a non-parametric approach in a Bayesian

framework. In all, the proposed EDP video compression scheme for Intra frame is described

as follows. Assume the pruned and non-pruned part are p and f in the first frame I. The

reconstructed image Î is composed of decoded f̂ and inpainted p̂. The assisted metadata is

θ. The overall coding performance is measured by RD (Rate-distortion) cost.

J = D(f, f̂) +D(p, p̂) + λ(Rf +Rp +Rθ) (4.1)

The smaller RD cost is, the better coding efficiency it achieves. However, it’s unfortunately

that this RD cost function can’t be used directly as a guide to determine whether a block

should be pruned or not, because it’s very difficult to estimate the afterwards encoding

performance and inpainting quality. Therefore, pruning before encoder and recovery after

decoder are processed separately. The proposed recovery process is better than the method

simply copying the best similar patch included in metadata, so separating the two part still

achieves a global minimum RD cost.

4.2 Pre-Processing Techniques Before Encoder

In this section, pre-processing techniques before the encoder are introduced in details.

At the encoder, a patch library is created from the original frame to describe the similarity

of patches. Then part of video data in the Intra frame is removed by a pruning strategy

and replaced with the average value of that block. Finally the synthesized picture which is

a mixture of pruned and unpruned blocks is encoded by any video encoder and transmitted

to decoder. In addition, the metadata including pruning information is also encoded and

transmitted to decoder in order to assist the recovery of missing data. Figure 4.3 illustrates

the whole process at the encoder. Patch library generation, pruning strategy, pruning process

and metadata transmission are presented in the following part.
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Figure 4.3: Illustration of pre-processing part at the encoder side

Figure 4.4: Illustration of patch library generation

4.2.1 Patch Library Generation

The novelty of this EDP scheme is to establish a patch library which describes the

similarity of small patches. The generation process is as follows. The first frame of a video

sequence is divided into overlapping blocks with a certain overlapping step. Then a large

amount of small patches are obtained. The patch library is a pool composed of these small

patches. During the pruning process, the best similar patch of each block will be located and

hence patch library has achieved its task by linking similar patches together. However, in

order to better organize small patches and find the best similar patch of each block efficiently,

a clustering process is necessary. Figure 4.4 shows the generation of patch library as the first

step of EDP scheme.

In clustering process, similar patches are grouped together. There are two fundamental

issues in any clustering algorithm: 1) What is the definition of similarity? 2) What is the

feature vector composed of? In order to exceed the clustering process, the downsized version

of patches is used. In my implementation, the size of patches in the original picture is
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Figure 4.5: Illustrations of signature vectors in a patch library

16×16 and hence the size of downsized patches is 4×4. Assume there are N 16×16 patches

{P1, P2, · · · , PN} and corresponding 4 × 4 patches are denoted as {p1, p2, · · · , pN}. The 16

pixel values in pi form the feature vector Xi = {x1, x2, · · · , x16}.

First of all, blocks with a small variance are ignored, because they are regarded as flat

regions and pruning these blocks usually will not achieve gain in terms of bit rate reduction.

Then a modified K-means clustering algorithm [40] is applied to classify the non-flat patches.

K-means algorithm is one of the simplest unsupervised learning algorithms to solve the

clustering problem. The details are found in [68]. In order to speed up the clustering

process, the overlapping patches are generated in different phases and K-means is executed

in each phase.

Assume the overlapping step is (bh, bw) in the vertical and horizontal direction, then

there are (16/bh)× (16/bw) phases. In each phase (i, j), (0 ≤ i < 16/bh, 0 ≤ j < 16/bw), an

image with the left-top corner at (1 + i× bh, 1 + j × bw) is obtained if the original left-top

position is (1, 1). The clustering is executed as follows. Firstly, clustering is executed in the

image with phase (0, 0). Non-overlapping blocks are divided and regarded as the input data

set of K-means algorithm. The blocks will be classified into K groups and the objective

function is minimized as:

J =
K∑
j=1

N∑
i=1

‖Xj
i − Cj‖2 (4.2)

where Cj is the centroid of group j. J is minimized when all the centroids are not changed.
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Algorithm: Clustering the overlapping blocks
Input: Image I
Initialize K centroids and downsample I
Repeat processing the image with phase (i, j)

If (i == 0 and j == 0 )
Cluster non-overlapping blocks into K groups with K-means algorithm

else
Repeat classifying non-overlapping blocks

Classify a block and update its centroid
Until all blocks are processed

Until all phases are processed
Output: K centroids and K clusters

Table 4.1: Descriptions of clustering algorithm

Secondly, clustering is executed in other phases with the new left-top corner at other

positions. For example, in phase (1, 1), the new position is (1 + bh, 1 + bw) with the the

step size (bh, bw). Every non-overlapping block in current image is inserted into the already

classified groups. It will belong to the group with the minimum distance to its centroid and

then the centroid is updated among all the items. This process is continually executed until

all the blocks are processed and the objective function goes to the minimum. The clustering

algorithm is listed in Table (4.1).

