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Abstract

Through-the-wall radar imaging (TWRI) is an emerging technology that aims to

capture scenes behind walls and other visually opaque materials. The abilities to

sense through walls are highly desirable for both military and civil applications,

such as search and rescue missions, surveillance, and reconnaissance. TWRI

systems, however, face with several challenges including prolonged data acqui-

sition, large objects, strong wall clutter, and shadowing effects, which limit the

radar imaging performances and hinder target detection and localization.

Compressed sensing (CS) is a new area of signal processing that has received

considerable attention recently. The CS theory enables sparse signals to be recon-

structed precisely from far fewer samples than what is required by the Nyquist-

Shannon sampling theorem. This dissertation focuses on developing advanced

TWRI techniques based on CS and Bayesian CS, an extension of the CS framework.

Three different radar imaging approaches are proposed in this project.

The first approach is motivated by the fact that the sparsity assumption of

the scene is not usually satisfied due to multipath propagations, wall reflections,

or extended objects such as people or furniture. To overcome this problem, we

propose a two-stage CS-based TWR image formation algorithm. It incorporates

a dictionary constructing from the complex wavelet Gabor basis used to sparsely

represent the scene image. Incorporating the sparsifying dictionary increases the

sparsity and directional selectivity in space-frequency domain, thereby leading to

XIV



Abstract

more effective CS techniques.

The second approach is developed for addressing the scene reconstruction

problem in the presence of wall clutter under CS context. Although not all same

frequency measurements are available at each antenna location, the proposed

approach estimates the antenna signal coefficients simultaneously by exploiting

both the sparsity and the inter-signal correlations among antenna signals. A joint

Bayesian sparse model is employed to reconstruct the antenna signal coefficients

and to estimate the image of the scene. For scene reconstruction, a compact linear

model is developed, whereby both the measurement vector and the dictionary

are compressed, leading to a more efficient Bayesian scene reconstruction. Fur-

thermore, a subspace-projection technique is applied directly to the recovered

antenna signal coefficients to suppress wall clutter and enhance image quality

and target detection.

In the third approach, a joint Bayesian sparse representation is proposed for

compressed multi-channel TWRI where the same scene is sensed from multiple

views or multiple polarizations. The proposed approach combines reduced mea-

surement sets collected from different channels for enhancing TWR imaging. The

antenna signal coefficients associated with different channels are first simulta-

neously estimated. Then, a subspace-projection technique is used for removing

the wall returns. For multi-channel image reconstruction, a multi-task imaging

model comprising a composite measurement vector and dictionary is formulated,

and then the scene images related to individual channels and a composite image

of the scene are simultaneously reconstructed using joint Bayesian CS, taking

inter-channel dependencies into the imaging model.

All the proposed approaches are evaluated using simulated and real radar

data. The experimental results prove the efficiency in data acquisition, image

formation, target detection and localization. Using a small percentage of the full

data volume, the proposed approaches produce high-resolution and high-quality

images that are suitable for indoor target identification and classification.
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Chapter 1
Introduction

Chapter contents

1.1 Research objectives . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research contributions . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1 Research objectives

Over the past decade, through-the-wall radar imaging has witnessed increasing

research interests due to its abilities to image behind-wall and indoor scenes.

These scenes are typically inaccessible via optical, acoustical, or thermal sensing.

TWRI can be used to determine the building layouts, monitor humans and other

targets, and recognize activities inside the building. The ability to see through

walls is desirable in numerous applications, from locating hidden hostages in a

police operation, tracking concealed hostile forces in a military mission, to locating

buried victims of an earthquake or fire [1, 2, 3, 4, 5, 6]. In practical operations,

however, TWRI and urban sensing face with many technical challenges including

prolonged data collection, strong wall clutter, and shadowing effects. Thus, there

is a need to tackle such difficulties and achieve a reliable performance for urban

radar sensing systems.

1



1.1. Research objectives

The aim of this research is to develop radar imaging techniques for detecting

and localizing targets behind walls and opaque materials using a small percent-

age of the entire data volume. Towards this goal, novel algorithms based on

compressed sensing (CS) and Bayesian compressed sensing are proposed to en-

hance image quality and resolution, improve speed of operation, and reduce the

cost and time of data acquisition and processing. Several CS-based approaches

have been proposed for TWRI, but this research investigates the problem in which

the potential of CS has not been fully examined. The proposed approaches in-

tend to relax constraints on the sparsity assumption of the scene, signal sampling

schemes, and logistic difficulties in data acquisition. The imaging problems are

addressed in compressed TWR sensing operations that only a reduced set of an-

tenna locations and a subset of frequencies are used for sensing. This research is

important because in many practical applications, the full measurements are im-

possible to obtain and several measurements or samples are lost due to frequency

interferences and radar jamming.

The problem of scene reconstruction involving extended targets is addressed

in this research. The point-like target assumption is overcome by incorporating

a sparsifying dictionary to represent the scene image. Moreover, we consider the

stationary target detection and localization in the presence of the wall returns. The

problem of image formation and wall clutter rejection is handled by employing a

Bayesian CS framework. Furthermore, this research aims to address the problem

of compressed multi-channel TWRI. Multi-view, multi-location or multi-channel

TWRI improves stationary target identification by combining multiple data sets

acquired from different sensing locations or channels. Collecting data at several

sensing channels enhances imaging visibility, but also leads to prolonged data

acquisition time, complex computation, and expensive hardware. Imaging algo-

rithms based on joint Bayesian compressed sensing are proposed in this research

to take the inter-channel dependencies into account and thereby increasing the

capability of target detection, localization, and identification.

2



1.2. Research contributions

1.2 Research contributions

The proposed research has yielded solutions that improve the capabilities of TWRI

systems. A scene behind-the-wall and inside enclosed structures can be sensed

at a faster speed with far fewer measurements and thereby reducing the time of

data acquisition and cost of operation. The main contributions of this research

project are in the area of the applications of CS and Bayesian CS to TWRI, and are

outlined as follows.

The first contribution of this dissertation involves investigating of commonly

used sparsifying basis, such as wavelet, Gabor for increasing the scene sparsity.

Motivated by the fact that the performance of CS relies on the sparsity of the

underlying signal, in TWR applications, the sparsity assumption of the scene,

however, is violated due to multipath propagations, wall reflections, or extended

objects such as people or furniture. Therefore, a two-stage TWR image formation

algorithm using CS is proposed. In the first stage, an additional sparsifying dic-

tionary constructed from complex Gabor functions is incorporated in the imaging

model for sparse scene representation, which allows CS to be applied for recov-

ering a full data volume from a reduced measurement set. In the second stage,

conventional backprojection methods, such as delay-and-sum beamforming are

employed to form an image of the scene. Experiential results on both synthetic

and real data show that the proposed approach forms a high-quality image of the

scene in terms of target-to-clutter ratio, especially when the measurements are

drastically reduced.

The second contribution is to develop an imaging model for scene reconstruc-

tion in conjunction with wall clutter rejection. In TWRI, the front wall returns

usually dominate the target reflections, rendering the target detection difficult,

or even impossible. Several CS-based TWRI approaches assume that the wall

clutter and reverberations have been removed prior to applying CS by having

access to the background or reference scene. These approaches are effective in
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removing wall radar signals and applicable for applying CS techniques, but im-

possible in practical applications. A sparse Bayesian approach is proposed in

this research to address the problem of wall clutter mitigation and image recon-

struction under CS context. In the proposed approach, a joint Bayesian sparse

approximation is employed to jointly reconstruct the antenna signal coefficients,

by exploiting the signal sparsity and inter-signal correlations among received

signals. This is in contrast to existing single-signal CS model that recovers an-

tenna signals independently, considering the intra-signal sparsity structure only.

Furthermore, a subspace-projection technique is applied directly to the recovered

signal coefficients to remove those associated with the wall returns. Finally, a

compact linear imaging model is formulated for efficient sparse Bayesian scene

reconstruction. Experimental results on simulated electromagnetic (EM) data and

real radar signals show that the proposed approach enhances TWRI in terms of

signal reconstruction accuracy, target-to-clutter ratio, and target detection rate.

Especially, when the measurements are drastically reduced or the sampling rates

are low, while the existing CS-based imaging models fail to localize the targets,

the proposed approach manages to detect the objects behind-the-wall.

Addressing the problem of multi-channel TWRI using joint Bayesian com-

pressed sensing forms the third contribution of this research. Here, the scene

is illuminated from multiple vantage points or from a single viewing angle, but

with different polarizations. Multi-view, multi-location, or multi-polarization

TWR imaging enhances stationary target detection and localization by combining

multiple data sets acquired from different sensing locations or polarimetric chan-

nels. To date, most of the existing CS-based TWR imaging methods have been

proposed for single-channel operation mode where a reduced data set collected

from one channel is used to form the scene image. The problem of multi-channel

TWR scene reconstruction, incorporating wall-clutter mitigation, under a CS con-

text is addressed in this research. The proposed approach considers the sensing

problem where the same scene is sensed by deploying the antenna aperture along
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the front and side walls of an enclosed structure or different polarimetric channels.

At each channel, different reduced sets of frequencies are used at each antenna.

In the proposed approach, the antenna signal coefficients are first jointly recon-

structed by a joint Bayesian sparse approximation framework, followed with wall

clutter removal using a subspace-projection technique. Finally, a multi-task linear

imaging model is developed to combine target coefficients from different channels

for jointly reconstructing a composite scene image and images related to different

sensing channels. In this model, the fusion is performed in the data level, and

the inter-channel correlations are exploited using joint Bayesian sparse learning

framework.

1.3 Thesis structure

The thesis is organized as follows:

• Chapter 1 presents the research project, its objectives, research contributions,

and a summary of related publications.

• Chapter 2 reviews the theory of compressed sensing, a novel sensing paradigm

that goes beyond the common Nyquist-Shannon’s theory in data acquisition

and signal reconstruction.

• Chapter 3 introduces high-resolution through-the-wall radar imaging and

TWR image formation using a backprojection algorithm. This chapter also

presents two major compressed sensing techniques for TWRI: CS-based

image formation and signal reconstruction. It is followed by discussions

highlighting the research gaps that are addressed in this project.

• Chapter 4 describes a proposed two-stage through-the-wall radar image

formation algorithm using CS. The proposed approach incorporates a spar-

sifying dictionary for scene sparse representation which enhances the appli-

cability of CS to TWR imaging.
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• Chapter 5 proposes a Bayesian scene reconstruction for compressed TWR

sensing. The Bayesian sparse framework is employed to model both the

intra-signal structure sparsity and inter-signal correlations for jointly recon-

structing all the antenna signals, followed with wall clutter suppression

using a subspace-projection technique. A compact linear model is formu-

lated for efficient Bayesian scene reconstruction.

• Chapter 6 presents a joint Bayesian CS model for multi-channel TWRI, where

the scene is illuminated from a single vantage point, but with different po-

larimetric channels or when the same scene is imaged from multiple viewing

angles. Given multi-channel compressed data sets, scene images associated

with different channels and a composite scene image are simultaneously

reconstructed using joint Bayesian CS framework, taking the inter-channel

dependencies into the imaging model.

• Chapter 7 summarizes the research findings and provides concluding re-

marks and possible future directions.

1.4 Publications

Following is the list of publications arising from this PhD research project, which

was conducted from September 2011 to August 2015.

• V. H. Tang, A. Bouzerdoum, and S. L. Phung, “Two-stage through-the-wall

radar image formation using compressive sensing,” SPIE Journal of Electronic

Imaging, vol. 22, no. 2, pp. 021 006–1–021 006–10, 2013.

• V. H. Tang, A. Bouzerdoum, S. L. Phung, and F. H. C. Tivive, “Multi-view

indoor scene reconstruction from compressed through-wall radar measure-

ments using a joint Bayesian sparse representation,” in Proc. IEEE Int. Conf.

Acoustics, Speech and Signal Processing, Brisbane, Australia, April 2015, pp.

2419–2423.
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• V. H. Tang, A. Bouzerdoum, S. L. Phung, and F. H. C. Tivive, “Enhanced wall

clutter mitigation for through-the-wall radar imaging using joint Bayesian

sparse signal recovery,” in Proc. IEEE Int. Conf. Acoustics, Speech and Signal

Processing, Florence, Italy, May 2014, pp. 7804–7808.

• V. H. Tang, A. Bouzerdoum, S. L. Phung, and F. H. C. Tivive, “Multi-view

TWRI scene reconstruction using a joint Bayesian sparse approximation

model,” in Proc. SPIE Defence, Security and Sensing: Compressive Sensing, vol.

9484, Maryland, USA, April 2015, pp. 9484–1–9484–12.

• V. H. Tang, A. Bouzerdoum, S. L. Phung, and F. H. C. Tivive, “Enhanced

through-the-wall radar imaging using Bayesian compressive sensing,” in

Proc. SPIE Defence, Security and Sensing: Compressive Sensing, vol. 8717, Mary-

land, USA, May 2013, pp. 87 170I–1–87 170I–12.

• A. Bouzerdoum, F. H. C. Tivive, and V. H. Tang, “Multi-polarization through-

the-wall radar imaging using joint Bayesian compressed sensing,” in Proc.

IEEE Int. Conf. Digital Signal Processing, Hong Kong, China, August 2014,

pp. 783–788.

• F. H. C. Tivive, A. Bouzerdoum, and V. H. Tang, “Multi-stage compressed

sensing and wall clutter mitigation for through-the-wall radar image forma-

tion,” in Proc. IEEE Sensor Array and Multichannel Signal Processing Workshop,

Coruna, Spain, June 2014, pp. 489–492.
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Compressed sensing also known as compressive sensing, or compressive sam-

pling is a recent signal processing technique for efficiently acquiring and re-

constructing sparse signals by solving underdetermined linear systems. The

breakthrough in CS is that sparse signals can be exactly recovered from far fewer

samples than what is required by the conventional Nyquist-Shannon sampling

theory [14, 15, 16, 17, 18, 19]. Conventional approaches to sampling signals fol-

low the Nyquist-Shannon’s theorem [20, 21] which states that the sampling rate

must be at least twice the maximum frequency present in the signals. In fact, this
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principle underlies nearly all signal acquisition methods used in practical appli-

cations. However, in several emerging applications, the resulting Nyquist rate is

so high that the sensing system acquires far many samples, leading to technical

challenges in data acquisition, storage, and processing. In some sensing applica-

tions, it is even physically impossible to build devices for acquiring samples at

such high sampling rate [22]. Thus, CS is considered as a new framework that

enables a potentially large reduction in the sampling and computation costs for

signal acquisition, representation, and reconstruction.

Compressed sensing theory suggests that it is possible to sense sparse sig-

nals by taking far fewer measurements, hence the name compressed sensing

[23, 24, 25]. It differs from classical sampling theory in three important aspects.

First, traditional sampling theory typically considers infinite-length, continuous-

time signals. In contrast, CS is a mathematical framework that focuses on working

with finite-dimensional vectors. Second, rather than sampling the signal at spe-

cific points in time, CS systems generally collect measurements by using inner

products between the signal and more general test functions. Third, the two

frameworks differ in the signal reconstruction. In the Nyquist-Shannon frame-

work, signal recovery is performed through sinc interpolation. By contrast, in CS,

signal recovery is typically achieved using highly non-linear methods [26]. The re-

covery is enabled through two principles: sparsity and incoherence. The sparsity

reflects the fact that many nature signals are sparse or compressible when repre-

sented in the proper basis. The incoherence is represented through the isometric

property, which is a sufficient condition for sparse signal recovery. In this chapter,

we review the principles and fundamental premises underlying CS framework in-

cluding sparsity, incoherence, conditions for accurate signal recovery, and sparse

signal recovery algorithms.
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2.1. Signal model

2.1 Signal model

In this section, we present the standard finite-dimensional CS signal model. As-

sume that we obtain a collection of N samples of a signal arranged in a column

vector z. In cases where these samples are acquired from an image or other mul-

tidimensional signals, the data samples can be lexicographically stacked into the

column vector. The vector z is modeled as the superposition of the clean signal z̄

and noise term v:

z = z̄ + v. (2.1)

In CS, instead of acquiring the full N data samples, we collect a far fewer K number

of linear measurements of z. These recorded values are arranged into a K × 1

measurement vector y. We can represent the acquisition process mathematically

as

y =Φ z =Φ z̄ + v̄, (2.2)

whereΦ is a K × N sensing matrix and v̄ = Φ v. Typically in CS,Φ is designed

with some element of randomness, and depends on specific applications. For

example, in stepped-frequency TWRI, Φ is known as selection matrix, which

indicates the subset of antennas and the frequency bins used.

CS aims to reconstruct the clean signal z̄ using the compressed measurement

vector y. For accurate reconstruction, prior knowledge about the signal and the

structure model of sensing matrix Φ should be exploited since the linear model

in Eq. (2.2) is underdetermined (K < N) and therefore has an infinite number of

candidate solutions. In the next sections, we review the underlying principles in

CS as well as the conditions for accurate signal recovery.

2.2 Sparsity and compressibility

Sparse or compressible signals can be defined due to the fact that there are many

high-dimensional signals having concise representations when expressed in a
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2.2. Sparsity and compressibility

convenient basis or dictionary. These bases can be Fourier, wavelet, Gabor or

other basis functions that promote sparse representations [27, 28, 29]. The signals

can be represented by using relatively few large signal coefficients as such large

coefficients hold most of the signal energy.

Mathematically, letΨ denote an N ×N basis matrix containing in its columns

the basis functions: Ψ = [Ψ0,Ψ1, . . . ,ΨN−1]. The signal z̄ can be expanded as

z̄ =

N−1
∑

i=0

xiΨi, (2.3)

or in vector-matrix form as

z̄ =Ψ x (2.4)

where x = [x0, x1, . . . , xN−1]T is a vector of size N × 1 containing the signal coeffi-

cients. The coefficient vector x is said to be S-sparse if it contains just S nonzero

entries (S ≪ N). The ℓ0-norm can be used to count the number of nonzero ele-

ments in x: ‖x‖0 = S. We refer to the set of positions of the nonzero entries of

x as the support of x. The signal expansion in Eq. (2.4) is also known as sparse

representation.

As an example, we introduce here the signal representation in the TWRI ap-

plication. This sensing operations transmit and receive signals at several antenna

locations to image a scene behind walls. Figure 2.1(a) illustrates the frequency

signal z received at one antenna location. This signal contains 801 frequency

samples. Obviously the signal itself is not sparse: the ℓ0-norm value is ||z||0 = 801.

Figure 2.1(b) depicts the coefficient vector x obtained by representing z using the

Fourier basis. We can observe from the figure that the signal coefficient vector is

relatively sparse in the transformed domain. The ℓ0-norm value is ||x||0 = 17.

Sparsity implies that when a signal has a sparse representation, the small

signal coefficients can be discarded without much perceptual loss. Let z̄S denote

the signal obtained by keeping only the samples corresponding to the S largest
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Figure 2.1: The sparse representation for a signal: (a) frequency TWR signal z
received at one antenna (||z||0 = 801); (b) the signal coefficient vector x represented
using the Fourier dictionary (||x||0 = 17).

values of the coefficient vector x:

z̄S =Ψ xS, (2.5)

where xS denotes the nearest S-sparse vector to vector x. Assuming that the sparse

basisΨ is orthonormal, we have ‖z − zS‖2 = ‖x − xS‖2. If x is sparse and the sorted

magnitudes of the xi decay quickly, then x is well approximated by xS and the

error ‖z − zS‖2 is very small. In other words, we can discard a large fraction of the

insignificant coefficients without much loss of signal information.

To illustrate the efficiency of sparse representation, we use here the TWR

image sparse representation. Figures 2.2(a)–(b) show, respectively, an original

scene image and its corresponding signal vector z obtained by stacking the image

into a column vector. It is observed that the original signal here is not sparse.

Figures 2.2(c)–(d) present, respectively, the image reconstructed by keeping only

5% of the significant Gabor coefficients and the Gabor coefficient vector x. It is ob-

served that the reconstructed image is visually similar to the original image. This

example illustrates that if a natural signal is compressible or approximately sparse

in some transformed domain, it can be compressed efficiently while maintaining

the salient information.
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Figure 2.2: The sparse representation for a TWR scene image: (a) original TWR
scene image; (b) the image stacked into the full signal z; (c) reconstructed image
using 5% large Gabor coefficients; (d) the coefficient vector x represented using
Gabor basis.

The insights into signal sparse representation can be discussed by using the

ℓ1-norm and ℓ2-norm. The ℓ1 norm measures the absolute sum of the entries of

vector x:

||x||1 =
N−1
∑

i=0

|xi|, (2.6)

and ℓ2 norm measures the sum of squared magnitudes of the elements of x:

||x||2 =

√

√

N−1
∑

i=0

|xi|2. (2.7)

Unlike the ℓ0 measure, the ℓ1 and ℓ2 norms have the formal mathematical defini-
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tion of a norm [30], and both are convex functions of x [31]. The ℓ1 norm is directly

related to sparsity: it tends to be small for sparse signals. Therefore, instead of

using ℓ0-norm, ℓ1 norm is used to enforce the sparsity of signals in formulating

optimization problems for signal reconstruction [32]. In certain real applications,

the sparsity structure of signals tends to be grouped. That is the non-zero coeffi-

cients are grouped together. In this case, the ℓ2-norm is used in combination with

the ℓ1-norm to enforce the group sparsity structure for signal recovery model.

Sparsity and compressibility play an important role in the acquisition process and

determine how efficiently one can acquire signals nonadaptively [14, 16, 23].

2.3 Sparse signal recovery and guarantees

We now address the problem of how a sparse model can be used to recover a

signal z from a compressed measurement vector y. From Eqs. (2.2) and (2.4), we

have

y =Φ z̄ + v̄ =ΦΨ x + v̄ = D x + v̄, (2.8)

where D =ΦΨ is a K×N matrix, x is a S-sparse or compressible vector of length

N. Most CS recovery algorithms can be used for approximating a sparse vector x̂

that satisfies y ≈ D x̂. Once the sparse coefficient vector has been approximated,

an estimated signal can be obtained as ẑ =Ψ x̂.

2.3.1 Recovery guarantees

Performance guarantees for several CS recovery algorithms depend on the sensing

matrixΦ and the sparsity basisΨ. In other words, the recovery is possible with

high probability if the restricted isometry property (RIP) holds for the the sensing

and sparsity matrices [17, 33]:

Definition 1 An K×N measurement matrixΦ is said to satisfy the RIP of order S with

respect to the N ×N orthonormal basisΨ if there exists a constant σS ∈ (0, 1) such that

(1 − σS)||x||22 ≤ ||ΦΨ x||22 ≤ (1 + σS)||x||22 (2.9)
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holds for all sparse vectors x with ||x||0 ≤ S. The parameter σS is known as the isometric

constant of order S.

Through the properties of the dictionary D, the condition (2.9) is equivalent to

(1 − σS)||x||22 ≤ ||D x||22 ≤ (1 + σS)||x||22, (2.10)

holding for all vectors x with ||x||0 ≤ S. Since this requirement depends only on

the dictionary D, we refer to this condition simply as D satisfying the RIP.

Another condition that CS recovery algorithms rely on is the coherence be-

tween the sparsity basis Ψ and sensing matrix Φ. The coherence measures the

largest correlation between any two columns ofΦ andΨ [16, 34, 35].

Definition 2 The coherence between the sensing matrixΦ and the sparsity basisΨ is

µ(Φ,Ψ) =
√

N max
0≤i, j≤N−1

∣

∣

∣

∣

〈

φi, ψ j

〉

∣

∣

∣

∣

. (2.11)

If the sensing matrix and sparsity basis contain correlated elements, then the

coherence is high. Otherwise, it is small. Generally, the coherence µ(Φ,Ψ) ∈
[

1,
√

N
]

. For efficient CS recovery, the sensing matrix Φ should be sufficiently

different from the sparsity basis Ψ, and thus CS is mainly concerned with low

coherence pairs.

The coherence can be used to determine the minimal number of measurements

K for stable signal recovery as [16]

K ≥ C µ(Φ,Ψ)2 S log N, (2.12)

for some positive constant C. From Eq. (2.12), we can see that the smaller the

coherence, the fewer samples are needed. Moreover, it is possible to precisely

recover the original signal by measuring just about any set of coefficients which

may far less than the signal size. If µ(Φ,Ψ) is equal or close to one, then we just
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need S log N samples instead of N.

2.3.2 Numerical recovery algorithms

If the conditions for CS performance are satisfied, the S-sparse coefficient vector

x can be recovered from the measurements y. In the noiseless case, the sparse

vector x is obtained by solving the following optimization problem

x̂ = arg min
x
||x||0 subject to y = D x. (2.13)

Unfortunately, this problem is known to be non-deterministic polynomial-time

hard (NP-hard) [36, 37]. As discussed above, the ℓ1 tends to be small for sparse

signals and thus it promotes the signal sparsity. Therefore, the ℓ1-norm is used to

enforce the sparsity as

x̂ = arg min
x
||x||1 subject to y = D x. (2.14)

The optimization problem in (2.14) is generally known as basis pursuit (BP) [14, 38].

The BP problem can be cast as a linear program or a second-order cone program.

Standard techniques from convex optimization, such as the simplex method or

interior point methods, can be used for solving these problems [31]. Popular

software packages such as ℓ1-Magic [39] were developed to solve a particular

set of sparse recovery problems. Furthermore, efficient methods including ho-

motopy algorithm [40, 41], spectral projected-gradient algorithm (SPGL1) [42],

and alternating direction algorithm (YALL1) [43] are available for solving the BP

problem.

In the presence of noise, the equality constraint in (2.14) is recast into a

quadratically-constrained ℓ1 minimization as

x̂ = arg min
x
||x||1 subject to ||y −D x||2 ≤ ǫ, (2.15)
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where ǫ is a noise bound. This optimization problem is known as basis pursuit

denoising (BPDN) [15, 38, 44]. Standard techniques from convex optimization

can be used to solve the BPDN problem [31]. Moreover, several other methods

have been designed to solve this problem efficiently including NESTA [45] and

SPAMS [46]. Here, it is important to note that the recovery accuracy depends

on the selection of the regularization parameter ǫ. Fortunately, techniques based

on cross validation have been proposed for estimating the parameter from the

compressed measurements [47, 48].

Alternative algorithms to convex optimization-based reconstruction are greedy

techniques including orthogonal matching pursuit (OMP) [49, 50] and compres-

sive sampling matching pursuit (CoSaMP) [51]. OMP method attempts to correct

the errors in the estimation caused by minor correlations among the columns of

the matrix D. Specifically, OMP relies on an iterative process to identify the sup-

port of x one element at a time. At each iteration, a residual vector is correlated

against the columns of D. The position with the largest inner product is added

to the support estimate. Candidate values for the entries of x on this support are

then computed using least-squared technique, and the residual vector is updated.

CoSaMP algorithm can be regarded as a refinement of the OMP idea. The same as

OMP, CoSaMP aims to identify a sparse support set that leads to a small residual.

However, CoSaMP constructs the support set multiple elements at a time, and at

each iteration, elements can be both added to and removed from the estimated

support set. Since both OMP and CoSaMP greedy algorithms attempt to estimate

the support set, they generally require the sparsity level S of x as a stopping cri-

teria. Moreover, for accurate recovery, greedy methods need a larger number of

measurements, compared with standard convex optimization algorithms.

2.4 Bayesian compressive sensing

As an extension of standard compressed sensing, a Bayesian compressive sensing

(BCS) framework has recently been introduced for estimating sparse signals. The
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BCS approach casts the sparse estimation model (2.8) into a Bayesian framework

and solves it based on a sparse Bayesian learning technique [52, 53, 54, 55, 56].

The estimation of the sparse vector x is provided as a full posterior distribution

function (PDF), rather than a point estimate as in conventional CS methods.

In this section, we present the BCS framework for formulating and solving

the CS inversion problem. Before presenting the CS problem from a Bayesian

viewpoint, we note that the CS problem (2.15) can be rewritten equivalently as

[55, 56]

x̂ = arg min
x

{

||y −Dx||22 + λ||x||1
}

, (2.16)

where λ is a small positive constant.

2.4.1 CS from a Bayesian perspective

Generally, the BCS approach is to find the most likely sparse vector x assuming

that this vector is approximately sparse and the measurement vector y is corrupted

by noise with known distribution. The sparsity is guaranteed by a prior defined

on vector x, while the noise is modeled through the likelihood term. Suppose

that the noise vector is zero-mean Gaussian with independent and identically

distributed (i.i.d) components by variance σ2 (noise precision β = 1/σ2). Then, the

likelihood of y is modeled as a multivariate Gaussian function

p(y|x) = (2πσ2)−K/2 exp(− 1

2σ2

∥

∥

∥y −Dx
∥

∥

∥

2

2
). (2.17)

The sparsity of x is imposed using a sparsity-promoting prior. Here, a common

prior is the separable Laplacian density function

p(x) = (λ/2)N exp(−λ
N−1
∑

i=0

|xi|). (2.18)

By Bayes rule, the posterior for the signal coefficients can be related to the
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likelihood and the prior as

p(x|y) =
p(y|x) p(x)

p(y)
. (2.19)

We find the signal that maximizes this posterior probability using maximum a

posteriori (MAP) estimation. Because the denominator of (2.19) is independent

of x, the MAP estimate can be performed by minimizing the negative of the

logarithm of the numerator as

x̂MAP = arg min
x
||y −D x||22 + 2σ2λ||x||1. (2.20)

The expression in (2.20) is very similar to the minimization problem in (2.16).

Therefore, we can consider the conventional CS recovery algorithms as MAP

estimates with a prior on the sparse coefficient vector. It is also possible to recast

many CS algorithms as MAP estimators with respect to some priors [57, 58].

2.4.2 Sparse Bayesian learning

As presented in Subsection 2.4.1, the conventional CS recovery problem can be

regarded to a MAP approximation in a Bayesian linear analysis, with a Laplace

sparseness prior on x. To provide a full posterior estimate of x, the Bayesian

analysis needs to be performed further, which requires the prior and likelihood to

be conjugate. Since the Laplace prior is not conjugate to the Gaussian likelihood

and therefore the Bayesian inference can not be performed in closed form [59, 60].

This issue can be addressed by employing the sparse Bayesian learning (SBL)

framework. In SBL, instead of using a Laplace prior, the sparsity of x is enforced

using a Gaussian prior:

p(x|α) =

N−1
∏

i=0

N(xi | 0, α−1
i ),

= (2π)−N/2|A|1/2 exp
(

−1

2
xT A x

)

, (2.21)
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where A = diag(α0, α1, . . . , αN−1). Here, it is important to note that the hyper-

parameters α = [α0, . . . , αN−1] are used to control the variance of the Gaussian

density function N(xi|0, α−1
i

). During sparse Bayesian learning, most of αi, for

i = 0, . . . ,N − 1, tend to diverge to infinity, and hence the values xi are zero due to

the zero-mean and zero-variance Gaussian prior at this location. In other words,

this prior promotes sparsity for x [61].

