27,861 research outputs found

    Bayesian Model Comparison and the BIC for Regression Models

    Get PDF
    In the signal processing literature, many methods have been pro-posed for solving the important model comparison and selection problem. However, most of these methods only find the most likely model or only work well under particular circumstances such as a large number of data points or a high signal-to-noise ratio (SNR). One of the most successful classes of methods is the Bayesian in-formation criteria (BIC) and in this paper, we extend some of the recent work on the BIC. In particular, we develop methods in a full Bayesian framework which work well across a large/small number of data points and high/low SNR for either real- or complex-valued data originating from a regression model. Aside from selecting the most probable model, these rules can also be used for model averag-ing as they assign a probability to each candidate model. Through simulations on a polynomial trend model, we demonstrate that the proposed rules outperform other rules in terms of detecting the true model order, de-noising the noisy signal, and making predictions of unobserved data points. The simulation code is available online. Index Terms — Model comparison and selection, Bayesian in-formation criterio

    A bayesian via laplace approximation on log-gamma model with censored data

    Get PDF
    Log-gamma distribution is the extension of gamma distribution which is more flexible, versatile and provides a great fit to some skewed and censored data. Problem/Objective: In this paper we introduce a solution to closed forms of its survival function of the model which shows the suitability and flexibility towards modelling real life data. Methods/Analysis: Alternatively, Bayesian estimation by MCMC simulation using the Random-walk Metropolis algorithm was applied, using AIC and BIC comparison makes it the smallest and great choice for fitting the survival models and simulations by Markov Chain Monte Carlo Methods. Findings/Conclusion: It shows that this procedure and methods are better option in modelling Bayesian regression and survival/reliability analysis integrations in applied statistics, which based on the comparison criterion log-gamma model have the least values. However, the results of the censored data have been clarified with the simulation results

    Consistency of Bayesian procedures for variable selection

    Full text link
    It has long been known that for the comparison of pairwise nested models, a decision based on the Bayes factor produces a consistent model selector (in the frequentist sense). Here we go beyond the usual consistency for nested pairwise models, and show that for a wide class of prior distributions, including intrinsic priors, the corresponding Bayesian procedure for variable selection in normal regression is consistent in the entire class of normal linear models. We find that the asymptotics of the Bayes factors for intrinsic priors are equivalent to those of the Schwarz (BIC) criterion. Also, recall that the Jeffreys--Lindley paradox refers to the well-known fact that a point null hypothesis on the normal mean parameter is always accepted when the variance of the conjugate prior goes to infinity. This implies that some limiting forms of proper prior distributions are not necessarily suitable for testing problems. Intrinsic priors are limits of proper prior distributions, and for finite sample sizes they have been proved to behave extremely well for variable selection in regression; a consequence of our results is that for intrinsic priors Lindley's paradox does not arise.Comment: Published in at http://dx.doi.org/10.1214/08-AOS606 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Regularization in regression: comparing Bayesian and frequentist methods in a poorly informative situation

    Full text link
    Using a collection of simulated an real benchmarks, we compare Bayesian and frequentist regularization approaches under a low informative constraint when the number of variables is almost equal to the number of observations on simulated and real datasets. This comparison includes new global noninformative approaches for Bayesian variable selection built on Zellner's g-priors that are similar to Liang et al. (2008). The interest of those calibration-free proposals is discussed. The numerical experiments we present highlight the appeal of Bayesian regularization methods, when compared with non-Bayesian alternatives. They dominate frequentist methods in the sense that they provide smaller prediction errors while selecting the most relevant variables in a parsimonious way

    Bayesian Variable Selection for Ultrahigh-dimensional Sparse Linear Models

    Full text link
    We propose a Bayesian variable selection procedure for ultrahigh-dimensional linear regression models. The number of regressors involved in regression, pnp_n, is allowed to grow exponentially with nn. Assuming the true model to be sparse, in the sense that only a small number of regressors contribute to this model, we propose a set of priors suitable for this regime. The model selection procedure based on the proposed set of priors is shown to be variable selection consistent when all the 2pn2^{p_n} models are considered. In the ultrahigh-dimensional setting, selection of the true model among all the 2pn2^{p_n} possible ones involves prohibitive computation. To cope with this, we present a two-step model selection algorithm based on screening and Gibbs sampling. The first step of screening discards a large set of unimportant covariates, and retains a smaller set containing all the active covariates with probability tending to one. In the next step, we search for the best model among the covariates obtained in the screening step. This procedure is computationally quite fast, simple and intuitive. We demonstrate competitive performance of the proposed algorithm for a variety of simulated and real data sets when compared with several frequentist, as well as Bayesian methods

    A Comparative Review of Dimension Reduction Methods in Approximate Bayesian Computation

    Get PDF
    Approximate Bayesian computation (ABC) methods make use of comparisons between simulated and observed summary statistics to overcome the problem of computationally intractable likelihood functions. As the practical implementation of ABC requires computations based on vectors of summary statistics, rather than full data sets, a central question is how to derive low-dimensional summary statistics from the observed data with minimal loss of information. In this article we provide a comprehensive review and comparison of the performance of the principal methods of dimension reduction proposed in the ABC literature. The methods are split into three nonmutually exclusive classes consisting of best subset selection methods, projection techniques and regularization. In addition, we introduce two new methods of dimension reduction. The first is a best subset selection method based on Akaike and Bayesian information criteria, and the second uses ridge regression as a regularization procedure. We illustrate the performance of these dimension reduction techniques through the analysis of three challenging models and data sets.Comment: Published in at http://dx.doi.org/10.1214/12-STS406 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Generalized extreme value regression for binary response data: An application to B2B electronic payments system adoption

    Full text link
    In the information system research, a question of particular interest is to interpret and to predict the probability of a firm to adopt a new technology such that market promotions are targeted to only those firms that were more likely to adopt the technology. Typically, there exists significant difference between the observed number of ``adopters'' and ``nonadopters,'' which is usually coded as binary response. A critical issue involved in modeling such binary response data is the appropriate choice of link functions in a regression model. In this paper we introduce a new flexible skewed link function for modeling binary response data based on the generalized extreme value (GEV) distribution. We show how the proposed GEV links provide more flexible and improved skewed link regression models than the existing skewed links, especially when dealing with imbalance between the observed number of 0's and 1's in a data. The flexibility of the proposed model is illustrated through simulated data sets and a billing data set of the electronic payments system adoption from a Fortune 100 company in 2005.Comment: Published in at http://dx.doi.org/10.1214/10-AOAS354 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore