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Abstract 

Parsimony-based Genetic Algorithm for Haplotype Resolution and Block 

Partitioning  

 

by 

Nadezhda A. Sazonova 

 

This dissertation proposes a new algorithm for performing simultaneous 

haplotype resolution and block partitioning. The algorithm is based on genetic 

algorithm approach and the parsimonious principle. The multiloculs LD measure 

(Normalized Entropy Difference) is used as a block identification criterion. The 

proposed algorithm incorporates missing data is a part of the model and allows 

blocks of arbitrary length. In addition, the algorithm provides scores for the block 

boundaries which represent measures of strength of the boundaries at specific 

positions. The performance of the proposed algorithm was validated by running it on 

several publicly available data sets including the HapMap data and comparing 

results to those of the existing state-of-the-art algorithms. The results show that the 

proposed genetic algorithm provides the accuracy of haplotype decomposition 

within the range of the same indicators shown by the other algorithms. The block 

structure output by our algorithm in general agrees with the block structure for the 

same data provided by the other algorithms. Thus, the proposed algorithm can be 

successfully used for block partitioning and haplotype phasing while providing some 

new valuable features like scores for block boundaries and fully incorporated 

treatment of missing data. In addition, the proposed algorithm for haplotyping and 

block partitioning is used in development of the new clustering algorithm for two-

population mixed genotype samples. The proposed clustering algorithm extracts 

from the given genotype sample two clusters with substantially different block 

structures and finds haplotype resolution and block partitioning for each cluster.  
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Introduction 

 

Most of the variation in human DNA sequences can be characterized by single 

nucleotide polymorphisms (SNPs), which are mutations at a single nucleotide position. 

Variation in the human genome underlies the differentiating features present in the 

population. Humans are diploid organisms, i.e., each chromosome is made of two distinct 

copies which are separately called haplotypes. The completion of the Human Genome 

Project that produced sequenced human DNA brings out a new topic for genomic 

research: the construction of a full Haplotype Map. Available molecular technologies do 

not allow cheap and efficient haplotype sequencing (also called haplotyping), which 

produces the genotype decomposition into the pair of haplotypes. Thus, the problem of 

haplotyping heavily relies on computational methods. The importance of a full Haplotype 

Map of the human genome should not be underestimated. It is extremely valuable in the 

large-scale analysis of complex human diseases, which are represented by combinations 

of multiple linked mutations and a set of environmental factors. For this reason, 

haplotype-based analyses have proven to be much more powerful in mapping complex 

human diseases than single-locus (SNP) based studies. Moreover, recent studies have 

demonstrated that the human genome has discrete block structures. Considering 

haplotypes within some particular block facilitates further analysis of complex human 

diseases.  

There have been plenty of methods suggested for the use in either the haplotype 

decomposition or the block partitioning of the set of genotypes. These two problems, 

however, are known to be interrelated in the sense that successful genotype phasing 

depends on the availability of block partitioning and vice versa: block partitioning is 

mostly possible with the resolved haplotypes. None of the existing algorithms can really 

performs haplotype decomposition and block partitioning at the same time.  

Recently new approaches have been developed that now allow us to 

simultaneously perform haplotyping and block partitioning while providing good 

accuracy and speed. The method proposed in this dissertation overcomes most of the 

deficiencies of the existing methods while providing competitive accuracy and speed. In 

addition, the proposed algorithm for haplotyping and block partitioning exhibits a new 
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and useful feature characterizing the block structure in the form of scores for block 

boundaries. In addition, the proposed algorithm is extended to the two-population case 

when the genotype sample consists of representative individuals from each population. 

This extension is designed to separate the two populations with a high degree of accuracy 

and to find the haplotype resolution and block structure in each group. 
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Chapter 1 

Background on the problem of haplotyping and block partitioning 

 

1.1 SNPs, haplotypes and haplotype blocks 

DNA sequences taken from any two individuals are known to be 99.9% identical 

[1], i.e., mutations present in the human genome account for only about 0.1% of the 

differences. Single nucleotide polymorphisms (SNPs) are the genetic markers that 

represent the most common type of mutations, i.e., those expressed by changes in a single 

position within DNA sequence, which are observed in at least 5-10% of the population. 

Most SNPs are bi-allelic, that is, they are defined by only two possible nucleotides 

(alleles) at their specific positions. It was determined [2] that bi-allelic SNPs occur about 

once in every 600 base pairs in the DNA sequence. The discovery of SNPs has been 

progressing very rapidly: 2.1 million SNPs were identified by 2001, and by the end of 

2003 this number had approached 5.7 million [3]. By the end of April, 2007, the number 

of SNPs in NCBI dbSNP database was over 11.87 million. The widespread information 

on SNPs has made them available for extensive research in various fields; in particular, 

SNPs are found to be extremely useful in identifying the genes related to complex human 

diseases [1, 4].  

Each chromosome is comprised of two copies, each called a haplotype. These two 

haplotypes considered together (or conflated) are called the genotype (or unphased 

genotype). The genotype does not have information about which nucleotide base (or 

allele when referring to a SNP) corresponds to which chromosome (haplotype) out of the 

two. It can only list the alleles when they are the same on each haplotype and mark 

positions where they are different. Mendelian Law states that exactly one haplotype is 

inherited from the father and the other from the mother in the process of reproduction. A 

pair of haplotypes is a result of genotype decomposition and is considered to be a 

genotype with known phase (phased genotype), i.e., genotypes with alleles assigned to 

one of the two chromosomes. Thus, the haplotype can be characterized by a sequence of 

SNP alleles occurring at each particular position.  
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The relationship between SNPs, chromosomes, haplotypes and genotypes is 

illustrated by Fig. 1.1 (due to Zhang, et al. [5]). 

 

 

SNP     *           *     * 

Chromosome 1  A A T C C G A T T … G A C C A T G … A A C T C C G   

Chromosome 2 A A T G C G A T T … G A C C A T G … A A C A C C G 

Haplotype 1   C           A      T 
Haplotype 2   G           A      A 

Genotype           {C,G}         {A}               {A,T} 
 

Figure 1.1 SNPs, chromosomes, haplotypes and genotypes 

 

Since there are only two choices of alleles for the bi-allelic SNPs, any haplotype 

can be encoded as a (0,1)-sequence. In turn, any genotype can be encoded as a (0, 1, 2)-

sequence, where positions coded by 0’s and 1’s are called homogeneous (or homozygous 

when they are the same on each chromosome/haplotype) and positions coded by 2 are 

sites where the two haplotypes carry different alleles, and therefore, are called 

heterogeneous (heterozygous) or ambiguous. For example, two haplotypes and the 

corresponding genotypes may have the following encoding: 

h1 :  0  0  0  1  1  0  0  0  1  0  1  1  1  1  1    haplotype 1 

h2 :  0  0  1  0  1  0  0  1  1  0  0  0  0  1  1    haplotype 2 

g:     0  0  2  2  1  0  0  2  1  0  2  2  2  1  1    genotype 

SNPs in close proximity are often correlated, meaning that their specific alleles 

tend to be inherited together. This results in the fact that there is a limited diversity of 

haplotypes, i.e., in nature far fewer haplotypes occur than combinatorially possible. 

It was recently observed [6] that it is possible to partition human haplotypes into 

distinct blocks each spanning up to 100 kb, which tend to be inherited together (within 

which no or few recombinations occur). In contrast, recombinations between blocks are 

rather common. Recombination occurs during meiosis (i.e., the cell division process in 

diploid organisms that involves the fusion of chromosomes), when the parental 

chromosomes get crossed over to result in a new chromosome that consists of the 

portions of the two original chromosomes of that parent. In the absence of a 
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recombination event, the haplotype of a child will be identical to one of the two 

haplotypes of a parent. The fact that some loci tend to almost never undergo 

recombination is also related to linkage disequilibrium. Linkage disequilibrium (LD) 

among loci represents a nonrandom association (stochastic dependence) between alleles 

of SNPs [7]. When alleles at two (or more) distinct loci occur in gametes more frequently 

than expected (given the known allele), the alleles are said to be in linkage 

disequilibrium. In other words, linkage disequilibrium indicates the tendency of alleles 

located close to each other on the same chromosome to be inherited together. The linkage 

disequilibrium tends to wear off over time since more and more recombinations are 

taking place between any two particular loci. But there are forces that may preserve old 

links between alleles and even create the new ones. These forces are known as natural 

selection and genetic drift. 

Natural selection is an old concept, introduced by Darwin, which supports the fact 

that the only mutations that stay in subsequent generations are those that result in better 

survival. This results in the fact that unfavorable genes or gene combinations have to 

eventually become extinct. 

Genetic drift is a recently developed concept. It supports the idea that some 

mutations, which are neutral or not necessarily the best, tend to be preserved in some 

populations, especially in those of smaller sizes. Genetic drift starts out with the fact that 

in a given population only a fraction of all possible zygotes become mature adults. This 

may result in a shift in the frequency of alleles and their combinations. Although this is 

not particularly common for a large population, small populations may experience a 

sudden and significant effect. 

Genetic drift is represented by the population bottleneck and the founder effects. 

The population bottleneck is an evolutionary event resulting in a significant reduction in 

size (50% or more) of the original population that leads to the fact that some genetic 

lineages become extinct. Examples of the population bottleneck include natural disasters 

like floods, draughts, earthquakes, fires [8]. The founder effect occurs when a small group 

separates from the larger population and has essentially no further contact with it, so that 

the resulting new population develops very distinct genetic lineages with different 

frequencies than the original population. According to [8], the founder effect is 
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represented in the American Indians whose population completely lacks type B blood. 

Another example is the Amish population in North America. These sects were founded 

by a very small group of migrants from Europe, and since they never attempted to 

assimilate with the rest of the North Americans, their gene frequencies remain quite 

different from the surrounding population.  

There is an on-going debate on the unique definition of haplotype blocks. 

Different authors accept a variety of criteria necessary to detect blocks in a genome. 

Commonly used block identification criteria include haplotype tagging SNP coverage, 

recombination rates, modeling of ancestral roots, and also linkage disequilibrium. Despite 

the differences in the block identification criteria, all studies inherently imply that the 

haplotype blocks are necessarily characterized by low haplotype diversity, and most 

studies agree that the existence of blocks is somehow related to the recombination events 

and linkage disequilibrium. 

A number of studies used a diversity criterion for block detection. Kimmel and 

Shamir [9, 10] have identified blocks as segments where a small number of common 

haplotype patterns (usually no more than 5) represent (cover) a significant fraction of the 

data (70-90%). The optimal block structure is the one based on the minimal total number 

of common haplotype patterns. Patil et al. [2] and Zhang et al. [11] used another diversity 

criterion known as the haplotype tagging SNP coverage: the segment of a SNP sequence 

is considered to be a block if its common haplotypes, covering a significant fraction of 

data in the sample, can be distinguished using the minimal number of the SNPs (for 

example, only 2 out of 20 comprising this particular segment). Such SNPs are called the 

tagging or representative SNPs. The optimal block partition is the one that has the 

minimal total number of representative SNPs required to distinguish a pre-specified 

percentage (coverage) of all haplotypes within each block over the entire SNP sequence 

under study. 

Daly [6] and Wang et al. [12] have identified the block boundaries by considering 

recombination rates. The blocks are defined as segments with low or zero recombination 

rates separated by the spots characterized by high recombination. For example, Daly 

specifies within block inter-marker recombination rates to vary around 1% or lower, 
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while inter-marker recombination rates on the block boundaries should exceed 4%. Wang 

et al. use the four-gamete test to model the population historical recombination rates.  

Greenspan and Geiger [13] and Koivisto et al. [14] have developed statistical 

models to determine optimal haplotype block structures. Greenspan and Geiger used 

Bayesian Networks to model ancestral roots for identifying haplotype blocks. Koivisto 

employed the Minimum Description Length (MDL) principle to perform statistical model 

selection.  

Many studies [7, 15, 16] specify haplotype blocks as the regions of increased LD. 

Studies done on the patterns of linkage disequilibrium [17, 18, 19, 20, 21] in the human 

genome have demonstrated its block-like structure: recombinations tend to be 

concentrated in so called “hot-spots,” whereas the longer stretches of DNA where 

markers show increased level of linkage disequilibrium have very low haplotype 

diversity. The LD-based definition of a block is now becoming more popular than other 

block identification criteria mentioned above. The use of LD in the block detection 

process can also be justified by the fact that this measure can be interpreted as the degree 

of the strength of a block, especially if supported by a test of statistical significance.  

 

1.2 The importance of haplotypes and haplotype blocks in the analysis of 

complex traits 

The importance of haplotypes and haplotype blocks is recognized in the 

application of linkage analysis, association analysis and LD mapping as the analyses of 

the genetic nature of complex human diseases, the patient-specific response to drugs, and 

other substances studied by pharmacogenomics and toxicogenomics [4], and also the 

genetic components of any other particular phenotypic traits [20, 22]. 

Any phenotype reflected in a genotype is distinguished as Mendelian or complex. 

A Mendelian trait [3, 23] is a trait controlled by one or two genetic loci and has a very 

clear phenotype associated with it. Such a trait exhibits a simple Mendelian inheritance 

pattern. As a result, a mutation in a single gene can cause a disease that can be passed to 

the next generations according to Mendel's laws. Mendelian diseases are usually rare in 

the population; their examples include [23] sickle-cell anemia, Tay-Sachs disease, cystic 

fibrosis, xeroderma pigmentosa, etc. Unlike Mendelian traits, complex traits are multi-
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factorial, and their genetic component is often reflected in several loci; other factors 

affecting complex traits include environment conditions that serve as a trigger for the 

expression of such traits [24]. Complex traits have less clear relationships between 

genotypes and phenotypes due to their multi-factorial nature and are not always inherited 

in a simple Mendelian fashion. Most human diseases are in fact complex traits, for 

example [3, 23, 25], arthritis, hypertension, lipid metabolism disorders, certain forms of 

Alzheimer’s disease, cancer, etc. Complex traits that are of interest in medicine include 

specific reactions to certain drugs and are extensively studied by pharmacogenomics [26, 

27]. Naturally, the information on a set of consecutive loci given by haplotypes is of 

much more value in the analysis of complex traits than that of single loci data.  

The search for a disease gene usually starts with linkage analysis. The goal of 

linkage analysis is to find the location of a disease gene(s) relative to some known 

markers (for example SNPs) [28, 29, 30, 31]. Since linkage implies the tendency of the 

genes and genetic markers in close proximity to be inherited together, during linkage 

analysis the recombination rates are measured between the disease gene and the genetic 

marker with known location. The data on pedigrees are usually used in linkage analysis 

to determine if recombination has taken place [24, 32]. The presence of a disease gene is 

only known if it is phenotypically expressed in an individual. If the analysis shows no 

evidence of recombination (recombination rate is lower than 0.5) between the disease 

gene and the marker, it is assumed that this gene is located in close proximity to this 

particular marker. Otherwise, another marker is analyzed the same way. More elaborate 

analysis involves studying the location of a disease gene relative to several genetic 

markers (multipoint linkage analysis) [33]. Despite the fact that traditionally genetic 

markers used in linkage analysis are the SNPs and microsatellites, some studies have 

shown that the haplotype information may be extremely useful, especially in the case of 

large, complex pedigrees [34, 35]. In addition, information about haplotype blocks 

specific to a particular group of genotypes under study is also helpful in the determination 

of the recombination hot spots (usually located at the boundaries of the blocks). 

The main goal of association analysis is to identify which particular alleles of a 

gene are responsible for a given disease [36, 29, 30]. Alleles can be referred to single 

locus mutations (such as SNPs) or multi-locus sequences represented by haplotypes 
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within any specific region of interest. Thus, association analysis performs phenotype-

genotype association (statistical association between a specific allele and some trait). The 

association analysis may actually serve as a more powerful alternative to linkage analysis 

in mapping complex trait loci when using large scale data of unrelated individuals 

(population based studies) and a dense set of markers [24, 32]. Since haplotypes are more 

informative than genotypes and SNPs, they provide more effective genetic association 

analyses [37, 38]. The discovery of haplotype blocks has led to improvements in the 

studies of complex diseases since having block structure makes it easier to identify the 

boundaries of the DNA segments of interest [39].  

Another type of analysis is called linkage disequilibrium mapping (LD mapping). 

It uses the information about the location of a region of interest determined through, for 

example, linkage analysis, and it constructs a plot for a dense set of markers (LD map) 

within this region to estimate the position of a disease-predisposing mutation using the 

LD between the markers [40, 38]. LD mapping searches for markers in a region of 

interest whose alleles are correlated with disease in unrelated individuals. LD mapping is 

considered to be a more powerful alternative to identifying genes for complex diseases 

and other genetic traits than linkage analysis. The advantage of LD mapping is that it uses 

the genetic information of unrelated individuals (as opposed to the pedigrees) [41]. Using 

this kind of data, LD mapping studies the recombination events traced back thousands of 

generations (rather than for some particular small family) by estimating the LD between 

the markers. Another advantage is that LD mapping provides much higher resolution for 

the regions of interest than linkage analysis. Recent studies [42, 35, 43] have shown that 

information on haplotypes rather than SNPs increases the effectiveness of LD mapping. 

There are new linkage disequilibrium mapping methods developed using haplotypes, in 

particular Haplotype Pattern Mining (HPM) [44, 45], that show very promising results in 

complex disease mapping and in the discovery of several genes simultaneously. The 

information about haplotype blocks boundaries may be used during LD mapping to 

localize the particular alleles [43]; on the other hand, the LD map itself may be predictive 

about the regions of high LD which are considered to be haplotype blocks. 
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1.3 Haplotype decomposition problem 

Certain molecular technologies [2] can perform haplotype sequencing (also called 

haplotyping) to obtain the genotype decomposition into haplotypes, but the cost of such 

operations is too high to allow their wide use. Most of the time, the information that 

molecular technologies (such as the locus-specific polymerase chain reaction or PCR 

[46]) can supply the researcher is SNP discovery and genotype sequencing. The 

computational methods inferring haplotypes out of the input genotype data offer 

attractive alternatives for performing successful haplotyping in terms of the labor, time 

expenses and monetary cost [47, 48]. 

The haplotyping problem (also called the haplotype inference or haplotype 

decomposition problem) can then be described [49, 50] as follows: given a set of n 

genotype vectors (sequences of 0, 1 or 2’s), produce a set of at most 2n distinct haplotype 

vectors, so that each genotype is associated with exactly 2 haplotypes. Decomposition of 

genotypes into haplotypes is considered to be valid if each heterogeneous (ambiguous) 

site decomposes into (0, 1) in a respective pair of haplotypes, and if homogeneous sites 

(labeled 0 / 1) resolve into (0,0) / (1,1), correspondingly, if certain assumptions are met. 

Restrictions imposed by assumptions are necessarily a part of the problem since the 

overall number of feasible solutions for any particular genotype is exponential (2k-1, 

where k is the number of ambiguous/heterogeneous sites). 

There are several widely used assumptions that are usually taken into 

consideration while resolving the haplotyping problem. Those that apply to genotype data 

not involving pedigree links most often include pure parsimony and perfect phylogeny 

[49, 50, 51]. The parsimonious principle (also called the pure parsimony assumption) 

states that the true solution tends to resolve the largest number of genotypes in a given 

set. This principle can also be translated into the criterion of achieving the minimum 

number of distinct haplotypes used in the solution [51]. This principle is partially 

supported by the fact that the actual number of haplotypes found in natural populations is 

considerably smaller than the number of combinatorially possible solutions to the 

haplotype inference problem. It is very popular also due to its biological grounds 

provided by the population genetics theory. Behind the second most widely used 

assumption of perfect phylogeny lies the concept of the coalescent, i.e., a rooted tree 
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(which itself is called a perfect phylogeny tree) that describes the evolutionary history 

represented by a set of resolved haplotypes [51, 52]. The coalescent model (or perfect 

phylogeny model) is justified by some molecular observations and is based on the no-

backward mutation and the infinite-site assumptions. The no-backward mutation implies 

that the mutation in any particular locus (site) only happened once in history. The 

infinite-site assumption states that the mutations are so sparse in the evolutionary history 

that at any given time frame there is only one mutation possible. Strictly speaking, the 

perfect phylogeny assumption does not apply to the infrequent haplotypes or when there 

is a possibility of recombination. More precisely, this assumption is considered to be 

realistic only within haplotype blocks. If the information on the haplotype block structure 

is not available, the effectiveness of these methods may be significantly decreased. 

 

1.4 Computational algorithms for the haplotyping and block partitioning 

Up until recently the methods for haplotyping were separated from the methods of 

haplotype block partitioning in the sense that long-range haplotypes have to be found 

prior to the haplotype block partitioning process, and vice versa: haplotype 

decomposition would often benefit from the knowledge of the block structure for the 

specific group of genotypes under study. Nevertheless, the advances made in both 

branches (haplotyping and block partitioning methods) have laid out a foundation for 

further improvements in the field and, thus, need to be discussed.  

 

1.4.1. Haplotyping methods 

Haplotyping methods can be applied to two types [53] of data: population (based 

on the collection of unrelated genotypes) and pedigree (based on the collection of 

genotypes related by family links).  

 

1.4.1.1 Population based methods of haplotyping 

There are basically two groups of haplotyping methods based on population 

genomic data: combinatorial and statistical. Most of the time these approaches assume 

that the input genotype data are given by a single block and there are no recombinations. 
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The input data consists of n individuals with an m-site genotype for each individual, 

Thus, this data can be represented as a nxm matrix with entries from the set {0, 1, 2}.  

One of the very first attempts in resolving the haplotyping problem was made by 

Clark [54]. This approach is implemented in algorithm called HAPINFERX. This method 

is very intuitive and simple. It is based on the above mentioned parsimonious principle 

which is aimed at finding the solution that resolves the largest number of genotypes in the 

input sample. Clark’s method uses the initial decomposition of genotypes whenever 

possible: if a genotype consists of at most one heterozygous site, then this genotype can 

be resolved without ambiguity into unique haplotypes. Otherwise a genotype is 

considered ambiguous (if it contains more than one heterozygous site). The main idea of 

Clark’s algorithm is to use available haplotypes to resolve the rest of the genotypes: if 

there is a valid haplotype which is compatible with some genotype, the other valid 

haplotype can be obtained by applying this current haplotype to the genotype (that is, 

separating out a haplotype from the genotype using existing compatible haplotype). 

Clark’s method uses the following simple rule: once there is an initial collection 

of valid haplotypes, it can be applied one-by-one to the unresolved genotypes to get 

compatible haplotypes (if there are any). Then the rule can be applied all over again until 

all genotypes are resolved, or only unresolvable genotypes are left.  

Obviously the simplicity of Clark’s algorithm trades off for limited applicability 

and a relatively high error rate. First of all, it cannot get started if there are no 

unambiguous genotypes available. Second, it cannot guarantee the resolvability of all the 

genotypes in the input. Third, the high error rate comes from the fact that haplotypes may 

be mistakenly inferred if a crossover product of two actual haplotypes is identical to 

another true haplotype. Moreover, the genotype decomposition may depend on the order 

in which haplotypes (and genotypes) are processed. Fourth, Clark’s method cannot 

reliably handle a large number of linked SNPs and it is vulnerable to violating Hardy-

Weinberg equilibrium
7
 (HWE) despite the fact that it is not explicitly based on this 

assumption.  

                                                      

7
 Hardy-Weinberg theorem states that in a large population genotypic frequencies will achieve and 

remain in a state of equilibrium after one generation of random mating and, thus, genotype frequencies can 

be computed from the allele frequencies [55]. 
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The next step toward inferring haplotypes from genotypes used a statistical 

approach developed by Excoffier and Slatkin [56]. They employed the Expectation-

Maximization (EM) algorithm for the successive calculation of haplotype frequencies. 

Their method is based on the assumption of the Hardy-Weinberg equilibrium (which 

affects the form of the likelihood function). In the expectation step the current values of 

the haplotype frequencies are used to calculate the probability of resolving each genotype 

(phase is unknown) into different pairs of haplotypes. Haplotype frequencies are 

computed until convergence is reached. In the final stage, the solution of genotypes is 

based on the maximum probability haplotype resolution for a particular genotype. Even 

though this algorithm performs better than the Clark’s algorithm, it has a lot of 

disadvantages. First, the algorithm starts by identifying all possible haplotypes for each 

specific genotype which is exponential in the number of heterozygous loci. The 

implementation of the algorithm thus becomes limited due to the need to store estimated 

haplotype frequencies for every possible haplotype in the sample. This increases the 

space and time complexity of the algorithm tremendously and leads to the fact that the 

algorithm cannot handle a large number of linked SNPs even though it seems to perform 

better for large samples of individuals. Another issue that makes this approach 

inconvenient is that the estimates typically depend on the starting point and therefore 

have a possibility of falling into a local maximum and not finding the true solution. Also, 

even though no a-priori assumption is made regarding the linkage equilibrium of the loci, 

the EM algorithm is most useful in the presence of linkage disequilibrium (i.e., assumes 

that the data is given as a single block) since otherwise equilibrium alleles would be 

randomly assigned to possible haplotypes (this is not necessarily a bad feature but it does 

create some restrictions).  

Statistical approaches were further enhanced by the introduction in 2001 of a new 

method by Stephens, Smith and Donnely [57], which is a Bayesian method based on 

Pseudo-Gibbs Sampling and is called PGS. Its implementation is known as the PHASE 

algorithm. In addition to the Hardy-Weinberd equilibrium, this method makes an 

assumption on the underlying coalescent model. This model assumes that all haplotypes 

can be arranged into a tree (called a phylogenetic tree) as though they have descended 

from one common ancestor through a series of single-site mutations. The coalescent 
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model affects the prior expectation involved into the model. In the purpose of 

overcoming the disadvantages of the EM algorithm (as another most recent predecessor) 

the authors of the PGS method developed an improved algorithm that allows them to 

reduce the number of possible haplotypes considered in the process. This feature makes 

the PGS method practical for large samples and a large number of loci. The accuracy of 

the PGS algorithm is similar to the EM algorithm with a slight improvement, but the PGS 

method has wider applicability. Another advantage is that this method is also known to 

be robust to departures from the HWE in data.  