Combining likelihood (2.17) and prior (2.21), by Bayes rule, the posterior for x

can be expressed as

p(x|y,α, β) =
p(y|x, β) p(x|α)

p(y|α, β)
, (2.22)

= (2π)−(K+1)/2|Σ|−1/2 exp
{

−1

2
(x − µ)T

Σ
−1(x − µ)

}

, (2.23)

which is a multivariate Gaussian distribution, N(x|µ,Σ), with mean and covari-

ance given by [62]

µ = β ΣDTy, (2.24)

Σ = (βDT D +A)−1. (2.25)

The learning problem thus becomes searching for the hyperparametersα and β

using a type-II ML procedure. In this type-II ML technique, the hyperparameters

α and β are found by maximizing the marginal likelihood, or equivalently, its

logarithm L(α, β):

L(α, β) = log p(y|α, β),

= log

∫

p(y|x, β) p(x|α) dx,

= −1

2
[K log 2π + log |C| + yT C−1 y], (2.26)

where C = β−1I + D A−1 DT and I is the identity matrix. To maximize (2.26), an

expectation-maximization algorithm is used which provides the point estimates
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for the α and β as

αi =
γi

µ2
i

, i = 0, . . . ,N − 1, (2.27)

where µi is the i-th posterior mean in Eq. (2.24). Here, γi is defined as γi = 1−αiΣii

with Σii as the i-th diagonal element of the posterior covariance in Eq. (2.25). The

noise variance β is estimated as

β =
||y −D x||22
K −∑

i γi
. (2.28)

Note that α and β are a function of µ and Σ, while µ and Σ are a function of α and

β. This therefore suggests an algorithm that iterates between Eqs. (2.24)-(2.28).

Once a convergence criterion has been satisfied, the estimated vector x̂ is equal to

the posterior mean µ.

This iterative expectation-maximization algorithm produces a highly accurate

sparse estimation for sparse vector x̂, but it requires anO(N3) operation to perform

an inversion of a matrix of size N×N in Eq. (2.25). A fast maximization algorithm

has been developed to overcome this problem by analyzing the properties of the

marginal likelihood function [61, 63]. For monotonically maximizing the marginal

likelihood, this fast algorithm allows an efficient sequential addition and deletion

of candidate basis functions (columns of D) until all S relevant basis functions

are included. The operational complexity reduces from O(N3) to O(N S2), thereby

being much more efficient than the original expectation-maximization algorithm,

specifically when the signal is truly sparse (S≪ N).

2.5 Chapter summary

In this chapter, we have reviewed the CS framework, its underlying premises and

principles including sparsity, compressibility, RIP, and coherence. We have also

examined several numerical sparse approximation algorithms for signal recovery

in noiseless and noisy sensing operations. Furthermore, a Bayesian approach for

CS, namely Bayesian compressed sensing is presented in this chapter.

21



2.5. Chapter summary

Compressed sensing has increasingly become a powerful framework for sev-

eral applications, specifically where the signal has a sparse representation in some

bases. In the rest of the thesis, we will focus on the applications of CS, Bayesian CS,

and sparse representation to TWRI. The next chapter introduces high-resolution

TWRI and reviews major CS techniques for TWRI.
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Through-the-wall radar imaging and

CS-based TWRI techniques
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In the recent area of urban sensing, there is a high demand for high-resolution

imaging of stationary targets. Traditionally, this requires the use of wideband or

ultra-wideband signals and large array antennas. Employing the ultra-wideband

signals and huge array antennas, however, leads to prolonged data acquisition

and high cost of operation and processing. Furthermore, for real urban sensing

applications, the radar system is typically mounted on a small platform or carried

by a human that requires the array antenna to be relatively small and mechan-

ically simple. Thus, imaging techniques that can produce high-quality images
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3.1. High-resolution TWRI

using a reduced measurement set need to be investigated. With the capability of

efficiently sensing and reconstructing sparse signals from compressed measure-

ments, compressed sensing is considered as a promising technique for enhancing

TWRI.

In this chapter, we first introduce high-resolution through-the-wall radar imag-

ing and describe a backprojection technique for through-the-wall radar image

formation. Then, we review major CS applications to TWRI including CS-based

image formation and CS-based signal reconstruction. Finally, we discuss the

existing limitations and research gaps that are addressed in this research project.

3.1 High-resolution TWRI

High-resolution radar imaging is essential to localize, identify, and track behind

wall objects. Two equal-strength scatterers are considered to be resolved if they

result in two distinguishably identifiable targets in the scene image [64]. To

resolve targets in the formed image, the resolution of a TWRI system must be at

least equal to the Rayleigh resolution applied in the downrange and crossrange.

The downrange and crossrange resolutions are influenced by the bandwidth of

the transmitted signals and the length of the antenna array. More specifically, the

downrange resolution δd is defined as [2, 65]

δd =
c

2B
, (3.1)

where c is the speed of light in the air, and B is the bandwidth of the transmitted

signal. The crossrange resolution δc can be expressed as

δc =
rλ

2L
, (3.2)

where r is the downrange, λ is the signal wavelength, and L is the array length.

For high-resolution TWRI, wideband or ultra-wideband signals are transmit-

ted by either employing a wideband pulse formation or a stepped-frequency
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3.2. TWR image formation

waveform. The former method sends a wideband pulse and uses matched filter-

ing to obtain time-delay information for all reflecting targets in the range. This

scheme results in a high data acquisition speed since one measurement covers the

whole frequency band, but wideband pulse formation and processing hardware

is costly and not flexible. Thus, many radar systems use a stepped-frequency

approach to approximate the wideband pulse. In this approach, instead of trans-

mitting a single wideband signal, several mono-frequency signals are transmitted

covering the desired frequency band. For each frequency, only the amplitude

and phase of the received signal are recorded, by using a comparably inexpensive

network analyzer. Stepped-frequency TWRI systems therefore involve transmit-

ting and receiving multiple data samples or multiple stepped-frequencies at each

antenna location [1, 66, 67, 68].

The major determinant of the radar system’s cross-range resolution is the ar-

ray antenna. For high-resolution imaging, the larger array antenna needs to be

designed using physical or synthetic array aperture. Physical arrays are arrange-

ments of a large number of transceivers covering the desired aperture and thus

form big antennas. As a result, all measurements can be acquired simultaneously,

reducing the acquisition time. However, a large number of physical transceivers

causes the antenna to be large, bulky and costly. Hence, synthetic aperture tech-

nique is frequently used to realize a large antenna by moving a single sensor

to several positions related to the scene being imaged. Due to the efficiency

of designs and deployment, stepped-frequency synthetic aperture radar (SAR)

technique is employed in numerous sensing applications. In this research, we

investigate the TWRI problems using the stepped-frequency SAR system.

3.2 TWR image formation

In this section, we present a conventional image formation algorithm for produc-

ing an image of the scene using a stepped-frequency monostatic TWR system.

This radar system illuminates a behind-wall scene by transmitting the stepped-
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frequency signals and receiving the radar returns with a transceiver from an initial

location. The transceiver antenna is then moved to the next location. The same

operation is repeated by moving the transceiver horizontally parallel to the front

wall at a standoff distance zoff. Assume that a linear antenna aperture comprising

M elements has been realized. At each antenna location, the transceiver trans-

mits a stepped-frequency signal consisting of N frequencies equally spaced in the

frequency bandwidth fN−1 − f0,

fn = f1 + (n − 1)∆ f , for n = 1, 2, . . . ,N, (3.3)

where f1 is the lowest frequency, and ∆ f = ( fN − f1)/(N − 1) is the frequency step

size.

Suppose that there are P targets in the scene. Let zm,n denote the signal of

frequency fn received at the m-th antenna location, for m = 0, 1, . . . ,M − 1. The

signal zm,n due to the target reflections can be expressed as

zm,n =

P−1
∑

p=0

σp exp(− j2π fn τm,p). (3.4)

It is important to note that Eq. (3.4) models for the radar returns due to the targets

present in the scene only. Here, σp is the reflectivity of the p-th target, and τm,p is

the round-trip time of the signal from the m-th antenna to the the p-th target. The

round-trip travel time τm,p is calculated as [69]

τm,p =
2

c
(lm,p,air1 +

√
ǫ lm,p,wall + lm,p,air2), (3.5)

where ǫ is the dielectric constant of the wall material, lm,p,air1, lm,p,wall, and lm,p,air2

are, respectively, the distances traveled by the signal before, through, and behind

the wall from the m-th antenna, see Fig. 3.1.

For image formation, the target space behind the wall is partitioned into a rect-
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Figure 3.1: Geometry for computation of the focusing delay between the
transceiver and the target. Adapted from [70].

angular grid along the crossrange and the downrange. After all frequency mea-

surements from all antennas are acquired, the delay-and-sum (DS) beamforming

can be applied to form a complex-valued image by aggregating the measurements

zm,n [1, 71]. Let Q be the total number of pixels in the image. The value of the q-th

pixel Iq is calculated as

Iq =
1

MN

M−1
∑

m=0

N−1
∑

n=0

zm,n exp( j2π fn τm,q), (3.6)

for q = 0, 1, . . . ,Q − 1. Here τm,q is the focusing delay applied to the output of the

m-th transceiver for the q-th pixel. The focusing delay is given by replacing the

target subscript p with the image pixel subscript q in Eq. (3.5).

In the signal modeling and image formation, it is important to estimate the

traveling distances between the transceivers and the pixel locations and sub-

sequently compute the focusing delays. Based on the Snell law, the traveling

distances and focusing delays can be calculated. Consider the signal traveling

from the m-th antenna transceiver at xtm to the q-th pixel at xq. This signal goes
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through the air-wall-air interfaces and has refraction as shown in Fig. 3.1. By

Snell law, the angle of refraction ψm,q is calculated as

ψm,q = sin−1(
sinθm,q√

ǫ
), (3.7)

where θm,q is the angle of incident. From the geometry in Fig. 3.1, the distances

traveled by the signal before, through, and behind the wall from the m-th antenna

are given by

lm,q,air1 =
zoff

cosθm,q
,

lm,q,wall =
d

cosψm,q
,

lm,q,air2 =
zq − d

cosθm,q
. (3.8)

The coordinates of point A in Fig. 3.1 are (xtm+zoff tanθm,q, 0). Applying the cosine

law to the triangle with vertices (A,B,xq), we obtain

[xq−(xtm+zo f f tanθm,q)]
2 = l2

m,q,wall+l2
m,q,air2−2lm,q,wall lm,q,air2 cos(π+ψm,q−θm,q). (3.9)

Note that Eqs. (3.7) and (3.9) are transcendental equations and thus can be solved

numerically using several methods, such as the Newton-Raphson [1]. After the

angle of incident θm,q and angle of refraction ψm,q are obtained, the traveling

distances are given using Eq. (3.8), and subsequently the focusing delay τm,q is

computed as in Eq. (3.5), but replacing the subscript p with q.

It is noted that the conventional DS beamforming is effective for image-based

indoor target detection and localization, when a large aperture array and a large

signal bandwidth are used [5, 6]. However, its limitation is that the full data vol-

ume is required to form a high-quality scene image; otherwise, the image quality

deteriorates rapidly with a reduction of measurements. In practical applications,

it is vital to generate a scene image using reduced measurements since several
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data samples in space and frequency domains can be difficult, or even impossible

to obtain. Hence, alternative imaging techniques based on compressed sensing

need to be investigated for TWRI.

3.3 TWR image formation using CS

As an innovative and revolutionary idea, CS has become a signal processing

tool that has found broad applications including compressive imaging [72, 73,

74], medical imaging [75, 76, 77], source localization [78, 79], and analog-to-

information conversion [80, 81]. In radar imaging, CS has been applied to improve

sensing systems in several operations [82, 83, 84, 85, 86, 87, 88]. In TWRI, the

main objective is to design fast acquisition, low-cost, portable TWRI systems that

can retain performances and desirable features as systems operating with full

data volume. Over the past decade, CS has been used for TWRI to save data

acquisition, reduce computation cost, and improve image formation and fusion

[11, 68, 89, 90, 91, 92, 93, 94]. In these methods, CS finds its applications mainly

for TWR image formation and data signal reconstruction. In the next subsections,

we review these two major CS techniques for TWRI.

3.3.1 CS for image formation

We present a CS-based TWR image formation approach using only a reduced

measurement set. The assumptions here are that wall returns have been removed

and the scene does not contain large targets or extended objects. Furthermore,

the imaging scene contains only P targets, which is far fewer the total number of

pixels Q in the entire scene. In other words, the scene can be considered to be

sparse, and CS is therefore applicable for reconstructing the sparse image of the

scene.

To apply CS, we need to represent the signal model in Eq. (3.4) in a matrix-
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vector form. Let s(q) denote an indicator function defined as

s(q) =



























σp, if the p-th target occupies the q-th pixel;

0, otherwise.

(3.10)

Let zm denote the column vector containing the frequency measurements collected

by the m-th antenna, see Eq. (3.4). Similarly, we denote by s the lexicographically

ordered column vector containing the pixel values of the scene. Let Ψm be an

N×Q matrix whose nq-th element defined as [Ψm]nq = exp(− j2π fnτm,q). Here, τm,q

is the propagation delay between the m-th antenna and the q-th pixel. It follows

from Eqs. (3.4) and (3.10) that

zm =Ψm s. (3.11)

By concatenating the received signals at all M antennas, we can write

z =Ψ s, (3.12)

where z = [zT
0 , . . . , z

T
M−1

]T andΨ = [Ψ0
T, . . . ,ΨM−1

T]T.

From Eq. (3.12), if the full data measurements z are available, the image of the

scene s can be recovered by applying delay-and-sum (DS) beamforming or back-

projection [1, 2]. However, in compressed TWR sensing operations, only a partial

data set is acquired using a reduced set of Ma antenna locations (Ma < M) and a

subset of N f frequencies (N f ≪ N). Applying the DS beamforming on the reduced

data will result in a degraded image of the scene [89, 95]. Therefore, alternative

imaging approaches are needed for forming a high-quality scene image.

Assuming that the number of target pixels are much smaller than the number

of total pixels in the scene (P ≪ Q), from Eq. (3.10), the entries of scene vector s

are nonzero only at the locations occupied by the targets. Hence s is a P-sparse

vector and thus according to CS, a high-quality image can still be generated,

although some of the data samples are missing. Let y denote a vector consisting
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of measurements obtained by randomly selecting a subset of Ma antenna positions

and N f frequencies. Mathematically, this can be represented using a projection

matrix Φ with Ma × N f rows and M × N columns. Each row of Φ has exactly

one entry with a value of 1 at a position determined by the selected antennas

and frequency bins; all other entries of the row are equal to 0. Thus, the reduced

measurement vector y is expressed as

y =Φ z =ΦΨ s = D s, (3.13)

where D =ΦΨ.

From compressed vector y, the scene s is reconstructed by solving the following

ℓ1-norm minimization:

ŝ = arg min
s
||s||1 subject to y = D s. (3.14)

The problem (3.14) can be recast into a quadratically-constrained ℓ1 minimization

as

ŝ = arg min
s
||s||1 subject to ||y −D s||2 ≤ ǫ, (3.15)

where ǫ is a bound noise. This parameter can be estimated using a cross-validation

technique [47, 48]. The problem (3.15) is known as basis pursuit denoising

(BPDN), and hence several BPDN solvers [15, 38, 44], NESTA [45], or SPAMS

[46] can be used to obtain the image ŝ. Greedy algorithms, such as orthogonal

matching pursuit (OMP) [49, 50] can also be applied but they often require more

measurements compared with the standard convex optimization methods.

This CS-based TWR image formation method was first presented in [89, 95]. It

has been reported that the CS-based approach can yield a high-resolution image

of the scene provided that at least O(P log(Q/P)) measurements are available.

Note that this CS-based approach assumes the strong wall returns have been

completely removed prior to applying CS, otherwise the sparsity assumption of
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scene s is violated and the CS application is ineffective or even impossible.

3.3.2 CS for data recovery

Here, we review the application of CS for recovering the missing data samples

at each antenna. Regular image formation methods, such as DS beamforming,

can then be implemented based on the recovered data samples, as if they were

physically acquired. In other words, CS is used for generating the same image as

one obtained by backprojection, but with fewer data measurements.

Let zm denote the column vector containing the frequency measurements col-

lected by the m-th antenna, see Eq. (3.4). Let um be the discrete range profile.

Suppose that the range of interest is partitioned into L equally spaced range cells.

The range vector um is an L-dimensional column vector defined as

[um]l =



























σp, if τl = τm,p,

0, otherwise.