Fast K-means algorithm is utilized and hence the above clustering process is executed

in an efficient way. The patch library is composed of K groups represented by centroids.

Furthermore, each patch is represented by a signature vector. It consists of the average color

of the patch and the surrounding pixels of the patch, as shown in Figure 4.5. On one hand,

usage of signature vectors makes searching the best similar patch more efficiently. On the

other hand, it can make the metadata encoding process more efficiently, which is introduced

in section (4.2.4).

Once the patch library is established, the best similar patch of every non-overlapping

block is obtained through the searching process, as illustrated in Figure 4.6. First of all,

the block is compared with the centroids by calculating the Euclidean distance of feature

vectors in the downsized version. The top M matched clusters are selected. Currently, M is

determined empirically as 25 in my implementation. In principle, M should be determined
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Figure 4.6: Best similar patch searching process

by the error bound of the clusters. Secondly, the searching process is continued within the M

candidate clusters until the Euclidean distance between feature vectors of current block and

candidate patch comes to the minimum value. At last, a picture composing of best similar

patch of each non-overlapping block is obtained as an input of pruning strategy module.

4.2.2 Optimized Pruning Strategy

Pruning strategy makes a decision of pruning a block or not. It’s critical to this EDP video

compression scheme. There are several strategies, for example, compare the distortion of

original block and the best similar patch with a threshold. It may achieve some improvements

at large bit rate, but it usually have large distortion at low bit rate. Therefore, we propose

a decision strategy considering both distortion and bit rate to guarantee that there will not

be a loss within a large range of bit rate.

From rate distortion theory [67], the goal of an encoder is to optimize its overall fidelity,

that is, minimize the distortion D subject to a constraint Rc on the number of bits R. This

constrained problem is solved by using the Lagrangian optimization method. The Lagrangian

formulation is given by equation 4.3.

min J = D + λR (4.3)

The pruning decision algorithm is shown in Table (4.2). The first frame is divided into
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Algorithm: Pruning decision process
Input: Intra frame I and its patch-level best similar picture P
Initialize Pruning decision matrix H = 0
Repeat processing the block with the left-top corner at (i, j)

Calculate RD cost J1 when it’s not pruned (Case 1)
Calculate RD cost J2 when it’s pruned (Case 2)
If J1 < J2

H(i, j) = 0
else
H(i, j) = 1 and the best similar block is set to be unpruned

Until all blocks are processed
Output: H

Table 4.2: Descriptions of pruning decision algorithm

non-overlapping blocks with size 16 × 16. A progressive scanning order the same as the

encoding order in H.264/AVC is adopted. The decision process is repeated for each block

until all the blocks are processed. In every iteration, first of all, RD cost J1 for Case 1 is

calculated. Case 1 denotes that the current block is not pruned, which means the original

video data is kept intact. Secondly, RD cost J2 for Case 2 is computed. In Case 2, the

current block is pruned, which means the whole block is replaced by the average color of

the original values. Thirdly, two RD costs are compared and a decision is made. If J2 < J1,

prune this block and the best similar block is set to be unpruned if it has not been processed,

otherwise, keep the original values.

The RD cost estimation should imitate the encoder characteristics and then the pruning

strategy is able to make a correct decision so as to achieve a trade-off between distortion and

bit rate. The estimation of RD cost in each block is similar to the intra-mode decision in

H.264/AVC encoder. Distortion is estimated between the original and reconstructed video

data. Rate is the whole bits of residue and mode selection. Residue is obtained through the

prediction process. There are nine prediction directions in H.264/AVC intra mode, such as

vertical, horizontal, DC, diagonal-down-left, diagonal-down-right, vertical-right, horizontal-

down, vertical-left, and horizontal-up. Prediction directions are illustrated in Figure 4.8,

and number 0− 8 stand for the corresponding directions. DC direction is not shown and its

prediction is the average of neighboring pixels.
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(a) Case 1: non-pruned block

(b) Case 2: pruned block

Figure 4.7: Distortion estimation in pruning decision process for (a) Case 1 the block is not

pruned (b) Case 2 the block is pruned

Figure 4.8: Intra prediction direction in H.264/AVC
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Figure 4.7 shows the distortion estimation for Case 1 and Case 2. In Case 1, the input of

encoder is the original video data. Residue after prediction goes through the transformation

and quantization process, and then the reconstructed video data is obtained through the

reverse quantization and reverse transformation. Therefore, the distortion is calculated in

mean square error (MSE ) between the original video and the reconstructed one. For data

X and Y with size 16× 16, the definition of MSE is as follows:

MSE =
16∑
j=1

16∑
i=1

(Xij − Yij)2 (4.4)

While in Case 2, the input of encoder is a pruned block which has a constant value in the

flat region. The best match patch of this block is available through searching in the patch

library. Once Case 2 is chosen for a certain block, the best match patch will not be pruned.