Further improvement of the Bayesian methods of haplotyping is reflected in the 

paper by Niu, Qin, Xu and Liu [58] in which a new method (implemented as the  

HAPLOTYPER program) is developed using the Gibbs sampling with the addition of the 

two new techniques: Partition Legation (PL) and Prior Annealing (PA). The PL and PA 

techniques improve both the accuracy and capacity in comparison to the previously 

discussed methods. In particular prior annealing avoids falling into a local maximum. 

Due to the use of the PL technique, this method is called the PL method. One of the 

distinctive features of this approach is that the prior distribution of the haplotype 

frequencies is assumed to be Dirichlet, and no assumptions are imposed on the population 

evolutionary history. The PL method successfully treats missing data and is quite robust 

to the departure from HWE. Moreover, it is the fastest among other statistical methods 

and has the smallest error rate. 

Kimmel and Shamir in 2005 further explored solutions to the incomplete perfect 

phylogeny problem [59] where special attention is paid to missing data and developed the 

probabilistically based algorithm with an expected polynomial run time. Their algorithm 

has proven to quickly resolve genotype data with high rates of missing entries.  

The common feature for all of the combinatorial algorithms developed so far is 

that they are more superior to the statistical algorithms in terms of the time complexity. 

This advantage is hard to estimate exactly (since it is not always possible to estimate the 

time complexity of an algorithm based on convergence), but algorithm performance in 

terms of speed was evaluated in practice. The time complexity varies slightly among 

combinatorial methods, but is always polynomial in the input. This fact allows the use of 

these algorithms for a large number of individuals and SNPs. Among disadvantages one 
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can list the fact that their output does not carry any statistical information about the 

population haplotypes (like frequency). Most of these methods assume the Coalescent 

model (perfect phylogeny model). In general, the combinatorial methods showed better 

accuracy than the statistical methods.  

The combinatorial methods for haplotype resolution are represented by the 

following set of algorithms. In 2001 Gusfield [60] developed a linear programming 

algorithm for haplotype resolution. In this work the author analyses Clark’s inference rule 

and the parsimonious principle it is based on. The problem of maximal resolution 

(alternative formulation of the parsimonious principle where the set of haplotypes that 

would resolve maximal number of input genotypes is sought) is expressed by means of 

the directed graphs. The integer (linear) programming algorithm built for solving the 

maximal resolution problem is proposed and is proven to work efficiently on the 

simulated data. Gusfield expanded his research of the integer linear programming 

approach to the haplotyping problem based on pure parsimony and compared its accuracy 

to some other algorithms [61]. In this work he shows the proposed linear programming 

algorithm is able to resolve 80-90% of the genotypes correctly, but its efficiency on 

average is less than, for example, that of PHASE algorithm and, in addition, is highly 

dependent on the level of recombination in the data: the higher the recombination level 

the less accurate the solution. 

In 2002 Gusfield also developed a good, time-efficient algorithm [62]. Its 

asymptotic running time is O(nmα(n,m)), where n is the number of individuals, m is the 

number of SNPs and α(n,m) is the inverse ackerman function which is a very slowly 

increasing function and, thus, for all practical purposes can be treated as a constant. The 

algorithm is based on graphic matroid theory and perfect phylogeny. The algorithm 

efficiently finds one permitted solution and then in linear time determines if this solution 

is unique; otherwise, it also finds in linear time the implicit representation of all permitted 

solutions so that one could easily infer any particular solution in linear time. Although 

theoretically this algorithm is very efficient, it is very complicated and is not easy to 

implement. Moreover, there is no information available regarding the real data test results 

like accuracy.  



 16 

In an attempt to find a simpler algorithm than that of Gusfield to solve the PPH 

(Perfect Phylogeny Haplotype) problem, Eskin, Halperin and Karp developed a new 

algorithm [63] with asymptotic time O(nm
2
). This algorithm also takes a graph-theoretic 

approach (but different from Gusfield’s) and produces a simple linear size data structure 

which can be used to produce all possible solutions to the problem. Each such solution 

can be explicitly output in O(mn) time. In addition the authors extend their main 

algorithm to treat the infrequent haplotypes that do not exactly follow the perfect 

phylogeny model. The algorithm achieves very low error rate (possibly the lowest in the 

entire group of haplotyping algorithms), but assumes that the data is represented as a 

single block. In this first version of their algorithm, the authors do not attempt to 

incorporate block partitioning into their method. 

Another approach to the PPH problem was independently developed by Bafna et 

al. [64] by applying a graph-theoretic approach representing the problem in terms of 

connected components. The algorithm is simpler to implement than Gusfiled’s algorithm 

[62] and has the same time complexity as the algorithm by Eskin, Halperin and Karp, i.e., 

O(nm
2
). It determines whether there is a solution to the PPH problem and, similar to all 

the above combinatorial algorithms, produces a linear-space data structure to represent all 

of the solutions. The authors do not present any information regarding the real or 

simulated data testing results (like the error rate). This makes it hard to compare it to 

other methods.  

Another computational approach was developed by Wang and Xu [65]. They use 

the parsimonious principle implemented as the greedy branch-and-bound algorithm 

called HAPAR. Their heuristic algorithm makes wide use of the concept of coverage of a 

haplotype (number of genotypes the haplotype can possibly resolve) and achieves 

accuracy and time complexity comparable to other algorithms in the same group 

(PHASE, HAPINFERX, and HAPLOTYPER) and has slightly better accuracy for the large 

samples of data in the presence of the recombinations. The missing data is not 

incorporated into their model in any way. 

Wang, Zhang and Sheng [66] later developed the genetic algorithm GAHAP for 

haplotype resolution based on the parsimonious principle. The algorithm is heuristic in 

nature and incorporates the cardinality of the solution into the fitness function. The 
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accuracy provided by GAHAP is comparable to that of HAPAR (authors’ previous work) 

and has an improved running time for the large data sets (long sequences of SNPs as well 

as large samples). Like HAPAR this algorithm does not treat missing data and is mostly 

designed to perform haplotyping within known blocks.  

Another study was done on the different methods using a pure parsimony 

approach [67] where Lancia et al. proposed several methods. Their exact method is a new 

integer programming method that uses a polynomial number of variables and constraints. 

The proposed approximation algorithms are almost linear in the input size.  

An approximation algorithm to the optimal haplotype inference problem was also 

developed later in 2005 by Huang, Chao and Chen [68]. This study was based on 

maximum parsimony by trying to find the minimum set of haplotypes to resolve the input 

genotypes. The authors formulate the problem as an integer quadratic problem and 

propose an iterative semi-definite, programming-based approximation algorithm 

(SDPHapInfer program). The proposed algorithm compares in performance with other 

haplotyping algorithms like HAPAR, HAPLOTYPER and PHASE and is shown to have 

comparable error rates and time efficiency with these algorithms.  

The overall conclusion on the haplotype inference algorithms is that most 

performed equally well on short SNP sequences, where there is little possibility of 

recombinations. The best algorithm from this group, which performs well on long 

sequences of SNPs, was PHASE. For this reason it was selected to perform phasing of the 

data for the HapMap project [69, 70]. This algorithm, however, requires considerable 

time. 

 

1.4.1.2 Pedigree based methods of haplotyping 

In contrast to population based haplotyping methods, there are also a set of 

methods that take the pedigree data for the families of related genotypes as input. The 

known relations between genotypes certainly provide advantages in inferring haplotypes; 

namely, it is sometimes possible to unambiguously perform genotype resolution into 

haplotypes. On the other hand, pedigree data are very expensive to obtain and often not 

available. All of these methods are based on the criterion of the minimum number of 

recombinants between markers and on the Mendelian Law of inheritance. For this reason, 
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this set of methods is referred to as MRH (Minimum Recombinant Haplotyping) 

algorithms. It has been proven [71] that the problem of finding a minimum-recombinant 

haplotype configuration is, in general, NP-hard; but it is possible to develop algorithms 

with approximate results having good accuracy. Most recent achievements in this area are 

outlined below. 

One of the very first methods to be applied to the genotype pedigree data was 

proposed by Lin and Speed [72] in 1997. They proposed an algorithm for haplotype 

decomposition based on a Monte Carlo method. Haplotypes are generated according to 

the distribution of the joint haplotypes of individuals in a pedigree given their phenotype 

data. The goal of the algorithm is to find the set of haplotypes with maximum conditional 

probabilities. 

Another approach is described by Qian and Beckmann [71]. Their work 

represents a six-rule algorithm for the reconstruction of haplotypes in pedigrees. The 

algorithm does not require the data to satisfy the Hardy-Weinberg equilibrium. The 

algorithm starts by unambiguously resolving all possible loci according to the Mendelian 

Law of inheritance. A pedigree of any size is then haplotyped by the sequential and 

repeated application of a set of rules to each nuclear family (parents-offspring trio) until 

the successive repetition does not produce any additional results. The algorithm should be 

performed in both directions: from locus 1 to L, and from locus L to 1, since the results 

may depend on the direction of the analysis. The time complexity of the algorithm is 

O(J
2
L
3
), where J is the size of the family and L is the number of loci. This algorithm was 

shown to perform very well for small pedigrees but becomes very slow for the data of 

even moderate sizes.  

The next algorithm was developed by Li and Jiang [73, 74]. This is an iterative 

rule-based algorithm based on blocks of consecutive resolved marker loci (and, thus, is 

called the block-extension algorithm). The authors also present a polynomial time exact 

algorithm for haplotype reconstruction with zero-recombinant assumption. The algorithm 

utilizes the system of linear equations over the cyclic group Z2 and solves it using the 

method of Gaussian elimination. Similar to the Qian and Beckman’s algorithm, the 

block-extension algorithm starts by unambiguously resolving all possible loci using 

Mendelian Law of inheritance. Then it uses the fact that the genomic DNA can be 



 19 

partitioned into long blocks with no or very few recombinants per block. Moreover, the 

algorithm is also based on the experimental observation that the siblings tend to share 

haplotype blocks that exist in their parents. The algorithm then uses the longest block in a 

pedigree to resolve more loci by extending the block. Given any block in the children the 

algorithm then uses it to resolve loci in parents. Experimental results demonstrated that 

this algorithm is much more efficient than that of Qian and Beckman since the loci can be 

resolved faster when considered together in blocks. The authors mention that their 

algorithm ran less than 1 minute whereas the Qian and Beckman’s algorithm required 3 

to 4 hours for processing the same data. Theoretical time complexity is O(dmn), where d 

is the largest number of children in a nuclear family, n is the size of the pedigree, and m 

is the number of loci. The algorithm was able to recover the true haplotypes in more than 

90% of the cases but in general had less accuracy than the Qian and Beckman’s due to 

the exhaustive search capabilities of the later algorithm.  

The same authors (Li and Jiang) together with Doi later developed two new 

dynamic programming algorithms for haplotyping in pedigrees with no mating loops 

[75]. The first algorithm (locus-based) performs dynamic programming on the members 

of the input pedigree and is efficient when the number of marker loci is bounded by a 

small constant. The second algorithm (member-based) performs dynamic programming 

on the marker loci and is efficient when the size of the pedigree is small. The key to the 

effectiveness of both algorithms is that, even though the MRH problem is NP-hard, it is 

possible to construct a polynomial time algorithm when one of the parameters is bounded 

by a constant. The time complexity of the first algorithm is O(nm02
3mo

), where m0 is the 

number of heterozygous loci, and the time complexity of the second algorithm is 

O(nm2
4n
). It was also shown that, in practice, the locus-based algorithm runs reasonably 

fast when m0 ≤ 8, and the member-based algorithm is efficient when n ≤ 6. The first 

algorithm was tested on real and simulated data sets, but no report was provided with 

regard to its error rate. The computer program called PedPhase was created [76] to 

implement the algorithms [73, 74, 75] proposed by Li, Jiang and Doi described above. 

Tapadar, Ghosh and Majumder [77] used a genetic algorithm approach for 

haplotyping in pedigrees, as implemented in the HAPLOPED program. This is a heuristic 

algorithm that uses an optimization criterion based on the minimum number of 
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recombinations over possible haplotype resolutions of members of a pedigree. The 

authors develop a set of elaborate rules for several cases of particular haplotype 

decompositions. The fitness function for each individual haplotype is constructed in such 

a way as to express the reverse relationship with the number of recombinants. The 

algorithm was tested successfully on several sets of data. Limitation of this algorithm 

include no missing data treatment and the fact that the optimization criteria used is related 

to the requirement of the high linkage disequilibrium in the data, which is only valid 

within haplotype blocks. Also, the input requirement for the algorithm is the number of 

candidate haplotypes N to be considered in each generation. For small N the algorithm 

runs fast but is not guaranteed to converge to the global minimum; on the other hand, for 

large N the convergence is guaranteed but the running time increases considerably.  

The popularity of the pedigree-based methods of haplotypes is limited due to the 

rare availability of pedigree data. 

 

1.4.2 Haplotype block partitioning methods 

The haplotype block partitioning problem in general is considered to be NP-

complete [11], but approximate solutions may have polynomial time complexity. Such 

approximate solutons were developed with the use of different techniques, e.g., studying 

the haplotype diversity and a set of representative SNPs [2], investigation of the degree of 

recombination between pairs of adjacent markers, i.e., searching for the patterns of 

linkage disequilibrium (LD-based methods) [15], Hidden Markov Models (HMM) [6], 

dynamic programming [9, 10, 11, 37], and the Minimum Description Length (MDL) 

method. Also, there is a greedy algorithm that incorporates several block definitions [78]. 

Almost all of these methods require the input data to be resolved haplotypes and produce 

haplotype block partitioning with the description of common haplotypes in each block.  

One of the first attempts to partition the human genome onto blocks of limited 

haplotype diversity was made by Patil et al. in 2001 [2]. The authors investigated their 

featured data represented by haploid copies of chromosome 21 isolated in rodent-human 

somatic cell hybrids (this process made possible to produce whole length haplotypes). 

The data that they used were large-scale since the length of the SNP sequences was 

24,047 SNPs. The block was defined as valid if at least 80% of the input chromosomes 
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were haplotypes, which were represented more than once in this segment. During the 

study it was observed that to uniquely identify the haplotype it may only be necessary to 

consider a very small fraction of SNPs, which are called representative SNPs. In order to 

find the complete block structure, the authors aimed at minimizing the total number of 

representative SNPs across all block. To achieve this they used the following greedy 

optimization algorithm: first, all possible overlapping blocks of length one SNP or larger 

were considered. Segments that did not satisfy the block definition were excluded from 

further consideration. Among those remaining overlapping blocks only one was selected 

with the maximum ratio of total SNPs in the block to the minimal number of SNPs 

required to uniquely distinguish haplotypes represented more than once in the block 

(common haplotypes). The rest of the overlapping blocks were discarded. The process 

then continued until the set of adjacent blocks covering the entire data was obtained.  In 

the sample of 20 chromosomes, a maximum of ten common haplotypes per block were 

obtained as a result of the algorithm. The algorithm partitions the entire data set of length 

24,047 common SNPs into 4135 blocks of SNPs. This study remains a benchmark for the 

subsequent studies performed on the same data. 

The next significant achievement in the area of block partitioning was made by 

Gabriel et al. [15] in 2002. In their study, the authors applied bi-allelic measure of 

linkage disequilibrium D� to the pairs of markers to investigate the degree of 

recombination between them. The confidence bounds on D' [22] were studied: a pair of 

markers was said to be in “strong LD” if the one-sided upper 95% confidence bound on 

D� was 0.98 and the lower bound was above 0.7. Otherwise, the strong evidence for 

historical recombination was defined to be present for a pair with the upper confidence 

bound on D� less than 0.9. The distribution of D� values across the studied regions have 

revealed the clusters of markers with minimal pairwise evidence of historical 

recombination. The haplotype blocks were then defined as regions within which only a 

very small fraction (less than 5%) of pairwise D' values had shown evidence of historical 

recombination. The authors studied genotype data on samples from four populations: 

Yoruba, African-American, European and Asian. They determined that, even though their 

definition of a block was based on recombination, the haplotype blocks revealed, as a 

result of the study, exhibited very low haplotype diversity (3-5 common haplotypes per 
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block). The method for haplotype block partitioning proposed by Gabriel et al. is 

distinguished among other methods by the fact that it doesn’t require completely resolved 

haplotypes as an input to produce reliable results (even though it is desirable). However, 

what is required in this case is sufficiently large samples of genotypes in order to produce 

dependable values of D�. The shortcoming of this method is that the use of D� as a valid 

measure of linkage disequilibrium for the multi-locus regions is highly arguable, since it 

may not contain enough information to reveal the long-range patterns of linkage 

disequilibrium [79].   

The HMM (Hidden Markov Model) method developed by Daly et al. [6] is based 

on the idea that every position along a chromosome can be assigned to one of the four 

ancestral long-range haplotypes. Then the model estimates the maximum-likelihood 

values (using the EM algorithm) of the historical recombination frequency
8
 (θ) between 

each pair of markers.  

The block structure can then be derived by selecting the boundaries (markers) 

with a large recombination rate (above 4%). Once the haplotype blocks are defined the 

subset of SNPs that uniquely distinguish the common (85-90%) haplotypes in each block 

are determined (although it is not clear how exactly the authors determined the 

representative SNPs in each block, namely, which additional method they used for this 

purpose). The obvious weakness of the algorithm is the limit imposed on the maximum 

number of haplotypes (4) in each block. On the other hand, this may not be a big 

problem, since empirical studies have shown that four is the typical average number 

specifying the haplotype block diversity. The advantage of the model is that it calculates 

the strength of the block boundary (in the form of the recombination rate between end-

beginning markers). In addition, the model makes a very realistic assumption about non-

zero recombination rates even within blocks (since the more strict assumption of no 

recombination in blocks may be too strict in reality).   

The dynamic programming method [11] developed by Zhang et al. incorporates 

the parsimony principle in most of its variations. It is based on the minimization of the 

                                                      

8
 Recombination rate between two loci on the same chromosome corresponds to the probability 

that they end up on different copies of the chromosome; this is the same as the probability that a parent will 

produce a recombinant (with mixed haplotypes) offspring at a given position [55, 80]. 
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number of representative SNPs (SNPs that can distinguish (cover) 80 to 90% of the 

haplotypes in a block) within each block, as well as on minimizing the total number of 

blocks in the partition.  

The following notation is assumed: f(Bi) is the minimum number of SNPs 

required to uniquely distinguish at least α percent (called the coverage) of the 

unambiguous haplotypes in the i
th
 block Bi. According to the method, the optimal 

partition is the one minimizing the total number of representative SNPs required to 

distinguish at least α percent of unambiguous haplotypes in each block for the entire 

chromosome, ∑ =

I

i iBf
1

)( , where I is the number of blocks in the partitioning (unknown 

in advance). Given K haplotypes and a sequence of n consecutive SNPs, ri, i = 1, 2, …, n 

is a K-dimensional vector with the k
th
 component ri(k) = 0, 1, 2 being the allele of the kth 

haplotype at the i
th
 SNP locus: 0 stands for missing data, 1 and 2 represent the two alleles. 

Thus, a block is defined as ri, …, rj. Also, two haplotypes are said to be compatible if the 

alleles are the same for the two haplotypes at the loci with no missing data. A haplotype 

in the block is ambiguous if it is compatible with two other haplotypes that are 

themselves incompatible. Thus, the unambiguous haplotypes can be classified into 

disjoint groups. All haplotypes in the same group will be treated as identical. The 

Boolean function block(ri, …, rj) = 1 if at least α percent of the unambiguous haplotypes 

in the block are represented more than once. This condition should be satisfied in the 

final partition.    

If SNj is defined as the number of representative SNPs for the optimal block 

partition of the first j SNPs, r1, r2, … , rj and SN0 = 0, then according to the dynamic 

programming theory,  

}1),...,(1),,...,(min{ 1 =≤≤+=
− jijiij rrblockandjiifrrfSNSN .          (1.1) 

It may, in fact, happen that there are several block partitions with the same 

minimum number of representative SNPs. According to the algorithm, the best partition 

will be the one with the minimum number of blocks. Let Ci denote the minimum number 

of blocks of all the block partitions requiring SNj representative SNPs in the first j SNPs 

(C0 = 0). Dynamic programming gives the following recursive equation so that the 

minimum number Cn of blocks in the partition can be computed: 
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}),...,(1),...,(1,1min{ 11 jiijjiij rrfSNSNandrrblockandjiifCC +==≤≤+=
−−

                                 (1.2) 

The authors also prove that the break points of the blocks follow a Poisson 

process and show that the overall results are statistically significant. The good feature of 

this algorithm is that it can be easily adapted to different measures of haplotype quality in 

a block (like, for example, the algorithm can be based on the haplotype diversity) which 

depends on the purpose of specific application and, thus, there is a possibility for further 

improvement. The authors also investigate the influence of the coverage on the block 

partition and have found that the number of blocks tends to increase with the increase of 

the coverage. The simplicity of formulation and high effectiveness have made this 

method highly popular and allowed it to be adapted by subsequent studies [9, 10, 79]. 

In particular, a dynamic algorithm based on Zhang’s was developed by Kimmel et 

al. [9, 10]. It used a different optimization criterion, namely, the minimization of the total 

number of distinct haplotypes that are observed in all blocks. This algorithm also 

addresses the problem of treating missing data and is based on a probabilistic model of 

the haplotype block data. This allows the computation of an optimal score of a block with 

high probability. The notation of the model is the following: T
S
i , 0 ≤ i ≤ m, is the 

minimum number of blocks in the submatrix of the input matrix induced on the rows of 

subset s and the columns 1,…,i, where T
S
0 = 0; for a pair of columns i and j, let B

S
ij be the 

score of the block induced by the rows in s and the columns in {i, … ,j}; also Pi, 0 ≤ i ≤ 

n, is defined to be the minimum number of block haplotypes in any row partition of a 

submatrix induced by columns {1, … ,i}. Two dynamic programming equations in this 

case are: 

S

ji

S

j
ij

S

i BTT +=
−≤≤ 11

min                 (1.3) 

and },...,{

1
1
min ij

mj
ij

i TPP +=
−

≤≤
.                (1.4) 

In addition to the highly popular dynamic algorithm in 2003, Zhang proposed a 

greedy algorithm for haplotype block partitioning called HaploBlockFinder [78]. Zhang’s 

greedy algorithm is flexible to the definition of a block. It actually incorporates a set of 

block definitions: minimal linkage disequilibrium (using D�), haplotype coverage, and no 

historical recombinations. Any of these definitions can be used in the main body of the 
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algorithm, which is trying to maximize the average number of SNPs within a block. The 

search is performed in such a way as to find the largest block in the region that satisfies 

the selected block definition. After at least one such block is found the procedure is 

repeated for the rest of the subregions. In addition, the algorithm uses tag SNPs to 

uniquely distinguish common haplotypes. The authors claim, that despite its suboptimal 

performance, the effectiveness of this algorithm is extremely high when compared to the 

originally proposed dynamic algorithm. The greedy algorithm is able to achieve optimal 

solutions in most cases, and it runs about 10 times faster than the dynamic algorithm.  

The next method (Minimum Description Length) [14] seems to be a significant 

improvement over the other methods in terms of the quality of the model. The primary 

advantage of this method lies in the fact that in addition to producing the block 

partitioning it also finds the probability of a block boundary for each pair of adjacent 

markers, which provides a measure for evaluating the significance of each block 

boundary. The MDL method decides among different models on the basis of the 

minimum of the following function, which is called description length for the data and 

the model and is expressed by: 

L(B,D) = L(B) + L(D|B),               (1.5) 

where L(B) is the description of the model and L(D|B) is the description of the 

data D given the model B.  

The authors have tested their method on real and simulated data. The results on 

the synthetic data show that the method finds the block structure used to generate the data 

and that the method is very robust against noise. Also the MDL method was applied to 

the same set of data used in Daly et al. (the HMM method), which showed good 

agreement with those results with the exception of a few minor differences. When noise 

was added to these data, the block boundaries exhibit very good stability. Another set of 

the real data was a set of genotypes from the Finland population. In this case, the 

haplotype blocks did not differ in different Finland subpopulations, which may refer to 

the presence of a limited set of founder chromosomes shared by all these populations. 

The overall time complexity of the method is O(np
3
) for n observations over p markers. 
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1.4.3 Effective haplotyping and the structure of linkage disequilibrium  

The problems of haplotype inference and block partitioning are both very 

important and, in addition, very interdependent. From a more general point of view, the 

effective haplotyping of long SNP sequences largely relies on the knowledge of linkage 

disequilibrium patterns across the studied genome region since haplotype inference is 

much easier to model within regions of high LD (or blocks). In turn, the determination of 

the patterns of LD which is directly related to the block partitioning is more powerful 

when the phased haplotype information is available. This relationship between the two 

problems is illustrated in Fig.1.2.  

In particular, most of the models developed on block partitioning were using 

already resolved haplotypes as an input [6, 11, 13, 14]. Also, the models on haplotype 

inference, which didn’t take into account linkage disequilibrium patterns, weren’t 

performing well on the long sequences of SNPs, or worked extremely slowly. 

 

 

 

 

 

 
Figure 1.2 Relationship between haplotyping problem and linkage disequilibrium. 

 

Recent studies offered new approaches to haplotyping long SNP sequences,  

where the models include recombination or LD information suggested by the data. One 

group of such methods is characterized by implicit use of the LD patterns for haplotype 

inference. Sheet and Stephens developed a haplotyping algorithm called fastPHASE [81], 

which uses a Hidden Markov Model to capture patterns of LD across the studied region. 

The model assumes local clustering of haplotypes into groups. The cluster membership is 

allowed to be continuously changed over the length of the entire region. Although this 

algorithm does not produce the patterns of LD, it implicitly incorporates that information. 

The algorithm performed extremely well when compared to other haplotyping methods 

and was able to quickly process thousands of genotypes at hundreds of thousands of 

SNPs. Another algorithm that accounts for linkage disequilibrium was developed by Sun, 
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LD structure 
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Greenwood and Neal [82]. This method is based on a Bayesian Hidden Markov Model 

and attempts to capture the LD pattern of ancestral haplotypes. It showed very good 

performance on relatively long SNP sequences compared to other haplotyping methods. 

Although this algorithm does not actually produce the block structure, it outputs the 

spacial distribution of recombination hotspots, so it is easy to see where the block 

boundaries might be. 