(3.16)

Here, τl, and τm,p are, respectively, the two-way signal traveling time from the

m-th antenna location to the l-th range cell and to the p-th target. Then, the

measurement signal zm is related to the range um as

zm =Ψ um, (3.17)

whereΨ is an N × L matrix defined as

[Ψ]nl = exp(− j2π fn τl). (3.18)

In indoor imaging, the number of targets is significantly small compared to

the entire discrete spatial positions of the scene. Therefore, the range vectors um

are sparse, and CS theory can be applied to reconstruct the range profiles from

compressive measurements. Let ym be a K-dimensional vector consisting of data
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samples randomly chosen from zm. Vector ym is mathematically expressed as

ym =Φ zm, (3.19)

where Φ is a K-by-N random selection matrix containing only one non-zero

element (a value of 1) in each row, and K ≪ N. From Eq. (3.17), it follows that

ym =ΦΨ um = D um, (3.20)

where D = ΦΨ is a K × L dictionary matrix. Let ǫ be a noise bound. The sparse

vectors um (m = 0, 1, ...,M − 1) are recovered by solving the following CS inverse

problems:

ûm = arg min
um

‖um‖1 subject to
∥

∥

∥D um − ym

∥

∥

∥

2
≤ ǫ. (3.21)

The above M inverse problems can be solved separately to recover M range

profiles. This approach has been proposed in previous work [68, 91]. Alterna-

tively, the M compressed measurement vectors can be concatenated into a single

composite measurement vector, which is then used to recover all the range pro-

files simultaneously. This technique, however, increases the complexity of the

problem by M-fold. Once all the sparse vectors ûm, for m = 0, 1, . . . ,M − 1 have

been obtained, the recovered signals ẑm are estimated using Eq. (3.17): ẑm =Ψ ûm.

3.4 Discussions

Compressed sensing has been applied and shown to be a promising signal pro-

cessing framework for TWRI, but several challenges need to be addressed for

enhancing CS applications to urban sensing. One of the challenge is that in cer-

tain applications, the scene contains large or extended targets, such as human and

furniture. This makes the point-like target assumption invalid and reduces the

sparsity of the scene, thereby impeding the direct CS application. To overcome

this problem, we propose a two-stage CS-based approach, presented in Chapter 4,
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for TWR image formation. It incorporates a dictionary used to sparsely represent

the scene. Experimental results and analysis demonstrate that incorporating the

sparsifying dictionary makes the CS technique to be more effective even when the

measurement set is drastically reduced.
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Figure 3.2: Images of a dihedral scene formed by: (a)–(b) DS beamforming and
CS-based techniques after wall-clutter mitigation; (c)–(d) DS beamforming and
CS-based techniques without wall clutter mitigation. Wall and target regions are
indicated with dashed and solid rectangles, respectively.

Imaging behind-the-wall targets in the presence of strong wall clutter is a

challenging but vital task in compressed TWR sensing. Most CS-based TWRI

approaches assume that the wall radar returns have been removed completely

from the received signals. As a result, the signal-to-clutter ratio is enhanced and

targets can be localized in the formed images. For illustration, Figs. 3.2(a)–(b)

show the images of a dihedral scene formed by the DS beamforming and CS-
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based techniques after wall clutter mitigation. It is observed that the dihedral

target is obviously detected with the strong intensity. However, in practical

applications, the wall reflections typically dominate the target signals and reduce

the sparsity of the signal significantly. Consequently, the direct CS application is

not effective. As an example, Figs. 3.2(c)–(d) present the dihedral scene images

formed by the DS beamforming and CS-based approaches without wall clutter

mitigation. Clearly, the wall clutter obscures the target, rendering target detection

difficult or even impossible. Thus, it is crucial to investigate new techniques that

enable scene reconstruction while mitigate wall clutter and reverberations. In

this research, we develop a Bayesian scene reconstruction approach, presented in

Chapter 5, which jointly performs wall clutter suppression and image formation

in the CS context.

Multi-view and multi-polarization TWRI techniques have recently shown to

improve target detection and localization by combining multiple data sets col-

lected from multiple vantage points or channels. Collecting data at several van-

tage points improves imaging visibility, but also leads to prolonged data acqui-

sition time and expensive hardware. Since most existing CS techniques are pro-

posed for single-view or single-polarization model, deviations based on CS need

to be investigated for multi-polarization and multi-view TWRI. In this project, we

address the problem of multi-channel TWRI using joint Bayesian CS framework.

The proposed Bayesian approach, presented in Chapter 6, aims to relax con-

straints on signal sampling schemes and logistic difficulties in data acquisition. It

considers the wall clutter mitigation and takes into account the inter-channel de-

pendences for improving target identification and alleviating background clutter.

3.5 Chapter summary

In this chapter, we have reviewed high-resolution through-the-wall radar imag-

ing, TWR image formation, and CS techniques for TWRI. It has been shown that

generating high-resolution TWRI is vital for target detection and localization, but
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conventional TWRI methods are not flexible for urban sensing applications due to

system constraints. Compressed sensing techniques have shown to be a promis-

ing signal processing framework for enhancing TWRI, specifically under sensing

operations where the full data volume cannot be attained. Assuming the scene

contains point-like targets and the signals consist of target returns only, CS can

be applied to reconstruct a high-quality image of the scene. Moreover, CS can be

employed for data recovery, followed by conventional beamforming methods for

image formation. We also discuss the weaknesses and challenges of the existing

CS-based techniques. The remaining chapters of this thesis present several new

imaging approaches based on CS and Bayesian CS for handling the problems and

challenges in urban sensing operations.

36



Chapter 4
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image formation using compressive

sensing

Chapter contents

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 CS background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Two-stage TWRI using CS . . . . . . . . . . . . . . . . . . . . . . 42

4.3.1 TWRI using delay-and-sum beamforming . . . . . . . . . 42

4.3.2 Two-stage TWRI . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4 Experimental results and analysis . . . . . . . . . . . . . . . . . . 46

4.4.1 Synthetic TWRI data . . . . . . . . . . . . . . . . . . . . . . 46

4.4.2 Real TWRI data . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.5 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Abstract

This chapter introduces a robust image formation approach for through-the-wall

radar imaging. The proposed approach consists of two stages involving compres-
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sive sensing followed by delay-and-sum (DS) beamforming. In the first stage, CS

is used to reconstruct a complete set of measurements from a small subset col-

lected with a reduced number of transceivers and frequencies. DS beamforming

is then applied to form the image using the reconstructed measurements. To pro-

mote sparsity of the CS solution, an overcomplete Gabor dictionary is employed

to sparsely represent the imaged scene. The new approach requires far fewer

measurement samples than the conventional delay-and-sum beamforming and

CS-based TWRI methods to reconstruct a high-quality image of the scene. Exper-

imental results based on simulated and real data demonstrate the effectiveness

and robustness of the proposed two-stage image formation technique, especially

when the measurement set is drastically reduced.

4.1 Introduction

Through-the-wall radar imaging is an emerging technology with considerable re-

search interest and important applications in surveillance and reconnaissance for

both civil and military missions [1, 2, 3, 69, 71, 96]. To deliver high-resolution radar

images in both range and crossrange, TWRI systems use wideband signals and

large aperture arrays (physical or synthetic). This leads to prolonged data acquisi-

tion and high computational complexity because a large number of samples need

to be processed. New approaches for TWRI are therefore needed to obtain high-

quality images from fewer data samples at a faster speed. To this end, this chapter

proposes a new approach using compressive sensing for through-the-wall radar

imaging. Compressive sensing is used here to reconstruct a full measurement set,

which is then employed for image formation using delay-and-sum beamforming.

Compressive sensing enables a sparse signal to be reconstructed using con-

siderably fewer data samples than what is required by the Nyquist-Shannon

theorem [14, 15, 17]. In through-the-wall radar imaging, the objective of ap-

The content of this chapter has been published as V. H. Tang, A. Bouzerdoum, and S. L.
Phung, “Two-stage through-the-wall radar image formation using compressive sensing,” SPIE
Journal of Electronic Imaging, vol. 22, no. 2, pp. 021 006–1–021 006–10, 2013.
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plying CS is to speed up data acquisition and achieve high-resolution imaging

[89, 90, 91, 92, 93, 95]. So far, the application of CS in TWRI can be divided into

two main categories. In the first category, CS is applied to reconstruct the imaged

scene directly by solving an ℓ1 optimization problem or using a greedy recon-

struction algorithm [89, 90, 92, 93, 95]. In the second category, CS is employed in

conjunction with the traditional beamforming methods. In other words, CS is ap-

plied to reconstruct the full data volume, and the conventional imaging methods,

such as DS beamforming, are then used to form the image of the scene [91]. By

exploiting CS, the latter approach enables conventional beamforming methods to

reconstruct high-quality images from reduced data samples. Moreover, adopting

a conventional image formation approach produces images suitable for target

detection and classification tasks, which typically follow the image formation

step.

In [91], the full measurement set is recovered from the range profiles ob-

tained by solving a separate CS problem at each sensor location. CS is applied

in the temporal frequency domain only, leaving uncompressed sensing in the

spatial domain. To recover the full measurement set, several CS problems are

solved independently—one for each sensing location. There are also limitations

in reducing the measurements along the temporal frequencies. Since the target

radar-cross-section depends highly on signal frequency, significant reduction in

transmitted frequencies will lead to deficient information about the target [90].

Thus, to guarantee accurate reconstruction, imaging the scene with extended

targets may require an increase in the number of measurements [2, 97].

The conventional beamforming methods have been shown to be very effective

for image-based indoor target detection and localization when using a large aper-

ture array and large signal bandwidth [4, 5, 70, 98, 99, 100, 101, 102]. However, a

limitation of the traditional beamforming methods is that they require the full data

volume to form a high-quality image; otherwise, the image quality deteriorates

rapidly with a reduction of measurements. The question is then how to exploit
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the advantages of the traditional beamforming methods to obtain high-quality

images from a reduced set of measurements.

To answer the aforementioned question and address the limitation of existing

CS-based imaging methods, this chapter proposes a new CS approach for TWRI,

whereby a significant reduction in measurements is achieved by compressing both

the transmitted frequencies and the sensor locations. First, CS is employed to re-

store the full measurement set. Then DS beamforming is applied to reconstruct

the image of the scene. To increase sparsity of the CS solution, an overcomplete

Gabor dictionary is used for sparse representation of the imaged scene; Gabor

dictionaries have been shown to be effective for image sparse decomposition and

representation [103, 104, 105]. In the proposed approach, fast data acquisition

is achieved by reducing both the number of transceivers and transmitted fre-

quencies used to collect the measurement samples. In [91], data collection was

performed at all antenna locations, using a reduced set of frequencies only. In

contrast, the proposed approach achieves further measurement reduction by sub-

sampling both the number of frequencies and antenna locations used for data

collection. Furthermore, to satisfy the sparsity assumption, a Gabor dictionary

is incorporated in the scene representation. In [92], a wavelet transform was

used as a sparsifying basis for the scene. However, our preliminary experiments

show that the performance is highly dependent on the particular wavelet function

used. We also found that wavelets offer no significant advantage over Gabor basis

in the problem of through-the-wall radar image formation. Finally, we should

note that there are several approaches that have been proposed for wall clutter

mitigation in TWRI [96, 106], including recent successful CS-based techniques

[107, 108]. In this chapter, we assume that wall clutter can be removed using any

of those techniques, or the background scene is available to perform background

subtraction.

The remainder of the chapter is organized as follows. Section 4.2 gives a

brief background of compressive sensing theory. Section 4.3 presents TWRI using

40
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delay-and-sum beamforming, and describes the proposed approach for TWRI

image formation. Section 4.4 presents experimental results and analysis. Section

4.5 gives concluding remarks.

4.2 CS background

Compressive sensing is an innovative and revolutionary idea that offers joint sens-

ing and compression for sparse signals [14, 15, 16, 17]. Consider a P-dimensional

signal x to be represented using a dictionaryΨ∈ RP×Q with Q atoms. The dictio-

nary is assumed to be overcomplete, that is, Q > P. Signal x is said to be K-sparse

if it can be expressed as

x =Ψ α, (4.1)

where α is a column vector with K nonzero components, i.e., K = ‖α‖0. Stable

reconstruction of a sparse α requires K to be significantly smaller than P.

Using a projection matrixΦ of size L × P, where K < L≪ P, we can obtain an

L-dimensional measurement vector y as follows:

y =Φ x. (4.2)

The original signal x can be reconstructed from y by exploiting its sparsity. Among

all α satisfying y = ΦΨ α, we seek the sparsest vector, and then obtain x using

(4.1). This signal reconstruction requires solving the following problem:

min ‖α‖0 subject to y =ΦΨ α. (4.3)

Problem (4.3) is known to be NP-hard [109]. Alternatively, the problem can be

cast into an ℓ1 regularization problem:

min ‖α‖1 subject to
∥

∥

∥y −ΦΨ α
∥

∥

∥

2
≤ ǫ, (4.4)

where ǫ is a small constant. Several optimization methods, including ℓ1-optimization
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[45], basis pursuit [110], and orthogonal matching pursuit [49], have been pro-

posed that produce stable and accurate solutions.

4.3 Two-stage TWRI using CS

In this section, we introduce the proposed two-stage TWRI approach based on

compressive sensing. The main steps of the proposed approach are as follows.

First, compressive measurements are acquired using a fast data acquisition scheme

that requires only a reduced set of antenna locations and frequency bins. An ad-

ditional Gabor dictionary is incorporated into the CS model to sparsely represent

the scene. Next, the full TWRI data samples are recovered, and then conventional

DS technique is applied to generate the scene image. In this section, we first give a

brief review of the conventional delay-and-sum beamforming method for image

formation in Section 4.3.1, before presenting the new image formation approach

in Section 4.3.2.

4.3.1 TWRI using delay-and-sum beamforming

Consider a stepped-frequency monostatic TWRI system that uses M transceivers

and N narrowband signals to image a scene containing R targets. The signal

received at the m-th antenna location and n-th frequency, fn, is given by

zm,n =

R
∑

r=1

σr( fn) exp
{− j2π fn τm,r

}

, (4.5)

where σr( fn) is the reflection coefficient of the r-th target for the n-th frequency,

and τm,r is the round-trip travel time of the signal from the m-th antenna location

to the r-th target location. In the stepped-frequency approach, the frequency bins

fn are uniformly distributed over the entire frequency band, with a step size ∆ f :

fn = f1 + (n − 1)∆ f , for n = 1, 2, . . . ,N, (4.6)

where f1 is the first transmitted frequency.
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4.3. Two-stage TWRI using CS

The target space behind the wall is partitioned into a rectangular grid, with Nx

pixels along the crossrange direction and Ny pixels along the downrange direction.

Using delay-and-sum beamforming, a complex image is formed by aggregating

the measurements zm,n. The value of the pixel at location (x, y) is computed as

follows:

I(x, y) =
1

MN

M
∑

m=1

N
∑

n=1

zm,n exp{ j2π fn τm,(x,y)}, (4.7)

where τm,(x,y) is the focusing delay between the m-th transceiver and the target

located at the pixel position (x, y). Assuming that the wall thickness and relative

permittivity are known, the focusing delay can be calculated using Snell’s law,

the distance of the transceiver to the front wall, and the distance of the target to

the back wall, see [95, 99], and [111].

4.3.2 Two-stage TWRI

Let z be the column vector obtained by stacking the data samples zm,n in (4.5),

where m = 1, 2, . . . ,M and n = 1, 2, . . . ,N. Let sxy be an indicator function defined

as

sxy =



















σr, if a target r exists at the xy-th pixel;

0, otherwise.
(4.8)

The elements sxy are then lexicographically ordered into a column vector s. The

magnitude of each element in s reflects the significance of a point in the scene.

From (4.5), the full measurement vector z can be represented as

z =Ψ s, (4.9)

where Ψ is an overcomplete dictionary, which depends on the target scene, the

antenna locations, and the transmitted frequencies. More precisely,Ψ is a matrix

with (M × N) rows, and (Nx × Ny) columns. The entry at row r and column c is

given as

Ψr,c = exp
{

− j2π fn τm,(x,y)

}

, (4.10)
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Figure 4.1: Data acquisition for TWRI: (a) Conventional radar imaging scheme;
(b) TWRI based on CS. The vertical axis represents the antenna location, and
the horizontal axis represents the transmitted frequency. The filled rectangles
represent the acquired data samples.

where r = (m − 1) ×N + n, and c = (x − 1) ×Ny + y.

