11 research outputs found

    Inconsistency of Pitman-Yor process mixtures for the number of components

    Full text link
    In many applications, a finite mixture is a natural model, but it can be difficult to choose an appropriate number of components. To circumvent this choice, investigators are increasingly turning to Dirichlet process mixtures (DPMs), and Pitman-Yor process mixtures (PYMs), more generally. While these models may be well-suited for Bayesian density estimation, many investigators are using them for inferences about the number of components, by considering the posterior on the number of components represented in the observed data. We show that this posterior is not consistent --- that is, on data from a finite mixture, it does not concentrate at the true number of components. This result applies to a large class of nonparametric mixtures, including DPMs and PYMs, over a wide variety of families of component distributions, including essentially all discrete families, as well as continuous exponential families satisfying mild regularity conditions (such as multivariate Gaussians).Comment: This is a general treatment of the problem discussed in our related article, "A simple example of Dirichlet process mixture inconsistency for the number of components", Miller and Harrison (2013) arXiv:1301.270

    A hierarchical Dirichlet process mixture model for haplotype reconstruction from multi-population data

    Full text link
    The perennial problem of "how many clusters?" remains an issue of substantial interest in data mining and machine learning communities, and becomes particularly salient in large data sets such as populational genomic data where the number of clusters needs to be relatively large and open-ended. This problem gets further complicated in a co-clustering scenario in which one needs to solve multiple clustering problems simultaneously because of the presence of common centroids (e.g., ancestors) shared by clusters (e.g., possible descents from a certain ancestor) from different multiple-cluster samples (e.g., different human subpopulations). In this paper we present a hierarchical nonparametric Bayesian model to address this problem in the context of multi-population haplotype inference. Uncovering the haplotypes of single nucleotide polymorphisms is essential for many biological and medical applications. While it is uncommon for the genotype data to be pooled from multiple ethnically distinct populations, few existing programs have explicitly leveraged the individual ethnic information for haplotype inference. In this paper we present a new haplotype inference program, Haploi, which makes use of such information and is readily applicable to genotype sequences with thousands of SNPs from heterogeneous populations, with competent and sometimes superior speed and accuracy comparing to the state-of-the-art programs. Underlying Haploi is a new haplotype distribution model based on a nonparametric Bayesian formalism known as the hierarchical Dirichlet process, which represents a tractable surrogate to the coalescent process. The proposed model is exchangeable, unbounded, and capable of coupling demographic information of different populations.Comment: Published in at http://dx.doi.org/10.1214/08-AOAS225 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Bayesian multi-population haplotype inference via a hierarchical dirichlet process mixture

    No full text
    Uncovering the haplotypes of single nucleotide polymorphisms and their population demography is essential for many biological and medical applications. Methods for haplotype inference developed thus far—including methods based on coalescence, finite and infinite mixtures, and maximal parsimony— ignore the underlying population structure in the genotype data. As noted by Pritchard (2001), different populations can share certain portion of their genetic ancestors, as well as have their own genetic components through migration and diversification. In this paper, we address the problem of multipopulation haplotype inference. We capture cross-population structure using a nonparametric Bayesian prior known as the hierarchical Dirichlet process (HDP) (Teh et al., 2006), conjoining this prior with a recently developed Bayesian methodology for haplotype phasing known as DP-Haplotyper (Xing et al., 2004). We also develop an efficient sampling algorithm for the HDP based on a two-level nested Pólya urn scheme. We show that our model outperforms extant algorithms on both simulated and real biological data. 1

    Approximation and Relaxation Approaches for Parallel and Distributed Machine Learning

    Get PDF
    Large scale machine learning requires tradeoffs. Commonly this tradeoff has led practitioners to choose simpler, less powerful models, e.g. linear models, in order to process more training examples in a limited time. In this work, we introduce parallelism to the training of non-linear models by leveraging a different tradeoff--approximation. We demonstrate various techniques by which non-linear models can be made amenable to larger data sets and significantly more training parallelism by strategically introducing approximation in certain optimization steps. For gradient boosted regression tree ensembles, we replace precise selection of tree splits with a coarse-grained, approximate split selection, yielding both faster sequential training and a significant increase in parallelism, in the distributed setting in particular. For metric learning with nearest neighbor classification, rather than explicitly train a neighborhood structure we leverage the implicit neighborhood structure induced by task-specific random forest classifiers, yielding a highly parallel method for metric learning. For support vector machines, we follow existing work to learn a reduced basis set with extremely high parallelism, particularly on GPUs, via existing linear algebra libraries. We believe these optimization tradeoffs are widely applicable wherever machine learning is put in practice in large scale settings. By carefully introducing approximation, we also introduce significantly higher parallelism and consequently can process more training examples for more iterations than competing exact methods. While seemingly learning the model with less precision, this tradeoff often yields noticeably higher accuracy under a restricted training time budget

    Parsimony-based genetic algorithm for haplotype resolution and block partitioning

    Get PDF
    This dissertation proposes a new algorithm for performing simultaneous haplotype resolution and block partitioning. The algorithm is based on genetic algorithm approach and the parsimonious principle. The multiloculs LD measure (Normalized Entropy Difference) is used as a block identification criterion. The proposed algorithm incorporates missing data is a part of the model and allows blocks of arbitrary length. In addition, the algorithm provides scores for the block boundaries which represent measures of strength of the boundaries at specific positions. The performance of the proposed algorithm was validated by running it on several publicly available data sets including the HapMap data and comparing results to those of the existing state-of-the-art algorithms. The results show that the proposed genetic algorithm provides the accuracy of haplotype decomposition within the range of the same indicators shown by the other algorithms. The block structure output by our algorithm in general agrees with the block structure for the same data provided by the other algorithms. Thus, the proposed algorithm can be successfully used for block partitioning and haplotype phasing while providing some new valuable features like scores for block boundaries and fully incorporated treatment of missing data. In addition, the proposed algorithm for haplotyping and block partitioning is used in development of the new clustering algorithm for two-population mixed genotype samples. The proposed clustering algorithm extracts from the given genotype sample two clusters with substantially different block structures and finds haplotype resolution and block partitioning for each cluster

    Bayesian nonparametric models of genetic variation

    Get PDF
    We will develop three new Bayesian nonparametric models for genetic variation. These models are all dynamic-clustering approximations of the ancestral recombination graph (or ARG), a structure that fully describes the genetic history of a population. Due to its complexity, efficient inference for the ARG is not possible. However, different aspects of the ARG can be captured by the approximations discussed in our work. The ARG can be described by a tree valued HMM where the trees vary along the genetic sequence. Many modern models of genetic variation proceed by approximating these trees with (often finite) clusterings. We will consider Bayesian nonparametric priors for the clustering, thereby providing nonparametric generalizations of these models and avoiding problems with model selection and label switching. Further, we will compare the performance of these models on a wide selection of inference problems in genetics such as phasing, imputation, genome wide association and admixture or bottleneck discovery. These experiments should provide a common testing ground on which the different approximations inherent in modern genetic models can be compared. The results of these experiments should shed light on the nature of the approximations and guide future application of these models
    corecore