Another group of methods for effective haplotyping of long SNP sequences is 

described as “block-based” methods, which are able to simultaneously produce both 

haplotype resolution and block structure. These methods use fixed block boundaries to 

perform local haplotype inference. The advantage of these methods is that they also 

capture the interrelation between the LD to perform the effective haplotype phasing. As 

the previous group of methods that implicitly use LD information, this group of methods 

provides improved accuracy and speed in haplotype prediction over the long SNP 

sequences when compared to the other haplotyping methods. In addition, they explicitly 

determine the block structure over the studied SNP region.  

The literature search for the simultaneous block partitioning and haplotype 

resolution turned up three main algorithms [83, 84, 85] that allowed such a task to be 

performed and, in particular, they all provided better accuracy in the haplotype phasing 

than any of the previous haplotyping approaches. All of these algorithms use the 

Expectation-Maximization algorithm in some way. The first algorithm, developed by 

Eskin et al. [83] and later implemented as HAP software [86], is based on a relaxed 

version of perfect phylogeny, which is assumed within each block. The authors point out 

that perfect phylogeny is not a valid assumption for real data sets, even within a single 

block. The algorithm first finds the block partition from the genotype data using a sliding 

window of fixed length and then performs the local EM-based haplotype resolution 

within each such candidate block. The blocks with more than 5 common haplotypes are 

then discarded. After this process, the haplotype resolution is obtained and the block 

partitioning is performed again on the resolved haplotypes using a dynamic programming 

algorithm similar to a previously developed one [11], which is designed to minimize the 

number of representative SNPs within each block. The missing data are resolved based 

on the local EM algorithm: the most likely SNP sequence is chosen to replace the missing 
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data. Even though the algorithm showed results on haplotype resolution better than those 

from other haplotyping methods [57], there are obvious limitations of this method. First, 

the number of common haplotypes are restricted to 5, as the most usual bound. Second, 

the block length is also limited by some maximally allowed length (up to 100 sites), 

which may contradict real data. As was recently discovered [87, 88], there are 

recombination “hot” and “cold” spots, i.e., an unevenly distributed linkage disequilibrium 

across the genome; this indicates that some blocks may in fact be quite long. Third, the 

main part of the algorithm results in a block partition, together with the list of haplotypes 

found in each block, from the entire data set and not the resolved full-length haplotypes. 

To obtain the full-length resolutions for each individual genotype, an additional post-

processing step is then undertaken. The tiling of consecutive haplotype block patterns 

(inter-block transitions) is done using a heuristic that is not a part of the main algorithm. 

Moreover, as can be seen from the above description, the processes of the haplotyping 

and block partitioning are not exactly joined into a single model and, thus, are effectively 

separate methods.  

The second algorithm for performing simultaneous block partitioning and 

haplotyping resolution was developed by Greenspan and Geiger [85], and it resulted in 

the HaploBlock software. The underlying model is based on a Bayesian Network and the 

MDL (maximum description length) principle to obtain, respectively, the haplotype 

resolution and the optimal block structure. These two methods are nevertheless joined 

together into a single model in the sense that the block partitioning parameters are part of 

the Bayesian Network. Among other advantages is that this method incorporates the 

inter-block transitions into the main model and no post-processing step is needed to 

obtain the full-length haplotypes. This algorithm has provided very good results when 

compared to other haplotyping algorithms [54, 56, 57, 58], and it has also allowed greater 

variety within each block than the algorithm by Eskin et al. described above.  

The third algorithm, called GERBIL, developed by Kimmel and Shamir [84] is the 

best so far in terms of speed and accuracy. Similar to the HaploBlock, this algorithm is 

designed to maximize the overall likelihood of the data given the model parameters and 

also uses the EM approach but, in addition, introduces a new haplotype generating model. 

The algorithm exhibits simultaneous haplotyping and block partitioning that together lead 
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to the maximization of the likelihood function. Despite having the best results when 

compared to those from Eskin et al. and the HaploBlock algorithm, this method still has 

some disadvantages. First, the number of common haplotypes within each block is 

restricted even though rare haplotypes are allowed in the model. Second, the missing data 

are resolved heuristically and are not the part of the model. Third, similar to the results 

from Eskin et al., the model produces a sequence of blocks together with their respective 

haplotype patterns and not full-length haplotypes. The inter-block transitions are 

performed as an additional step after the main algorithm is completed.  

 

1.5 Goals of this dissertation 

In light of the results of the above studies, this dissertation intends to overcome 

most of the deficiencies emphasized in the previous methods and to provide new valuable 

features to the solution of haplotyping and block partitioning problems. Specifically, it 

aims at achieving the following goals: development of a new algorithm that combines 

haplotype inference and block partitioning in a single model, adequate treatment of 

missing data, the use of the multi-locus LD measure for block identification, posing no 

restriction on the size of a block, development of the measure of strength for block 

boundaries, and also investigation of ways to apply the developed method to finding 

haplotype resolution and block structures in mixed population samples. 

Despite the great advances in efficient haplotyping and, in particular, in the area 

of simultaneous haplotyping and block partitioning, the current situation still leaves room 

for further improvement. In particular, most of the existing “block-based” methods of 

haplotype inference do not achieve truly simultaneous solutions to the two problems of 

haplotype resolution and block partitioning. These problems are often dealt with 

separately even though the final solution does result in the resolved haplotypes and the 

block structure. The first objective of this dissertation is to develop a new, fast, and 

accurate algorithm that results in obtaining haplotype resolution and the block structure 

combined in a single model. The method used in this dissertation is a genetic algorithm. 

The iterative process represented by this kind of algorithm should express the 

interrelation between the haplotype decompositions and block structure in the sample 

under study.  The outcome of the algorithm should not only include the block structure in 
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the form of block boundaries and lists of patterns within each block, but also by the set of 

full-length haplotypes, so that no post-processing of the solution is needed. 

One of the biggest problems for algorithms in the area of haplotyping and block 

partitioning is how to treat missing data. Real genotype data is often incomplete and 

adequate evaluation of missing data is an extremely valuable attribute. Most of the 

existing algorithms perform the preprocessing of the missing data as a completely 

separate operation not related to the model itself. This problem motivates the second 

objective of this dissertation, that is, to create a model such that the missing data would 

be part of it and would not require separate treatment. The algorithm has to incorporate 

missing data by searching for the optimal way to replace them, which would maximize 

the probability of the solution given the data. 

The observed relationship between linkage disequilibrium and the haplotype 

blocks has made the LD-based definition of the haplotype blocks more popular. 

Appropriate measures of linkage disequilibrium among loci of a block can be considered 

as a measure of the strength of the block and, when its value is low, also provides the 

limited diversity within a block. Existing methods of block partitioning are often based 

on the alternative definitions of haplotype blocks or, even if they use a LD-based 

approach, it is not truly multi-locus and, therefore, may not contain enough information 

on multi-locus patterns. The third objective of the dissertation is to apply the recently 

developed new multi-locus measure of linkage disequilibrium NED (normalized entropy 

difference) to the block identification process and investigate the extent of its possible 

use.  

The restriction of the length of a block is often a problem in the block partitioning 

algorithms. A lot of studies use the 100-position as the upper bound on the length of a 

block since most of the found blocks fit this limit. Due to the possibility of the existence 

of longer blocks, no restriction on the block size is always a valuable feature in the block 

partitioning algorithm. Therefore, the fourth objective of this dissertation is to develop an 

algorithm that would pose no restriction on the size of a block. The no-restriction-on-

block-length requirement would open a valuable possibility to investigate the occurrence 

of long-range blocks in the real data. 



 31 

The block structure of a genome is a very complicated concept in the sense that it 

can hardly be thought of as something rigid. Even though its existence was justified by a 

number of studies, the block structure always depends on the particular sample of 

genotypes; and the output produced by different algorithms often varies in the block 

boundaries. Thus, the exact block structure is very hard to predict. Rather, the block 

boundaries should be estimated with a probability or score to give an idea of how likely 

they are to exist at some specific locus. The fifth objective of the dissertation is to 

provide this kind of measure for the immediate left side of each SNP position.  

The haplotype inference and block partitioning problems may become more 

complicated when dealing with mixed samples from different populations due to possible 

differences in block structures and the collections of haplotypes among different 

populations. The sixth goal of the dissertation is to investigate ways to apply the 

developed algorithm for haplotyping and block partitioning to mixed population samples 

with unknown population separation in order to infer more adequate haplotype 

resolutions and block structures.   
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Chapter 2 

Assumptions and underlying concepts of the proposed method 

2.1 Pure parsimony 

There are two basic assumptions that define the framework of the proposed 

approach. The first is the principle of pure parsimony, which is a widely-used, 

empirically supported idea. The parsimonious principle aims to minimize the number of 

distinct haplotypes for resolving the input genotypes. In the proposed genetic algorithm, 

the parsimonious principle is realized in several aspects. First, the fitness function for 

each haplotype patterns within any particular block is constructed in such a way as to 

reflect the possibility of applying the pattern to any genotype from a sample. A greater 

value of the fitness function would stand, at least most of the time, for the greater number 

of genotypes, to which this pattern can be applied. Second, the parsimonious principle is 

expressed in the criteria used to select the best solution (in the form of a haplotype 

decomposition and block structure): the minimum number of distinct whole-length 

haplotypes and the minimum total number of common patterns across all blocks.  

2.2 Block identification criteria 

The second assumption is represented by the operational description of a block, 

based on the LD-based block identification criterion. Here it is assumed that a block is a 

sequence of genetic markers (SNPs), which exhibits low haplotype diversity and a high 

LD measure. It should be noted that regions with high LD tend to have a limited 

haplotype diversity [7]. Haplotype diversity, in turn, is represented by a number of 

common (covering more than 80% of the data) haplotype patterns in the current block. 

There have been several measures used to evaluate the degree of linkage 

disequilibrium (also called allelic association). The most popular are r
2
 and D′′′′ [79], 

which are pair-wise LD measures. They are calculated for two bi-allelic loci, each having 

alleles 1 and 2, as: 
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Here pij denotes the frequency of haplotype (i,j) and pi•, p•j denote marginal frequencies 

of alleles i and j at loci 1 and 2, respectively. 

The obvious deficiency of these measures is that they are limited to two loci. 

Several approaches have been developed to amend this deficiency, but most either do not 

describe multilocus LD directly [89, 90] or are computationally inefficient [91]. Recently 

there has been one particular LD measure proposed that overcomes even this limitation 

[7]. It is called the Normalized Entropy Difference ε (NED) [7] and is based on the 

concept of entropy. A sequence of m bi-allelic loci can be seen as a system with the 

possible haplotypes as its states. This sequence can assume 2
m
 states (haplotypes) 

mi

m

ii lll }1,0{),...,,( 21 ∈  of which only t are present. The entropy is used to measure the non-

order of the loci sequence [7]: 
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log , where pi denotes the frequency of haplotype i.      (2.3) 

Under the hypothesis of linkage equilibrium (no stochastic dependence among 

loci), pi can be expressed as the product of marginal allele frequencies at all the loci [7]:  
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Here ak
i
 denotes the allele of the k

th
 SNP position (k∈∈∈∈{1,…,m}) at haplotype i, p(k) 

denotes the frequency of allele 0 at the k
th
 SNP, and 1{x} is equal to 1 if condition x is true 

and 0 otherwise. Then the entropy in the equilibrium case is specified as: 
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The computational complexity of SE can be greatly reduced by using a property of 

the joint entropy of m independent systems. Since in the equilibrium case the joint 

entropy of m independent  loci (systems) can be represented as the sum of m single-

system entropies of each locus (SNP), then SE can simply be calculated as  
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where ))1log()1(log( )()()()( kkkkk ppppS −−+−=                (2.7) 

Thus, Sk is an entropy of the k
th
 SNP. 

This way the running time for computing SE for a single block is reduced from 

O(2
m
) to O(m). 

The deviation from the equilibrium state (limited number of present haplotypes 

and differing frequencies than expected under equilibrium) represents information about 

the structure of the system. Deviations lead to the decreased value of SB compared to SE. 

The difference  

BE SSS −=∆                       (2.8) 

is then a measure of the sequence’s deviation from the linkage equilibrium state. To 

allow for comparison between different sets of loci, ∆∆∆∆S is scaled (normalized) by SE and 

denoted by εεεε [7]: 
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This Normalized Entropy Difference is going to be used throughout the process of 

block partitioning in order to detect valid blocks. 

It is also possible to assess the significance of this LD coefficient. It has been 

shown [7] that 2

)1(2
~2

+−
∆

mmSn χ approximately holds, where n is a sample size and m is 

the length of the SNP sequence (block). This means that the statistic 2n∆∆∆∆S can be used to 

test the significance of the deviation of the system from its linkage equilibrium within 

any particular block. 

It should be pointed out that the NED criterion used for block identification has 

certain limitations. Namely, the asymptotic distribution of its value usually works best for 

the blocks not exceeding length 8-10 (depending on the number of genotypes in a 

sample); for longer sequences the NED becomes very insignificant. Thus, it becomes 

impossible to justify formation of blocks longer than 10 SNPs using the NED criterion.  

Fig. 2.1 demonstrates this effect in an artificial example where the entropies were 

calculated using the natural logarithm and were based on the equal frequencies of the two 

alleles for each site and equal frequencies of the haplotype patterns within block; sample 

size (number of genotypes) was taken to be 50. The figure illustrates that the p-values 
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increase after a certain threshold (in this case it is 5) of a block while logic suggests that 

they continue to decrease. The increase leads to the fact that any block exceeding 8 

positions becomes insignificant from the point of view of p-values. To amend this 

deficiency, another block identification criterion is used in conjunction with the NED 

measure. This additional criterion is called coverage of the common patterns: 4 or 5 

patterns with the highest frequencies within every block are assessed on their coverage of 

the data. The number of the most frequent patterns (4 or 5) is fixed in advance, but as 

studies show [6, 84] a greater number of common patterns is not practical. The block is 

considered to be valid for the 80% threshold.  

 

Figure 2.1 Relationship among p-value, number of patterns in a block and the 

length of a block. 
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2.3 Block-extension algorithm 

The haplotype blocks are produced by a block-extension algorithm, which is 

based on the fact that blocks are usually quite long [6, 15] and is implemented by 

sequentially combining smaller-size blocks into the bigger ones. 

This is a greedy algorithm which incorporates the idea similar to one in the 

hierarchical clustering: initially every single position (SNP) is considered to be a block; 

then, at each iteration, pairs of blocks merge into longer blocks if a specific criterion is 

met. The block-extension algorithm can be used with any meaningful block identification 

criterion that would allow equivalent comparison for the blocks of different lengths.  

The process can be described as follows: some criterion or LD measure (like the 

Normalized Entropy Difference described above) is calculated and its significance (or 

threshold value) is assessed for every new block composed of every pair of consecutive 

blocks. If any newly evaluated block exhibits a sufficient degree of LD, its formation by 

merging two respective smaller size blocks is justified. Overlapping blocks are also 

considered, and their strength is compared in order to form the strongest block out of 

several consecutive overlapping blocks. This idea is implemented as follows: if there are 

5 consecutive initial blocks b1 , b2 , b3 , b4 , b5, consider, first, the possible new blocks: 

b12= b1Ub2, b23= b2Ub3. Then select the one with the highest LD. If LD of b12 is greater, 

then block b12 is created. If LD of b23 wins, compare it with those of b34 and create b23 

only if it still wins; otherwise, if b34 wins, compare b34 to b45 etc.  

 

 

 

 

 

 

 

 

 

 

Figure 2.2 Block-extension algorithm represented as a set of binary trees. 
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 When the end of the DNA segment is reached, start over from the beginning and 

repeat the process with the new set of formed blocks. The entire procedure is repeated 

until merging is no longer efficient, i.e., the formation of longer blocks does not lead to 

the significant LD in any of the proposed merges. 

Thus, the block-extension algorithm produces a set of binary trees, where each 

tree represents a particular block and the leaves of each tree are single SNPs (see Fig. 

2.2). At each level of a tree, some pairs of the blocks (nodes) from the previous levels are 

merged into the new upper-level blocks (nodes).   

The block-extension algorithm can be proved to solve the following optimization 

problem under a certain condition:  

For the given haplotype decomposition find the block structure that maximizes the 

average linkage disequilibrium LD over all blocks, i.e. 

||
max 1

B

LB
B

b

b∑
=            (2.10) 

Where |B| is the number of blocks in the block structure, LDb is the linkage 

disequilibrium for the b
th
 block and LD has the following property (*): if S1 and S2 are 

the sequences of consecutive SNP’s such that 21 SS ⊆ , then  LD(S1) ≥  LD(S2). 

 

Proof: 

Consider the true block partitioning and the block partitioning obtained as a result 

of the block-extension algorithm. Starting from the left end, find the first non-matching 

boundary for the two partitionings: 

   b1o    b2o 
||-----------------------||-------------------------------- ….               Optimal  

 

        b1c          b2c 

||------------------------------------||-------------------- …  Computed 

 

Let the two adjaicent blocks at this non-matching block boundary be b1o and b2o 

for the optimal partitioning and b1c, b2c for the partitioning computed by the block-

extension algorithm. Consider the case when the boundary of the optimal partitioning 
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between the two blocks lo occur to the left of the boundary of the computed partitioning 

lc.  

 

                                lo                     lc 
||-----------------------||------------|-------------------- ….             Optimal    

      b
1
   b

2
   b

3
              

||-----------------------|------------||-------------------- …  Computed 

 

Since block b1c is longer than b1o, at some level during the algorithm block b
1
 

immediately to the left of the boundary lo was merged to block b
2
 immediately to the 

right of the same boundary. This merge occurred due to the fact that LD(b
1
 U b

2
) > LD(b

2
 

U b
3
). 

Now compare the sum of LD’s for the 2 blocks from the optimal partitioning (b1o 

and b2o) and the sum of LD’s for the blocks b1oUb
2
 (b1o merged with b

2
) and  b2o\ b

2
 

(block b2o without segment b
2
):  

A1 = LD(b1o) + LD(b2o)                       (2.11) 

A2 = LD(b1oUb
2
) + LD(b2o\ b

2
)        (2.12) 

Since block b2o can be considered as the union of blocks b2o\b
2
 and b

2
, due to the 

property (*) of the LD during this merge, block b2o\b
2
 has lost some of its LD; denote this 

loss by c1. Then A1 can also be represented as  

A1 = LD(b1o) + LD(b2o) = LD(b1o) + LD(b2o\b
2
) – c1.     (2.13) 

Similarly, since during the merge with b
2
 block b1o has lost some degree of LD 

(denote this loss by c2), A2 can be represented by 

A2 = LD(b1oUb
2
) + LD(b2o\ b

2
) = LD(b1o) – c2 + LD(b2o\ b

2
).     (2.14) 

Thus, A1 and A2 only differ by values of c1 and c2. Since LD(b
1
 U b

2
) > LD(b

2
 U 

b
3
)   b

2
 should provide a lower loss of LD when merged with b1o, than when merged with 

b2o\ b
2
. Therefore, c1 > c2 and, thus, A1 < A2. By that reason the overall objective function 

(average LD across all blocks) can be improved by replacing b1o and b2o with b1oUb
2
 and 

b2o\ b
2
; thus, the value of the objective function is not optimal. The case when the 

boundary of the optimal partitioning between the two blocks lo occur to the right of the 

boundary of the computed partitioning lc can be proved similarly. Therefore, the optimal 

partitioning should coincide with the partitioning computed using the block-extension 

algorithm.      
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In the version of the block-extension algorithm used in the proposed method for 

haplotype resolution and block partitioning, two different measures of linkage 

disequilibrium are used: p-value of the NED and coverage of the most frequent patterns. 

While the coverage of the common patterns can certainly comply with the property (*) 

mentioned above in the optimization problem (since extended blocks will tend to provide 

greater variety of the haplotype pattern), it is not always true for the NED. Since both of 

these measures are used to find block structure, the algorithm can only guarantee a near-

optimal solution to the block partitioning problem at each iteration.    

The deficiency of NED described in the previous section is overcome by the use 

of the second criterion (coverage of the common patterns) in the following way. The 

block-extension algorithm is applied twice consecutively: first, using the NED (and a 

significance level of 0.1) and then using the coverage (with the admissible level of 80%). 

The NED-based algorithm produces blocks that in general do not exceed length 10, and 

the coverage-based algorithm then uses these smaller-size blocks to create possibly 

longer blocks, each providing at least 80% coverage. It should also be noted that the 

coverage criterion cannot be applied by itself since the block-extension algorithm 

wouldn’t work for the trivial block structures (where each SNP stands for a block). It 

occurs because, for the sequences shorter than 3 positions, the 4 common haplotypes 

always cover 100% of the data. 
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Chapter 3   

Parsimony-based genetic algorithm 

 

This dissertation proposes the use of a genetic algorithm for haplotype resolution 

and block partitioning. Previously, genetic algorithms have been applied to the 

haplotyping problem. As was mentioned earlier, Tapadar, Ghosh and Majumder [77] 

developed a genetic algorithm for obtaining the haplotype resolution in pedigrees 

(implemented in HAPLOPED program). The fact that this algorithm was designed to be 

applied only to the pedigree data precludes its widespread use. Pedigree data are very 

specific, expensive, and, more importantly, not always available for research. Wang, 

Zhang and Sheng [66] developed a parsimony-based genetic algorithm GAHAP for 

haplotype resolution. Although both HAPLOPED and GAHAP provided results 

comparable to similar algorithms at the time, later studies have overridden their results. 

In particular, none of the previously developed genetic algorithms have simultaneously 

performed haplotyping and block partitioning, and currently several algorithms 

successfully perform such a task [83, 84, 85] on independent population data. In this 

work a new genetic algorithm, HAPLOGEN, is proposed. It is able to simultaneously 

infer haplotype resolution and block structure. In addition, the proposed algorithm is 

designed to be applied to independent population data that do not require expensive 

acquisition of the relationship links. The proposed algorithm is developed in form of an R 

package (with most of the code written in C++) which makes it accessible to any R user 

and offers the full range of capabilities associated with the R statistical software, 

including graphical representation of the results.  

As with any other genetic algorithm, this method is based on the binary 

representation of individuals, a fitness function, and operators providing population 

dynamics (such as mutation). The individuals here are (0,1)-strings representing 

haplotype patterns within blocks. At each iteration, of the proposed genetic algorithm, 

there are as many populations as there are blocks since the genetic features of the 

algorithm are exhibited on the block level. The number of blocks as well as their 

boundaries vary from iteration to iteration. Within each block the population of 

individuals is the set of distinct haplotype patterns found in the current haplotype 
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decomposition. At each iteration every genotype is resolved by two haplotype patterns 

from each block. Haplotype decomposition for the entire set of genotypes with relation to 

an individual genotype at any particular iteration is schematically shown in Fig.3.1.   

 

 

 

 

 

Figure 3.1 Haplotype decomposition for the entire set and for an individual genotype 

within current block partition (thick lines represent haplotypes used in its 

resolution). 

 

The proposed genetic algorithm takes the following steps (see Fig. 3.2): 

1. Initialize haplotype decomposition. 

2. Obtain the initial block structure. 

3. Assess the fitness f(h) of each haplotype pattern h within each block. 

4. Select the set of fittest patterns within each block according to their fitness 

function values. 

5. Construct the next generation of haplotypes based on the selected haplotype 

patterns. 

6. Perform the inter-block transitions (matching of the pairs of haplotypes). 

7. Adjust block structure according to the newly obtained haplotype decomposition. 

8. Evaluate the current solution (as a haplotype decomposition and block structure). 

Exit after the stopping criteria are met. 

9. Apply the operation of mutation. 

The algorithm is repeated again from step 3 forward until a stopping criterion is 

met. At each iteration, the current best solution is saved. The last best solution is the final 

solution to the problem.  

 

 

          Block 1         Block 2         Block 3 
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Initialization of haplotype decomposition

and block structure

Mutation

Evaluation of patterns' fitness within blocks

Selection of patterns within blocks

Reconstruction of haplotypes within blocks

Matching of the pairs of haplotypes 

in consecutive blocks

Block structure adjustment

Evaluation of population

Current best 

population

Input

 

Figure 3.2 Outline of the parsimony-based genetic algorithm HAPLOGEN 

 

3.1 Initialization of haplotype decomposition 

Each haplotype is represented by a binary string of length m. Initialization is done 

by randomly obtaining a feasible decomposition for each ambiguous position, i.e., the 

genotype permutations (0,1) or (1,0). These permutations are randomly assigned with 

equal probabilities to the pair of haplotypes. Special care is taken at this stage in the sites 

with missing information. Namely, at those positions the initialization is performed 

randomly so as to assign with equal probabilities one of the four possible values (0,0), 

(1,1), (1,0) or (0,1) to the pair of haplotypes. Each genotype produces two haplotypes for 

the population within each block, but only distinct haplotypes are then listed as 

individuals within every block. 
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3.2  Obtaining the initial block structure 

The current block structure (not only at the initial stage) will be found by applying 

the block-extension algorithm to the trivial block structure, where each SNP position is 

considered to be a block. As a part of the initialization, a minor modification is performed 

in each block: all the homogeneous patterns are applied, where possible, to obtain new 

decompositions of genotypes (original idea is due to Clark [54]). The purpose of this 

adjustment is to aim the algorithm in the right direction in order to speed up the 

conversion to the optimal solution. 

 

3. 3 Assessment of the fitness of haplotype patterns 

The fitness function f(h) of a haplotype pattern h within a block is represented by 

the probability of occurrence of any haplotype given the genotype data (within that 

particular block). The perfect linkage equilibrium between adjacent blocks and random 

mating is assumed. Within each block, the probability of haplotype pattern hib given the 

genotype data G can be described as: 
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where Gib is the collection of genotypes g that are compatible within the current block 

(i.e., could be used for genotype reconstruction into haplotypes) with pattern hib . Then 

for every such genotype g, the probability of the pattern hib (where Ig is the collection of 

indices of ambiguous and missing sites in genotype g within block b) is 
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 Here p1j is the probability of the allele 1 in the j
th
 position of haplotype hi (respectively, 

(1- p1j) is the probability of allele 0). It is clear that the greater the number of genotypes 

compatible with hib, the greater the probability of this pattern given the data. For the 

completely homogeneous genotypes, their contributions to the fitness of corresponding 

haplotype pattern are doubled. Selection of the patterns with high fitness f(hib)=P(hib|G) 

will guarantee the parsimonious principle where the frequencies of haplotypes should be 

maximized in order to provide a minimum set of distinct haplotypes.  
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Estimation of the relative frequency p1j of the allele 1 at each site is performed 

using the following approach. In general, the sample relative frequencies are estimated by 

the proportion of values at each site that are currently assigned values 1 and 0. The 

sample estimate of the probability of allele 1, when there is no missing data, is a constant 

value equal to: 
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where n1j is the number of genotypes with allele 1 at the j
th
 position, n0j is the number of 

genotypes with allele 0 at that site, and n2j is the number of genotypes with ambiguous 

value; n is the total number of genotypes. In the presence of missing data, the sample 

estimates of probabilities of alleles 1 and 0 will vary from iteration to iteration since 

some values will currently be assigned to missing data sites. 