To reduce the data acquisition time and computational complexity, we pro-

pose acquiring only a small number of samples, represented by vector y. The

measurements in y are obtained by selecting only a subset of Ma antenna lo-

cations and N f frequencies. In this chapter, the reduced antenna locations are

uniformly selected, and at each selected antenna location, the same number of

frequency bins are regularly sub-sampled. This fast data acquisition scheme

leads to stable image quality and is more suitable for hardware implementation.

Figure 4.1(a) shows the conventional radar imaging where full data samples are

acquired. Figure 4.1(b) illustrates the space-frequency sub-sampling pattern used

in the proposed approach.

Mathematically, the CS data acquisition can be represented using a projection

matrixΦwith (Ma ×N f ) rows and (M×N) columns. Each row ofΦ has only one

non-zero entry with a value of 1 at a position determined by the selected antenna

locations and frequency bins. Thus, the reduced measurement vector y can be

expressed as

y =Φ z =ΦΨ s = A s, (4.11)

where A =ΦΨ.

44



4.3. Two-stage TWRI using CS

In practical situations, the sparsity of the scene behind wall is reduced because

of multipath propagations, wall reflections and the presence of extended objects,

such as people or furniture. Therefore, the sparsity assumption of vector s may

be violated. To overcome this problem, an additional overcomplete dictionary is

employed to sparsely represent s. In our approach, a Gabor dictionary is used.

Let W be the synthesis operator for the signal expansion. Thus, the vector s can

be expressed as

s =W α. (4.12)

Substituting (4.12) into (4.11) yields

y = A Wα. (4.13)

For noisy radar signals, the compressive measurement vector y is modeled as

y = A W α + v, (4.14)

where v is the noise component.

The full data volume can be recovered by two techniques: the synthesis

method and the analysis method. In the synthesis technique, the problem is

cast as follows:

min ‖α‖1 subject to
∥

∥

∥y −A W α
∥

∥

∥

2
≤ ǫ (4.15)

Once the coefficient α has been obtained by solving the optimization problem, the

full TWRI data samples are obtained, using (4.9) and (4.12),

z =Ψ s =ΨW α. (4.16)

In the analysis technique, the problem is formulated as

min
∥

∥

∥W−1 s
∥

∥

∥

1
subject to

∥

∥

∥y −A s
∥

∥

∥

2
≤ ǫ. (4.17)
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By solving this optimization problem, we obtain the vector s directly, which can

be used to reconstruct the full measurement vector z, see (4.9).

Note that it was suggested in [112] that the analysis technique is less sensitive to

noise, compared to the synthesis technique. In our approach, we use the analysis

technique for solving the CS problem. After reconstructing the full measurement

vector z, we apply the conventional delay-and-sum beamforming to generate the

scene image as described in Section 4.3.1.

4.4 Experimental results and analysis

In this section, we evaluate the proposed approach using both synthetic and real

TWRI data sets. First, the performance of the proposed approach is investigated

in Section 4.4.1 using synthetic data. Then, the experimental results on real data

are presented in Section 4.4.2, along with the TWRI experimental setup for radar

signal acquisition.

4.4.1 Synthetic TWRI data

Data acquisition is simulated for a stepped-frequency radar system, with a fre-

quency range between 0.7 and 3.1 GHz and a frequency step of 12 MHz. Therefore,

the number of frequency bins used is N = 201. The scene is illuminated with an

antenna array of length 1.24 m and an inter-element spacing of 0.022 m, which

means the number of transceivers used is M = 57. The full data volume z com-

prises M×N = 57× 201 =11,457 samples. Our goal is to acquire much fewer data

samples without degrading the quality of the image.

The TWRI system is placed in front of a wall at a standoffdistance of Zoff = 1.5 m.

The thickness and relative permittivity of the wall are d = 0.143 m and ǫr = 7.6,

respectively. The downrange and crossrange of the scene extend from 0 m to 6

m, and from −2 m to 2 m, respectively. The pixel size is equal to the Rayleigh

resolution of the radar, which gives an image of size 97 × 65 pixels. In this experi-

ment, three extended targets (each covering 4 pixels) are placed behind the wall at
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Figure 4.2: The behind-the-wall scene: (a) Ground-truth image; (b) DS image
formed using full volume of data samples.

positions p1 = (1.21 m, −0.78 m), p2 = (3.09 m, 1.09 m), and p3 = (4.96 m, −0.16 m).

The reflection coefficients are considered to be independent of signal frequency:

σ1 = 1, σ2 = 0.5 and σ3 = 0.7, respectively. In our experiment, the first-order

method Nesta is used to solve the CS optimization problem with the analysis

technique because of its robustness, flexibility, and speed. More details about the

Nesta solver can be found in [45]. Here, a dictionary consisting of the complex

Gabor functions is used for sparse decomposition of the scene [105].

The peak-signal-to-noise ratio (PSNR) is used to evaluate the quality of the

reconstructed images:

PSNR = 20 log10(Imax/RMSE), (4.18)

where Imax denotes the maximum pixel value, and RMSE is the root-mean-square

error between the reconstructed and the ground-truth images. The performance

of the proposed approach in the presence of noise is evaluated by adding white

Gaussian noise to the received signal.

Figure 4.2 shows the ground-truth image and the DS beamforming image re-

constructed using the full measurement volume. Note that in this chapter, all

output images are normalized by the maximum image intensity. The true target
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position is indicated with a solid white rectangle. Figure 4.3 illustrates the images
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Figure 4.3: Scene images formed by different settings: (a) DS using 12% full data
volume; (b) DS using 1% full data volume; (c) proposed approach using 12% full
data volume; (d) proposed approach using 1% full data volume. The signal is
corrupted by the noise with SNR = 20 dB.

formed with reduced subsets of measurements (12% and 1%), using DS beam-

forming (Fig. 4.3(a) and 4.3(b)) and the proposed approach (Fig. 4.3(c) and 4.3(d)).

Here, the received signals are corrupted by additive white Gaussian (AWG) noise

with SNR = 20 dB. Compared to the image obtained using DS beamforming with

all measurement samples (Fig. 4.2(b)), the images produced using DS beamform-

ing with reduced data samples (Figs. 4.3(a) and 4.3(b)) deteriorate significantly

in quality and contain many false targets. By contrast, Figs. 4.3(c) and 4.3(d)

show that images obtained with the proposed approach, using the same reduced

datasets, suffer little or no degradation. These results demonstrate that the pro-
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posed approach performs significantly better than the standard DS beamforming

when the number of measurements is reduced significantly. Furthermore, the

images produced by the proposed approach using the reduced data samples have

a similar visual quality as the images formed by the standard DS beamforming

method using the full data volume.
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Figure 4.4: The PSNR of images created by the standard DS (dashed lines) and
the proposed approach (solid lines).

To evaluate the robustness of the proposed approach in the presence of noise,

the measurement signals are corrupted with AWG with SNR equal to 5 dB and

30 dB. Figure 4.4 presents the average PSNR of the reconstructed images as a

function of the ratio between the reduced measurement set and the full dataset.

The figure clearly shows that the images formed with the proposed approach have

considerably higher PSNR than the images formed with the standard DS beam-

forming, using the same measurements. This is because the proposed approach

reconstructs the full data samples using CS, before applying DS beamforming.

To compare the performance of different imaging methods, we used 3 antenna

locations and 40 uniformly selected frequencies, which represents 1% of the total

data volume. Figure 4.5 shows the results obtained by different imaging methods.
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Figure 4.5(a) shows the CS image reconstructed with the method proposed in

[89]. Although the targets can easily be located, there are many false targets in

the image. Figure 4.5(b) illustrates the image formed with the method presented

in [91]; this image is considerably degraded with the presence of heavy clutter.

The reason is that the imaging method in [91] is not able to restore the full

data volume from a reduced set of antenna locations. Figure 4.5(c) and 4.5(d)

show the images formed with the proposed approach using wavelet and Gabor

sparsifying dictionaries, respectively. Here, the wavelet family is the dual-tree

complex wavelet transform. It can clearly be observed that the image formed

using the Gabor dictionary contains less clutter; however, both dictionaries yield

high-quality images even with a significant reduction in the number of collected

measurements.

In the next experiment, only the frequency samples are reduced; the data is

collected at all antenna locations, using M = 57 transceivers. The reduced dataset

represents 20% of the full data volume. Figure 4.6 presents the images formed

using different approaches: standard CS method [89], the temporal frequency CS

method [91], the proposed method with a wavelet dictionary, and the proposed

method with a Gabor dictionary. It can be observed from Fig. 4.6(b) that there

is a substantial improvement in the performance of the temporal frequency CS

method [91]. This is because when using all antenna locations, this imaging

method can obtain the full data volume for forming the image. However, the

proposed method yields images with less clutter, using both wavelet and Gabor

dictionaries.

In summary, the experimental results on synthetic TWRI data demonstrate

that the proposed approach produces high-quality images using far fewer mea-

surements by applying CS data acquisition in both frequency domain and spatial

domain. It performs better than the conventional DS and CS-based TWRI meth-

ods, especially when the number of measurements is drastically reduced.
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Figure 4.5: Scene images formed by different imaging approaches: (a) CS image
formed by method in [89] ; (b) DS image formed by method in [91]; (c) DS image
formed by the proposed approach with wavelet dictionary; (d) DS image formed
by the proposed approach with Gabor dictionary. The measurements made up
1% of full data volume. The signal is corrupted by the noise with SNR = 10 dB.

4.4.2 Real TWRI data

In this experiment, the proposed approach is evaluated on real TWRI data. The

data used in this experiment were collected at the Radar Imaging Laboratory

of the Center for Advanced Communications, Villanova University, USA. The

radar system was placed in front of a concrete wall of thickness 0.143 m, and

relative permittivity ǫr = 7.6. The imaged scene is depicted in Fig. 4.7. It

contains a 0.4 m high and 0.3 m wide dihedral, placed on a turntable made of two

1.2 m x 2.4 m sheets of 0.013 m thick plywood. A step-frequency signal between

0.7 and 3.1 GHz, with 3 MHz frequency step, was used to illuminate the scene.
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Figure 4.6: Scene images formed by different imaging approaches: (a) CS image
formed by method in [89] ; (b) DS image formed by method in [91]; (c) DS image
formed by the proposed approach with wavelet dictionary; (d) DS image formed
by the proposed approach with Gabor dictionary. All antenna locations are used
and the frequency bins are just 20% of the total transmitted frequency. The signal
is corrupted by the noise with SNR = 10 dB.

The antenna array was placed at a height of 1.22 m above the floor and a standoff

distance of 1.016 m away from the wall. The antenna array was 1.24 m long, with

inter-element spacing of 0.022 m. Therefore, the number of antenna elements is

M = 57 and the number of frequencies is N = 801; the full measurement vector z

comprises M×N = 57× 801 =45,657 samples. The imaged scene, extending from

[0, 3] m in downrange and [−1, 1] m in crossrange, is partitioned into 81 × 54

pixels.

To quantify the performance of the various imaging methods, we use the

target-to-clutter ratio (TCR) as a measure of quality of reconstructed images. The
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Dihedral
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0 m 
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Figure 4.7: TWRI data acquisition. Left: a photo of the scene; Right: a top-view
of the behind-the-wall scene.

TCR is defined as the ratio between the maximum magnitude of the target pixels

and the average magnitude of clutter pixels (in dBs) [96]:

TCR = 20 log10

max(x,y)∈Rt |I(x, y)|
1

Nc

∑

(x,y)∈Rc
|I(x, y)|

, (4.19)

where Rt is the target area, Rc is the clutter area, and Nc is the number of pixels in

the clutter region. The target region is an area of 2 × 6 pixels selected manually

around the true target position.
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Figure 4.8: Images formed by different settings: (a) Conventional DS using full
data volume; (b) conventional DS using 0.9% full data volume.

For reference purposes, Fig. 4.8(a) presents the image formed by the standard

DS beamforming method using the full data volume. If all available data samples
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4.4. Experimental results and analysis

are used, the conventional DS beamforming method yields a high-quality image

(TCR = 30.33 dB). However, when the number of samples is significantly reduced,

the standard DS beamforming method alone does not yield a high-quality image.

Figure 4.8(b) shows the image formed using 2 antenna locations and 200 frequency

bins (i.e., 0.9% of the collected data). Clearly this image contains too much clutter

(TCR = 16.76 dB).
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Figure 4.9: Images reconstructed by different imaging methods: (a) CS image by
imaging method in [89]; (b) DS image by imaging method in [91]; (c) DS image
by proposed approach without Gabor dictionary; (d) DS image by proposed
approach with Gabor dictionary. The measurements constitute 0.9% of full data
volume.

Using the same reduced dataset, we compare the proposed approach with

other CS-based TWRI methods. Figure 4.9(a) shows the standard CS image

formed using the approach in [89]. This is a significantly degraded image, com-

pared to the image in Fig. 4.8(a), obtained using DS beamforming with full
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4.4. Experimental results and analysis

measurements. The reason is that the imaging method in [89] directly forms the

scene image by solving the conventional CS problem; when the measurements are

drastically reduced and the CS solution is moderately sparse due to the presence

of clutter and noise, the reconstructed image becomes less accurate. Because of

the appearance of heavy clutter in Fig. 4.9(a) , the TCR of the formed image drops

to 21.78 dB. Figure 4.9(b) presents the image formed by the temporal frequency
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Figure 4.10: Reconstructed signal coefficients s for the dihedral scene: (a) using the
Gabor signal representation; (b) without using the Gabor signal representation.

CS method of [91]. The quality of the formed image deteriorates because this

method does not recover the full data volume when the antenna locations are re-

duced. The background noise and clutter appear with stronger intensity than the

target in the reconstructed image (TCR = 12.13 dB). Figure 4.9(c) and 4.9(d) show,

respectively, images formed by the proposed approach without and with the spar-

sifying Gabor dictionary. It can be observed that the image in Fig. 4.9(c), formed

without the Gabor sparsifying basis, contains high clutter (TCR = 14.40 dB) and

false targets. By contrast, Fig. 4.9(d) shows that the image formed using the pro-

posed approach is considerably enhanced by incorporating the Gabor dictionary;

the true target is located accurately and the clutter is considerably suppressed

(TCR = 28.82 dB).

The effectiveness of the proposed approach is partly due to the excellent space-

frequency localization of Gabor atoms. The Gabor functions are optimum in the

55



4.4. Experimental results and analysis

Crossrange (m)

D
o

w
n

ra
n

g
e

 (
m

)

−1 −0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

3

−20

−15

−10

−5

0

(a)

Crossrange (m)
−1 −0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

3

−20

−15

−10

−5

0

(b)

Crossrange (m)

D
o

w
n

ra
n

g
e

 (
m

)

−1 −0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

3

−20

−15

−10

−5

0

(c)

Crossrange (m)
−1 −0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

3

−20

−15

−10

−5

0

(d)

Figure 4.11: Images formed by the proposed approach with different sparsifying
basis: (a) Daubechies 8 (TCR=18.56 dB); (b) Coiflet 2 (TCR=26.46 dB); (c) DT-CWT
(TCR = 28.71); (d) complex Gabor dictionary (TCR = 28.82 dB).

sense that they achieve the minimum space-bandwidth product (by analogy to

time-bandwidth product), which gives the best tradeoff between signal localiza-

tion in space and spatial frequency domains. Figure 4.10 shows the recovered

signal coefficients s for the dihedral scene shown in Fig. 4.7. The signal coeffi-

cients recovered with the Gabor dictionary, shown in Fig. 4.10(a), are much more

sparse and concentrated on the target location, whereas the signal coefficients

recovered without using the Gabor dictionary, Fig. 4.10(b), are more spread out.