Similar to Case 1, the reconstructed best match patch is estimated. Therefore, distortion

is calculated in MSE between the original video data and reconstructed best match patch,

as shown in Equation (4.4). However, the residue of flat block after prediction still goes

to transformation and quantization process. The encoded residue is one part of bitstream

together with other bits on the encoded mode and metadata which consists the pruning

information.

Rate is estimated in two ways. One simple way is to estimate the non-zero coefficients of

quantized residue and approximated mode bits. The other way is more complex by estimating

the bits in entropy coding the quantized residue. CAVLC or CABAC is used in the entropy

coding process. In current implementation, the simple way is used, but experiments show

that it’s a good estimation of actual RD cost. It should be mentioned that Case 2 not only

includes the bits of residue and mode, but also the side information about the position of

best match patch. Therefore, the rate in Case 2 includes the two parts.

RD cost is calculated after distortion and rate are estimated. Similar to the λ used in the

intra prediction mode of H.264/AVC, in current implementation the Lagrangian parameter

λ is also related to the quantization parameter QP, as shown in Equation (4.5).

λ = 0.68× 2(QP−12)/3 (4.5)
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Figure 4.9: A mixture of pruned and non-pruned blocks after pruning process

4.2.3 Pruning Process

In the pruning decision process, the output is a decision matrix H in which H(i, j) = 1

denotes that block at (i, j) is pruned. In the pruning process, the first frame is divided

into non-overlapping blocks with size 16 × 16. If H(i, j) = 1, the pixels in block at (i, j)

is removed and replaced with the average value of that block. If H(i, j) = 0, the block is

maintained. Figure 4.9 is an example of mixed picture after pruning process.

In Liu’s paper [37], the removed patch is skipped in JPEG encoding. This patch-based

inpainting scheme needs to modify codec structures, which violates the motivation of ap-

plying processing tools to improve coding efficiency. Moreover, it will cause the encoder

in a low efficiency since spatial correlation is damaged. By contrast, in the proposed EDP

scheme, the synthesized picture is a mixture of pruned and non-pruned video data and it is

able to go through encoder and decoder directly. Although this pruning approach affects the

spatial correlation of original picture as well, it doesn’t completely damage the intra mode

prediction. It achieves a trade-off between reduced bits and a bigger distortion in an overall

measurement.

4.2.4 Metadata Composition

How to recover the pruning blocks is also an important part in this scheme. Since the

goal is to estimate the missing data, image inpainting algorithms are just for this purpose.
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Flag Threshold block IDs Best match Patch IDs

Table 4.3: Metadata composition

If adopting a conventional inpainting method, it will usually fail when large part is pruned.

More importantly, since this EDP scheme is for compression purpose, some side information

is able to be transmitted to the decoder in order to assist the missing data recovery. Which

blocks are pruned? Where are the best match patches of pruned blocks in the decoded

frame? These information should be sent to the decoder.

Most importantly, the locations of pruned blocks are needed to tell the decoder which

blocks are pruned. One simple way is to send a block ID sequence, which indicates the

coordinate of each block in a frame. However, it’s not efficient, because the pruned blocks

are flat and contain no high-frequency components. This characteristic should be fully uti-

lized. Therefore, a novel way of representing pruned blocks ID is proposed. After encoding,

a threshold is determined to guarantee that the variance of all decoded pruned blocks is

under it. Sometimes there are some non-pruned blocks whose variances are also under this

threshold, which are regarded as false blocks. If the number of false blocks is smaller than the

number of pruned blocks, block IDs of false blocks are encoded in the metadata; Otherwise,

block IDs of pruned blocks are encoded.

Therefore, by calculating the variance of each block at the decoder, the blocks with

smaller variance than threshold are chosen. If false block IDs are sent, the pruned blocks

IDs can be the ones excluding the false IDs in the chosen blocks. If pruned block IDs are

sent, they are directly obtained. The threshold and a flag denoting that whether false or

pruned blocks are adopted are also included in the metadata.