The lack of information can be corrected via a Bayesian approach by using the 

Beta distribution as a prior distribution. Current settings allow the use of the likelihood 

function for the data x (number of successes in n trials) given the parameter p represented 

by the Binomial probability: 
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The prior probability density function is selected to be the Beta distribution with 

parameters a=3, b=1. Such selection of parameters (a>b) leads to the distribution for p 

which favors values greater than 0.5 and would tend to “draw” posterior estimates toward 

its expected value, which in this case is given by 0.75 (one of many plausible values). 

This choice is stipulated by the fact that usually one of the alleles is considered to be rare 

(and, therefore, is called a mutation) while another one is more common. The Beta prior 

can be represented in general as: 
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where   0≤p≤1 and  
)(

)()(
),(

ba

ba
baB

+Γ
ΓΓ

= is the Beta function.        (3.6) 

The posterior density is then represented by the Beta probability density function 

with new parameters a
*
= a+x and b

*
= b+n-x: 
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X        Y 

 

Figure 3.3 

Relationship between 

set of genotypes (X) and 

currently resolving 

patterns (Y) in a block. 
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Then the Bayesian estimate of the parameter p can be calculated as the expected 

value from the posterior density: 
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When applied to SNP alleles’ frequency estimation, the Bayesian estimate for the 

probability of allele 1 becomes: 
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 3.4 Selection of the set of fittest patterns within each block 

Selection of the fittest subpopulation within each block 

is performed in such a way so that every genotype could be 

potentially resolved (“covered”) by at least one pattern out of 

the selected ones. Out of all individuals (haplotype patterns) in 

the current population, a subset is selected randomly without 

replacement according to their fitness function values. The 

exact size of this subset is not known in advance, but is 

determined in the selection process itself as described below.  

Selection of patterns within blocks is done 

proportionally to the partial fitness of a pattern within a block as 

given by (3.1): 
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Consider the relationship between genotypes within any particular block and 

haplotype patterns currently resolving these genotypes. This relationship can be 

represented as a bipartite graph (X,Y), where X is the set of genotypes and Y is the set of 

currently available patterns. Every edge (xy) represents the possibility of resolving 

genotype x with pattern y. There are at least 2|X| edges since every genotype is currently 

resolved by 2 patterns and can be potentially resolved by some other patterns. 
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The goal is to find the minimal subset of patterns (vertices of Y) with the highest 

fitnesses so that there is at least 1 connection (edge) between every vertex of X and this 

subset of Y. This subset provides coverage for all vertices from X, and it is minimal in 

the sense that no other subset of this set can fully cover X. Fig. 3.3 shows an example of 

such a subset of Y as black filled vertices. 

The sought after subset of Y is found in the following manner: all genotypes 

(vertices of X) are marked as “covered” (or potentially covered) by the first selected 

haplotype pattern; if each next selected pattern does not provide any additional coverage, 

it is removed from further consideration (and is not selected). Otherwise, new vertices are 

also marked as “covered” and the pattern is considered to be selected. This process 

continues until all genotypes are covered by potentially resolving patterns. 

 

3.5 Reconstruction of haplotype patterns within each block 

 The fittest set of patterns is used to construct the next generation of haplotypes. 

During this process the genotypes are considered one by one and the following cases may 

occur: 

 Case 1: both haplotype patterns currently resolving the genotype under conside-

ration are selected in the fittest subset; there is nothing to be done in this case.    

 Case 2: at least one of the two haplotypes is not selected. Then choose a randomly 

selected haplotype to be the “base” where selection is performed proportionally to the 

fitness from the patterns applicable to this genotype. The pattern is called “applicable” to 

the genotype i if it can potentially resolve it (but not necessarily in the current 

decomposition); in other words, if a pattern covers a genotype, then it is applicable to this 

genotype. After the “base” haplotype is selected, the template for the second haplotype is 

created. It will be unique if there are no missing data (and no more construction is 

needed), otherwise, look for the patterns in the fittest set that would apply to the template 

pattern. If there are several such patterns, randomly select one according to its fitness 

value. If no pattern fits the template, then identify the missing data in the second 

haplotype as the exact copy of the same positions in the first haplotype.  

 The random selection incorporated in the process of the reconstruction of the 

haplotype patterns is essential in obtaining optimal decomposition (the one providing the 



 47 

smallest number of patterns within each block) as opposed to the deterministic choice of 

the applicable pattern with maximal fittness.   

  

3.6 Matching of the pairs of haplotypes in adjacent blocks 

 Inter-block transitions are made by the choice of the best pairing (tiling) of the 4 

haplotype patterns at the block boundary for every genotype. Matching of the pairs of 

blocks is based on the observed fact that haplotype blocks exhibit long-range dependency 

[6, 86]. If a certain genotype decomposes into the patterns h1a and h1b in the first block a 

(in a consecutive pair) and into patterns h2a and h2b in the second block b, then there are 

only two possible options for the pairing: {(h1a,h2a),(h1b,h2b)} and {(h1a,h2b),(h1b,h2a)}. 

The choice is based on the greater of the estimated probabilities of the two options 

P((h1a,h2a),(h1b,h2b)) = P(h1a,h2a)·P(h1b,h2b) and P((h1a,h2b),(h1b,h2a)) = 

P(h1a,h2b)·P(h1b,h2a). Each of the probabilities P(hia,hjb)=Pij is estimated by the fraction 

of genotypes these two consecutive patterns can potentially resolve at the same time. If 

appia and appjb are (0,1)-vectors indicating potential applicability of pattern hia and hjb to 

every genotype within respective blocks a and b, then Pij is equal to the scalar product of 

the two applicability vectors divided by the number of genotypes, i.e., Pij = (appia 

,appjb)/n. If for some genotype its segment within a certain block is entirely homogeneous 

(leading to the fact that the two probabilities Pij‘s are equal), the matching is performed 

for the two closest non-homogeneous segments (blocks) of this genotype. 

 

 3.7 Adjustment of the block structure 

After the selection, reconstruction and inter-block transitions are performed, the  

block structure has to be updated in such a way as to guarantee that the former blocks no 

longer satisfying the threshold for the block identification are destroyed, and at the same 

time new blocks are created by using the block-extension algorithm described earlier. 

The threshold for block destruction is set to be slightly higher (90% coverage) than the 

one for block creation (80%) since this will allow for the search of more efficient block 

boundaries, i.e., providing higher average coverage. Thus, only very strong blocks are 

spared; all others are disassembled into singletons, and the block extension algorithm is 

then applied.  
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3.8 Evaluation of the current solution 

The new solution in the form of the block structure (defined by the boundaries 

and the patterns within each block) and the whole-length haplotype decomposition is 

evaluated according to the parsimonious principle.  

  

   (a)      (b) 

  

   (c)      (d) 

Figure 3.4 Plots of the global optimization criteria vs. prediction errors. 

Graphs were constructed using Daly data set illustrating relationships between (a) average block error and 

the number of whole length haplotypes, ds; (b) average block error and the total number of commom 

haplotype patterns (ncompat) across all blocks; (c) switch rate and the number of whole-length haplotypes, 

ds; (d) switch rate and the total number of common haplotype patterns (ncompat) across all blocks. 

 



 49 

On each iteration, the current solution is compared to the current best solution in a 

form of a double global optimization criterion: the total number of common patterns 

across all blocks, ncompat, and the number of all whole-length haplotypes (common and 

rare), ds. Selection of the best solution is defined by the minimum of both of these 

criteria.  

The ncompat criterion is used to find the best block structure described by the 

long blocks with high coverage. The ds criterion is needed to predict the best set of the 

whole-length haplotypes and was used in a number of parsimony-based haplotype 

decomposition studies [54, 65]. The minimum number of whole-length patterns (ds) 

works especially well with the small size data.  

At this step it is also decided whether to continue the genetic search or to 

terminate the algorithm. The termination of the algorithm is determined by the number of 

iterations proportional to the size of the input data which is discussed in later sections. 

Fig. 3.4 shows how well these two criteria can predict the real data (the Daly data 

set described below): the accuracy of prediction within each block as measured by the 

average block error rate is best linearly correlated with the total number of common 

haplotype patterns, ncompat; and the accuracy of prediction of the whole-length 

haplotypes (measured by the switch rate) is linearly correlated with both of these criteria. 

Since minimization of the two criteria (the number of the whole-length 

haplotypes, ds, and the total number of common haplotype patterns, ncompat) leads to the 

minimization of the prediction errors in most cases, their use in the selection of the best 

solution is justified. 

 

3.9 Application of the mutation 

This step can be considered as the beginning of the new iteration since it is used 

to contribute to the variability of the population(s). The operation of mutation is applied 

to the pairs of individuals (haplotypes) corresponding to the same genotype and 

performed only on the heterogeneous sites by switching 0 and 1 with some probability. 

The missing data sites are not the subject of the mutation operation since they are 

assumed not to carry any information and are filled in according to the available 

haplotype patterns. The probability of a mutation is determined by the first order Markov 
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chain transition probabilities P(0|1), P(0|0), P(1|1) and P(1|0) estimated from the current 

generation of haplotypes. The use of the first order Markov chain is motivated by the 

observed existence of dependency between the nucleotides of human DNA that fits first-, 

second- and higher order Markov chains [92]. In addition, it is reasonable to assume that 

the Markov chain probabilities estimated by relative frequencies of the adjacent alleles in 

the current generation of haplotypes may to some extent reflect the frequencies of the 

longer range haplotype patterns. The computation of the mutation rate is given by the 

following example:  

For the current decomposition 
00

11
 the probability of the switch (mutation) 

resulting in 
10

01
 is calculated as  
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To ensure that good patterns found in previous iterations are not lost during 

mutation, this operation is only applied to the haplotype pairs with at least one of the two 

patterns currently covering less than 10% of the resolved haplotypes or when the sample 

size (the number of genotypes) is very small, i.e., less than 20.  

3.10 Termination of the algorithm 

There are several stopping (convergence) criteria used in genetic algorithms [93, 

94, 95]. Some specify the threshold for the optimization function or its change over time; 

other algorithms are stopped if there is no improvement in the best fitness value (or the 

optimization function) over the number of iterations; yet in the others there is simply a 

bound for the number of iterations. In the case of our genetic algorithm HAPLOGEN, the 

goal of the optimization is to maximize the accuracy of prediction for haplotype 

decomposition (which cannot be observed); this can only be achieved through controlling 

some converted optimization criteria that can easily be computed for any given 

population. The proposed algorithm uses two such global optimization criteria: the 

number of distinct whole-length haplotypes and the total number of haplotype patterns 

across all blocks; both are represented by natural numbers. In addition, the proposed 

algorithm tends to exhibit overtraining (lower accuracy with better global optimization 

criteria) when applied to the small data sets if the number of iterations is too large, as will 

be discussed later. This situation hardly favors the use of the convergence criteria based 
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on the global optimization criteria values. The stopping criterion in the form of the bound 

on the number of iterations offers a good alternative for that kind of situation. In addition, 

the bounded number of iterations criterion provides predictable running time for the 

algorithm given the size for the input data. This feature is extremely valuable in 

comparing the performance of the proposed algorithm to the existing ones. Due to the 

reasons described above, the stopping criterion for the HAPLOGEN algorithm was 

chosen to be the bounded number of iterations. This type of termination is used very 

often [93] and has been proven to show good results. For example, Greenhalgh and 

Marshall [96] discuss convergence properties for genetic algorithms. They find an upper 

bound on the number of iterations that would guarantee convergence to a global optimum 

with a prespecified level of confidence. The overall result of that study is another 

confirmation that a sufficiently large number of iterations provides good convergence to 

the optimum.  

The number of iterations, sufficient to provide good results for a genetic 

algorithm, should be proportional to the size of the input data. In case of the studied 

haplotyping and block partitioning problem, the input data is a genotype matrix; its size is 

represented by the sample size (the number of rows/genotypes), n, and the number of 

positions in the SNP sequence (number of rows of the matrix) under study, m. The effect 

of the size of data on the necessary number of iterations for the HAPLOGEN algorithm 

was analyzed by comparison of the behavior of the global optimization criteria and the 

prediction error over the different number of iteration. This analysis was performed using 

two available sets of data: ACE data (described in more detail later) containing 52 

positions in 11 genotypes and Daly data containing 103 positions in 129 genotypes.  

Analyses of the bounds for the number of iterations was performed by taking 

subsets of the Daly data and the full ACE data and applying the HAPLOGEN algorithm 

to them. Available measurements of the results from running the algorithm included two 

observable global optimization criteria (ds, the number of distinct whole-length 

haplotypes, and ncompat, the total number of common haplotype patterns across all 

blocks) and prediction errors. Prediction errors are discussed in depth in section 5.1 

“Methods for the resuts evaluation.” Those used here for the stopping criterion analysis 

included error rate I (proportion of correctly resolved genotypes), error rate II (or block 



 52 

error rate) and the switch rate. While error rate I is appropriate for short-length SNP 

sequences, error rate II and the switch rate are more suitable for the long-range data since 

they both measure the degree of dissimilarity of the computed and the true solution in 

terms of the number of differing positions.  

 

Figure 3.5 ACE data: relationship between the number of iterations and (a) the global 

optimization criterion, ds, (b) the average error rate (as the number of 

correctly resolved genotypes). 

 

The relationship between the global optimization criteria and the number of 

iterations and also between the prediction errors and the number of iterations was 

analyzed. For each particular set of data, the goal was to determine the saturation point, 

i.e., the minimal number of iterations sufficient to obtain stable prediction errors or stable 

global optimization criteria. Due to the random nature of the algorithm results, the values 
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for all measurements (global optimization criteria and the prediction errors) were 

obtained as averaged over several (around 10) runs of the algorithm for the same data and 

the same number of iterations.   

The relationship between the number of iterations and the selection criterion, ds, 

and also between the number of iterations and the error rate I (calculated as the number of 

correctly resolved genotypes) for the ACE data is given in Fig. 3.5. The figure shows that 

both indicators stabilize at about 750 iterations.   

 

Figure 3.6 Daly data: relationship between the number of iterations and two global 

optimization criteria: (a) number of distinct haplotypes, ds; (b) total number 

of distinct haplotype patterns across all blocks, ncompat. 
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Fig. 3.6 demonstrates the relationship between the two selection criteria (number 

of distinct haplotypes, ds, and the total number of haplotype patterns across all blocks, 

ncompat), for the Daly data. The first criterion, ds, becomes almost constant starting 

from around 1500 iterations while the second criterion continues to fall. The predictive 

power of the algorithm under different numbers of iterations is shown in Fig. 3.7. 

 

Figure 3.7  Daly data: relationship between the number of iterations and the two kinds of 

prediction errors used to compare solutions: (a) average block error and (b) 

the switch error. 
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Both error rates shown in Fig. 3.7. do not change significantly after about 1500 

iterations. Thus, the minimal number of iterations that would guarantee the stabilization 

of the prediction errors is 1500.  

Similar analyses were performed for every partial data obtained by taking subsets 

of different sizes from the Daly data and by including the full ACE data. For each such 

subset, the minimal sufficient number of iteration was determined.  

      

 

Figure 3.8 Plot of the minimal necessary number of iterations for different data sizes. 

 

Fig. 3.8 represents the plot of the minimal numbers of iterations needed to obtain 

stabilized (in terms of the prediction errors) solutions. It is reasonable to assume a linear 

relationship between the data size and the bound for the number of iterations. Therefore, 
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the linear regression fitted to these data points was constructed resulting in the following 

equation: 

 it = 89.53 + 0.164(mn).          (3.10) 

Occasionally (as with the ACE data) a larger number of iterations may be needed 

in order for the algorithm to find correct mutations or correct haplotype resolutions for 

the majority of genotypes. Since only two data sets were used in the analysis, the 

incompleteness of information carried by the proposed linear regression can be expected. 

To amend the situation in the implementation function of the HAPLOGEN algorithm, the 

default bound for the number of iterations (described by the above regression) can be 

manually replaced by the user within the set of the function’s parameters. Since the only 

observable indicators are the global optimization criteria (ds and ncompat), the number 

of iterations may be determined by finding the saturation point for these criteria. Usually, 

this analysis will provide a larger number of iterations needed to obtain stabilized global 

optimization criteria, than when the prediction errors are used. In particular, there may be 

overtraining when a large number of iterations will lead to increases in prediction errors. 

Although a larger number of iterations doesn’t spoil the solution in most cases, this is a 

very delicate issue due to possible overtraining when the data are short in one dimension, 

i.e., characterized by a very small sample size (n is less than 20) or by very few SNP 

positions (m is less than 20). Overtraining due to a small sample size can be explained by 

the improper representation of the population. In that case, the algorithm searching for 

the minimum number of haplotypes may not have enough information to infer common 

haplotypes correctly and forces incorrect decomposition by haplotypes that are actually 

rare. On the other hand, when the data are too short (m is small) there may not be enough 

information about the haplotype patterns that are longer than m. For example, consider 

the case where m = 5, but the actual length of a block is larger (8). Let there be two 

genotypes, recorded within the length of 5 SNPs as (0 1 0 0 0) and (0 2 2 0 0) while 

within a complete block they are (0 1 0 0 0 0 0 0) and (0 2 2 0 0 1 1 1). Then searching 

for the shortest list of patterns, the algorithm will force the following decomposition: 

0 1 0 0 0      →    0 1 0 0 0 

                             0 1 0 0 0  

 

0 2 2 0 0      →    0 1 0 0 0  

                            0 0 1 0 0  
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Thus, the following actual (true) decomposition will be missed: 

0 1 0 0 0 | 0 0 0     →    0 1 0 0 0 | 0 0 0 

 

0 2 2 0 0 | 1 1 1     →    0 1 1 0 0 | 1 1 1       

                                      0 0 0 0 0 | 1 1 1       

In general, using very short data for haplotype decomposition or block 

partitioning is not advised due to the described incompleteness of information and 

subsequent unreliability of results.   

 

3.11 Calculation of scores for the block boundaries  

The scores for the block boundaries at each SNP position are actually a byproduct 

of the proposed genetic algorithm. Taking advantage of the fact that the algorithm goes 

through a series of iterations, each score is calculated as a proportion of the time the 

algorithm selects this position as a block boundary in its current best solution. Each score 

approximately indicates how likely it is for this particular SNP to have a block boundary 

immediately to its left. The more some particular boundary appears in a best solution, the 

stronger this position is considered to be a block boundary.   
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Chapter 4 

Time complexity of the algorithm 

 

The running time of the proposed genetic algorithm depends on the time 

complexity of each iteration and on the total number of iterations needed to obtain stable 

results. The necessary number of iterations is discussed in section 3.10 and in general is 

proportional to the size of the data, i.e., its time complexity is O(mn). The overall time 

complexity of the algorithm is the product of the time complexity of each iteration and 

the time complexity of the number of iterations. Running time for each iteration is the 

sum of the times needed to compete each step. 

 

4.1 Time complexity of the initialization of the haplotype decomposition 

Since the initialization process is equivalent to going over the input genotype 

matrix (of size mn) and filling in the haplotype matrix (of size 2mn), the time complexity 

of this step is O(mn). Generation of a random number at each heterogeneous/missing data 

position is assumed to be constant.  

 

4.2 Time complexity of obtaining the initial block structure 

The maximal number of levels in the binary tree, reflecting the block merging 

process (block-extension algorithm), is (m-1) since this occurs when only one block is 

created at each level. Also, at each level every pair of adjacent blocks is tested as a 

potential block. Fig. 4.1 demonstrates this process on a haplotype matrix at some 

particular level: the rectangles represent current blocks (with vertical dimension 

reflecting the sample of input genotypes decomposed into pairs of haplotypes), and the 

arcs represent potential blocks that are being tested using one of the block identification 

criteria.  

The shaded areas are the parts of the haplotype matrix that are traced twice. The 

time needed to go through the shaded areas is then bounded by 2*2nm.  

During the test for each potential block, the distinct patterns contained in it are 

determined. To ensure maximal time saving, this is performed within function dist which 

uses identifiers for every pattern in the original blocks instead of the patterns themselves. 
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There are 2 blocks proposed for merging and, therefore, there are 2 lists of identifiers – 

one for each of these blocks. 

 

 

 

 

 

 

 

 

Figure 4.1 Block merging process (as a part of a block-extension algorithm) at each level 

of a corresponding binary tree. 

 

The distinct patterns for the potential block are created by finding a new list of 

distinct 2-element sequences (first element from a sequence comes from the first list, 

second element – from the second list). This process consists of comparing every next 

pair of ordered identifiers to the list of those already discovered at most (i-1) distinct 2-

element sequences. It takes time proportional to )()1(2 2
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nOi
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i
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 for each potential 

block. The calculation of either of the two block identification criteria takes time 

proportional to (n+lb), where lb is the length of a potential block. Summing over all of the 

potential blocks (if k is the number of current blocks; there are k-1 of the potential blocks 

being tested): 
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 Since the sum of the lengths of all tested blocks is bounded by 2m (by the 

argument used above), and k is bounded by m, the above expression is equal to 

O(n
2
m)+O(nm)+O(m) = O(n

2
m). Each of the potential blocks is traced some constant 

number of times to fill in the newly found distinct patterns and their profiles (frequency 

and line index) which adds to the overall time const*2nm. Thus, the time complexity of 

each level is O(nm)+O(n
2
m)=O(n

2
m). Since, as discussed earlier, the maximal number of 

 

potential 

block 

Block 1        Block 2                 Block 3                        …                 Block k-1                Block k 
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levels is equal to (m-1), the overall time complexity of the block-extension algorithm is 

O(n
2
m

2
).  

4.3 Time complexity of assessment of the fitness of all haplotype patterns 

within every block 

 During the calculation of the fitness for each pattern in a particular block, that  

pattern (of length equal to the length of a block lb) is compared element by element to 

each of the n input genotypes (within the same boundaries). This process, together with 

filling in the applicability matrix along the way, takes time proportional to lbn. The 

number of patterns within each block is bounded by 2n; therefore, the time needed to 

perform the fitness calculation over all blocks is proportional to  

∑∑
==

==
B

b

b

B

b

b mnlnnnl
1

22

1

222            (4.2)   

Thus, the time complexity of this step is equal to O(n
2
m).  

 

4.4 Time complexity of the selection of the fittest subset within every block  

Consider the random selection of the fittest subset of patterns within each block. 

Every time the random selection of one pattern out of the set of all available patterns is 

performed, the list of all patterns (defined by the max number 2n) is traced once. By 

taking into consideration filling in respective fractional fitness values for those patterns, 

the time complexity of this process then becomes O(n). Each selected pattern is then 

checked for any unmarked genotypes that can potentially be resolved using this pattern. 

Since there are n genotypes to be searched through, the time complexity of each random 

selection round is O(n)+O(n)=O(n). The random selection is performed until all 

genotypes are marked. In the worst case scenario, this is done 2n times (all patterns have 

to be selected).  Thus, the time complexity of the selection process within each block is 

then 2nO(n)=O(n
2
). The number of blocks is proportional to the length of the SNP 

sequence, i.e., O(m). Therefore, the overall time spent to perform the selection operation 

in all blocks is O(n
2
)O(m)= O(n

2
m).  
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4.5 Time complexity of the construction of the next generation of haplotypes 

based on the selected haplotype patterns 

The reconstruction of the new generation is performed separately in each block. 

Within each block for every genotype (total number is n), it is determined which pattern, 

potentially resolving this genotype, can be used as a base. To do this, the list (of size nb) 

of all patterns is searched in those that are selected (during the previous step) and 

applicable. If there are several of them, random selection proportional to fitness is then 

performed. One random selection round takes O(n) time as was described in the previous 

section. After the base resolving pattern is established, the model for the second resolving 

pattern is created in time proportional to the length of the current block (lb). The model is 

then compared element-by-element to each of the remaining applicable to this genotype 

patterns (whose number is O(nb)); this takes O(lbnb) time. Again, if there are several such 

patterns found, random selection of one of them proportional to the fitness values is 

performed (in O(n) time). Thus, for every genotype it takes O(n)+O(lb)+O(lbnb)+O(n) = 

O(n)+ O(lbnb) time to perform the reconstruction. Since the best bound for nb can be set 

at 2n, the time complexity then becomes O(n)+O(lbn)= O(lbn).  

Since there are n genotypes within each block, and the reconstruction needs to be 

done in each block, the overall time complexity of this entire step is O(n
2
m): 
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4.6 Time complexity of inter-block transitions  

The matching of pairs of haplotypes in two adjacent blocks is done by considering 

every pair of whole-length haplotypes and running through all blocks for these two 

haplotypes. For every pair of adjacent blocks, the matching involves the calculation of 

the four probabilities P(hia,hjb)=Pij as scalar products of the two respective applicability 

vectors, divided by the number of genotypes, i.e., Pij = (appia ,appjb)/n. The time needed 

to compute every such scalar product is proportional to the length of an applicability 

vector, which is always equal to n. Since the number of times the matching has to be 

performed for every two whole-length haplotypes is equal to the number of blocks less 1, 

and the number of blocks is proportional to the length of the SNP sequence (m), the inter-



 62 

block transitions for two haplotypes over the entire length of the SNP sequence takes 

O(n)O(m)=O(mn).  

Time complexity of the inter-block transitions for the entire set of 2n whole-

length haplotypes is then O(n)O(mn)=O(n
2
m). 