In the final experiment, we use several wavelet families (Daubechies 8, Coiflet

2, and the dual-tree complex wavelet transform DT-CWT) as sparsifying basis,

and compare their performances with that of the Gabor dictionary. All wavelet

transforms use three decomposition levels. Figure 4.11 illustrates the images
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formed using different wavelet transforms (Fig. 4.11(a)-(c)), and the image formed

with the Gabor dictionary (Fig. 4.11(d)). It can be observed from the figure that

the images reconstructed with the DT-CWT and the Gabor dictionaries are of

superior quality than those obtained with the Daubechies and Coiflet wavelets.

The formed images using the DT-CWT and the Gabor dictionary have similar

TCRs of 28.71 dB and 28.82 dB, respectively. The superiority of the DT-CWT

and the Gabor dictionaries can be explained by better directional selectivity and

localization in space and spatial-frequency. However, we should note that the

choice of the best dictionary for a specific TWRI system depends on many factors,

such as the scene characteristics, target structure and the decomposition level.

4.5 Chapter summary

In this chapter, we proposed a new approach for TWRI image formation based on

compressive sensing and delay-and-sum beamforming. The proposed approach

requires significantly fewer number of frequency bins and antenna locations for

sensing operations. This leads to a considerable reduction in data acquisition,

processing time, and computational complexity, while producing TWRI images

of almost the same quality as the delay-and-sum beamforming approach with full

data volume. The experimental results demonstrate that the proposed approach

produces images with considerably higher PSNRs, and is less sensitive to noise

or the number of data samples used, compared to the standard delay-and-sum

beamforming. Furthermore, experimental results on real TWRI data indicate that

the proposed approach produces images with higher TCRs compared to other

CS-based image formation methods. Our approach also produces images of

similar TCRs compared to the DS beamforming approach that uses the full data

volume. Therefore, it would be reasonable to expect that the proposed approach

will enhance TWRI target detection, localization and classification, while allowing

a reduction in the number of measurements and data acquisition time.
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Bayesian scene reconstruction in

compressed through-the-wall radar

sensing
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5.1. Introduction

Abstract

One major challenge in urban sensing applications is to detect stationary targets

behind walls and inside enclosed structures. This chapter addresses the challeng-

ing problem of indoor scene reconstruction using through-the-wall radar imag-

ing with only a small subset of frequency measurements. Although not all same

frequency measurements are available at each antenna location, the proposed

approach estimates the antenna signal coefficients simultaneously by exploiting

signal sparsity and correlation among different antenna signals. A joint Bayesian

sparse model is employed to reconstruct the antenna coefficients and to estimate

the image of the scene. For scene reconstruction, a compact signal model is devel-

oped, whereby both the measurement vector and the dictionary are compressed,

leading to a more efficient Bayesian sparse scene reconstruction. Furthermore, a

subspace-projection technique is applied directly to the recovered antenna coef-

ficients to suppress wall clutter and enhance image quality and target detection.

The performance of the proposed method is evaluated extensively with simulated

and real data. The experimental results show that the proposed approach yields

significantly higher coefficient reconstruction accuracy and requires far fewer

measurements for target detection and localization than does the conventional

compressed sensing TWRI model, in which each single antenna signal coefficient

is recovered separately.

5.1 Introduction

In urban sensing applications, through-the-wall radar imaging systems are used

to detect and localize targets behind obstacles and enclosed structured [1, 2, 3,

4, 5, 6, 71, 101, 113]. Recently, it has been shown that TWRI and urban opera-

Part of this chapter has been published in V. H. Tang, A. Bouzerdoum, S. L. Phung, and
F. H. C. Tivive, “Enhanced wall clutter mitigation for through-the-wall radar imaging using joint
Bayesian sparse signal recovery,” in Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing,
Florence, Italy, May 2014, pp. 7804–7808. Partial content of this chapter has also been published
in [11].
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tions can be enhanced using compressed sensing theory, which enables a sparse

signal to be reconstructed from under-sampled measurements [14, 15, 114]. Com-

pressed sensing has been employed in many radar applications to relax signal

sampling constraints and reduce data acquisition logistics [87, 88, 115]. In TWRI,

CS techniques have been developed for scene reconstruction [7, 89, 91, 92, 95],

multi-polarization [43, 116], and human motion indication [94, 117].

Reconstructing the image of the scene in the presence of wall clutter in a CS

framework is a challenging but vital task for target detection and localization. In

typical compressed through-the-wall radar sensing, compressive frequencies dif-

fer across antennas due to competing wireless services, intentional interferences,

and deceptive radar jamming [118]. As a result, the signal phase returns vary

along the sensing locations, thereby impeding direct application of wall clutter

mitigation techniques [96, 106, 119, 120]. To overcome this problem, in [108]

the antenna signals were reconstructed independently by employing CS at each

antenna location. This CS-based recovery scheme is known as single-signal CS

model [121] since each signal is recovered separately. In [122], instead of using

the Fourier basis, the authors employed the discrete prolate spheroidal sequence

(DPSS) basis to represent the signal, but the signal estimation was still performed

independently along the antennas. The single-signal CS model produces a high

signal reconstruction error when the frequency samples are drastically reduced

at each antenna, leading to ineffective wall clutter mitigation and a significant

reduction in image quality. Furthermore, at low compressed sampling rates, the

recovery by the single-signal CS model can be unstable due to deficient data

samples acquired at each antenna location.

In this chapter, we address the scene reconstruction problem in conjunction

with wall-clutter rejection where compressed frequencies differ across the anten-

nas. The proposed approach incorporates both sparsity and correlation structure

among antenna signals into the imaging model. In TWRI, a scene is typically

illuminated by several antennas in physical or synthetic aperture, placed parallel
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to the wall at a standoff distance. Consequently, the signals received along the an-

tenna locations follow the same model and exhibit significant correlations. In the

transformed domain using sparsifying dictionary, the correlation among antenna

signals also implies that the signal coefficients have overlapping support. We

therefore consider the received radar returns as an ensemble of correlated signals,

which allows us to exploit inter-signal structure and further reduce measure-

ments. To relax signal sampling constraints, a joint sparse Bayesian framework

is employed to simultaneously reconstruct all the antenna coefficients. In the

Bayesian sparse model, the joint sparsity of the signals are enforced by using

a shared prior and learning model hyperparameters [54, 55]. Here, the sparse

Bayesian formulation is extended to deal with the complex-valued TWRI model.

Once the coefficients are jointly estimated from compressed measurements, a

subspace-projection technique is applied directly to the recovered coefficients to

suppress the wall returns.

This chapter extends our previous work presented in [9] in several aspects:

model formulation, sparse Bayesian inference, and experimental evaluation. The

TWRI problem is formulated under a general CS model, where different sub-

sets of frequencies are sensed at different antenna locations. By exploiting the

inter-signal correlation, the stability and accuracy of the coefficient reconstruc-

tion can be improved significantly, thereby enhancing wall clutter mitigation and

target detection and localization. Furthermore, the proposed model combines all

measurement subsets to estimate all antenna signal coefficients. This allows a

reduction in the sampling rate at each antenna, thereby saving data acquisition,

computation, and operation cost. For a more efficient sparse scene reconstruction,

principal component analysis is used to further compress the measurement vector

and reduce noise; therefore, fast and more accurate Bayesian scene reconstruc-

tion can be achieved. The proposed TWRI technique is evaluated under different

sensing conditions, specifically when the data samples are drastically reduced.

Furthermore, a comprehensive experimental analysis and comparison with other

61



5.2. Through-the-wall radar signal model

existing compressed TWRI models are conducted using both simulated EM data

and real radar signals.

The remainder of the chapter is organized as follows. Section 5.2 briefly intro-

duces the TWR signal model. Section 5.3 presents the compressed TWR sensing,

and reviews a single-signal CS model for antenna signal recovery. Section 5.4

introduces the proposed joint Bayesian sparse scene reconstruction approach, in-

cluding simultaneous antenna signal recovery, subspace-projection technique for

wall clutter mitigation, and efficient Bayesian sparse scene reconstruction. Finally,

Section 5.5 presents the experimental results and analysis, and Section 5.6 gives

concluding remarks.

5.2 Through-the-wall radar signal model

Consider a monostatic stepped-frequency TWRI system where a transceiver is

placed at several scan positions parallel to the wall to synthesize a horizon-

tal M-element linear antenna array. The scene is interrogated by transceiving

a stepped-frequency signal comprising N frequencies, equally spaced over the

sensing bandwidth,

fn = f0 + n ∆ f , for n = 0, 1, . . . ,N − 1, (5.1)

where fn is the n-th frequency and ∆ f is the frequency step size. Suppose that the

scene contains P targets placed behind the wall. Let zm,n denote the n-th frequency

signal received at the m-th antenna location. This signal can be expressed as

zm,n = zwt
m,n + νm,n, (5.2)

where zwt
m,n represents the signal due to the wall and target reflections, and νm,n is

the noise term. The signal zwt
m,n is modeled as the superposition of the wall and
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5.2. Through-the-wall radar signal model

target returns,

zwt
m,n = zw

m,n + zt
m,n =

R
∑

r=1

σw ar e− j2π fnτ
r
m,w +

P
∑

p=1

σp e− j2π fnτm,p , (5.3)

where zw
m,n and zt

m,n are the signals representing wall and target returns, respec-

tively, σw is the reflectivity of the wall, R is the number of wall reverberations, ar

is the path loss factor associated with the r-th wall return, τr
m,w is the propagation

delay of the r-th wall reverberation, σp is the reflectivity of the p-th target, τm,p is

the round-trip travel time of the signal from the m-th antenna location to the p-th

target.

Suppose the scene behind the wall is partitioned into a rectangular grid consist-

ing of Q pixels along the crossrange and downrange. Let s(q) denote a weighted

indicator function defined as

s(q) = sw(q) + st(q) (5.4)

=











































σw, if the wall occupies the q-th pixel;

σp, if the p-th target resides the q-th pixel;

0, otherwise,

(5.5)

where sw(q) and st(q) represent for the wall and target components, respectively.

We denote by zm, zwt
m , and νm the column vectors containing, respectively, the

frequency measurements zm,n, zwt
m,n, and the noise samples νm,n collected at the

m-th antenna, see Eq. (5.2). Similarly, let s, sw, and st be the lexicographically

ordered column vectors containing the pixel values of the scene image. It follows

from Eqs. (5.2) – (5.5) that

zm = zwt
m + νm, (5.6)

zwt
m =Ψm s =Ψm sw +Ψm st, (5.7)
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whereΨm is an N×Q matrix whose nq-th element [Ψm]nq = exp(− j2π fnτm,q), with

τm,q being the propagation delay between the m-th antenna and the q-th pixel. By

concatenating the received signals at all M antennas, we can write

z = zwt + ν, (5.8)

zwt =Ψ s =Ψ sw +Ψ st, (5.9)

where z = [zT
0 , . . . , z

T
M−1

]T, zwt = [zwt
0

T, . . . , zwt
M−1

T]T, Ψ = [Ψ0
T, . . . ,ΨM−1

T]T, and

ν = [ν0
T, . . . ,νM−1

T]T.

The image of the scene s can be recovered from (5.8)–(5.9) by applying delay-

and-sum (DS) beamforming or backprojection [1, 2, 71]. Note though that the

wall contributions need to be removed or suppressed before image formation;

otherwise, the wall returns will dominate the target reflections, rendering target

detection difficult or even impossible. If the full data volume, collected using

all M antennas and all N frequencies, is available, wall mitigation techniques

such as spatial filtering [96] or subspace projection [106, 119, 120] can be applied

directly. However, for practical compressed TWR sensing, we have only a set

of measurements collected from a subset of antennas with a reduced set of fre-

quencies, which impedes direct application of both methods. This is because the

phase errors across the antenna elements deprive the underlying assumption of

spatial invariance of wall clutter. Hence, the missing frequency samples at each

antenna position need to be recovered before applying wall-clutter mitigation

techniques. In the following section, we briefly review the single-signal CS model

that recovers the missing measurements independently at each antenna location.

5.3 Single-signal compressed sensing model

The signal model in Eqs. (5.8)–(5.9) represents the full data measurements col-

lected at all M antenna locations and N frequencies. In compressed TWR sensing

it is assumed that only a subset of measurements, collected from a reduced set of
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antennas and frequencies, is available. Suppose only Mk (Mk < M) randomly se-

lected antenna locations are available for data acquisition. Let ik ∈ [0, 1, . . . ,M−1]

(for k = 1, . . . ,Mk) be the index of a selected antenna location. The signal zwt
ik

due to

the wall and target returns at the ik-th location can be sparsely represented using

a dictionary W ∈ RN×L containing L (L ≥ N) basis functions or atoms,

zwt
ik
=W θwt

ik
, (5.10)

where θwt
ik

is an L-dimensional column vector of signal coefficients.

Instead of collecting all N frequency measurements, in compressed TWR sens-

ing only N f (N f ≪ N) frequency samples are acquired at the ik-th antenna. The

reduced measurement vector yik of length N f can be related to the full measure-

ment vector zik as follows:

yik =Φik zik = Dik θ
wt
ik
+ ν̃ik , (5.11)

where Φik is an N f × N selection matrix containing a single non-zero element

(equal to 1) in each row and each column, Dik =Φik W, and ν̃ik =Φik νik . Note that

the sensing matricesΦik and Dik differ across antenna locations because a different

subset of frequencies is selected at each antenna. Now the task is to recover the

signal coefficient vector θwt
ik

from the reduced frequency measurement vector yik ,

see Eq. (5.11). Once θwt
ik

is reconstructed, the full antenna signal zwt
ik

is obtained

using Eq. (5.10).

In the single-signal CS model, each coefficient vector θwt
ik

is recovered in-

dependently from the corresponding measurement vector yik by solving an ℓ1

minimization problem:

θ̂
wt

ik
= arg min

θwt
ik

∥

∥

∥θwt
ik

∥

∥

∥

1
subject to

∥

∥

∥Dik θ
wt
ik
− yik

∥

∥

∥

2
≤ ǫ, (5.12)

where ǫ is a noise bound. Here the signal sparsity is enforced via the ℓ1-norm.
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This single-signal CS model has been used for TWRI applications in [91, 108], and

[122]. In [91] and [108], the dictionary W is constructed from a set of Fourier basis

functions. In [122], the dictionary W is formed by the DPSS basis and the wall

reverberations are also estimated independently at each antenna location. In both

cases, however, the vector θwt
ik

is recovered separately at each antenna location.

These methods therefore do not consider the inter-signal correlations among the

different antenna signals. In the next section, we propose a joint Bayesian sparse

model for TWRI which exploits both the intra-signal sparsity and inter-signal

correlations.

5.4 Joint Bayesian sparse model

In this section, we introduce a joint Bayesian sparse representation approach

for efficient indoor scene reconstruction from compressed TWR measurements.

In the proposed approach, a joint Bayesian CS model is first employed to si-

multaneously recover all antenna coefficient vectors, taking into account signal

sparsity and inter-signal correlations. To segregate wall reverberations from tar-

get signals, a subspace-projection technique is applied directly to the recovered

coefficients. Furthermore, a compact measurement model is developed whereby

both the coefficient vector and dictionary are compressed using dimensionality

reduction technique. Finally, the image of behind-the-wall scene is recovered

using a Bayesian sparse approximation.

5.4.1 Joint signal coefficient estimation

In this subsection, we use a joint Bayesian sparse approximation model to simul-

taneously recover antenna coefficients θwt
ik

from compressed measurements yik ,

see Eq. (5.11). The underlying assumption here is that all coefficient vectors are

sparse, and more importantly they are correlated or jointly sparse. In other words,

the significant coefficients have overlapping support. Note that several joint or si-

multaneous sparse approximation algorithms have been proposed which exploit

correlations between signals [123, 124, 125]. However, these methods are not
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suitable for the TWRI problem since they assume all compressed measurement

sets are acquired using the same sensing matrix, which in TWRI context corre-

sponds to the constraint of having the same frequency bins at different antenna

locations. To relax this constraint, we propose to use the joint Bayesian sparse

approximation framework.