Moreover, the best match block ID of each pruned block is also one part of metadata.

The metadata composition is shown in Table (4.3).

• Flag

When flag is 0, the block IDs are the index of pruned blocks. When it’s 1, the block

IDs are the index of false blocks.

• Threshold
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Threshold is encoded as an unsigned number in the variable-length code.

• Block IDs

The block IDs are sorted so that the numbers are placed in an increasing order. To

further reduce redundancy, a differential coding scheme is used, because the difference

between an ID number to its previous one is usually smaller than the number itself.

For example, assuming the ID sequence is 3, 4, 5, 8, 13, 14, the differential sequence

becomes 3, 1, 1, 3, 5, 1. This differentiation process makes the numbers smaller, and

therefore results in a distribution with smaller entropy.

• Best match patch IDs

The best match block ID of each pruned block is included in the metadata to notify the

decoder the similarity of pruned block and the rest of image. The ID sequence is also

encoded in the differential code. Then the whole bitstream will be further compressed

with entropy coding, for example, Huffman coding in the current implementation.

4.3 Post-Processing Techniques After Decoder

Image inpainting is an ill-posed problem with the goal of filling in the missing data

in an incomplete image, which is widely investigated in object removal, error concealment

and image restoration. In the proposed EDP scheme, the recovery process at the decoder

is regarded as an inpainting problem, although the pruned blocks are replaced with flat

regions which are not completely unknown. In addition, metadata also includes some side

information. However, similar idea as the exemplar-based image inpainting algorithm is

adopted in the missing data recovery at the decoder.

The bitstream containing the synthesized picture and metadata are transmitted to the

decoder. After correctly decoding the bitstream, the reconstructed picture and metadata

are obtained to recover the pruned blocks. The goal of this post-processing module is to

estimate the missing data using the decoded non-pruned blocks and metadata with inpainting

techniques. Figure 4.10 illustrates the post-processing part at the decoder.

Diffusion-based approach [69, 70] is a general solution for image inpainting, in which the
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Figure 4.10: Illustration of post-processing part at the decoder side

missing region is filled by diffusing the image information from the known region at the pixel

level. These algorithms are based on partial differential equation (PDE ). Another statistical

approach is based on the image statistics learned from the natural images in [51, 47, 71].

These algorithms achieved very good results in filling the non-texture region or relatively

small holes. However, they tend to oversmooth the texture region and often fails in the large

holes.

Different from the above approaches, exemplar-based inpainting approach will propagate

the image information from the known region into the missing region at the patch level.

The state-of-art algorithm in [72] achieved good visual quality not only in texture region

but also in the complex region composed of textures and structures. Inspired by the latest

exemplar-based approach, an inpainting algorithm is proposed to recover the pruned blocks

in the proposed EDP scheme. The pruned blocks are located and their best match blocks

are also known from the decoded metadata. By searching the similar patches of the best

match block in the known decoded region, the pruned block is represented by a sparse linear

combination of candidate patches. Linear coefficients are obtained by solving a constrained

optimization problem. This non-parametric approach utilized the sparseness of patches in

the Bayesian framework.
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Algorithm: Missing data recovery

Input: Decoded image Î, pruned blocks {Ψ1,Ψ2, · · · ,ΨJ}
best match blocks {B1, B2, · · · , BJ}.

Repeat recovering pruned block ΨP

Step 1: Establish patch library L and cluster it using K-means algorithm
Step 2: Obtain N similar patches of BP

Step 3: Solve the optimized problem in Equation (4.11)
Estimate the pruned block in Equation (4.6)

Update reconstructed image Î
Until all pruned blocks are processed

Output: reconstructed image Î

Table 4.4: Descriptions of missing data recovery algorithm

4.3.1 Missing Data Recovery

Denote pruned blocks as {Ψ1,Ψ2, · · · ,ΨJ} and the corresponding best match blocks as

{B1, B2, · · · , BJ}. Ψi and Ψj are discrete blocks in reconstructed image Î. The goal is to

estimate the pruned blocks {Ψ̂1, Ψ̂2, · · · , Ψ̂J}. The recovery of the pruned block ΨP consists

of several steps, as shown in Table (4.4).

In the first step, a patch library L is established using the decoded non-pruned blocks.

Similar to the patch library generation at the encoder, L is clustered into several groups and

each group is represented by its centroid.

In the second step, the best match patch BP will find several similar patches in L. Similar

to searching the best match patch, BP is compared with centroids to find a cluster with the

minimum Euclidean distance between BP and its centroid. Then the searching continues into

that cluster and N candidate patches {Ψq}Nq=1 are found. They are sorted in an increasing

order according to the Euclidean distance between BP and Ψq. N is set to be 25 in current

implementation.