 

4.7 Time complexity of the adjustment of block structure 

Time needed to adjust the block structure is spent, first of all, on checking 

whether all of the current blocks still satisfy the block identification criterion (with 

slightly higher threshold), and if they don’t, some time spent on destroying them. Second, 

the block-extension algorithm is applied on this updated block structure.  

The first process, involving calculation of the block identification criteria for each 

of the blocks and re-initialization of some of the invalid blocks, is essentially equivalent 

to going over the entire haplotype matrix (of size 2nm) and two other block profile 

matrices of the same size. Thus, the time complexity of the first part of the adjustment of 

the block structure is O(mn). 

The second part is simply running the block-extension algorithm twice (first time 

using the NED measure and second time using the coverage of the common 4-5 

haplotype patterns as the block identification criteria). As described earlier, time 

complexity of the block extension algorithm is O(n
2
m

2
). Thus, the time necessary to 

complete the adjustment of the block structure is O(mn)+O(n
2
m

2
)=O(n

2
m

2
).  

 

4.8 Time complexity of the evaluation of the current solution 

On this step, two quantities are computed based on the current haplotype 

decomposition and block structure: number of distinct whole-length haplotypes, ds, and 

the total number of common patterns across all blocks, ncompat. 

The number of distinct whole-length haplotypes, ds, is calculated using time-

economical function dist used in the block-extension algorithm. Analogous to working 

with 2-element sequences, in the case of whole-length haplotypes, it uses |B|-element 

sequences (where |B| is the number of blocks of order O(m)). Each element in such a 

sequence is an identifier (or index) of some pattern. Similar to the calculation of the 2-
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element distinct sequences, the time needed to complete function dist in the case of |B|-

element sequences is proportional to:  

)(||)()1(|| 22
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mnOBnOiB
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i

==−∑
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.          (4.4) 

Total number of common patterns across all blocks, ncompat, is computed by 

performing the ordering of patterns within each block. There are at most 2n patterns 

within each block, which are ordered in O(n
2
) time. The summation over all blocks (the 

number of which is proportional to m), yields O(n
2
m).  

Thus, the overall time complexity of the evaluation of the current solution is 

O(n
2
m). 

 

4.9 Time complexity of the operation of mutation 

The operation of mutation consists of going through the haplotype matrix and 

switching pairs of elements at some heterogeneous positions. The fact that the mutation is 

performed only for those pairs of patterns (within each block) that have frequency less 

than 10% does not add to the time complexity since it only involves a constant time 

computation of fractional frequency for each of the patterns. Since the size of the 

haplotype matrix is 2nm, the time complexity of the mutation operation is O(mn). 

The inevitable consequence of the mutation is the changed variety of patterns 

within each block as well as the changed allele frequencies. This fact should be reflected 

in the block structure profile matrices (B, listing haplotype patterns within each block, 

and Fb, listing frequencies of these patterns and indices of the patterns used in each row 

of the haplotype matrix) and in the vector containing allele frequencies at each position of 

the SNP sequence. 

Updating the block structure profile involves calculation of all distinct patterns 

within each block together with their frequencies. This is done by consecutively taking 

each pattern from row i in the haplotype matrix and comparing it element by element to 

already listed distinct patterns whose number is at most i-1. Since there are 2n haplotypes 

within each block in the haplotype matrix, and the number of blocks is |B|, the time 

needed to complete this process is proportional to:  
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Calculation of the updated allele frequencies at each SNP position takes the time 

needed to simply go over the haplotype matrix once and fill the 2 vectors of length m 

each. Since the size of the haplotype matrix is 2nm, the time complexity of this process is 

O(mn). 

Thus, the time complexity of the operation of mutation together with updating of 

the block structure profile and allele frequencies is O(n
2
m). 

 

Summing over all steps of the algorithm, the overall time complexity of each 

iteration becomes O(mn) + O(n
2
m

2
) + O(n

2
m) + O(n

2
m) + O(n

2
m) + O(n

2
m) + O(n

2
m

2
) 

+  O(n
2
m) + O(n

2
m) = O(n

2
m

2
). 

Since the number of iterations is in linear dependency with the size of the input 

(mn), the total time complexity of the proposed genetic algorithm is O(mn)O(n
2
m

2
)= 

O(n
3
m

3
). 
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Chapter 5 

Results 

 

5.1 Methods for the results evaluation 

The following are different measures widely used for examining an algorithms’ 

performance in the area of haplotype inference and block segmentation.  Among these are 

measures of the quality of a solution as well as methods for comparing alternative 

solutions. All of them will be used to assess the results of the current study.  

5.1.1 Error rate I 

Error rate I is the simplest measure of the quality of the obtained haplotype 

resolution. It is mentioned by Stephens et al. [57] and used by most of the other 

researchers. It is represented by the proportion of individuals (genotypes) whose 

haplotypes were incorrectly inferred. This measure doesn’t take into account the 

closeness of the solutions which could differ in only one or in all ambiguous sites. 

Thus, this is a very rough error rate.  

 5.1.2  Error rate II 

The original paper by Kimmel and Shamir [83] suggests using the error rate II 

measure for the evaluation of performance within each block (in which case it is called 

block error rate), but it can also be used for full-length sequences. Denote the two true 

haplotype resolutions for some genotype gi by 
it1  and 

it2 . Also, denote two inferred 

haplotypes by 
ih1  and 

ih2 . Then the number of errors in genotype g can be defined as: 

[ ] [ ]{ }),(),(,),(),(min 122122112
1 iiiiiiii

i htdhtdhtdhtde ++= ,         (5.1) 

where d is the Hamming distance. The Hamming distance is the number of 

positions in two strings of equal length for which the corresponding elements are 

different. Given that the number of heterogeneous sites in genotype gi is ri , the error 

rate for the entire group of genotypes within specified boundaries is  

∑

∑

=

==
n

i

i

n

i

i

II

r

e

err

1

1
               (5.2) 

 



 66 

The R code for the function calculating the hamming distance between the true 

and computed haplotypes and the function for computing the Error rate I for the entire 

data set is given in the Appendix A.  

5.1.3  Switch rate 

The switch rate is possibly a more adequate measure of the haplotype resolution 

when applied to full-length haplotypes than the error rate II. Its use for matching blocks 

was suggested by Kimmel and Shamir in [83]. In addition to measuring the quality of a 

single solution versus the true solution, the switch test can be used to compare two 

alternative solutions. Let the number of switches si between two solutions ti = (
it1 ,

it2 ) 

and hi = (
ih1 ,

ih2 ) for the same genotype gi be the minimum number of switches (from 0 

to 1 or otherwise) at heterogeneous sites necessary to obtain one solution from the 

other. Similar to the error rate II (with the number of heterogeneous sites in the 

genotype being ri), the switch rate for the entire collection of genotypes is defined as  
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It can be argued that the switch rate is more adequate than the block error rate 

(error rate II) since the several “errors” can be eliminated by simply considering switch 

rather than the hamming distance. In an example given by Kimmel and Shamir [83] in 

Table 5.1, there are 5 errors and only 2 switches: 

 

Table 5.1 Example 1 for comparison of the error rate II and the switch rate. 

Computed haplotypes True haplotypes 

1 1 1 1 1 0 0 0 0 0 1 1 1 1 

0 0 0 0 0 1 1 1 1 1 0 0 0 0 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

  

In this case, the switch rate seems to provide a more appropriate error rate. On the 

other hand, consider an example given in Table 5.2. There are 6 switches and only 3 

errors. Thus, error rate II would give a better rate.  
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Table 5.2 Example 2 for comparison of the error rate II and the switch rate. 

Computed haplotypes True haplotypes 

1 1 1 1 1 0 1 0 1 0 1 1 1 1 

0 0 0 0 0 1 0 1 0 1 0 0 0 0 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

  

Due to the reasons described above, the switch rate is mostly used for calculation 

of the whole-length error rates (when the error increases due to the improper matching of 

blocks) and the error rate II seems more appropriate for the estimation of the accuracy 

within blocks. 

The function to calculate the switch rate as implemented in the R code is given in 

Appendix A. 

 

5.2 Results from applying the algorithm to real and simulated data 

The output from running the proposed genetic algorithmm include: the haplotype 

matrix for the whole-length haplotypes, the block structure described by the block 

boundaries and the lists of haplotype patterns within each block and the list of respective 

frequencies of these patterns. The algorithm also supplies the vector of scores for each 

SNP as a block boundary, where score is the proportion of times the algorithm selects this 

position as a block boundary as a part of its current best solutions.  

The algorithm was applied to several publicly available sets of data and the results 

were compared to those from previous studies based on the same data.  

 

5.2.1 Drysdale data 

First, we used the data set originally reported by Drysdale et al. [97], where 13 

variable sites spanning 1.6 kb of the human β2AR gene were collected from 121 subjects. 

Out of these individual genotypes only 18 distinct genotypes were identified and studied.  

One site did not exhibit ambiguity in the sample and was excluded from consideration. 

This resulted in the data consisting of 18 genotypes recorded in 12 SNP sites. The 

original paper [97] gave 12 haplotypes but found that only 10 distinct haplotypes exist in 

a studied asthmatic cohort. These 10 true haplotypes were also found by the parsimony-

based computational algorithm by Wang, Xu [97].  
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Our algorithm consistently finds a true solution in less than 150 iterations 

(approximately 2 sec. using 2.3 Ghz processor). In addition, the algorithm sometimes 

finds another equally valid solution (from the point of view of maximal parsimony). Both 

solutions have the same number of common haplotypes (providing at least 80%  

coverage) and the same total number of haplotypes. Therefore, the algorithm does not 

distinguish between them. Both solutions as well as the original data are given in Table 

5.3. The fact that there are two solutions to the problem, both resulting in a minimum 

number of haplotypes used to decompose the original data, is not uncommon for data of 

small size. To produce a more reliable result, one has to collect a larger number of 

genotypes or introduce additional constraints to the model.  

 

Table 5.3 Drysdale data and the solutions found by the genetic algorithm. 

 Original data Resolved patterns Distinct haplotypes Haplotype Frequency 

Solution 1 

(true) 

2 0 2 2 2 2 2 2 2 0 0 0 

1 0 0 1 1 1 1 0 1 0 0 0 

2 0 0 2 2 2 2 0 2 2 0 2 
0 0 1 0 0 0 0 1 0 0 0 0 

0 0 2 0 0 0 0 2 0 2 0 2 

2 0 2 2 2 2 2 0 2 0 0 0 

0 0 2 0 0 0 0 2 0 2 0 0 

2 0 2 0 0 0 0 1 0 0 0 0 

2 0 0 0 0 0 0 2 0 2 0 2 
2 0 0 2 2 2 2 0 2 0 0 0 

2 2 2 2 2 2 2 2 2 0 0 0 

2 0 0 2 2 2 2 0 2 2 2 2 
2 0 2 2 2 2 2 2 2 2 0 2 

0 2 1 0 0 0 0 1 0 0 0 0 

0 0 1 0 0 0 0 2 0 0 0 0 
0 0 2 0 0 0 0 2 0 2 2 2 

0 0 1 0 0 0 0 1 0 2 0 2 

0 0 0 0 0 0 0 0 0 1 2 1 

(h1, h2) 

(h1, h1) 

(h1, h3) 
(h2, h2) 

(h2, h3) 

(h4, h1) 

(h2, h5) 

(h2, h6) 

(h3, h6) 
(h1, h7) 

(h1, h8) 

(h1, h9) 
(h1, h10) 

(h2, h8) 

(h2, h4) 
(h2, h9) 

(h2, h10) 

(h3, h9) 

1 0 0 1 1 1 1 0 1 0 0 0 

0 0 1 0 0 0 0 1 0 0 0 0 

0 0 0 0 0 0 0 0 0 1 0 1 
0 0 1 0 0 0 0 0 0 0 0 0 

*0 0 0 0 0 0 0 0 0 1 0 0* 

1 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 

0 1 1 0 0 0 0 1 0 0 0 0 

0 0 0 0 0 0 0 0 0 1 1 1 
0 0 1 0 0 0 0 1 0 1 0 1 

h1 

h2 

h3 
h4 

h5 

h6 
h7 

h8 

h9 
h10 

9 

10 

4 
2 

1 

2 
1 

2 

3 
2 

 

Solution 2 2 0 2 2 2 2 2 2 2 0 0 0 

1 0 0 1 1 1 1 0 1 0 0 0 

2 0 0 2 2 2 2 0 2 2 0 2 
0 0 1 0 0 0 0 1 0 0 0 0 

0 0 2 0 0 0 0 2 0 2 0 2 

2 0 2 2 2 2 2 0 2 0 0 0 

0 0 2 0 0 0 0 2 0 2 0 0 

2 0 2 0 0 0 0 1 0 0 0 0 

2 0 0 0 0 0 0 2 0 2 0 2 
2 0 0 2 2 2 2 0 2 0 0 0 

2 2 2 2 2 2 2 2 2 0 0 0 

2 0 0 2 2 2 2 0 2 2 2 2 
2 0 2 2 2 2 2 2 2 2 0 2 

0 2 1 0 0 0 0 1 0 0 0 0 

0 0 1 0 0 0 0 2 0 0 0 0 
0 0 2 0 0 0 0 2 0 2 2 2 

0 0 1 0 0 0 0 1 0 2 0 2 

0 0 0 0 0 0 0 0 0 1 2 1 

(h1, h2) 

(h1, h1) 

(h1, h3) 
(h2, h2) 

(h2, h3) 

(h4, h1) 

(h4, h5) 

(h2, h6) 

(h3, h6) 
(h1, h7) 

(h1, h8) 

(h1, h9) 
(h1, h10) 

(h2, h8) 

(h2, h4) 
(h2, h9) 

(h2, h10) 

(h3, h9) 

1 0 0 1 1 1 1 0 1 0 0 0 

0 0 1 0 0 0 0 1 0 0 0 0 

0 0 0 0 0 0 0 0 0 1 0 1 
0 0 1 0 0 0 0 0 0 0 0 0 

*0 0 0 0 0 0 0 1 0 1 0 0* 

1 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 

0 1 1 0 0 0 0 1 0 0 0 0 

0 0 0 0 0 0 0 0 0 1 1 1 
0 0 1 0 0 0 0 1 0 1 0 1 

h1 

h2 

h3 
h4 

 h5 

h6 
h7 

h8 

h9 
h10 

9 

9 

4 
3 

1 

2 
1 

2 

3 
2 
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 5.2.2  ACE data 

Data originally reported by Rieder et al. in [98] represents the gene DCP1 

sequence collected from 11 subjects (6 from the European-American and 5 from the 

African-American populations). The gene encodes the angiotensin converting enzyme 

(hence the name ACE of the data), participating in the regulation of the fluid-electrolyte 

balance and systemic blood pressure. The ACE data originally consisted of the 78 variant 

sites (SNPs), out of which only 52 were non-unique polymorphic sites, which were then 

used in the subsequent analysis. 13 haplotypes resolving 11 genotype sequences were 

identified and then verified using allele-specific PCR. Several haplotyping studies have 

applied computational algorithms to analyze these data.  

Table 5.4 shows results from running the algorithm on (3*250)= 750 iterations 

(less than 4 sec. on 2.3 Ghz processor) on the ACE data using two sets of selection 

criteria: a single criterion (the minimum number of distinct whole-length haplotypes (ds)) 

and a double criterion (the minimum number of distinct whole-length haplotypes (ds) and 

the minimum total number of common patterns across all blocks (ncompat)). The table 

indicates that better results are produced using the single criterion (min ds) as opposed to 

the double criterion. These results are compatible with those shown by other studies [65], 

where the average error rate for different algorithms was 0.27 with very few algorithms 

[65] producing a 0.18 error rate. The advantage of the genetic algorithm is that it can 

achieve the same (or better) accuracy compared to most algorithms and does it in a very 

competitive time interval, while in addition providing a block structure . 

Table 5.4 Result of running the algorithm on the ACE data using different 

optimization criteria. 

 Min ds Min ds & Min ncompat 

Number of correctly resolved genotypes 8 or 9 out of 11 7 or 8 out of 11 

Error rate (proportion of correctly resolved genotypes) 0.18 – 0.27 0.36 – 0.27 

Total number of haplotypes found 13 – 14 14 

Number of true haplotypes found 9 out of 13 8 or 9 out of 13 

 

Due to the lack of information, further improvement does not seem possible. In 

addition to showing a low error rate, the genetic algorithm also consistently finds (as the 

most frequent outcome) the block structure: block 1 spanning positions 1–14, block 2 
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spanning positions 15–52. Fig. 5.1 illustrates the outcomes of the scores for block 

boundaries from the 4 successive runs of the algorithm. The clear pattern can be observed 

from the graphs: the highest block score usually occurs at the 15
th
 position (the first 

position always has a high score just by way of calculation). This certainly supports the 

conclusion about the block structure for these data. 

 

 

Figure 5.1 Block boundaries scores for the 4 successive runs of the algorithm on 

the ACE data. 
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5.2.3  Daly data 

The most popular data set widely used in haplotyping and block partitioning 

algorithms is the one introduced in Daly et al., 2001 [6]. These data were collected over a 

500 kilobase region of chromosome 5p31 for 103 SNPs obtained from 129 mother, father 

and child trios in a European-derived population.  

The Mendelian hereditary laws can be applied to infer the exact haplotype 

decomposition for the majority of sites for each child in a trio. In the original paper the 

children’s data were processed that way and then analyzed for block partitioning. Then 

using a Hidden Markov Model, the authors split 103 SNPs into 11 blocks separated by 

intervals where historical recombination events seem to have occurred. According to the 

results of Daly et al. each block contained 5 to 31 consecutive SNPs ranging from 3 to 92 

kilobases. The 129 child genotypes, together with corresponding pairs of haplotypes and 

block structure, comprised the data set of unrelated individuals, which can be used for the 

haplotype inference problems as well as block partitioning.  

Raw Daly data representing two family trios (PED054 and PED058) as given in 

the original file is  

PED054  430  0   0  1  0 1 3 3 1 4 1 4 2 2 1 3 1 2 4 … 
PED054  412 430 431 2 2 1 3 1 3 4 1 4 2 2 1 3 1 4 2 … 

PED054  431  0   0  2  0 3 3 3 3 1 1 2 2 1 1 1 1 2 2 … 
PED058  438  0   0  1 0 3 3 3 3 1 1 2 2 1 1 1 1 2 2 … 
PED058  470 438 444 2 2 3 3 3 3 1 1 2 2 1 1 1 1 2 2 … 

PED058  444  0   0  2 0 3 3 3 3 1 1 2 2 1 1 1 1 2 2 … 
…     …    … 

 Columns 2-4 represent ID numbers: own ID, Father ID and Mother ID. The 

children in the two families therefore have ID’s 412 and 470 respectively. The genotype 

string of length 108 begins at the 7
th
 column where each position is represented by the 

two numerically encoded nucleotide bases (without any particular ordering).  

Preprocessing of the Daly data using the Mendelian hereditary laws was 

performed as follows: according to the Mendelian law a child inherits one chromosome 

from each parent. In the raw Daly data genotypes were encoded by digits 1, 2, 3, 4 

corresponding to the four nucleotide bases A, C, G, T, respectively. For ease of treatment, 

the pairs of numerically encoded nucleotide bases corresponding to each SNP site were 

ordered in an increasing manner. There were several cases that may have occurred in the 

data during the preprocessing step. All of the cases for Child’s heterogeneous positions 
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together with their unique resolution (if such is possible) are given in Table 5.5. The 

numerical encodings are just particular examples, i.e., encoding “13” may also be 

replaced by “12,” “14,” “24” or “34” and simply stands for the heterogeneous site. Case 1 

describes the situation when one of the parents is heterozygous and another is 

homozygous. The final resolution is always possible in this case and is given in the order 

that respects the parents ordering, i.e., the first position always corresponds to the 

Father’s and the second to the Mother’s chromosome. The same ordering is valid for the 

rest of the cases. Case 2 deals with the situation when both parents are homozygous 

which is always possible to resolve uniquely. Case 3 occurs when one parent is 

homozygous and another has missing data (given by “00”). This is also a completely 

resolvable situation. Cases 4, 5 and 6 occur when each parent has either missing 

information or is heterozygous. Neither of these cases is resolvable. Code for the Daly 

data processing is given in Appendix B. Unresolvable cases are marked “*” in the true 

Child resolution.  

Preprocessing of the Daly data was completed by changing paired nucleotide 

encoding into “0” or “1” (homogeneous positions), “2” (heterogeneous positions) and “9” 

(missing data) codes. Despite the fact that the family trios can be used to infer the 

haplotype information on the children, it was not possible to do this for all SNP sites: 

even after this process was performed, i.e. about 16% of the entire data were either 

missing or could not be uniquely resolved (ambiguous).  

 

Table 5.5  Resolution of the children genotypes of the Daly data at heterogeneous 

positions into two haplotypes using parents’ genotype information. 

 
 

Case 1 Case 2 Case 3 
Case 4 

unresolvable 

Case 5 

unresolvable 

Case 6 

unresolvable 

Father 13  or  13 or 11 or 33 44 or 22 22 or 00 00 or 12 00 13 

Mother 11      33     13     13 22    44 00     22 12     00 00 13 

Child 13      13     13     13 24    24 24     24 12     12 13 13 

Child 

true 
31      13     13     31 42     24 24      42 * * * 
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The proposed genetic algorithm was then applied to the preprocessed Daly data 

with the double optimization criterion (min ds & min ncompat) which has shown better 

performance for larger data sets than the single min ds criterion.  

Table 5.6 Haplotype patterns within Daly block partition: original and predicted by the 

algorithm. 

Blocks Predicted patterns Original patterns (Daly et al.) 

Block 1 

1 – 8  

"GGACAACC" 

 "AATTCGTG" 

"GGACAACC" 

 "AATTCGTG" 

Block 2 

10 – 14  

"TTACG" 

"CCCAA" 

"TTACG" 

"CCCAA" 

Block 3 

16 – 24  

"CGGAGACGA" 

"CGCAGACGA" 

"GACTGGTCG" 

"CGGATACGA" 

"CGGAGACGA" 

"CGCAGACGA" 

 

"GACTTGTCG" 

Block 4 

25 – 35  

"CGCGCCCGGAT"  

"CTGCTATAACC"  

"CTGCCCCGGCT" -- 

"TTGCCCCAACC" -- 

"CGCGCCCGGAT" 

"CTGCTATAACC" 

"CTGCCCCAACC"  

"TTGCCCCGGCT"  

Block 5  

36 – 40  

"CCAGC" 

"CCACC"  

"GCGCT" 

"CCGCT" -- 

"CCAGC" 

"CCACC"  

"GCGCT" 

"CAACC" 

Block 6  

41 – 45  

"CCGAT"  

"CTGAC"  

"ATACT"  

"CCGAT"  

"CTGAC"  

"ATACT"  

Block 7  

46 – 76  

 "CCCTGCTTACGGTGCAGTGGCACGTATT*CA"  

 -- 

 "TCCCATCCATCATGGTCGAATGCGTACATTA"  

 "CCCCGCTTACGGTGCAGTGGCACGTATATCA"   

"CCCTGCTTACGGTGCAGTGGCACGTATT*CA"  

''CATCACTCCCCAGACTGTGATGTTAGTATCT '' 

"TCCCATCCATCATGGTCGAATGCGTACATTA"  

"CCCCGCTTACGGTGCAGTGGCACGTATATCA"  

Block 8  

78 – 84  

 "CGTTTAG"  

 "TGTT*GA"  

  "TGATTAG"  

 "CGTCTAG" -- 

 "CGTTTAG"  

 "TGTT*GA"  

  "TGATTAG"  

 "TAATTGG"  

Block 9  

86 – 91  

"ACAACA"  

"GCGGTG"  

"ACGGTG"  

"GTGACG"  

"ACAACA"  

"GCGGTG"  

"ACGGTG"  

"GTGACG"  

Block 10 

92 – 98 

"GTTCTGA"  

"TG*GTAA"  

"TGTGCGG"  

"GTTCTGA"  

"TG*GTAA"  

"TGTGCGG"  

Block 11 

99 – 103  

 "CGGCG" 

 "TATAG"  

 "TATCA"  

 "CGGCG 

 "TATAG"  

 "TATCA"  

The “--” symbol indicates that the true pattern is either missing or some other pattern found instead. 

When running the algorithm separately on each of the original Daly blocks, it 

correctly predicts most common patterns (covering at least 90%) as seen from Table 5.6. 
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The incorrect prediction corresponds to only 5 patterns, and 1 pattern in block 3 is 

predicted in addition to those determined by Daly for this block. 

Table 5.7 Typical outcome from running the algorithm for the Daly data 

 

Block (positions) 

Total 

number of 

patterns 

 

Common Patterns 

 

Coverage 

 

Error rate 

1 through 14 25 "GGACAACCGTTACG" 

"AATTCGTGGCCCAA" 

"GGACAACCTTTACG" 

77.34% 

7.42% 

3.90% 

0.00222 

15 through 20 20 "CCGGAG" 

"CCGCAG" 

"TCGCAG" 

"TGACTG" 

 46.48% 

 14.45% 

 5.47% 

 19.92% 

0.01785 

21 through 28 15 "ACGACGCG" 

"ACGACTGC" 

"GTCGCTGC" 

"GTCGTTGC" 

55.46% 

17.57% 

15.62% 

5.08% 

0.00278 

29 through 37 22 "CCCGGATCC" 

"TATAACCGC" 

"CCCGGCTCC" 

"CCCAACCCC" 

54.3% 

10.94% 

16.01% 

6.25% 

0.02209 

38 through 46 20 "ACCCTGATC" 

"GCTCTGACT" 

"ACCATACTC" 

"ACCCTGACT" 

"AGCCCGATC" 

3.91% 

13.28% 

10.55% 

7.42% 

53.52% 

0.02424 

47 through 71 32 "CCTGCTTACGGTGCAGTGGCACGTA" 

"CCCATCCATCATGGTCGAATGCGTA" 

"CCCGCTTACGGTGCAGTGGCACGTA" 

57.81% 

22.27% 

9.38% 

0.00246 

72 through 80 36 "TTGCACCGT" 

"CATTACTGT" 

"CATTAGTGT" 

54.30% 

10.94% 

8.98% 

0.03438 

81 through 87 24 "TTAGCAC" 

"TTGACGC" 

"TTGAGGC" 

"CTAGCAC" 

61.72% 

14.84% 

5.47% 

3.91% 

0.04188 

88 through 94 24 "AACAGTT" 

"AACATGT" 

"GGTGTGT" 

"GACGTGT" 

"GGTGTGC" 

48.83% 

6.64% 

15.23% 

7.03% 

7.42% 

0.02564 

95 through 103 23 "CTGATATAG" 

"GCGGCGGCG" 

"GTAACGGCG" 

"CTGACGGCG" 

"GCGGTATCA" 

40.23% 

7.42% 

21.09% 

12.89% 

6.25% 

0.01342 

Average block error rate:                                                                                                                                                                                         

0.01523 
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In general, block structure obtained as a result of running the algorithm varied 

from one run to another, but there were consistencies. One of the typical outcomes is 

shown below in Table 5.7. The accuracy of within block haplotype decomposition was 

assessed using the block error rate discussed above.  

