334 research outputs found

    Compressed sensing for enhanced through-the-wall radar imaging

    Get PDF
    Through-the-wall radar imaging (TWRI) is an emerging technology that aims to capture scenes behind walls and other visually opaque materials. The abilities to sense through walls are highly desirable for both military and civil applications, such as search and rescue missions, surveillance, and reconnaissance. TWRI systems, however, face with several challenges including prolonged data acquisition, large objects, strong wall clutter, and shadowing effects, which limit the radar imaging performances and hinder target detection and localization

    Multiresolution image models and estimation techniques

    Get PDF

    A new approach to face recognition using Curvelet Transform

    Get PDF
    Multiresolution tools have been profusely employed in face recognition. Wavelet Transform is the best known among these multiresolution tools and is widely used for identification of human faces. Of late, following the success of wavelets a number of new multiresolution tools have been developed. Curvelet Transform is a recent addition to that list. It has better directional ability and effective curved edge representation capability. These two properties make curvelet transform a powerful weapon for extracting edge information from facial images. Our work aims at exploring the possibilities of curvelet transform for feature extraction from human faces in order to introduce a new alternative approach towards face recognition

    Extensions of independent component analysis for natural image data

    Get PDF
    An understanding of the statistical properties of natural images is useful for any kind of processing to be performed on them. Natural image statistics are, however, in many ways as complex as the world which they depict. Fortunately, the dominant low-level statistics of images are sufficient for many different image processing goals. A lot of research has been devoted to second order statistics of natural images over the years. Independent component analysis is a statistical tool for analyzing higher than second order statistics of data sets. It attempts to describe the observed data as a linear combination of independent, latent sources. Despite its simplicity, it has provided valuable insights of many types of natural data. With natural image data, it gives a sparse basis useful for efficient description of the data. Connections between this description and early mammalian visual processing have been noticed. The main focus of this work is to extend the known results of applying independent component analysis on natural images. We explore different imaging techniques, develop algorithms for overcomplete cases, and study the dependencies between the components by using a model that finds a topographic ordering for the components as well as by conditioning the statistics of a component on the activity of another. An overview is provided of the associated problem field, and it is discussed how these relatively small results may eventually be a part of a more complete solution to the problem of vision.reviewe

    Unsupervised color image segmentation using Markov Random Fields Model

    Get PDF
    We propose a novel approach to investigate and implement unsupervised segmentation of color images particularly natural color images. The aim is to devise a robust unsu- pervised segmentation approach that can segment a color textured image accurately. Here, the color and texture information of each individual pixel along with the pixel's spatial relationship within its neighborhood have been considered for producing precise segmentation of color images. Precise segmentation of images has tremendous potential in various application domains like bioinformatics, forensics, security and surveillance, the mining and material industry and medical imaging where subtle information related to color and texture is required to analyze an image accurately. We intend to implement a robust unsupervised segmentation approach for color im- ages using a newly developed multidimensional spatially variant ¯nite mixture model (MSVFMM) using a Markov Random Fields (MRF) model for improving the over- all accuracy in segmentation and Haar wavelet transform for increasing the texture sensitivity of the proposed approach. [...]Master of Computin

    Convolutional Deblurring for Natural Imaging

    Full text link
    In this paper, we propose a novel design of image deblurring in the form of one-shot convolution filtering that can directly convolve with naturally blurred images for restoration. The problem of optical blurring is a common disadvantage to many imaging applications that suffer from optical imperfections. Despite numerous deconvolution methods that blindly estimate blurring in either inclusive or exclusive forms, they are practically challenging due to high computational cost and low image reconstruction quality. Both conditions of high accuracy and high speed are prerequisites for high-throughput imaging platforms in digital archiving. In such platforms, deblurring is required after image acquisition before being stored, previewed, or processed for high-level interpretation. Therefore, on-the-fly correction of such images is important to avoid possible time delays, mitigate computational expenses, and increase image perception quality. We bridge this gap by synthesizing a deconvolution kernel as a linear combination of Finite Impulse Response (FIR) even-derivative filters that can be directly convolved with blurry input images to boost the frequency fall-off of the Point Spread Function (PSF) associated with the optical blur. We employ a Gaussian low-pass filter to decouple the image denoising problem for image edge deblurring. Furthermore, we propose a blind approach to estimate the PSF statistics for two Gaussian and Laplacian models that are common in many imaging pipelines. Thorough experiments are designed to test and validate the efficiency of the proposed method using 2054 naturally blurred images across six imaging applications and seven state-of-the-art deconvolution methods.Comment: 15 pages, for publication in IEEE Transaction Image Processin
    corecore