In the third step, the pruned block ΨP is approximated as the linear combination of

{Ψq}Nq=1 in Equation (4.6). Figure 4.11 is an example to represent the missing block with

other candidate patches.

Ψ̂P =
N∑
q=1

αqΨq (4.6)
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Figure 4.11: Illustration of a pruned block recovery

4.3.2 Constrained Optimization Problem

In above recovery process, the most important step is to solve the combination coefficients

~α = {α1, α2, . . . , αN}. They are inferred by minimizing a constrained optimization problem

in the framework of sparse representation. The objective of this constrained problem is to

minimize the `0 norm of ~α, which is the number of nonzero elements in vector ~α, because the

patch ΨP is represented by the sparsest linear combination of candidate patches and hence

sparseness of combination coefficients is the objective.

There are two constraints of this optimization problem. The first constraint is on the

appearance of Ψ̂P , which is a local patch consistency constraint. In order to make the

estimated Ψ̂P consistent with the neighboring patches, the estimated Ψ̂P should approximate

the target patch ΨP over the neighboring known pixels.

Assuming the size of ΨP is m×n. A bigger patch ΦP with size (m+k)× (n+k) includes

the target patch ΨP at the center and the neighboring pixels. Then the problem estimating

Ψ̂P is converted to estimate Φ̂P as the sparse linear combination of {Φq}Nq=1. Similar to

Equation (4.6), Φ̂P is represented by Equation (4.7).

Φ̂P =
N∑
q=1

αqΦq (4.7)

A maskM with the same size (m+k)×(n+k) is defined to describe the known neighboring

pixels. Then the constraint condition is represented by Equation (4.8).

‖M ◦ Φ̂P −M ◦ ΦP‖2 < ε (4.8)
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where ε is a parameter to control the error tolerance of this approximation.

Another constraint is that the summation of the coefficients vector ~α equals to one:∑N
i=1 αi = 1. This constraint is widely used in the local linear embedding literature for

invariance to transform when reconstructing the target patch from its neighboring candidate

patches.

Finally, ~α is able to be inferred by optimizing the following constrained optimization

problem:

min{||~α||0}

s.t.‖M ◦ Φ̂P −M ◦ ΦP‖2 < ε

N∑
i=1

αi = 1

(4.9)

Then the missing block Ψ̂P is obtained from the optimized Φ̂P as:

Ψ̂P = (1−M) ◦ Φ̂P (4.10)

4.3.3 Optimization Algorithm

The constrained optimization problem is formulated as an energy minimization problem

in Equation (4.11). It is a derived format of Bayesian framework.

~α∗ = arg min
~α

{
||~α||0 + λ‖M ◦ Φ̂P −M ◦ ΦP‖2 + η‖

N∑
i=1

αi − 1‖2

}
(4.11)

It is equivalent to Equation (4.10) when parameters λ and η are chosen properly. The this

energy minimization problem achieves a global minimized solution.

Generally, the `0 norm regularized model is a NP problem. Matching pursuit (MP) in

[73] and basis pursuit (BP) in [74] are main algorithms to retrieve the sparse representation

and approximate the optimal solution in a greedy fashion, but the results are unreliable.

Recently, a breakthrough for this NP problem is to convert it to a `1 norm regularization

problem. The most well-known `1 norm regularization algorithm is Lasso [75] in literature.

Xu in [72] proposed a greedy algorithm similar to MP algorithm. The coefficients are updated

during iterations when the others are fixed, but it’s not a fast algorithm.
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Algorithm: Bregman iterative regularization
Input: J(u), H(u, f) and λ

Initialize: k = 0 u0 = ~0, f 0 = ~0
Repeat Bregman iteration

Step 1: Solve uk+1 → arg min
u
|u|1 + λ‖Au− fk‖2

2 by coordinate descent

Step 2: fk+1 → f + (fk − Auk+1)
Step 3: k → k + 1

Until ‖Au−f‖2‖f‖2 < 1× 10−5

Output: optimized solution u

Table 4.5: Bregman Iteration algorithm

I use the state-of-art Bregman iteration algorithm to solve this `1 norm regularization

problem [43, 76, 77]. Equation (4.11) is rewritten in a standard matrix formulation and the

second constraint is applied when an optimized solution is solved from the following function:

min
u
|u|1 + λ‖Au− f‖2

2, (4.12)

The Bregman distance is defined as in [76].