The accuracy of the whole-haplotype decomposition is represented by the switch 

rate (performed on haplotypes assembled out of the separate block patterns). Table 5.8 

shows the average switch rate (based on 10 successive runs) for the HAPLOGEN 

algorithm and the average block error rate for the Daly data compared to the same 

measures of the other four state-of-the-art algorithms (fastPHASE, GERBIL, HAP, 

HaploBlock). All parameters of these algorithms were taken at the default values. Table 

5.8 also provides information on the average running time for different algorithms when 

they are run on the 2.3 Ghz processor. 

Table 5.8 Performance of the proposed genetic algorithm compared to the other four 

algorithms for phasing and block partitioning. 

 fastPHASE GERBIL HAP HaploBlock HAPLOGEN 

Ave.Bl.Err.Rate - 0.0067 0.0119 0.0178 0.0158 

Switch rate 0.019 0.0297 0.0421 0.0323 0.0427 

Running time 6 m. 35 s.  0 m. 57 s. * over 8 h.  3 m. 40 s. 

* In was not possible to obtain the running time for the HAP algorithm. 

 

FastPHASE algorithm does not produce a block structure even though it models 

linkage disequilibrium patterns. It was included into the comparison since it is the best, 

most recent algorithm for haplotype resolution. Table 5.8 shows that the proposed 

algorithm HAPLOGEN exhibits accuracy within the range of the rest of the algorithms in 

the “block-based” group (GERBIL, HAP, HaploBlock). The best accuracy was shown by 

the fastPHASE algorithm, while the GERBIL algorithm was the fastest one. 

Scores for the block boundaries calculated for the Daly data in 4 successive runs 

of the algorithm are shown in Fig. 5.2. These vectors consistently show high scores for 

the same block boundaries independently of the final outcomes for the block structure 

(shown by black dots at the top of each graph). According to these scores, the block 

structure for the Daly data is represented by the following strong boundaries (indicating 

starting positions of the blocks): 1 – 15 – 21 – 29 – 38 – 45 – 82 – 88 – 95. 
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Figure 5.2  Scores for block boundaries from the 4 successive runs of the algorithm (dots 

at the top of each graph indicate final, best solution for the block structure). 
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 Figure 5.3 Comparison of the block boundaries for the Daly data from different 

algorithms: (a) HAPLOGEN, (b) GERBIL, (c) HAP, (d) HaploBlock, (e) 

original Daly partition. 
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Figure 5.3 (continued) Comparison of the block boundaries for the Daly data from 

different algorithms: (a) HAPLOGEN, (b) GERBIL, (c) HAP, (d) HaploBlock, 

(e) original Daly partition. 

 

The proposed genetic algorithm shares 3 boundaries (not counting the beginning 

of the first block) with the GERBIL algorithm and no boundaries with any other, but 

several boundaries in each case are very close to each other (difference in 1-2 position) as 

can be seen in Fig.5.3 that gives block boundaries for the Daly data from different 

algorithms. Counting together with the close positions, all algorithms share the number of 

positions given in Table 5.9. 

Table 5.9 Number of shared block boundaries (including close positions) 

for the Daly data produced by different algorithms. 

 GERBIL HAP HaploBlock Daly 

HAPLOGEN 5 3 1 4 

Gerbil  5 2 4 

Eskin   3 8 

HaploBlock    3 

 

The proposed genetic algorithm exhibits comparable accuracy (though not 

exceeding) and block structure similar to those of the existing phasing and block 

partitioning algorithms. As an advantage, the genetic algorithm predicts missing data as a 

part of an algorithm (unlike the other algorithms).  

Missing data prediction was performed on the simulated data as follows: output 

haplotype matrix for the Daly data was turned into the genotype matrix and then a certain 

percentage of the data was randomly selected to be “missing.” 
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Missing data error is calculated as the number of 

sites non-matching to the true data between switches (as 

defined for the switch rate) divided by the total number 

of missing data sites. This is a very strict error rate since 

it will classify as error even positions with 1 of the 2 

haplotypes resolved correctly. Error rates for the 

different proportions of missing data are given in Table 

5.10. These results show that even when there is a 

significant amount of data missing the algorithm gives 

reasonable prediction errors. 

 

 5.2.4 Patil data 

Another data set used in block partitioning and haplotyping studies was provided 

by Patil et al., 2001 [2]. This data set includes the genotype information from the entire 

chromosome 21 for 24,047 SNPs for which 20 haplotypes were identified by a rodent-

human somatic cell hybrid technique (although no genotypic data is provided). Several 

methods were applied to infer the block structure for this data [2, 11] by using different 

criteria for the block identification. The data was downloaded from the Perlegen 

Sciences, Inc. web site. Raw data for the first two blocks, as given in the original file, has 

the following appearance: 

block_id pattern_id sample_id haplotype_string 
B000001 100 CPD0007C28 ttatnttctngtccgcggggncacgctattcngcga…cnnc 

B000001 101 CPD0003C04 catcagctagcattattactttgtctccccgaatag…tgat 
B000001 100 CPD0002C28 ttancttcnngtnnnngnnngcncnctattccgcga…catc 

B000001 100 CPD0004C49 nnnnnnnnnnnnnnncgnnggcacgctattccgcga…catc 
…  … …  … 
B000002 200 CPD0007C28 nntcacancnnnnnnnnnnncntnngnngngncnnn…nnnc 

B000002  CPD0003C04  aaaagctgtnnnnnnnnnnctacgaatcngnatcac…nnnt 
B000002 200 CPD0002C28 cgtcacaacnnnnnnnnnntcntatggggagccttt…nnnc 

B000002 200 CPD0004C49 cgtcacaacnnnnnnnnnnnnntanggggagccttn…nnnn 
B000002  CPD0007C08 aaaagctgtnnnnnnnnnnctacgaatcagaatcac…nnnt 
…  … …  … 

 

Similarly to the previous studies, the Patil data was used here to construct an 

artificial genotype population. This was done as follows: 100 genotypes were generated 

by randomly pairing 22 haplotypes. Then the data were analyzed by applying the 

algorithm to segments of different length (100, 519 and 3295 positions). R code for the 

Table 5.10 Prediction errors 

for the missing data 

 

Percentage of 

missing data 

Error rate for 

prediction 

of missing data 

positions 

5% 15.5% 

10% 19.2% 

20% 20% 

30% 21.5% 
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processing of the raw Patil data is given in 

Appendix C. The accuracy of the prediction 

of heterogeneous sites is given in Table 5.11. 

The switch rate was selected to be the more 

appropriate measure of the error rate rather 

than the average block error. 

The algorithm consistently shows high block error rates (for example, 7.3% for 

the 100 positions segment), which can be explained by the way the data was simulated. 

For every genotype, the true haplotype matrix may contain missing data in the first 

haplotype and non-missing data in the second one (while in the most real data usually 

both haplotypes will have missing data); in the calculated genotype matrix, the resulting 

genotype will be recorded as entirely missing. When the hamming distance used to 

calculate the number of errors is calculated, the missing data is ignored for the first 

haplotype (when compared to the true solution), but is taken into consideration for the 

second haplotype). Given that the switch rate is 0, the error rate of 7.3% essentially gives 

the prediction error for the missing data for part of the haplotypes. Thus, for these data, 

the average block error rate is not an adequate indicator of error and the switch rate 

should rather be used. 

In general, the algorithm is designed in such a way as to allow the unlimited 

amount of data which assumes that there should be no problem processing long 

sequences like, for example, the entire 24,047 SNPs of the Patil data. However, since we 

are using an R package, the algorithm does have restrictions on the amount of input data. 

Because of the limitations of the R software, the maximum amount of data the proposed 

genetic algorithm was able to process was around 350000 entries (number of genotypes 

times the length of the SNP sequence). 

Minor modification can be done in order to improve the speed for the long 

segments of SNPs. Application of the genetic algorithm to such data at once for the same 

number of iterations as for the shorter sequences (assuming that the size of genotype 

sample, n, is the same) should cause loss of accuracy; on the other hand, since the time 

complexity of the algorithm is O(mn)O(m
2
n
2
), increasing the number of iterations 

proportional to the data size mn raises running time by O(m
3
) instead of  O(m

2
). The 

Table 5.11 Switch rates for the 

simulated Patil data 

 
Length of a segment, m Switch rate 

100 0% 

519 1.6% 

3295 4.8% 
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following modification to the main algorithm is proposed to solve this problem. Given 

that the number of iterations only depends on the number of genotypes (n), the low error 

rate for 500-positions data suggested splitting the entire Patil data into the approximately 

500-positions length segments and separately running the algorithm on each segment 

(using the same number of iterations). The final step is the “gluing” of all solutions 

consecutively together without loss of accuracy of haplotype resolution as well as loss of 

local block structure information. This was performed by applying the inter-block 

transition step to every two adjacent 500-positions segments in order to provide the 

appropriate matching between the last block(s) of the first segment and the first block(s) 

of the second segment. The only drawback of the glueing process is that the block 

structure is only valid within the original 500-position segment boundaries.  

The proposed modification by means of splitting the data into 500-position 

segments was applied to the simulated Patil data spanning 3295 positions. Two versions 

of the algorithm (original and modified), both based on 1000 iterations (a little over 3 hrs. 

on a 2.3 Mhz processor), were applied to the data. The average switch rate for the 

original version of the algorithm was 4.7%, and 4.35% for the modified version. While 

there is improvement in the accuracy of prediction using the modified version of the 

algorithm, this reduction in the error rate cannot be considered significant.  

 

5.2.5 HapMap data 

The efforts of the International HapMap project (launched in October, 2002) in 

determining genotypic variations and the common haplotype patterns in the human 

genome made huge amounts of genotypic data freely available to the public. The 

International HapMap Consortium provided an elaborate description of the data and a 

statement of its goals in [69, 70]. The principal goal of the International Consortium is to 

develop “a map of the haplotype patterns across the genome by determining the 

genotypes of one million or more sequence variants, their frequencies and the degree of 

association between them, in DNA samples from populations with ancestry from parts of 

Africa, Asia and Europe” [69].  

The HapMap data were collected from four different populations in the regions of 

Africa, Asia and Europe. A total of 270 individuals have contributed their DNA samples. 
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The Yoruba people of Ibadan, Nigeria, provided 30 sets of samples (trios) from two 

parents and a child; this data set is abbreviated by YRI. Individuals were required to have 

four of four Yoruba grandparents. The Japanese sample of 45 unrelated individuals from 

the Tokyo area (referred to as JPT) was collected in such a way that the donors were just 

asked to have ancestors from Japan. Chinese data consist of the DNA samples from 45 

unrelated individuals from Beijing (known as the Han Chinese, abbreviated by CHB), 

each of whom was required to have at least three of four Han Chinese grandparents. In 

the US, 30 trios have provided samples (abbreviated by CEU), which were collected in 

1980 from U.S. residents with northern and western European ancestry by the Centre 

d'Etude du Polymorphisme Humain (CEPH). In the CEPH sample there was no specific 

requirement except for residency in Utah. The collected DNA data are being genotyped 

in ten centers in Japan, the United Kingdom, Canada, China and the United States using 

five different genotyping technologies.  

In addition to the genotypic data on each human chromosome from each 

population [99], the HapMap project web-site provides much information on the genome, 

like the LD map, tag SNP data, SNP allele frequencies, genotype frequencies and also 

phased haplotype data. The phasing was done using the PHASE software, and compiled 

from the genotype data to date. The program PHASE implements methods for estimating 

haplotypes from population genotype data described in [57, 100]. It should be noted that 

the phasing process used the trio information where available (CEU and YRI samples) so 

that the resulting published haplotypes were obtained with extremely high degree of 

accuracy [101].  

Thus, the data available from the HapMap web site [99] that were appropriate for 

the analysis performed in this dissertation included the full chromosome genotypes and 

computationally derived haplotypes for each of the following population samples: 

• Yoruba in Ibadan, Nigeria (YRI) – 30 individuals  

• Japanese in Tokyo, Japan (JPT) – 45 individuals 

• Han Chinese in Beijing, China (CHB) – 45 individuals  

• CEPH (Utah residents with ancestry from northern and western Europe) (CEU) – 30 

individuals  
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The data from the four samples to be analyzed were taken from a randomly 

chosen chromosome (chromosome 2) in release 22. The 500 SNPs having the same 

location (first 500 positions of the data) along the chromosome were processed by the 

HAPLOGEN algorithm. The results on the accuracy of the HAPLOGEN algorithm 

haplotype output with respect to those provided by HapMap (using PHASE software and 

the information derived from trios) for each data set are represented in Table 5.12. The 

estimation of the accuracy rate for the comparison to the true haplotypes can only be 

made based for the CEU and YRI data. This is due to the fact that only these data 

contained trios information allowing correct haplotype inference for a lot of SNPs. The 

HapMap Consortium reported extremely low estimated switch rate (error occurs every 

8Mb in CEU and every 3.6Mb in YRI as given in [70]) for the CEU and YRI data when 

PHASE software was used in addition to the family-based haplotype inference. Since the 

amount of data used for the analysis here does not exceed 600 kb, the switch rate can be 

regarded as negligible. Thus, the true switch rates calculated using the phased genotypes 

provided by HapMap can be considered approximately equal to 4.1% and 13.7% for the 

CEU and YRI data, respectively. Similarly, the true average block error rates are 2% and 

7.8%. The discrepancy in haplotype resolutions between HAPLOGEN and PHASE is 

estimated around 5% as given by the switch or the average block rates for the CHB and 

JPT data. 

Table 5.12. Performance of the HAPLOGEN algorithm on the HapMap phased data on 

the 500-positions region of chromosome 2 in different population samples 

Data Average block error rate Switch rate 
CEU 0.02 0.041 

YRI 0.078 0.137 

CHB 0.05 0.046 

JPT 0.055 0.054 

Table 5.13. Comparison of the switch rates of several algorithms for haplotype inference 

for the 500-positions region of chromosome 2 of CEU and YRI data  

Data fastPHASE GERBIL HAP HaploBlock HAPLOGEN 

CEU 0.033 0.029 0.058 - 0.041 

YRI 0.0315 0.038 0.1102 - 0.137 
Running time: 

CEU 

YRI 

 

7 m. 26 s. 

7 m. 28 s. 

 

4 m. 35 s. 

5 m. 08 s. 

 

* 

 

 

over 2 h. 

over 2 h. 

 

5 m. 35 s. 

5 m. 25 s. 
* In was not possible to obtain the running time for the HAP algorithm. 
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Four state-of-the-art algorthms (fastPHASE, GERBIL, HAP, HaploBlock) were 

also applied to the same data for two populations, CEU and YRI, to compare their 

performance to the proposed algorithm HAPLOGEN. All parameters of these algorithms 

were taken at the default values. The results of the switch rates and the running times 

(using the 2.3Ghz processor) provided by these algorithms are given in Table 5.13. It 

took more than 2 hrs. for the HaploBlock algorithm to complete the haplotype resolution 

for each of the samples. Since the rest of the algorithms including the proposed algorithm 

HAPLOGEN provided solutions much faster, the accuracy from HaploBlock was not 

reported here. Table 5.13 shows that HAPLOGEN provided switch rate for the CEU 

sample within the range of the switch rates of the other algorithms. On the other hand, the 

YRI sample produced relatively high switch rates for the two algorithms HAP and 

HAPLOGEN, while the best results were shown by fastPHASE and GERBIL. 

The availability of the haplotype block information through the Haploview 

software (supplied by the HapMap web site [99]) makes it possible to perform the 

comparison of the block partitions under different criteria as well as the HAPLOGEN 

outcome. The Haploview provides three commonly used block definitions and the 

associated block structures: confidence intervals (due to Gabriel et al. [15]), four gamete 

rule (due to Wang et al. [12]) and solid spine of LD (due to Barrett et al. [101]). The 

haplotype block structures within the first 170-200 kb of the Chromosome 2 

(corresponding to 141-147 SNP positions) obtained from the HAPLOGEN and from 

applying all three criteria for each of the data (CEU, YRI and the combined Asian panel 

JPT+CHB) are shown in Figures 5.4 through 5.6.  
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Figure 5.4 Block structure obtained for the CEU data from (a) HAPLOGEN, (b) 

confidence intervals, (c) four gamete rule and (d) solid spine of LD. 
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Figure 5.5 Block structure obtained for the YRI data from (a) HAPLOGEN, (b) 

confidence intervals, (c) four gamete rule and (d) solid spine of LD. 

The reason that there are no block structures available for each of JPT and CHB is 

that the Asian data reported in Haploview LD map show up only as the pooled sample 

(JPT+CHB) and not separately for each subpopulation. 

The graphical representation of these block partitions for each data sample exhibits quite 

different patterns, so that, for example, the four gamete rule (shown as part (c) in all three 

Figures) tends to produce the most refined block structures and the confidence intervals’ 

criterion (part (b)) allows for greatest breaks between blocks. Nevertheless, for each data 

sample the overall configuration of the haplotype structure can be distinctly identified for 
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the partitions supplied by Haploview (shown in parts (b)-(d)). It is also clear that the 

block partitions obtained from HAPLOGEN (part (a) in each figure) fit the overall 

configuration of block structures for each data sample. Thus, the results in block partition 

provided by HAPLOGEN in general agree with those provided by the most common 

methods. 

 

Figure 5.6 Block structure obtained for the JPT+CHB data from (a) HAPLOGEN, 

(b) confidence intervals, (c) four gamete rule and (d) solid spine of LD. 
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5.2.6 Summary of results for HAPLOGEN algorithm 

Overall results indicate that the proposed genetic algorithm HAPLOGEN can be 

successfully applied to long sequences of SNP to obtain highly accurate haplotype 

resolution and an adequate block structure.  

The algorithm uses two global optimization criteria reflecting the parsimonious 

princple: minimal number of distinct whole-length haplotype patterns (min ds) and the 

minimal number of total common haplotype patterns across all blocks (min ncompat). 

The analysis shows that the first criterion alone should be applied to the short sequences 

of SNP (around 60 positions or less) and the double criterion (min ds & min ncompat ) is 

more suitable for the longer sequences. The proposed algorithm HAPLOGEN operates 

very fast: the running time is comparable to that of the fastest haplotype resolution 

algorithms (fastPHASE, GERBIL, HAP). For the most studied data samples the accuracy 

of prediction for the heterogeneous positions is within the range of the “block-based” 

group of algorithms (GERBIL, HAP, HaploBlock) for haplotype resolution. One 

particular data set (YRI HapMap data) exhibits relatively high switch rate compared to 

the other existing algorithms for haplotype inference. This may be due to the fact that the 

parsimony principle may not be enough to fully describe the real data. Since HAPLOGEN 

is able to find the minimal number of patterns (equal to the true number of patterns) 

within each block, while still retaining high errors, then it implies that the exact patterns 

found are not always the true ones and, therefore, other selection/optimization criteria 

need to be included into the model. In particular, this point is well illustrated by the fact 

that HAPLOGEN finds two solutions to the Drysdale data (see Section 5.2.1, Table 5.3) 

both with the same number of patterns, with only one solution being the true one. This 

problem needs to be addressed in the future to improve the accuracy of haplotype 

resolution. One possible approach may be using the perfect phylogeny within any 

particular block. The high error rates for the Yoruba population and low error rates for 

the European derived population can justify the perfect phylogeny approach: the way the 

genotype data was collected implies that the Yoruba sample comes from a very 

conservative population where historic mutations could be traced much more easily than 

in other populations with greater number of ancestral genotypes. This logic, therefore, 
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explains why the parsimonious principle is able, in fact, to work well for the European 

derived sample, while the Yoruba population may need to be described by perfect 

phylogeny. 

As a part of the solution, HAPLOGEN obtains a block structure that is consistent 

with most other block partitioning methods. The proposed algorithm also provides a new 

feature that is not available in the existing haplotype resolution and block partition 

methods: the scores for block boundaries are obtained. These have proven useful in the 

prediction of possible block boundaries and in general indicate the strength of the left 

side of each position as a block boundary.  

The proposed algorithm also successfully incorporates missing data into the 

model. The algorithm achieves reasonable accuracy in predicting missing data. 
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Chapter 6 

Application of HAPLOGEN algorithm to population studies 

 

The possibility of the existence of differences in haplotypes and haplotype block 

boundaries for different populations have long attracted the attention of researchers. The 

extent of the differences and similarities of the haplotype patterns and block structures in 

human populations must have had a tremendous impact on the construction of the haplotype 

map of human genome [102]. The fact that SNP frequencies differ among populations by 

about 15% [102] is attributable to the differences in haplotypes (as haplotype patterns) 

among populations. Goldstein and Weale in 2001 [103] determined that patterns of linkage 

disequilibrium can be quite different among populations. These findings imply that there 

must be differences in block structures among human populations. One of the first studies of 

the block structures in different populations was conducted by Gabriel et al. [15]. By 

characterizing the haplotype patterns spanning 13Mb of the human genome in samples from 

Africa, Europe and Asia, they determined the block structure for each of the populations and 

concluded that the boundaries of blocks as well as specific haplotypes within those 

boundaries are highly correlated across populations. Another study performed by Liu et al. 

[104] supported these findings only partially. The authors have applied the dynamic 

programming algorithm proposed by Zhang et al. [11] using the block definition of Patil et 

al. [2] with a threshold of 95% to the data from 16 worldwide populations on chromosome 

10. It was shown that significant similarity of block boundaries exists within the European 

group of populations and also within part of the African group of populations. The 

difference in block structures was shown to be present within each group of east and north 

Asians, Americans and most of the Africans. The differences in the African populations can 

be explained by the fact that that continent has the longest history and the richest ethnic 

diversity. Groups differences among populations were also studied and the results confirmed 

the fact that most of the time the block structures have not exhibited similarity among 

populations from different geographic regions. There were, however, certain cases when the 

similarity was present, for example, between Biaka (Africa) and Irish (European) and 

between Yoruba (Africa) and Japanese (Asia). A possible explanation suggested by the 

authors [104] is that some African populations may have had European or Asian relations 



 91 

back in their history. In general, the overall conclusion of the study was that the block 

boundaries are significantly different across populations. This contradicts the results 

previously provided by Gabriel et al. [15]. Gu et al. [105] have examined the genotype data 

in 38 populations and, while confirming previously found results of significant differences 

among worldwide populations, showed that there actually exist conservative tagSNP 

(representative SNP) patterns across populations.    

Menashe et al. [106] found the differences in the collection of haplotypes common 

for groups of genotypes drawn from different populations. They analyzed the data for a 400 

kb olfactory receptor (OR) gene cluster on human chromosome 17p13.3 obtained from 35 

individuals. The individuals represented four different ehtnogeographical groups: Pygmies, 

Bedouins, Yemenite Jews and Ashkenazi Jews. The genotype data of length 74 SNPs were 

subjected to the haplotype decomposition using a variation of Clark’s algorithm, and the 

differences in haplotype patterns were then studied. Analysis of the distribution of specific 

haplotype patterns within each ethnic group revealed significant pairwise differences 

between these groups. The highest difference was observed between Pygmies and 

Ashkenazi Jews. Analysis of linkage disequlibrium within each group indicated considerable 

differences in the spatial distribution of LD across these four populations. The overall 

conclusion of this study is that there are significant differences in haplotype patterns (and 

their distributions) and the linkage disequilibrium among the four studied populations. The 

difference found within the OR gene suggests the functional difference of this gene in 

human populations across the world. 

Most of the current studies support the theory that there are considerable differences 

in the variety of haplotype patterns as well as in the block boundaries among populations 

with different ethnogeographic origins. Therefore, the block structure and the haplotype 

decomposition obtained from mixed populations samples will not necessarily reflect the true 

solution or solutions. The problem that needs to be addressed is how to separate different 

populations in a sample and construct their respective solutions, i.e., block structure and the 

haplotype decomposition. While most of the time the ethnicity of an individual in a sample 

is known in advance, it may not always be fully informative since any particular individual 

may have a genetic relation to another population that is not immediately obvious or it may 

even represent a hidden subpopulation within the same group. In reality, any sample 
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representing some distinct ethnogeographic group always contains a fraction of genotypes 

that are the result of assimilation with some other population groups. Therefore, it is 

important to be able to detect individuals representing the “core” or “founder” haplotype 

patterns that are specific only for this particular population, and, on the other hand, to 

determine those individuals that may be a product of assimilation between different 

populations.  

There are very few studies that have developed methods to infer haplotypes for 

different populations within a given sample and to obtain block structures for each such sub-

population. One such study was done by E.P.Xing et al. [107]. The authors propose the 

algorithm for multi-population haplotype inference. The goal of their study was to jointly 

infer the haplotypes from a sample of genotypes in sub-populations represented in the 

sample. In each group (sub-population) the algorithm (called HDP-Haplotyper) finds the set 

of “founders” (haplotypes unique for this particular sub-population). The same algorithm 

also determines the set of haplotypes shared between sub-populations by a Bayesian 

approach to haplotype inference using the hierarchical Dirichlet process mixture [108]. 

HDP-Haplotyper was shown to perform better (in terms of accuracy of haplotype 

decomposition) than other haplotyping algorithms (PHASE [57], DP-Haplotyper [108] and 

HAPLOTYPER [58]). This algorithm showed very good accuracy and worked on more than 

two sub-populations, but was not designed to perform block partitioning within respective 

groups or to compare their block structures. Thus, HDP-Haplotyper is not suitable for the 

long sequences. The authors only used their algorithm for data no longer than 10 SNPs. In 

addition, the present version of HDP-Haplotyper does not perform clustering of the 

individuals since it is assumed that the population labels are known in advance, although it 

is mentioned in the paper that the clustering modification is straightforward.  