The joint Bayesian sparse model aims to find the most likely signal coefficients

θwt
ik

assuming that they are jointly sparse and that the compressed measurements

yik are corrupted by noise with a known distribution. The joint sparsity is guar-

anteed by a shared prior defined on θwt
ik

, and the noise model is expressed using

the likelihood term. Suppose that the noise vector ν̃ik in (5.11) is distributed as

ν̃ik ∼ CN(0, βI), with zero-mean and covariance βI. Then, the likelihood of θwt
ik

is

a multivariate complex Gaussian function [52, 126]:

p(yik |θwt
ik
, β) = (π/β)−N f exp

(

−β
∥

∥

∥yik −Dik θ
wt
ik

∥

∥

∥

2

2

)

. (5.13)

Note that in Eq. (5.13), the notation ‖x‖22 means xHx, with (.)H denoting the

Hermitian transpose. Following the sparse Bayesian learning framework [52, 53],

the joint sparsity of the coefficient vectorsθwt
ik

is enforced using a shared zero-mean

complex Gaussian prior imposed on θwt
ik

,

p(θwt
ik
|α) =

L
∏

l=1

CN(θik,l|0, α−1
l )

=

L
∏

l=1

1

παl
exp













−
|θwt

ik,l
|2

αl













= CN(0,A), (5.14)

where A = diag(α) and α = [α1, . . . , αL] is the vector of hyperparameters used to

capture the correlations among coefficient vectors θwt
ik

. During sparse Bayesian

learning, αl diverges to infinity, then the values {θwt
ik,l
}Mk

k=1
are zero due to the zero-

mean and zero-variance Gaussian prior at this location; otherwise, they are all

non-zero coefficients with different scales.
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Given the hyperparameters α and β, combining the likelihood (5.13) and prior

(5.14), we can express the posterior of θwt
ik

as

p(θwt
ik
|yik ,α, β) =

p(yik |θwt
ik
, β) p(θwt

ik
|α)

p(yik |α, β)
(5.15)

=
1

(π)N f |Σik |
exp

{

−(θik − µik
)H
Σ
−1
ik

(θik − µik
)
}

. (5.16)

This is the multivariate complex Gaussian distribution, CN(θik |µik
,Σik), with the

mean and covariance given by [54, 126]:

µik
= β Σik DH

ik
yik , (5.17)

Σik = (βDH
ik

Dik +A)−1. (5.18)

Now, the task is to estimate the hyperparameters α and β, which are obtained by

maximizing the marginal likelihood, or equivalently its logarithm:

L(α, β) =

Mk
∑

k=1

log p(yik |α, β), (5.19)

=

Mk
∑

k=1

log

∫

p(yik |θik , β) p(θik |α) dθik , (5.20)

= −1

2

Mk
∑

k=1

[

N f log 2π + log |Bik | + yH
ik

B−1
ik

yik

]

, (5.21)

with Bik = β
−1I +DikA

−1DH
ik

.

An expectation-maximization algorithm is used to maximize L(α, β) with re-

spect to α and β. The algorithm is an iterative method that alternates between

an expectation (E) step and a maximization (M) step. For the E-step, it computes

the posterior mean in Eq. (5.17) and covariance in Eq. (5.18). For M-step, the

iterative algorithm needs the update rules for the hyperparameters. These rules

can be obtained by differentiatingL(α, β) with respect to α and β. Performing the
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derivatives and setting the results to zero yield [127]

α̂l =
Mk − αl

∑Mk

k=1
Σik,(l,l)

∑Mk

k=1
|µik,l|2

, (5.22)

β̂ =

∑Mk

k=1

[

N f − L +
∑L

l=1 αlΣik,(l,l)

]

∑Mk

k=1
‖yik −Dikµik

‖2
2

, (5.23)

where µik,l is the l-th component of µik
, and Σik,(l,l) is the l-th diagonal element of

Σik . Note that α̂ and β̂ are a function of the mean µik
and covariance Σik , while

µik
and covariance Σik are a function of α and β. Therefore, the expectation-

maximization algorithm iterates between (5.17)-(5.18) and (5.22)-(5.23) until con-

vergence is achieved or a stopping criterion is satisfied [52, 63]. Once the estimated

hyperparameters α̂ and β̂ are obtained, the signal coefficient vector θ̂
wt

ik
is given

by the mean of the posterior in Eq. (5.17):

θ̂
wt

ik
= µik

|α=α̂, β=β̂ = (β Σik DH
ik

yik)|α=α̂, β=β̂. (5.24)

Given the compressed measurement sets {yik}
Mk

k=1
, the iterative algorithm can

be summarized by the following steps:

1. Initialize α = 1, a non-negative random initialization, and β = var[yik]
−1.

2. Compute the posterior mean µik
using (5.17) and covariance Σik using (5.18).

3. Update hyperparameters α using (5.22) and β using (5.23).

4. Iterate Steps 2 and 3 until convergence to a fixed point α̂.

5. Obtain the estimated signal coefficient vectors using (5.24).

Here, it is important to note that all the compressed measurement sets {yik}
Mk

k=1

are employed for the estimation of the hyperparameters, as shown by the summa-

tion of the conditional distributions in (5.19). Hence, the correlations between the

antenna signals are exploited through the learning of the hyperparameters. Once
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the signal coefficient vectors θ̂
wt

ik
are obtained, the scene image reconstruction

can proceed. However, the estimated coefficient vectors θ̂
wt

ik
contain the wall-

reverberation components, which can dominate the target signal and hinder the

visibility of stationary targets in the image. Therefore, before image reconstruc-

tion, the wall reverberations need to be mitigated.

5.4.2 Wall coefficient mitigation

To mitigate wall reverberations, wall-clutter mitigation techniques can be applied

to radar signals [96, 106, 119, 120], which are estimated from the recovered coef-

ficients θ̂
wt

ik
using Eq. (5.10). Recently, it was shown that the wall reverberations

can be segregated from the target components by incorporating a purging stage

in which a predefined wall-clutter support (no more than 1.5m from the front

wall) is used to indicate the wall coefficients [122]. However, this method may

be empirical and removes also the near-range targets. Here, instead we apply

a subspace projection method directly to the recovered coefficients to segregate

the wall contributions from the target returns. The subspace-projection method

is based on the relative strength of the wall returns compared to the behind-the-

wall targets. It applies singular value decomposition to the recovered coefficient

matrix to identify the wall subspace. Then orthogonal subspace projection is

performed to remove the wall reflections from the recovered coefficients.

Let Θ̂ be an N×Mk matrix obtained by arranging all the reconstructed antenna

coefficients θ̂
wt

ik
into columns,

Θ̂
wt
= [θ̂

wt

1 , . . . , θ̂
wt

ik
, . . . , θ̂

wt

Mk
]. (5.25)

Using the singular value decomposition, the matrix Θ̂
wt

can be expressed as

Θ̂
wt
= Û Σ̂ V̂H, (5.26)

where Û = [û1, . . . , ûN] and V̂ = [v̂1, . . . , v̂Mk
] are unitary matrices containing
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the left and right singular vectors, respectively, and Σ̂ is a matrix containing the

singular values arranged in descending order along the main diagonal.

In TWRI, the front wall returns are relatively stronger than the target reflections

[120]. Let Pw denote the wall subspace

Pw =
∑

i∈W
ûi v̂H

i , (5.27)

whereW denotes the index set of the singular vectors spanning the wall subspace;

W is determined using the classification technique presented in [119]. To suppress

the wall reflections, the matrix Θ̂
wt

is projected onto a subspace orthogonal to the

wall subspace:

Θ̃
t
= (I − Pw PH

w) Θ̂
wt
, (5.28)

where I denotes the identity matrix. Now the wall-clutter free coefficients Θ̃
t

can

be used to reconstruct the image of the scene.

5.4.3 Sparse Bayesian scene reconstruction

In this subsection, we first formulate a compact linear model relating the wall-

clutter free coefficients to the image of the targets in the scene. Then we apply the

sparse Bayesian approach to reconstruct the image of the scene.

To reduce the complexity of the problem and attenuate noise, we employ

principal component analysis to formulate an efficient imaging model. Let θ̃
t

ik

(k = 1, . . . ,Mk) denote the k-th column vector of Θ̃
t

given in (5.28). Vector θ̃
t

ik

represents the target coefficients recovered at the ik-th antenna location after wall

clutter mitigation. From Eqs. (5.7) and (5.10), it follows that θ̃
t

ik
is related to the

image of the targets st in the scene by

θ̃
t

ik
=W†

Ψik st, (5.29)

where † denotes the pseudo-inverse operator. In a basis approach, the coefficient
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vectors θ̃
t

ik
from all Mk antenna locations are stacked to form an MkN×1 composite

measurement vector, which is used to reconstruct the scene image. However, this

approach produces a very high-dimensional coefficient vector and a huge dictio-

nary of size MkN ×Q, which leads to inefficient image reconstruction. Therefore,

in the following we employ principal component analysis to compress the mea-

surement vector and reduce the dictionary size, resulting in a more compact linear

model for scene image formation.

Let C denote the covariance matrix of the measurement vectors given in (5.29).

Using the eigendecomposition yields

C = GΛGH, (5.30)

where G = [g1, . . . ,gN] is a matrix of the eigenvectors and Λ is a diagonal matrix

of the eigenvalues, arranged in descending order. We define a projection matrix

P = [g1, . . . ,gNp] consisting of the first Np (Np ≪ N) eigenvectors; Np is determined

by using an information theoretic criterion, such as Akaike Information Criterion

(AIC) or Minimum Description Length (MDL) [128]. Applying the projection

matrix PH to (5.29) yields the compressed measurement vector ỹik ∈ CNp ,

ỹik = PH θ̃
t

ik
= PH W†

Ψik st = Ψ̃ik st, (5.31)

where Ψ̃ik = PH W† Ψik . Now, by concatenating the vectors ỹik at all selected

antenna locations into a composite vector ỹ = [ỹT
1
, . . . , ỹT

Mk
]T ∈ CMkNp×1 and stack-

ing the individual compressed dictionaries into a composite dictionary Ψ̃ =

[Ψ̃
T

1 , . . . , Ψ̃
T

Mk
]T ∈ CMkNp×Q, we obtain the following compact linear model,

ỹ = Ψ̃ st. (5.32)

Given the measurement vector ỹ and dictionary Ψ̃, the scene image st can

be obtained using Bayesian sparse approximation. In this Bayesian framework,
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the likelihood for st is modeled as a multivariate complex Gaussian distribution,

p(ỹ|st, β̃) ∼ CN(Ψ̃ st, β̃I), with mean Ψ̃ st and covariance β̃I. The scene sparsity is

enforced using a zero-mean Gaussian prior:

p(st|α̃) =

Q
∏

q=1

CN(st
q | 0, α̃−1

q ), (5.33)

=

Q
∏

q=1

1

πα̃q
exp













−
|st

q|2

α̃q













= CN(0, Ã),

where Ã = diag(α̃), and α̃ = [α̃1, . . . , α̃Q] is the vector of hyperparameters.

Given the hyperparameters α̃ and β̃, by Bayes rule, the posterior for st is a

multivariate complex Gaussian distribution,

p(st|ỹ, α̃, β̃) =
p(ỹ|st, β̃) p(st|α̃)

p(ỹ|α̃, β̃)
, (5.34)

=
1

(π)MkNp |Σ̃|
exp

{

−(st − µ̃)H
Σ̃
−1

(st − µ̃)
}

, (5.35)

with the following mean and covariance:

µ̃ = β̃ Σ̃ Ψ̃
H

ỹ, (5.36)

Σ̃ = (β̃ Ψ̃
H
Ψ̃ + Ã)−1. (5.37)

The problem now becomes searching for the hyperparameters α̃ and β̃, which are

estimated by maximizing the marginal likelihood, or equivalently its logarithm:

L(α̃, β̃) = log p(ỹ|α̃, β̃),

= log

∫

p(ỹ|st, β̃) p(st|α̃) dst,

= −1

2

[

MkNp log 2π + log |B̃| + ỹHB̃−1ỹ
]

, (5.38)

with B̃ = β̃−1I + Ψ̃ Ã−1 Ψ̃
H

.

The expectation-maximization algorithm is used to maximize L(α̃, β̃) with

73



5.5. Experimental results and analysis

respect to α̃ and β̃. For the E-step, it requires the computation of the posterior

mean in Eq. (5.36) and covariance in Eq. (5.37). The update rules for M-step

is obtained by differentiating the cost function L(α̃, β̃) with respect to α̃ and β̃.

Taking the derivatives and setting the results to zero, we have the updating rules:

ᾱq =
1 − α̃qΣ̃q,q

|µ̃q|2
, (5.39)

β̄ =
MkNp −Q +

∑Q

q=1
α̃qΣ̃q,q

‖ỹ − Ψ̃µ̃‖2
2

. (5.40)

The steps described by (5.36)-(5.37) and (5.39)-(5.40) are iterated until convergence.

Then the scene image ŝt is given by the mean of the posterior in (5.36):

ŝt = µ̃|α̃=ᾱ, β̃=β̄ = (β̃ Σ̃ Ψ̃
H

ỹ)|α̃=ᾱ, β̃=β̄. (5.41)

It is important to note that the Bayesian sparse scene approximation exploits

the scene sparsity, like other ℓ1-norm minimization algorithms. However, the

sparse Bayesian approach is more robust to noise and parameter settings, and it

yields a more stable and precise scene, compared to conventional ℓ1-norm solvers.

This can be justified by the fact that the sparse Bayesian approach is able to learn

the necessary parameters and it produces a sparse solution as a full posterior

distribution, rather than a point estimate as in conventional CS solvers.

5.5 Experimental results and analysis

In this section, we present the experimental results obtained using both simu-

lated EM data and real TWR measurements. The performance of the proposed

approach is evaluated under different sensing conditions, especially when the

number of measurements is drastically reduced. Experimental analysis and com-

parison with existing compressed TWRI models are also provided. The next sub-

section describes the dictionaries used for sparse representation, see Eq. (5.10),

and presents briefly the performance measures used to quantify the experimental
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results.

5.5.1 Dictionary selection and performance measures

Although the proposed approach works with any dictionary W, see Eq. (5.10),

in this study two sparsifying dictionaries are considered for sparse signal rep-

resentation: the Fourier and the DPSS dictionary. Both dictionaries are used to

compare the performance of the single-signal CS (SSCS) model [91, 108], which

recovers the antenna-signal coefficients independently, with that of the proposed

joint Bayesian CS (JBCS) model, which estimates the antenna-signal coefficients

simultaneously. In the Fourier dictionary, the n-th column of the dictionary (for

n = 0, . . . ,N − 1) is computed as

[W]n = [e− j2π f0
2ndr

c , . . . , e− j2π fN−1
2ndr

c ]T, (5.42)

where dr = c/(2(N − 1)∆ f ) is the range resolution and c is the speed of light.

The DPSS dictionary, on the other hand, can be computed by considering

each antenna signal as a multi-duration signal within the unambiguous time

[−1/(2∆ f ), 1/(2∆ f )] [122]. The unambiguous time is divided into K =
⌊

2/(∆ f ∆T) − 1
⌋

overlapping intervals of length ∆T = 1/( fN−1 − f0). Let T = (∆T ∆ f )/2 and tk =

[−(1/2∆ f )+(k∆T/2)]∆ f for k = 1, . . . ,K. Consider the N×N matrix U = [u0, . . . ,uN−1],

consisting of the N frequency domain discrete prolate spheroidal sequences given

by the eigenvectors of the matrix X [129],

[X]i,n =
sin(2πT(i − n))

π(i − n)
, for i,n = 0, . . . ,N − 1. (5.43)

Defining an N×N diagonal matrix Etk
= diag(e− j2πntk) (for n = 0, . . . ,N−1), we can

obtain the k-th basis of the dictionary matrix Wk as the first ⌊2NT⌋ + 1 columns

of the matrix Etk
U. By combining all the K time-shifted DPSS bases, we have the

DPSS dictionary of size N × (⌊2NT⌋ + 1)K: W = [W1, . . . ,WK].