Dp
J(u, v) = J(u)− J(v)− 〈p, u− v〉, p ∈ ∂uJ

where p ∈ ∂J(u) is an element in the subgradient of J at the point u. Assume J(u) = |u|1
and H(u, f) = λ‖Au− f‖2

2 in this optimization problem.

The algorithm is listed in Table 4.5. In Step 1, the convex function E(u) = |u|1 +λ‖Au−

fk‖2
2 is minimized. There is a simple closed formular for the solution of each coordinate

subproblem, which makes the coordinate descent method efficient for solving it. Details are

found in [43].

The solution of the one dimension same problem E(x) = |x|+λ(x−f)2 is x = shrink(f, 1
2λ

),

the shrink operator is defined as follows:

shrink(f, µ) =


f − µ if f > µ

0 if −µ ≤ f ≤ µ

f + µ if f < −µ

(4.13)

For each coordinate subproblem, all components of u except the jth component uj are

freezed. Let aj denote the jth column of A and aij denote the element in the ith row and
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jth column. fi is the ith component of f . Then the problem is rearranged as follows.

min
uj
E(u) = λ

m∑
i=1

(
n∑
j=1

aijuj − fi

)2

+
n∑
i=1

|ui|

= λ(‖aj‖2
2u

2
j − 2βjuj + ‖f‖2

2) + |uj|+
∑
i 6=j

|ui|
(4.14)

where βj =
m∑
i=1

aij(fi −
∑
k 6=j
aikuk). The optimal value for uj with all the other coordinated

fixed is

ũj =
1

‖aj‖2
2

shrink(βj,
1

2λ
) (4.15)

We can delete the whole jth column of A since the value of uj does not affect f at all.

Therefore, ũj decreases the energy function E(u). Each ũj will be obtained in an iteration.

Repeat this iteration process until E(u) converges.

The parameter λ controls the weight in the penalty term and it’s set to 100 in current

implementation. The Bregman iteration achieves an accuracy solution. In addition, it is

more efficient than Xu’s method.

4.4 Experiments

4.4.1 Comparison with H.264/AVC

In the proposed EDP scheme for intra frame, the pruning decision guarantees that no

pruning is conducted on a certain block if pruning can’t obtain some gain. The gain comes

from the fact that several similar patches exist in the picture. In order to test this scheme,

six sequences are used with visual similarity in the first frame. Table 4.6 lists the name, size

and frame rate of these test sequences.

The test conditions of H.264/AVC encoder are as follows: High profile, transform 8×8 is

on and only encode the first frame. The quantization parameter QP is (20, 26, 32, 38, 44). The

bench mark is encoding the original frame in H.264/AVC high profile. PSNR of luminance

component is calculated between original and reconstructed picture. Bitrate is derived from

bits of encoded picture. While in the proposed EDP scheme, encoder and decoder from



Qiang Hao Chapter 4. Video Compression 92

Sequence size Frame rate(fps)
independence day 720× 480 24
american pie 720× 480 24
opening ceremony 720× 480 30
flower garden2 720× 480 30
baseball 1280× 720 60
big mamams house2 720× 480 24

Table 4.6: Test sequences list

Sequence Bit rate saving(%) PSNR gain (dB)
big mamams house2 1.85% 0.144
baseball 1.92% 0.153
opening ceremony 3.45% 0.227
american pie 4.93% 0.331
independence day 5.15% 0.412
flower garden2 8.57% 0.624
Average 4.31% 0.315

Table 4.7: Bit rate saving and PSNR gain for test sequences

H.264/AVC standard are used in the coding process. PSNR of luminance component is still

calculated between original and reconstructed picture, which is the picture after missing data

recovery process at the decoder. Bit rate is derived from bits of bistream, which contains

the bits of encoded picture and metadata.

The comparison between two coding schemes is usually represented by the rate-distortion

(RD) plot at different QP. Figure 4.12 (a) shows the RD plot in flower garden2. The proposed

scheme is better than H.264/AVC in terms of RD cost, since its RD curve is above H.264’s

curve. The bits allocation for encoded picture and metadata is shown in Figure 4.12 (b).

The percentage of metadata in bitstream increases with QP because more blocks are pruned

at larger QP. Although the RD plot describes the coding efficiency improvement visually, it

should be represented by quantity. Then the bit rate saving and PSNR gain are calculated

with the method in [78] from the RD plot. The results are listed in Table 4.7.