A study done by G.Kimmel, R.Sharan and R.Shamir [9, 10] concentrated on  

identifying haplotype blocks for different populations from haplotype data. For a given set 

of haplotyped individuals, the algorithm partitions the sample into different populations and 

then searches for the block partitions within each population. The problem is formulated in 

the form of the Minimum Block Haplotypes (MBH) problem, where the result is achieved 

by minimizing the total number of distinct haplotypes across all sub-populations and their 

blocks. The block partitioning part of the algorithm is done using a dynamic programming 
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method similar to one proposed by Zhang [11]. The algorithm also incorporates missing data 

into the model. When tested on real and simulated data the algorithm performed very well. 

In the case of up to four sub-populations, it was able to correctly classify 70-99% of the 

haplotypes (results vary for different amounts of missing entries). When applied to genotype 

data for two sub-populations (where heterogeneous positions are treated as missing entries) 

the algorithm was able to correctly classify over 95% of the haplotypes. The high accuracy 

rate can partially be explained by the fact that the data used in testing was the collection of 

genotypes from parent-offspring trios which may not be assumed entirely independent.  In 

addition, as mentioned by the authors [9, 10] the genotype data that they used contained a 

relatively low fraction of ambiguous sites. Thus, the algorithm proposed by Kimmel et al. 

[9, 10] showed very promising results; in particular, it had a very high rate of correct 

classification for two (when using genotypes) and up to four sub-populations (when using 

haplotypes) while incorporating the missing data. A limitation of this method is that it does 

not specifically account for the genotype data where heterogeneous positions carry 

information that may contribute to the improved accuracy. Therefore, population 

classification of the mixed genotype samples remains a computational challenge.  

In contrast to the existing algorithms, the algorithm HAPLOCLUST suggested in this 

section has the following benefits:  

(a) works on genotypes with missing data and unknown population assignment;  

(b) given a genotype sample, extracts two clusters of genotypes with significantly different 

block structures and collections of haplotypes;  

(c) produces haplotype resolution of high accuracy within each group/cluster.  

Thus, the algorithm HAPLOCLUST is suitable for the two-population haplotype 

inference and block partitioning for long SNP sequences. The proposed clustering algorithm 

is based on the genetic algorithm HAPLOGEN for haplotype resolution and block 

partitioning, which was shown to produce accurate haplotype inference and block structure 

comparable to that of the existing methods. The algorithm was implemented as an extension 

of the HAPLOGEN algorithm for haplotyping and block partitioning in the form of an 

optional “method” specification. That is, if the method is specified as “CLUST” in the 

genotype function call, the algorithm will find the solution for the mixed sample and for the 

two separate groups or clusters. 
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The input for the proposed algorithm HAPLOCLUST is a sample of genotypes 

assumed to be a mixture from two populations with unknown population labels. The 

algorithm performs the following two tasks. In the given genotype sample, it identifies two 

sub-populations that differ substantially from each other in their haplotype block structure 

and, as an intermediate result, in their collection of haplotype patterns; for each such group 

(or cluster) the algorithm constructs the full haplotype and block structure profile. A portion 

of the individuals may be left unclustered. These genotypes refer to the individuals that are 

difficult to assign to either of the extracted clusters. They may be interpreted as either the 

result of assimilation of the two sub-populations or simply not belonging to any of them. 

The outline of the algorithm is given in Fig. 6.1 and is discussed below in detail. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1 Outline of the HAPLOCLUST algorithm. 
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6.1 Clustering algorithm: step 1 

The first step of the algorithm HAPLOCLUST relies on the fact, that in the block 

structure obtained from a mixed sample, some block boundaries of the found ones will not 

be present (will be skipped) for certain subgroups of that sample. Therefore, the goal of the 

first step of the algorithm is to determine two such block boundaries that would correspond 

to the two largest maximally separated subgroups. The maximality refers to the total number 

of individuals skipping one such boundary but not the other. The found subgroups are meant 

to represent core genotypes for the two sought clusters. In search for these two boundaries, 

the genetic algorithm HAPLOGEN for the haplotyping and block partitioning is run on the 

entire mixed sample. In the obtained block structure for these data, every two adjacent 

blocks are considered as one potential block for a certain subset of the sample, skipping the 

boundary between two such blocks. Every such potential block, thus, represents that 

particular block boundary. Within a potential block the distinct haplotypes are obtained 

based on the available haplotype matrix. Among the distinct haplotypes the two most 

common haplotypes are determined. After that the genotypes that could be resolved using 

any of these common haplotypes within the given potential block are identified (marked). 

For every potential block this information can be represented as a (0,1)-vector of length n, 

where 0 at position i indicates that the i-th genotypes cannot be resolved using any of the 

common haplotypes determined within this block, and 1 indicates otherwise. After the |B|-1 

potential blocks (where |B| is the number of blocks in the block structure for the entire 

sample) are examined, |B|-1 such vectors of length n are obtained. For every pair of these 

vectors vi and vk, the following two quantities are calculated:  
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                          (6.2) 

The first quantity djk is based on binary disjunction and is a scalar product which 

represents the number of overlapping genotypes in the two vectors (potential blocks). The 

value of djk indicates how many genotypes share the common patterns for the two potential 

blocks which is the same as the number of genotypes skipping both block boundaries 

corresponding to the two potential blocks. The second quantity cjk is based on the binary 
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conjunction operation and represents the overall spread of the joined genotypes from the two 

vectors. Thus, the value cjk indicates the overall coverage of the genotypes by the two sets of 

common patterns from the two potential blocks. This is the same as the number of genotypes 

skipping either of the block boundaries corresponding to the two potential blocks.   

For example, the two quantities are computed for the following two vectors  

vi:   0   0   1   1   1   1   1   1   1   0   0   0   0   0  

vk:  0   0   0   0   0   1   1   1   1   1   1   0   0   0  

are: djk = 4 and cjk  = 9. 

In search of the two subgroups of genotypes with the maximally different block 

structure, it is necessary to find the two block boundaries that are not mutually shared by the 

representatives of these two groups. At the same time, the number of genotypes resolvable 

by the corresponding common haplotypes should be as large as possible. 

Therefore, in order to find two maximally separated groups of genotypes, one needs 

to determine the two vectors with the minimal djk and the maximal cjk. It should be noted 

that simply maximizing the difference (cjk – djk) does not work well enough. The two 

subgroups should also create the largest set, i,e., the value of cjk itself should also be 

maximal. The vectors vi and vk represent the two boundaries being sought. Then, using the 

same vectors, all genotypes are assigned to group one or group two or left unclassified 

according to the following principle: if the genotype is marked by 1 in vector vi but not vk it 

is assigned to group 1; similarly if it is marked by 1 in vk but not vi , it is assigned to group 2. 

If a genotype is marked by 0’s or 1’s in both vectors, it is considered to be unclassified.  

 

6.2 Clustering algorithm: step 2 

While step one determines the core for the two clusters, by finding the two largest  

subgroups with maximally separated block structures, the second step iteratively uses the 

information from the current content of each cluster to include more genotypes from the rest 

of the sample. As the first stage of each iteration, two separate block structures (together 

with haplotype decompositions) are determined for the two extracted clusters of genotypes 

by applying the genetic algorithm HAPLOGEN for haplotyping and block partitioning. Next, 

the unclustered genotypes are rated as to which group each one of them belongs. The rating 

is performed by using two cluster scores for every unclassified whole-length genotype. The 



 97 

cluster score of a genotype with respect to either cluster is calculated as a proportion of the 

length of the genotype, which can be completely resolved using available haplotype patterns 

from the haplotype decompositions within blocks provided by that cluster’s profile. This 

process starts by considering one block after another and setting the initial value of the 

cluster score to 0. If a genotype can be resolved by the two complementary haplotypes, both 

represented in the current block, the score is increased by the size of this block. Otherwise 

the score is not increased and the process moves on to the next block. There are two scores 

(one from each cluster) obtained for each genotype. A genotype is assigned to the cluster 

whose respective score is the highest for this genotype. If the two scores are the same, the 

genotype remains unclustered. If any of the two groups is expanded as a result of such rating 

and classification, the iteration is repeated: the genetic algorithm is applied to the updated 

clusters and the remaining genotypes are attempted to be clustered.   

This process continues until the assignment can no longer be determined or the entire 

sample is completely separated into two clusters. The algorithm HAPLOCLUST is not 

guaranteed to separate all genotypes into two clusters; a small part of the sample may be left 

unclustered. These are the candidates for another cluster or the results of the assimilation of 

the two sub-populations. 

It is worth noting that even though the proposed algorithm starts out by finding the 

two subgroups with significantly different block structures (as implemented by step 1). The 

second part of the algorithm (step 2) is designed to assign the genotype to either cluster 

using the similarity of the haplotype decompositions. Thus, the resulting clusters differ not 

only in their block structures but also in the collection of short and long-range haplotypes. 

 

6.3 Testing the clustering algorithm 

6.3.1 Simulated ACE data 

The proposed algorithm HAPLOCLUST was tested on the ACE data [98] in the 

following way. Originally, the ACE data represents two small subsamples taken from the 

Euporean (six genotypes) and African (five genotypes) populations. The original sample 

does not contain enough information to perform meaningful clustering and a simulation was 

therefore undertaken. According to [98], the six individuals from the European population 

produced four haplotypes (each of length 52 SNPs), and the five individuals from the 
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African population produced ten haplotypes. The European subsample was generated by 

randomly pairing the four basic genotypes to obtain 20 genotypes, and the same was done 

for the African subsample to get 50 genotypes. The ten basic haplotypes for the African 

population contained one haplotype that was also listed among four basic haplotypes for the 

European population. The first simulation (simulated ACE data I) used four haplotypes for 

generation of the European subsample and all ten haplotypes for the African subsample. The 

second simulation (simulated ACE data II) used only non-intersecting groups of haplotypes, 

i.e., four haplotypes for the European subsample and only nine haplotypes (one haplotype 

overlapping with the European group was excluded) for the African subsample. Results 

from running HAPLOCLUST on the two simulated data sets are represented in Tables 6.1, 

6.2 and 6.3. 

Table 6.1. Results from applying HAPLOCLUST to simulated ACE data I 

 Computed cluster 1 Computed cluster 2 Unclustered 

True European 0 6 13 

True African 39 2 9 

Table 6.2. Results from applying HAPLOCLUST to simulated ACE data II 

 Computed cluster 1 Computed cluster 2 Unclustered 

True European 0 19 1 

True African 48 2 0 

 

Analysis on the block structure obtained from applying the HAPLOCLUST algorithm 

for the ACE data I shows that the mixed data exhibits considerably more refined block 

structure than the two extracted clusters: the mixed sample is partitioned into the five 

haplotype blocks, spanning positions 1 – 7, 8 – 23, 24 – 40, 41 – 47, and 48 – 52, while the 

two clusters have three and one block spanning positions 1 – 30 , 31 – 43 , 44 – 52,  and 1– 

52, respectively. 

The results indicated in Table 6.1 can be explained by the following logic. The 

reason that there is a number of genotypes with undetermined cluster assignment is due to 

the overlapping collection of haplotypes used to generate the two subgroups. More 

precisely, there is one particular haplotype that appears in both groups. When this haplotype 

is involved in any genotype it creates confusion for the algorithm as to which cluster the 

genotype should be assigned to. The results from applying HAPLOCLUST to the simulated 
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ACE data II show a clear distinction between true populations (see Table 6.2). In particular, 

there is a distinct correspondence between the first cluster and the generated true African 

group of genotypes, and between the second cluster and the generated true European group 

of genotypes. The accuracy of classification for the ACE data II was 95% for the European 

and 96% for the African simulated samples with an average of 95.7% in overall prediction. 

According to the HAPLOCLUST output, the mixed simulated ACE data II data has 

block structure similar to the one from the mixed simulated ACE data I, also resulting in the 

five blocks identified at 1 – 8, 9 – 14, 15 – 40, 41 – 48, and 49 – 52. The two clusters 

(“African” and “European”) produced by the algorithm turned out to have trivial block 

structure: every cluster is represented by a single block spanning positions 1 – 52. This 

result is not surprising, but rather an indication of a clear separation since the original (true) 

African group was constructed by using only nine haplotypes and the original European 

group by using only four haplotypes. The initially limited number of haplotypes, spanning 

any particular sample, essentially implies trivial block structure for that sample. 

The analysis performed on the two sets of simulated data shows that, when the true 

haplotypes corresponding the two groups are non-overlapping, the proposed algorithm 

HAPLOCLUST is able to accurately separate two clusters of genotypes according to 

different block structure and the collections of haplotypes.  

6.3.2 Data from four populations  

Data from four populations (Pygmies, Bedouins, Yemenite Jews and Ashkenazi 

Jews) was originally provided in a study by Menashe et al. [106]. They contain the 

genotyped data for a 400 kb olfactory receptor (OR) gene cluster on human chromosome 

17p13.3 obtained from 35 individuals (7 genotypes of each Pygmy, Bedouin and Yemenite 

Jew group and 9 genotypes from Ashkenazi Jews). Even though each group’s sample size is 

not large the data were nevertheless analyzed using the HAPLOCLUST algorithm. The 

genotype data contains 74 SNPs, out of which 40 had rare allele frequency equal to 0.15 or 

higher. Out of these 40 sites, 37 had alleles that were not intact or were disrupted and were, 

therefore, selected for the analysis.  

Results from running the HAPLOCLUST algorithm on the 6 pairs of different 

population samples are shown in Table 6.3. Every row in the table represents output for 

some particular pair of samples. Cell entries indicate identification labels for the genotypes 
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from the sample marked by the column. Thus, for example, in pair 5, 3 out of 7 Bedouin 

individuals were assigned the group 2 label, 1 was assigned the group 1 label and 3 left 

unclassified (labeled 0); among the Pygmies individuals, 4 were assigned to group 1, 1 

individual assigned to group 2, and 2 left unclassified. In this particular pair, it is therefore 

reasonable to assume that group 1 can be associated with Pygmies and group 2 with 

Bedouins.  

Table 6.3 Results from running CLUST algorithm on the pairs of samples. 

 Bedouins Ashkenazi jews Yemenite Jews Pygmies 

Pair 1 → 0 0 0 0 1 0 0 2 0 0 0 0 0 0 2 0   

Pair 2 → 0 0 0 0 0 0 1  0 2 2 2 2 0 1  

Pair 3 →   1 2 2 2 0 0 2 0 0 1 0 0 0 0 

Pair 4 →  0 0 2 0 0 0 0 0 0  0 0 0 0 0 1 1 

Pair 5 → 2 0 2 2 0 0 1   2 0 0 1 1 1 1 

Pair 6 →  1 1 2 1 1 1 1 1 1 1 2 2 1 2 1 1  

 

The overall conclusion in the four population data samples is that the algorithm is 

able to correctly classify some portion of the individuals in almost every pair, with a visible 

distinction between groups. A large fraction of unclassified individuals can be attributed to 

the insufficient information (small sample sizes of the population groups and relatively short 

SNP sequence under study) and to the similarity of the haplotype patterns due to possible 

assimilation as, for example, in the case of Ashkenazi and Yemenite Jews.  

6.3.3 HapMap data 

The next data to be tested using the HAPLOCLUST algorithm was the same HapMap 

data used by the HAPLOGEN algorithm in section 5.2.5. Namely, the HAPLOCLUST 

algorithm was applied to the data from four different world populations CEU (European 

decent, 30 genotypes), YRI (Yoruba, 30 genotypes), CHB (Han Chinese, 45 genotypes) and 

JPT (Japanese, 45 genotypes). The data from the four samples were taken from a randomly 

chosen chromosome (chromosome 2) in the release 22 in HapMap web site. In order to 

provide a reliable result, only children from 30 family trios from each CEU and YRI sample 

were considered. The genotype information from the parents was not used for the 

determination of the resolvable heterogenous positions in children genotypes. Thus, all four 

samples were original genotypic data from completely unrelated individuals. The 500 SNPs 
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having the same location (the first 500 positions of the data) along the chromosome were 

processed by the clustering algorithm. 

Table 6.4. Group assignment of genotypes in different pairs of data sets of unrelated 
individuals 

Data set Cluster assignment  Accuracy 

CEU + YRI 
CEU: 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 

YRI:  2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0 2 2 

0.9 

0.967 

CHB + JPT 

CHB: 2 2 2 0 0 0 0 0 0 0 2 0 0 0 0 0 1 2 1 0 0 0 0 0 0 0 2 2 0 0 2 0 2 1 0 2 0 

0 0 0 0 0 0 2 0 

JPT:   0 0 0 2 2 0 2 2 0 0 2 0 2 2 0 0 2 0 2 0 0 0 0 1 2 0 2 2 1 2 1 0 0 2 0 2 2 

2 0 1 0 2 0 0 2 

0.24 or 

0.07 

0.09 or 

0.42 

CEU + CHB 

CEU:  2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

CHB: 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 

1 1 1 1 1 1 1 1 

1.0 

0.93 

CEU + JPT 

CEU:  2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

JPT:    1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 2 1 1 2 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 

1.0 

0.91 

YRI + CHB 

YRI:  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

CHB: 2 2 2 0 0 0 2 1 0 0 2 0 2 2 0 0 2 0 2 0 0 0 0 0 2 0 2 2 2 2 2 0 2 2 2 2 0 

0 0 0 0 0 2 0 0 

1.0 

0.44 

YRI + JPT 

YRI: 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

JPT:  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 2 1 1 2 1 1 1 2 1 1 

1 1 1 1 1 1 1 1 

1.0 

0.91 

 

The results from running the algorithm on the pairs of data samples are shown in 

Table 6.4 in the form of the cluster vector produced by the algorithm. As mentioned above, 

the cluster assignment can either be “1”, “2” or “0” (unclustered). The accuracy of the 

assignment was determined on the basis that most genotypes were labeled by the same 

symbol (“1” or “2”) in either of the samples. Thus, the true assignment in most cases is 

visible through the difference in distribution of labels in the two samples.  

The overall results are very encouraging in the sense that the proposed clustering 

algorithm was able to classify the populations with a high degree of accuracy; in the 

majority of cases the accuracy exceeded 0.91 in every pair. The only pair of samples that 

clearly stands out is the CHB+JPT data, where it wasn’t possible to classify populations into 

two distinct clusters with significantly different haplotype block structures. This can be 

explained by the relative similarity of genotypes as well as the block structures within this 

particular SNP region among Asian populations due to their common ethnogeographic 

ancestry. The analysis of some other SNP regions might reveal more distinction between 

these two populations. The results from the rest of the data allow us to conclude that the 



 102 

genotypes of the populations from very distant parts of the world do, in fact, differ in their 

block structure and the haplotype distribution. 

The difference in block structures for the pairs of populations can be traced by the 

scores for block boundaries as a part of the solution provided by the algorithm 

HAPLOCLUST (and, in particular, the HAPLOGEN part of it). The scores for block 

boundaries indicate how likely it is for the particular position to have a block boundary 

immediately to the left of it. These scores were obtained from the pooled sample and 

separately from each of the extracted clusters. An example of such an analysis performed on 

YRI+JPT data is shown in Fig. 6.2. The top graph clearly shows the mixture of the two 

different “signals,” which are shown on the two graphs below the top one.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2. Scores for block boundaries from (a) the pooled data (YRI+JPT); and the data 

from each of the clusters inferred by the HAPLOCLUST algorithm: (b) cluster 1, 

(c) cluster 2. 
 



 103 

Similarly, one can look at the actual block boundaries produced by the algorithm for 

the pooled sample and the two clusters shown in Fig. 6.2. The two block partitions (b) and 

(c) in Fig. 6.2 of the two clusters produced by the algorithm clearly exhibit quite different 

block boundaries. Compared to these two partitions, the pooled sample’s block structure 

(shown in part (a) of Fig. 6.3) is very uninformative as it tends to have the block of almost 

equal length. Thus, the classification of a genotype sample into the clusters with different 

block structures helps to refine the block structure of the mixed sample. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3. Actual haplotype block partitions obtained for (a) the pooled sample 

(YRI+JPT); and separately for each of the inferred clusters: (b) cluster 1, (c) cluster 2. 

6.4. Summary of the clustering algorithm results 

The proposed algorithm HAPLOCLUST is designed to cluster the given genotype 

sample into two groups with maximally different block structures when the population 
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assignment is not known or is suspected to be inaccurate. In addition to cluster extraction, 

the proposed algorithm produces the haplotype resolution and the full block structure profile 

for each cluster of genotypes. Analysis of the simulated data on angiotensin converting 

enzyme (ACE data) shows that the proposed algorithm can successfully separate two sub-

populations with non-overlapping sets of haplotype patterns. In the presence of overlapping 

haplotype patterns the clustering is not always consistent with the true population 

assignment. The analysis of larger data sets (four paired samples from European, Asian and 

African populations obtained from HapMap) of unrelated individuals confirms the high 

average rate of correct classification of around 95%. Previous methods [9, 10] showed 

similar classification rate but, unlike ours, was performed on the sets of partially related 

individuals which could implicitly affect the correctness of results. In addition, the previous 

methods were not specifically designed for treatment of genotype data: the genotype data 

were used as haplotype data with missing entries at ambiguous positions. Despite good 

results shown on the data with a relatively low proportion of ambiguous sites, these methods 

can be challenged when the data contains a large proportion of ambiguous positions.  

Our findings of impossibility of clustering of the pooled Asian sample (Japanese and 

Han Chinese) suggest that these two populations may have common ancestry which is 

reflected in the similarity of common long-range haplotypes and the block structure. This 

conclusion, however, may only be applied to the particular part of chromosome 2 that we 

studied. More precisely, the two Asian populations may exhibit very different block 

structures in other genomic regions. The fact that some of the genotypes can be left 

unclassified implies that the proposed algorithm is able to extract only the clusters with 

substantially different block structures and collections of haplotypes. Too many unclustered 

genotypes may indicate the presence of assimilation in the sample.  The proposed clustering 

algorithm was shown to be very fast: the processing time for the samples of 60 genotypes of 

length 500 SNPs took 15-20 minutes on a 2.3 GHz processor.  
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Chapter 7  

Conclusions and future work 

 

Discovery of the variations in the human genome characterized by single nucleotide 

polymorphisms (SNPs) opened an entirely new area of research in bioinformatics. In 

particular, SNPs have proven to be useful in gene mapping for complex human diseases. 

The fact, that complex traits (expressed as complex diseases and other phenotypic 

characteristics) have compound genetic component has increased the need for the 

availability of the haplotype decomposition for the full-length of the specific regions of 

interest. The existence of the haplotype blocks as regions of limited haplotype diversity and 

possibly high linkage disequilibrium (LD) provided additional breakthroughs in the analysis 

of complex traits. Thus, the reliable methods of haplotype resolution and block partitioning 

are needed to facilitate the effective genetic mapping of complex traits. Since available 

experimental haplotyping technologies are often expensive, computational methods offer a 

good alternative. In particular, the methods of simultaneous haplotyping and block 

partitioning are on the edge of the current research in this area. Although there are currently 

several methods that provide good results to that problem, there is still room for 

improvement.  

In this dissertation, a new algorithm HAPLOGEN that simultaneously finds 

haplotype resolution and block partitioning is proposed. The algorithm directly incorporates 

missing data so that the entries to those positions comply with the entire model and are 

found during the process and not as a separate step. This feature is not always available in 

existing algorithms for haplotype resolution and block partitioning. The algorithm also 

features such advantages as the usage of the multilocus LD criterion (Normalized Entropy 

Difference) for block partitioning and unlimited length for haplotype blocks. The use of the 

LD-based multilocus criteria for the purpose of haplotype block identification corresponds 

to mainstream thoughts on haplotype block definition. In addition, the proposed algorithm 

calculates the scores of block boundaries at each SNP position. Each score approximately 

indicates how likely it is for this particular SNP to have a block boundary immediately to the 

left of it. Although previous studies on block partitioning produced the measures of degree 

of strength for block boundaries [14], the genetic algorithm proposed in this dissertation 
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offers the possibility of finding block partitioning together with haplotype resolution while 

providing the scores for the block boundaries. The results from running the algorithm on  

real and simulated data, including the HapMap data, have shown that the HAPLOGEN 

algorithm provides accuracy comparable to that of the existing state-of-the-art methods for 

most studied samples. There are minor adjustments that need be done in the future to 

improve the accuracy for certain data. The proposed algorithm achieves the same running 

time as the other best algorithms for haplotype resolution and block partitioning. The block 

boundaries output by the HAPLOGEN algorithm in general agree with those of the other 

algorithms. These successful results generally support the parsimonious principle used as an 

assumption for the haplotyping problem and incorporated into the model in the forms of the 

fitness function and global optimization criteria.  

The proposed algorithm can process relatively large data (up to about 350000 entries 

of the genotype matrix) but has problems accepting larger data sets. This limitation is not set 

by the algorithm itself but imposed by the R software capabilities. Also, improvements may 

be done in the block partitioning part of the algorithm, which includes investigation of the 

ways to use only one block identification criterion (namely, multilocus LD measure, NED) 

without posing any restrictions on the block size.  

The run time of the proposed algorithm HAPLOGEN is approximately equal to that 

of the fastest existing methods for haplotype resolution and block partitioning. The overall 

time complexity of the algorithm is O(n
3
m
3
), if the number of iterations is set to the default 

value. 

Despite overall good results provided by algorithm HAPLOGEN, there are several 

ways it can be improved. First, the fact that some data exhibited higher error rates indicates 

that the parsimonious principle is not able to fully describe the real data in all cases, which is 

especially noticeable in data from conserved populations with a small number of ancestral 

haplotypes. This stipulates the need to include additional global optimization or local 

selection criteria. The most appropriate approach seems to be perfect phylogeny within any 

particular block at each iteration. Several previous studies [59, 62, 63, 64] showed that 

perfect phylogeny is a reasonable assumption for short sequences of SNP that can provide 

additional insight into the nature of haplotype resolution. The inclusion of the additional 

criteria into the model should ensure lower error rates for all data. Intermediate results show 
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that incorporating if the second-order Markov chain into the mutation step may significantly 

decrease the error rate. 