The average bit rate saving is 4.31% and PSNR gain is 0.315dB. In independence day

and flower garden2, the bit rate saving is quite big, because there are plenty of texture
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(a) RD plot (b) Bits allocation

Figure 4.12: RD plot and bits allocation in a test sequence

(a) Original picture (b) Best-match picture

Figure 4.13: A picture composed of the best similar patch from original picture

regions and thus a large number of similar patches are available in the patch library. This

characteristic provides a good estimation of pruned blocks with the inpainting technique in

the data recovery at the decoder. There are some gain in the other test sequences, since

similar textures and structures also exist. Therefore, the proposed EDP video compression

scheme achieves a better coding efficiency for intra frame on test sequences.

In patch library generation process, a picture composed of the best similar patch of each

non-overlapping block is obtained and will assist the pruning decision module. An example

from big mamams house2 is illustrated in Figure 4.13.

The visual quality of reconstructed pictures of our EDP scheme is acceptable. An example

from flower garden2 at QP 26 is shown in Figure 4.14. The pruned percentage is 30.1%.
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(a) Pruned picture at encoder side (b) reconstructed picture at decoder side

Figure 4.14: An example of pruned and reconstructed picture from flower garden2 at QP 26

(a) Pruned picture at encoder side (b) reconstructed picture at decoder side

Figure 4.15: An example of pruned and reconstructed picture from american pie at QP 32

Another example from american pie is shown in Figure 4.15. The pruned percentage is

15.2% and it is encoded at QP 32.

4.4.2 Complexity Analysis

The proposed EDP scheme achieves a video coding efficiency improvement by applying

the pre- and post- processing techniques, but it will add complexity burdens. However,

with the development of hardware and parallel processing, this problem will be reduced by

some degrees. In the current implementation, it is using C++ and Matlab programming

language. The most complex part is generating the patch library at the encoder and decoder.

The fast KNN algorithm is utilized and the executable time is not high. For example, there
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are about 86400 patches for an image with size 720 × 480. It took 2.1min to group them

into K = 45 clusters. The searching of the most similar patch is also very efficient in the

proposed approach. It took 8.5min to find the most similar patch of all the non-overlapping

blocks in this image. The pruning decision process usually took 10s to process all the blocks

when a synthesized image composed by the most similar patches is known. In the missing

data recovery, the Bregman iteration will solve the `1 norm regularization problem in an

efficient way. It usually took 6s to obtain an optimized coefficients with 25 candidate similar

patches.

4.5 Summary

In this chapter, an exemplar-based data pruning video compression scheme for intra frame

is proposed. The idea of applying the pre-processing and post-processing techniques to video

coders is practical and experiments are convincing. This EDP scheme avoids modifying codec

structures but still achieves the coding efficiency improvement. A patch library is generated

for pruning decision at the encoder and for recovering pruned blocks at the decoder. The

similarity of patches in natural images serves as a foundation of this EDP scheme in order to

utilize the non-local information. Metadata containing the pruned information is also sent

to decoder to assist the inpainting process. The location of pruned blocks as well as pixel

intensities in non-pruned blocks are both encoded.

In missing data recovery, the pruned block is inferred from similar patches in the decoded

picture. The sparseness of patches is served as a non-parametric image prior to solve the

`1 norm regularization problem. The exemplar-based inpainting method demonstrates a

remarkable reconstruction performance. In conclusion, the proposed EDP scheme is a good

attempt to better deal with the texture regions when a large amount of similar patches exist

in a natural image with processing techniques.
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Chapter 5

Conclusions

In this dissertation, three problems in non-blind deconvolution, augmented reality and

video compression are solved from Bayesian perspectives.

5.1 Non-blind Deconvolution

In the first part of dissertation, a data-driven non-blind deconvolution algorithm is pro-

posed. Similar as other deconvolution algorithms, a MAP problem is established to estimate

the latent image. In the proposed MAP model, a noise model with mixed order derivative is

used to represent the spatial randomness of noises. The image prior expressed by the GSM

model is estimated from the related clear images. By separating the convolution operations

with other terms, this MAP problem is solved in an efficient way. Remarkable experiments

demonstrate that this algorithm will recover more details and suppress ringing effects better

than conventional Richardson-Lucy and state-of-art Shan’s algorithm.

The proposed non-blind deconvolution algorithm is based on simple assumptions such as

linear blur model and spatial invariant blur. In the future, the algorithm should consider

more scenarios.

• Big blur kernel

Although this algorithm works well for the small blur case, the deblurring with big blur

is not good. How to better utilize the related clear images is an interesting problem

in the future. The disparity of blurry image and related images should provide more
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(a) Spatially variant blur kernel [79] (b) Nonlinear blur model [20]

Figure 5.1: Complex blurry images in the real world

information during the iterations of latent image reconstruction.

• Boundary problem

The boundary ringing effects come from the convolution operation in Fourier domain.

The Matlab command “edgetaper” is used in current implementation to smooth the

boundary. How to make a good balance between ringing suppression and maintaining

boundary will be an interesting topic.

• Spatially variant blur

In the proposed algorithm, the blur kernel is assumed as shift-invariant for the whole

image. However, sometimes it’s not true in the real world. Figure 5.1 (a) is an example

that blur kernel is variant in different regions. How to deal with spatially variant blur

is also a challenging problem.

• Nonlinear blur model

Figure 5.1 (b) shows a snow scene captured at night. If the linear blur model B =

L⊗ f + n is used, the deblurring result is not good, because some pixels are obtained

from a nonlinear blur model due to limited dynamic range of camera sensors. How to

modify the blur model will be one of my future tasks.

The proposed non-blind deconvolution algorithm is a parametric-based approach, because

the image prior and likelihood are represented by certain distributions. However, the latest

development of non-parametric approaches in image restoration shows that they are more
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(a) occluded objects (b) several buildings

Figure 5.2: Complex cases in the real world

suitable for solving complex inverse problems. A deblurring method on face images in [80]

shed some light for non-parametric approaches in deblurring, although typical face images

are quite different from natural images.

5.2 Augmented Reality

In a VCI system, where, when and how to insert the content so as not to disturb the

viewers are challenging issues. In the second part, a novel and generic VCI system is in-

troduced to attack the problem of inserting an image or a movie in a video stream without

knowledge of cameras. To achieve a seamless virtual to real blending, a closed-loop detection

and tracking combined strategy is proposed to implement insertion in an efficient way. The

inserted positions are estimated in a Bayesian framework with the standard court model or

3D geometry model as the image prior. Moreover, motion stabilization, dynamic registration

and color harmonization are used to reduce the disturbance of inserted content.

The proposed VCI system in tennis video streams achieves a remarkable and robust per-

formance. It works on four typical tennis courts such as US open, Australia open, French

open and Wimbledon. However, the automatic VCI system is not a perfect solution. Its per-

formance is largely relied on the accuracy of line detection, model fitting, camera calibration

and motion stabilization.
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However, inserting an image or a movie in street view video streams is more challenging,

because of no standard models for building scenes. Since visual tracking on buildings which

are composed of repeated patterns and structures will obtain a good estimation of camera

motion, the detection and tracking combined strategy is a reasonable method.

However, the proposed VCI system only works for simple cases if the building facade is

obvious and easy to detect. More scenarios should be considered when dealing with complex

cases. For example, how to deal with the occluded objects such as the cars, trees and people

nearby the buildings is an interesting problem, as shown in Figure 5.2 (a). If there occur

several buildings as shown in Figure 5.2 (b), how to choose a building as an appropriate

region for insertion needs the high level pattern recognition knowledge. In addition, what

kind of content should be chosen is also an interesting open question and has the commercial

values.

5.3 Video Compression

In the third part of this dissertation, an exemplar-based data pruning video compression

scheme for intra frame is proposed. The idea of applying the pre- and post- processing

techniques in video compression is practical. The experiments shows the convincing results

in terms of bit-rate reduction. This EDP scheme avoids modifying codec structures but still

achieves a coding efficiency improvement. A patch library is generated for pruning decision

at the encoder and for recovering pruned blocks at the decoder. The similarity of patches in

natural images serves as a foundation of this EDP scheme in order to utilize the non-local

information. Metadata containing the pruned information is also sent to decoder to assist the

inpainting process. The location of pruned blocks as well as pixel intensities in non-pruned

blocks are both encoded.

In the missing data recovery, a `1 norm regularization problem is established to utilize

the sparseness of patches. The novel Bregman iteration algorithm is adopted to solve this

constrained problem in an accurate and efficient way. This non-parametric approach obtains

a good reconstruction of pruned blocks. Therefore, the proposed EDP scheme is a good

attempt to better deal with the texture regions when a large amount of similar patches exist
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in a natural image with processing techniques.

In current implementation, the pruning decision makes a similar prediction as the one in

intra mode of H.264/AVC. Although this scheme is independent from encoder and decoder,

it will be an important future task to confirm the effectiveness and efficiency of this scheme

in other video coders such as the new HEVC. The size of patches and the compression of

metadata are also interesting problems.

In the missing data recovery, a constrained optimization model is established to solve the

sparse linear combination coefficients. Two constraints are introduced to represent that the

neighboring pixels of target should be known values and normalization requirement. How-

ever, there should be some other constraints about local smoothness. In order to make the

estimated missing data consistent with neighboring patches, a local smoothness constraint

may be needed. It will be a very challenging task to describe this constraint and solve a

more difficult optimization problem.
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