Second, the accuracy of haplotype decomposition can be slightly increased by 

improving the haplotype resolution within each block, namely, by performing several 

iterations of the algorithm locally within each block as part of the global iteration for the 

whole-length sequence. This may minimize the occurrence of badly decomposed blocks as a 

part of the overall solution and will lead to the faster achievement of the global optimization 

criteria.   

Third, ways to improve the applicability of the multi-locus linkage disequilibrium 

measure (given by NED) to long sequences of SNP should be investigated. As of this 

moment, NED is only capable of detecting linkage disequilibrium in sequences no longer 

than 10 SNPs, while blocks can be as long as 100 SNPs. Due to this fact, additional block 

identification criteria is currently used in the HAPLOGEN algorithm. The extension of the 

use of NED measure for long sequences of SNPs should improve the reliability of the block 

boundaries. 

Fourth, the block boundaries scores may need to be incorporated into the final 

solution (block structure) by using the threshold for each score and, thus, determining if a 

particular boundary qualifies to be represented in the final block structure.  

Fifth, the confidence bounds on the number of iterations may be suggested rather 

than the single default value calculated form the linear regression (see Sec. 3.10). 

Sixth, the prediction of missing data needs to be compared to that provided by the 

other algorithms for haplotype resolution to better assess the advantage of incorporating 

missing data into the model provided by the HAPLOGEN algorithm. 

Ways to apply the proposed HAPLOGEN algorithms to the population studies were 

also explored in this dissertation. The extension of the HAPLOGEN in a form of the new 

algorithm HAPLOCLUST performes clustering of the given sample of genotypes into two 

groups with different block structures when the population assignment is not known in 

advance, and also finds the haplotype resolution and block partition for these two clusters. 

The HAPLOCLUST algorithm has obtained very promising results for real and simulated 

data. The results demonstrate the algorithm’s ability to differentiate between two 

populations with a high degree of accuracy when there is little or no assimilation present.  
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As was shown by real genotype data, the HAPLOCLUST algorithm performs 

extremely well for the two-population mixed sample. However, the case of three or more 

populations should also be investigated and, thus, remains the goal of future research. Some 

insight for solving this problem can be learned from traditional clustering algorithms. 
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Appendix A   

R functions for the results evaluation 

 
ham.dist <- function(s1, s2) { # Function to compute the hamming distance 
of the two strings of the same length 
# Positions with values 2 or 9 in the first (true) string are NOT COUNTED 
dist <- 0 
 for (j in 1:length(s1)) 
 { 
        if (s1[j]!=9 && s1[j]!=2) 
        { 
   if (s1[j]!=s2[j]) dist <- dist+1 
  } 
 } 
return(dist) 
}  
 
block.err.star <- function(Gen.coded.df, true.haplo.df, resolved.df, b){ 
# Gencoded.df contains input genotypes coded into 0,1,2 and 9, nrow = n 
# true.haplo.df has the true resolutions (where possible) of the input 
genotypes, nrow = 2n 
# resolved.df has computed resolution of the input genotypes, nrow = 2n 
# b is the vector indicating the block structure (at the beginning 
position of each block is the value of the ending position) 
# Missing data is ignored for the purpose of calculating the error rates 
tote <- 0 
totr <- 0 
err <- c() # Error rates for each block (associated with the beginning 
positions of blocks) 
# Initializing vector err: 
for (j in 1:length(b)) err[j] <- 0 
e <-c() # Number of errors for each genotype within a block 
r <- c() # Number of heterozygotes (resolvable) in each genotypes within a 
block 
 g <- c() # Current genotype 
 h1 <- c()  # Predicted resolutions h1 & h2 
 h2 <- c() 
 t1 <- c() # True resolutions t1 & t2 
 t2 <- c() 
begin <- 1 
while (begin < (length(b)+1)) 
 { 
 end <- b[begin] 
  for (i in 1:nrow(Gen.coded.df))  # For each genotype in the 
input: 
  { g <- Gen.coded.df[i, begin:end] 
   t1 <- true.haplo.df[(2*i-1), begin:end] 
   t2 <- true.haplo.df[2*i, begin:end] 
   h1 <- resolved.df[(2*i-1), begin:end] 
   h2 <- resolved.df[2*i, begin:end] 
  # Counting the number of resolvable heterogeneous positions 
   #r[i] <- as.numeric(sum(g==2)) - as.numeric(sum(t1==2))  
  #Counting the number of ALL heterogeneous positions 
   r[i] <- as.numeric(sum(g==2))   
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  # Computing the number of errors (using Hamming distance): 
   e[i] <- 0.5*min((ham.dist(t1,h1)+ham.dist(t2,h2)), 
(ham.dist(t1,h2)+ham.dist(t2,h1))) 
  } 
 #print(sum(r)) 
 err[begin] <- sum(e)/sum(r) 
 tote <- tote+sum(e) 
 totr <- totr+sum(r) 
 begin <- end+1 
 } 
print('Average block error rate: ') 
ave.rate <- tote/totr 
print(ave.rate) 
return(err) 
} 
 
switch.rate <- function(Gen.coded.df, true.haplo.df, resolved.df){ 
switches <- c() 
heter <- 0 
for (i in 1:nrow(Gen.coded.df))  
 { 
 switches[i] <- 0 
 k <- 1 
 find <- 0 
 while (find==0 && k<ncol(Gen.coded.df)) 
  { 
  if (Gen.coded.df[i,k]==2) 
   { 
   heter <- heter+1 
   if (true.haplo.df[2*i,k]!=2) find <- 1  

#Start calculating switches 
   } 
  k <- k+1 
  } 
 if (true.haplo.df[2*i,(k-1)]==resolved.df[2*i,(k-1)])  
  {t <- 2*i 
    h <- 2*i } 
 else {t <- 2*i 
                       h <- 2*i-1 } 
 for (j in k:ncol(Gen.coded.df)) 
  { 
  if (Gen.coded.df[i,j]==2) 
   {  
   heter <- heter +1 
   if (true.haplo.df[t,j]!=2 && 
true.haplo.df[t,j]!=resolved.df[h,j])  
    {  
    switches[i] <- switches[i]+1 
    if (h == 2*i) h<- 2*i-1 
    else h <- 2*i 
    } 
   } 
  } 
 } 
rate <- sum(switches)/heter 
return(list(rate=rate, switches=switches)) 
} 
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Appendix B 

R code for the Daly data preprocessing 

 
# Download data 

prime.data <- scan(file="C:/Documents and Settings/Owner/My 
Documents/dissertation/data/daly/prime_data.dat", what="", sep="\n") 
 
#Need to exclude the empty spaces and tabulations as well: 

new.data <- prime.data 
n <- length(prime.data)  # This is simply the number of rows read 
for (i  in 1:n) { 
t <- 2 
k <- nchar(prime.data[i]) 
while (t<(k+1)) { 
if ((substring(new.data[i],t,t) == “\t”) || (substring(new.data[i],t,t) 
==” “)) {  # Change quotes in R ! 
new.data[i] <- paste(substring(new.data[i],1,(t-
1)),substring(new.data[i],(t+1),k), sep=”“) # Change quotes in R ! 
} 
else t <- t+1 
k <- nchar(new.data[i]) 
} 
} 
 

#Separate the string into a vector with nchar/2 elements 

for (j in 1:n) { 
v <- c() 
k <- nchar(new.data[j])/2   
i <- 1 
while (i < (k+1)) { 
v[i] <- substring(new.data[j],(2*i-1),2*i) 
i <- i+1 
}  
if (j==1) new <- v 
else new <- rbind(new, v) 
} 
x <- c(1:387) 
row.names(new) <- x 
new <- as.data.frame(new) 
#Add ID’s to the data frame: 

ID <- scan(file="C:/Documents and Settings/Owner/My 
Documents/dissertation/data/daly/ID.dat", what="", sep="\n") 
ID.father <- scan(file="C:/Documents and Settings/Owner/My 
Documents/dissertation/data/daly/ID_father.dat", what="", sep="\n") 
ID.mother <- scan(file="C:/Documents and Settings/Owner/My 
Documents/dissertation/data/daly/ID_mother.dat", what="", sep="\n") 
family <- scan(file="C:/Documents and Settings/Owner/My 
Documents/dissertation/data/daly/family.dat", what="", sep="\n") 
 
new.df <- cbind (family, ID, ID.father, ID.mother, new) 
 
#Mark all children: 

child <- c() 
for (i in 1:387){ 
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if (new.df$ID.father[i] != 0) {  # Change quotes in R  
child[i] <- "child"} 
else child[i] <- "parent" # Change quotes in R  
} 
new.df <- cbind(child, new.df) 
 
#Preprocessing itself. The working data frame is new.df  

#Rule: in the decoded sequence first position is father’s, second is 
mother’s. 

#Arranging all genotypes in the increasing order for easier handling: 

geno.df <- new.df 
for (i in 1:387){ 
for (j in 6:108){ 
v <-
c(as.numeric(substring(geno.df[i,j],1,1)),as.numeric(substring(geno.df[i,j
],2,2))) 
 v <- sort(v) 
geno.df[i,j] <- paste(v[1],v[2],sep="")  
} 
} 
haplo.df <- data.frame() 
for (i in 1:387){             # begin for 
if (geno.df$child[i] == "child"){    # begin if 
child <- geno.df[geno.df$ID == geno.df$ID[i], ] 
father <- geno.df[geno.df$ID == geno.df$ID.father[i], ] 
mother <- geno.df[geno.df$ID == geno.df$ID.mother[i], ] 
 
for (j in 6:108){   # begin for 
# for (j in 1:12){ # This is just for the test data 
if (substring(child[[j]],1,1) != substring(child[[j]],2,2))  {   
# For ambiguous sites only   
if (father[[j]]!="00" && mother[[j]]!="00") {  # At least one of the 
parents must be non-missing   
 #Assuming there is no missing information 
if (father[[j]]==mother[[j]]) child[j] <- paste("*",child[[j]],sep="")  
else  
{ 
if (substring(father[[j]],1,1)!=substring(father[[j]],2,2) || 
substring(mother[[j]],1,1)!=substring(mother[[j]],2,2)) 
 {  
 # Case 1: 
      if (child[[j]]==father[[j]] && 
as.numeric(substring(mother[[j]],1,1))>as.numeric(substring(father[[j]],1,
1)))   
             { child[j] <- father[[j]] } 
                   else if (child[[j]]==father[[j]]) child[j] <- 
paste(substring(father[[j]],2,2), substring(mother[[j]],1,1),sep="")   
                                  else  if 
(as.numeric(substring(father[[j]],1,1))>as.numeric(substring(mother[[j]],1
,1)))  # child = mother 
                                     { child[j] <- 
paste(substring(father[[j]],2,2), substring(mother[[j]],1,1),sep="") } 
                       else child[j] <- mother[[j]] 
                } 
 # Case 2 
else if (substring(father[[j]],1,1)==substring(father[[j]],2,2))  
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               { child[j] <- paste(substring(father[[j]],1,1), 
substring(mother[[j]],2,2),sep="")  } 
               else   child[j] <- paste("*",child[[j]],sep="")  
 } 
 
} 
# Case 3: mother or father has missing info 
else if (father[[j]]!=mother[[j]])   # either father or mother has non-
mising info  
           { if (father[[j]]!="00" && father[[j]]!=child[[j]])  
 # I.e. father has non-missing unambiguous info, like “44, and child 
is ambiguous” 
                 { if 
(substring(father[[j]],1,1)!=substring(child[[j]],1,1))   
                         {child[j] <- paste(substring(child[[j]],2,2), 
substring(child[[j]],1,1),sep="") }  # else nothing changes 
                   } 
             if (mother[[j]]!="00" && mother[[j]]!=child[[j]]) 
               # I.e. mother has non-missing unambiguous info, like 
“44, and child is ambiguous” 
                 { if 
(substring(mother[[j]],1,1)==substring(child[[j]],1,1))   
                         {child[j] <- paste(substring(child[[j]],2,2), 
substring(child[[j]],1,1),sep="") }  # else nothing changes 
                   } 
              if (mother[[j]]==child[[j]] || father[[j]]==child[[j]]) # 
non-missing but ambiguous info in one parent, other missing 
                  { child[j] <- paste("*",child[[j]],sep="") } 
            } 
          else  child[j] <- paste("*",child[[j]],sep="") 
} 
}  # end for 
haplo.df <- rbind(haplo.df,child) 
}  # end if 
}   # end for 
 
#Count unresolved (ambiguous) sites and missing entries in rows: 

missing <- c() 
ambig <- c() 
total <- c() 
for (i in 1:nrow(haplo.df)) { 
mis <- 0 
amb <- 0 
tot <- 0 
for (j in 6:108) { 
if (haplo.df[i,j]== "00") mis <- mis +1 
if (substring(haplo.df[i,j],1,1)=="*") amb <- amb+1 
} 
missing[i] <- mis 
ambig[i] <- amb 
total[i] <- mis+amb 
} 
haplo.df <- cbind(haplo.df, missing, ambig, total) 
# percentage missing and ambiguous 
mis.per <- missing/103 
amb.per <- ambig/103 
tot.per <- total/103 
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#Now, the data needs to be properly encoded (as 0,1, 2 or 9) with 

appropriate vector storing coded information 

 
#First, remove “*” everywhere and store the data in the new df: 
#haplo.df contains markers (“*”) of unresolvable genotype positions and is 
needed for the verification purposes 

 
Gen.orig.df <- haplo.df 
for (j in 6:108) { 
for (i in 1:129) {  # With 2 individuals (86 and 105) put back 
if (substring(Gen.orig.df[i,j],1,1)=="*")    Gen.orig.df[i,j] <- 
substring(Gen.orig.df[i,j],2,3)    
} 
} 
 
#Then create vector (2 positions each element) storing coded information: 

“0” (listed first) and “1” (listed second): 

#(It just happened so that the 3rd position of the levels() always has 2 
different values): 
 
codes <- c() 
for (j in 6:108) { # Searching for different symbols 
s1<-substring(levels(as.factor(Gen.orig.df[,j]))[3],1,1)# coded by 0 
s2<-substring(levels(as.factor(Gen.orig.df[,j]))[3],2,2)# coded by 1 
nextcode <- paste(s1,s2,sep="") 
codes <- c(codes, nextcode) 
} 
#Code genotype into the 0,1,2 and 9: 

 
Gen.coded.df <- c() 
for (i in 1:129){ 
newrow <- c() 
for (j in 6:108){ 
 if 
(substring(Gen.orig.df[i,j],1,1)==substring(Gen.orig.df[i,j],2,2)) 
  { 
        if (substring(Gen.orig.df[i,j],1,1)=="0")   newrow[j-5] 
<- 9    # Missing data 
        else  
   { 
         if 
(substring(Gen.orig.df[i,j],1,1)==substring(codes[j-5],1,1))  newrow[j-5] 
<- 0 
         else newrow[j-5] <- 1 
   } 
  } 
 else # heterogeneous positions 
 { newrow[j-5] <- 2} 
             } 
Gen.coded.df <- rbind(Gen.coded.df, newrow) 
} 
 rownames(Gen.coded.df)  <- c(1:129) 
 
#Create the true haplotype matrix (it also contains unresolvable sites) 

true.haplo.df <- c()   
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# New data frame containing resolved haplotypes (every 2 haplotypes/rows 
correspond to 1 genotype) 
for (i in 1:129){ 
h1 <- c() 
h2 <- c() 
for (j in 6:108){ 
 if (substring(haplo.df[i,j],1,1)=="*")  # Unresolvable position 
 {  
  h1[j-5] <- 2 
  h2[j-5] <- 2  
   } 
 else  
 { 
  if 
(substring(haplo.df[i,j],1,1)==substring(haplo.df[i,j],2,2)) # homogeneous 
positions 
   { 
         if (substring(haplo.df[i,j],1,1)=="0") 
    {    
    h1[j-5] <- 9    # Missing unresolvable data 
    h2[j-5] <- 9 
    } 
         else  
    { 
          if 
(substring(haplo.df[i,j],1,1)==substring(codes[j-5],1,1))   
     { 
     h1[j-5] <- 0 
     h2[j-5] <- 0 
     } 
          else  
     { 
     h1[j-5] <- 1 
     h2[j-5] <- 1 
     } 
    } 
   } 
  else # heterogeneous positions 
  {  
  if (substring(haplo.df[i,j],1,1)==substring(codes[j-5],1,1)) 
    { 
    h1[j-5] <- 0 
    h2[j-5] <- 1 
    } 
         else  
    { 
    h1[j-5] <- 1 
    h2[j-5] <- 0 
    } 
  } 
 } 
             } 
true.haplo.df <- rbind(true.haplo.df, h1, h2) 
} 
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Appendix C  

R code for the Patil data preprocessing 

 
#Copying b blocks: 

 

b <- 1000 # Number of blocks to be read 
Patil <- scan(file="C:/Documents and Settings/Owner/My 
Documents/dissertation/data/Perlegen/Patil_Ch21/haplotype.txt", what="", 
sep="\n", skip=1, nlines=44*b) 
 
Patil.df <- c() 
for (i in 1:b) 
{ 
 Patil.data <- Patil[(22*(i-1)+1):(22*i)] 
 n <- length(Patil.data)  # This is simply the number of rows read 
(22 or 20) 
 P.df <- rep('*',n) 
 for (i  in 1:n) { 
 numtab <-0   # Number of tabulation symbols 
 t <- 2 
 k <- nchar(Patil.data[i]) 
 stop = 0 
 while (t<(k+1) && stop==0)  
 { 
 if (substring(Patil.data[i],t,t) == '\t')  numtab <- numtab+1 
 if (numtab==3) 
  {   
  P.df[i] <- paste(substring(P.df[i],1,(t-
1)),substring(Patil.data[i],(t+1),(t+1)), sep='')  
  } 
 if (numtab==4)   stop=1 
 t <- t+1 
 } 
 P.df[i] <- substring(P.df[i],2,(nchar(P.df[i])-1)) 
 } 
Patil.df <- cbind(Patil.df,P.df) 
} 
 
#Then, transform data into the single strings: 

 
patil.df <- c() 
for (i in 1:nrow(Patil.df)) 
{ 
patil.df[i] <- Patil.df[i,1] 
 for (j in 1: ncol(Patil.df)) 
 { 
  patil.df[i] <- paste(patil.df[i],Patil.df[i,j],sep='') 
 } 
} 
 
#Separating the string into a vector with nchar elements: 

 
patil <- c() 
for (j in 1:n) { 
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k <- nchar(patil.df[j])   
v <- c() 
i <- 1 
while (i < (k+1))  
{ 
 v[i] <- substring(patil.df[j],i,i) 
 i <- i+1 
}  
patil <- rbind(patil, v) 
} 
x <- c(1:length(patil.df)) 
row.names(patil) <- x 
 
patil <- as.data.frame(patil) 
 
#Encoding into 0,1,9: 

 
patil.codes <- c() 
v <- c() 
for (j in 1:ncol(patil)) 
{ 
 v <- levels(patil[,j]) 
 patil.codes <- cbind(patil.codes, v) 
} 
 
for (i in 1:2) # Rearranging 
{ 
 for (j in 1:ncol(patil)) 
 { 
  if (patil.codes[i,j]=='n')  
  { 
   v <- patil.codes[3,j] 
   patil.codes[3,j] <- 'n' 
   patil.codes[i,j] <- v 
  } 
 } 
} 
 
# Encoding: first row in patil.codes is codes into 1's, second row into 

0's, 'n' into 9's 

patil.coded <- matrix(nrow=nrow(patil), ncol=ncol(patil)) 
for (i in 1:nrow(patil)) 
{ 
 for (j in 1:ncol(patil)) 
 { 
  if (patil[i,j]=='n') patil.coded[i,j] <- 9 
  else if (patil[i,j]==patil.codes[1,j]) patil.coded[i,j] <- 1 
   else patil.coded[i,j] <- 0 
 } 
} 
 
#Before inputing the data into the algorithm it has to be simulated 

#(random matching of the pairs of haplotypes to create #genotypes): 

 
# Delete unwanted rows 

# Rows 6 and 22 also don't have enough defined data: so they all should be 
deleted: 
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set <- c(6,22) 
patil.coded <- patil.coded[-set,] 
 
# True Haplotype matrix 

v <- 1:20 
patil.haplo <- c() 
for (i in 1:100) # Generate 100 individuals/genotypes 
{ 
set <- sample(v,2) 
patil.haplo <- rbind(patil.haplo, patil.coded[set[1],], 
patil.coded[set[2],]) 
} 
 
patil.geno <- c() 
g <- c() 
for (i in 1:100) 
{  
 for (j in 1:ncol(patil.coded)) 
 { 
  if (patil.haplo[(2*i-1),j]==patil.haplo[2*i,j] 
&&patil.haplo[2*i,j]!=9) g[j] <- patil.haplo[2*i,j] 
  else if (patil.haplo[(2*i-1),j]==9 || patil.haplo[2*i,j]==9) 
g[j] <- 9 
   else g[j] <- 2 
 } 
patil.geno <- rbind(patil.geno, g) 
} 
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Appendix D 

Documentation for haplogen package 

D.1 Introduction 

Haplogen.pack is an R package implementing two algorithms for haplotyping and block 

partitioning: HAPLOGEN and HAPLOCLUST.  

Algorithm HAPLOGEN is designed to find phased haplotypes and the associated haplotype 

block partition for the given collection of genotypes. HAPLOGEN find the full haplotype block 

profile consisting of the collections of haplotype patterns and their sample frequencies for every 

block. In addition, the algorithm determines the scores for block boundaries which estimate how 

likely for every position to have a block boundary immediately to the left of it. 

Algorithm HAPLOCLUST is an extension of the algorithm HAPLOGEN. It performs the 

haplotype resolution and block partition for the mixed population genotype samples (two population 

case only). Algorithm HAPLOCLUST clusters the given genotype sample into two clusters (if 

possible) with significantly different block structures and then find haplotype resolution and block 

structure for both of them. Part of the sample may be left unclustered. 

 

D.2 Getting started 

D.2.1 Installation for Windows 

Haplogen.pack can be installed like any other R package. Download the compiled binary 

version in haplogen.pack_1.0.zip file containing the package to you computer. The best way is to 

save it in the bin directory of R. Start R, in the menu select Packages and then Install package(s) 

from local zip files… option on the bottom. 

In the dialog window navigate to the location of the zip file containing the package (i.e., the 

bin directory, as suggested). Click the Open button. After that the message about successful 

installation should appear in the R console.  

 

D.2.2 Usage 

After the package was successfully installed you can start using it. In the R console type 

library(haplogen.pack)  

and then assuming you have data G in an appropriate format already downloaded into R 

type: 

haplogen(G)  

haplogen(G, numit=1000)  # Specifying the number of iterations  
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if you want to use HAPLOGEN algorithm 

or 

haplogen(G, method=”CLUST”) if you want to use HAPLOCLUST algorithm. 

You can also type help(haplogen) to look at the R documentation file about the 

package which contains brief information on how to use the package as well as some examples.  

 

D.2.3 Removal  

If you would like to remove the current version of the haplogen.pack package from the 

library issue the following command in R: 

remove.packages(“haplogen.pack”) 

 

D.3 Input file format 

Sample of genotypes should be represented in R by either a matrix or a data frame. Each 

genotype should be encoded in a single row by 0, 1 (homogeneous alleles), 2 (ambiguous allele) and 

9 (missing data). 

The genotype data can easily be downloaded to R by using the following command: 

G <- read.table(“<path to the file>”) 

 

D.4 Output 

Output differs for HAPLOGEN and HAPLOCLUST  (when using method = ”CLUST”) 

algorithms. All of the output files are stored in current version of R directory. 

 

D.4.1 Output files for HAPLOGEN algorithm 

For HAPLOGEN the output consists of the following files: 

• H. This file contains the whole-length haplotype resolution for each genotype. Every two rows 

correspond to one genotype in the same order as given in the input file. 

• B. This file contains the description of the haplotype block structure:  

- vector specifying block boundaries, where the position of each non-zero entry indicates the 

beginning of a block and the value of that entry its ending position; for example: 

 12 0 0 0 0 0 0 0 0 0 0 0 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

The above vector shows that there are 2 blocks found spanning positions 1-12 and 13-30. 

- vector of scores for block boundaries, indicating the number of times the algorithm 

selected some specific boundaries, for example: 



 127 

10 0 0 0 0 3 0 0 0 0 0 1 8 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 

The fractional scores can be obtained by dividing every entry of this vector by its first 

element (10 in this example). 

-  the full haplotype blocks profile including the list of distinct haplotype patterns within any 

given block and their sample frequencies (last column). For example: 

  Block  1  
 Positions  1  through  12  
 
1 1 1 1 1 1 1 1 1 1 1 1       2 
1 1 0 1 1 1 1 1 1 1 1 1       4 
0 1 1 1 1 1 1 1 1 1 1 1      16 
0 1 1 1 1 1 0 1 1 1 1 1       2 
1 1 0 1 1 1 0 1 1 1 1 1       4 
1 0 1 0 0 0 0 1 1 1 1 1       2 
1 1 0 1 1 1 1 0 0 0 0 0       2 
1 1 1 0 0 0 0 1 1 1 1 1       2 
1 1 1 0 0 0 0 0 0 0 0 0       2 
 
 Block  2  
 Positions  13  through  30  
 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1       4 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1      12 
1 1 0 1 1 1 1 1 1 1 1 1 0 0 1 1 1       2 
1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1      10 
1 1 0 0 0 1 1 0 0 1 0 1 0 0 1 1 1       2 
0 0 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1       2 
1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1       2 
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1       2 

 

D.4.2 Output files for HAPLOCLUST algorithm 

For HAPLOCLUST the output consists of the following files: 

• G. This file contains the original genotype matrix with the additional column (the first column) 

indicating the cluster assignment: 1 (cluster 1), 2 (cluster 2) or 0 (unclustered genotype). 

• B1, B2. These files contain the haplotype block profiles for each extracted cluster similar to 

those produced by HAPLOGEN algorithm. 

• H1, H2. Files with the haplotype resolutions for the genotypes with corresponding assignment. 

Every two lines correspond to an individual genotype with the same order as in the input 

genotype file. Only resolution for genotypes with corresponding assignment (1 or 2) is shown. 

The rest of the genotypes appear by rows of “5 5 5 5 5 5 5”.  
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