The performance of the proposed approach is evaluated in terms of signal
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reconstruction accuracy, image quality, and target detection capacity. The recon-

struction error (RE) of the antenna signals is measured as

RE =

∥

∥

∥zik − ẑik

∥

∥

∥

2
∥

∥

∥zik

∥

∥

∥

2

, (5.44)

where zik is the original signal and ẑik is the reconstructed signal at the ik-th antenna

location. For image quality, we use the target-to-clutter ratio (TCR) [113]. Let Pr

denote the average power of region r in the reconstructed image I; r can be a target

or clutter region. The average power Pr can be expressed as

Pr =
1

Nr

∑

(x,y)∈r

I2
r (x, y), (5.45)

where Nr is the number of pixels in region r. The target-to-clutter ratio is defined

as the ratio between the average power of the target region and the average power

of the clutter region (in dB):

TCR = 10 log10

(

Ptarget

Pclutter

)

. (5.46)

The ground-truth target regions are selected manually in the vicinity of the true

targets, and the clutter region is the remainder of the reconstructed image.

To evaluate the performance of the imaging models in enhancing target de-

tection, the receiver operation characteristics (ROC) curve is used to measure the

probability of target detection. The probability of detection (PD), or detection

rate, denotes the percentage of pixels in target regions that are correctly detected.

In contrast, the probability of false alarm (PFA), or false alarm rate (FAR), is the

percentage of pixels in the clutter region that are incorrectly detected as targets.

5.5.2 Simulated data

In this subsection, we evaluate the proposed approach using simulated data.

Full-wave EM simulations were performed using XFDTD software package.
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5.5.2.1 Simulation setup

A stepped-frequency synthetic aperture radar system was simulated for TWR

data acquisition. The transceiver was placed parallel to a 0.15 m thick concrete

wall, at a standoff distance of 1 m, to synthesize a linear aperture consisting

of 93 elements. The spacing distance between elements was 0.02 m. A stepped-

frequency signal consisting of 667 frequencies, ranging from 1 GHz to 3 GHz, with

3 MHz frequency step, was used to scan the scene. The scene layout is depicted

in Fig. 5.1. It contains two dihedral targets and the front wall. The downrange

and crossrange of the scene extend from 0 to 4 m, and -2 to 2 m, respectively. The

pixel size is set to the Rayleigh resolution of the radar, which gives an image size

of 53 × 36 pixels.

(a) (b)

0
.1

5
 m

1
.3

 m

2
.3

 m

Dihedral

0.02 m

1
.0

 m

Figure 5.1: TWRI data acquisition: (a) a photo of the scene; (b) a top-view of the
behind-the-wall scene.

5.5.2.2 Results and analysis

For reference purposes, Fig. 5.2 shows the scene images formed using the full data

set collected using all antennas (M = 93) and all frequencies (N = 667), before wall

clutter mitigation. Figure 5.2(a) presents the scene image formed by applying DS
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beamforming [1] to Eqs. (5.8)–(5.9). It is clear that the wall returns dominate the

target reflections, making target detection impossible. Figure 5.2(b) depicts the

scene image recovered by the Bayesian sparse approximation. In this image, only

the wall clutter is localized; both targets are missing. These results indicate that

for target detection and localization, it is vital to mitigate wall clutter before image

reconstruction. For clarity, in these and all subsequent images, wall and target

regions are indicated with dashed and solid rectangles, respectively. The formed

images are shown on a 50-dB scale, with the maximum intensity value normalized

to 0 dB.

(a) (b)

Crossrange (m)

D
o

w
n

ra
n

g
e
 (

m
)

 

 

-2 -1 0 1 2
0

1

2

3

4

-50

-40

-30

-20

-10

0

Crossrange (m)

D
o

w
n

ra
n

g
e
 (

m
)

 

 

-2 -1 0 1 2
0

1

2

3

4

-50

-40

-30

-20

-10

0

Figure 5.2: Scene images reconstructed with the full data set before wall clutter
mitigation: (a) DS beamforming; (b) Bayesian scene reconstruction.

For compressed TWRI, we randomly select 20% of the antenna locations (Mk =

19 out of 93) and 10% of the frequencies (N f = 67 out of 667), which collectively

accounts for 2% of the total data volume. Here, the selected frequencies differ

among the antenna locations. The antenna coefficients are recovered using the

single-signal CS model and the proposed joint Bayesian CS model, followed by

the sparse scene reconstruction after wall clutter mitigation, using the subspace

projection method described in Subsection 5.4.2. Note that in all experiments, for

the sake of fair comparison, the coefficient reconstruction problem of the SSCS

model, see Eq. (5.12), is solved using the joint Bayesian approach; however, each
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antenna coefficient vector is estimated independently.

20 40 60 80
0

0.02

0.04

0.06

0.08

0.1

Antenna Index ( i
k
 )

R
e
c
o
n
s
tr

u
c
ti
o
n
 E

rr
o
r

 

 

SSCS model

Proposed JBCS model

20 40 60 80
0

0.01

0.02

0.03

0.04

0.05

Antenna Index ( i
k
 )

R
e
c
o
n
s
tr

u
c
ti
o
n
 E

rr
o
r

 

 

SSCS model

Proposed JBCS model

(a) (b)

Figure 5.3: Reconstruction errors by the SSCS model [91, 108] and proposed JBCS
model as a function of antenna locations: (a) using Fourier basis; (b) using DPSS
basis. The results are averaged over 100 trials. The error bars represent plus/minus
one standard deviation.

We conducted 100 trials and recorded the performance measures (reconstruc-

tion error, target-to-clutter ratio). Figure 5.3 shows the reconstruction errors, aver-

aged over 100 trials, as a function of the antenna locations. Clearly, the proposed

JBCS model yields significantly lower reconstruction errors than does the SSCS

model. This is true for both the Fourier and DPSS dictionaries. Table 5.1 depicts

the reconstruction errors by averaging along all selected antenna locations. With

the Fourier basis, the proposed JBCS model yields an error of 0.029± 0.007, while

the SSCS method gives an error of 0.078± 0.012. Although both models achieve a

more accurate reconstruction with DPSS than with Fourier basis, the JBCS model

gives a much lower reconstruction error (0.003± 0.001) than does the SSCS model

(0.038 ± 0.008).

Table 5.1: Reconstruction performances of the SSCS model and proposed JBCS
model.

Imaging models Reconstruction Error
Mean Standard Deviation

SSCS model: Fourier basis 0.078 ±0.012
Proposed JBCS model: Fourier basis 0.029 ±0.007

SSCS model: DPSS basis 0.038 ±0.008
Proposed JBCS model: DPSS basis 0.003 ±0.001
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Figure 5.4: Sparse images reconstructed using 2% of the total data volume by
different schemes, averaged over 100 trials; (a) SSCS model with Fourier basis;
(b) proposed JBCS model with Fourier basis; (c) SSCS model with DPSS basis; (d)
proposed JBCS model with DPSS basis.

Table 5.2: Average target-to-clutter ratio TCR of the scene images reconstructed
by different imaging models using 2% of the full data volume.

Imaging model TCR (dB)

SSCS model: Fourier basis [91, 108] 0.01
Proposed JBCS model: Fourier basis 7.11

SSCS model: DPSS basis 0.04
Proposed JBCS model: DPSS basis 56.37

Figures 5.4(a) and 5.4(b) show, respectively, the scene images formed using the

SSCS model and the proposed JBCS model with the Fourier basis. In Fig. 5.4(a)

the SSCS model fails to detect the targets, whereas in Fig. 5.4(b) the proposed

JBCS model detects the dihedral target closer to the antenna array. Figures 5.4(c)
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and 5.4(d) present, respectively, the images formed using the SSCS model and the

proposed JBCS model with the DPSS basis. In Fig. 5.4(c), the SSCS model does

not detect the targets. By contrast, the targets are clearly visible in the image of

Fig. 5.4(d), formed by our JBCS model. Table 5.2 depicts the TCR values of the

four images in Fig. 5.4. For both Fourier and DPSS dictionaries, there is a loss of

quality in the images formed by the SSCS model, compared to the JBCS model.

For example, with the DPSS basis the SSCS model achieves a TCR of 0.04 dB,

whereas the proposed JBCS model yields an image with a TCR of 56.37 dB (a

significant improvement of image quality).
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Figure 5.5: The reconstruction errors by the SSCS model and proposed JBCS
model as a function of number of antennas (signals) used (Mk): (a) with Fourier
basis; (b) with DPSS basis. Here 10% frequencies (N f = 67 out of 667) are used at
each selected antenna location. The results are averaged over 100 trials. The error
bars represent plus/minus one standard deviation.

In the next experiment, to investigate the effects of the inter-signal correla-

tion on the coefficient reconstruction accuracy, we fix the number of selected

frequencies at 10% (N f = 67) and vary the number of selected antennas from

Mk = 1, . . . , 15 (1% to 16%). For each subset of measurements, we use the SSCS

model and the proposed JBCS model to reconstruct the signal-coefficients of the

selected antennas, and recorded the reconstruction errors for 100 trials.

Figure 5.5 depicts the reconstruction errors by the two models as a function of

the number of selected antennas Mk. We observe that for Mk = 1, estimating only
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one coefficient vector, both models yield the same average error: 0.078±0.014 with

Fourier basis and 0.038±0.01 with DPSS basis. This is because in this case the inter-

signal correlation is unavailable, and thus both models exploit only the sparsity

structure. However, for the other cases of reconstructing an ensemble of coefficient

vectors, the average error of the SSCS model remains almost at the same value,

whereas the average error of the JBCS model drops off rapidly as the number of

selected antennas increases. For example, with the DPSS basis, the reconstruction

error of the SSCS model remains around 0.038 ± 0.01, whereas the error value of

the proposed JBCS model decreases to 0.004 ± 0.0006 (a 9.5-fold improvement).

The improvement in antenna coefficient estimation can be justified by the fact that

the proposed JBCS model exploits both the sparsity and inter-signal correlation,

whereas the SSCS model considers only signal sparsity. As illustrated in Fig. 5.6,

the antenna signals are not sparse in frequency domain, see Fig. 5.6(a). However,

the signal coefficient vectors are sparse, and more importantly they share a same

sparsity support, or jointly sparse in the transformed domain using a sparsifying

basis, see Fig. 5.6(b).
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Figure 5.6: Correlations among antenna signals: (a) received signals in the fre-
quency domain; (b) corresponding signal coefficient vectors represented using
DPSS basis. Note that this figure is zoomed in on 100 significant signal coeffi-
cients only.

In the next experiment, we evaluate the performance of the proposed model

under different compressed sensing ratios. We fix the number of selected antenna
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locations to 20% (Mk = 19) and vary the ratio of selected frequencies from 5% to

20% (N f = 33, . . . , 133). Using the selected data subsets, the antenna coefficients

and scene images are reconstructed by using the SSCS and JBCS models. The

average performance measures, namely reconstruction error, TCR, and target

detection rate, are recorded for 100 trials.
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Figure 5.7: Performance comparison of the SSCS model and the proposed JBCS
model: (a) the reconstruction errors as a function of percentage of selected fre-
quencies; (b) the average TCR as a function of percentage of selected frequencies;
(c) the detection rate at 5% FAR as a function of percentage of selected frequencies;
(d) ROC curves at selected frequency N f/N = 10%.

Figure 5.7(a) depicts the reconstruction errors as a function of the ratio of

selected frequencies to the total number of frequency measurements (N f/N). It is

clear that the proposed model produces a considerably lower error than does the

SSCS model, using both dictionaries. Figure 5.7(b) shows the average TCR of the

reconstructed images using both the SSCS and JBCS models. Again, the proposed

JBCS model reconstructs images with substantially higher TCR than does the SSCS
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model. We also found that to achieve a high-quality scene image, for example at

TCR=30 dB, the SSCS model requires 15% of frequency measurements, whereas

the proposed JBCS model uses only 5% with the DPSS basis.

Figure 5.7(c) presents the detection rate at 5% false alarm rate as a function of

ratio of selected frequencies. From this figure we can see that the detection rate

of the proposed JBCS model is much higher than that of the SSCS model; even

with only 10% of selected frequency measurements, the proposed JBCS model

fully detects the target (PD = 100%). In contrast, the SSCS model completely

fails to detect the targets when the number of selected frequency measurements

is reduced below 11%.

Figure 5.7(d) illustrates the ROC curves for 10% of selected frequencies. For

a fixed false alarm rate, the JBCS improves significantly the target detection rate,

in particular with the DPSS basis. Table 5.3 shows the probability of detection

at 5% FAR. It is observed that the proposed approach enhances target detection

significantly. For example, using DPSS basis, the proposed JBCS model has a PD

of 100%, whereas the SSCS model gives a PD of 0.56%.

Table 5.3: Probability of detection at 5% false alarm rate and 10% selected fre-
quencies (2% of full data volume).

Imaging model Detection rate(%)

SSCS model: Fourier basis 0.0
Proposed JBCS model: Fourier basis 15.55

SSCS model: DPSS basis 0.56
Proposed JBCS model: DPSS basis 100.0

The above experimental results using simulated EM data indicate that the pro-

posed JBCS model enhances significantly signal-coefficient estimation accuracy,

and thereby yielding a substantial improvement in target detection and localiza-

tion, compared to the SSCS model. We also found that using the DPSS basis is

more suitable for TWRI applications, compared to the Fourier basis. This is con-

sistent with the finding in [122]. The reason is that the DPSS functions capture the

signal energy better than does the Fourier basis. In the next section, for brevity,
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we use only the DPSS basis for sparse signal representation with real radar data.

5.5.3 Real data

In this subsection, the proposed approach is evaluated using real TWR measure-

ments collected at the Radar Imaging Laboratory of the Center for Advanced

Communications, Villanova University, USA. Before presenting the experimental

results, we introduce the experimental setup used for simulations.

5.5.3.1 Experimental setup

Two real scenes are considered in our experiments: a dihedral scene and a cali-

brated scene. While the dihedral scene is suitable for sparse sensing application,

the calibrated scene is more challenging since the scene sparsity is significantly

reduced.

The dihedral scene layout is illustrated in Fig. 5.8. It contains a 0.4 m high by

0.3 m wide dihedral, placed on a turntable made of two 1.2 m x 2.4 m sheets of

0.013 m thick plywood. A stepped-frequency synthetic aperture radar system was

used for data collection. The synthetic linear aperture consists of 57 uniformly

spaced elements, with 0.022 m inter-element spacing. The antenna aperture was

located at a height of 1.22 m above the floor and a standoff distance of 1.016 m

away from a 0.143 m-thick solid concrete wall. The stepped-frequency signal

comprises 801 frequencies in the range 0.7 to 3.1 GHz, with 3 MHz frequency

step. The imaged scene extends from [0, 4] m in downrange and [−2, 2] m in

crossrange. The pixel size is equal to the Rayleigh resolution of the radar, which

gives an image size of 64 × 25 pixels.

TWR data sets were also acquired from the calibrated scene shown in Fig. 5.9.

The scene contains nine targets: a sphere, a cylinder, three dihedrals, and four

trihedrals. These objects were placed at different downrange, crossrange, and

elevation bins. The scene was illuminated by a stepped-frequency synthetic

aperture radar system. The aperture array has 69 elements, with an inter-element

spacing of 0.022 m. The stepped-frequency signal comprises 201 frequencies,
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equispaced over 1 GHz bandwidth centered at 2.5 GHz with 5 MHz frequency

step. The radar system was placed at a distance of 0.0127 m from the wall, which

was made of 0.127 m thick non-homogeneous plywood and gypsum board. The

imaged scene has a downrange of [0, 8] m and a crossrange of [-3, 3] m. The pixel

size is set to the Rayleigh resolution of the radar, resulting in an image of size

53 × 26 pixels.
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Figure 5.8: TWRI data acquisition for a dihedral scene: (a) a photo of the scene;
(b) a top-view of the behind-the-wall scene.

5.5.3.2 Results for dihedral scene

For reference purposes, Fig. 5.10 shows the scene images formed using the full

data set comprising all antennas (M = 57) and all frequencies (N = 801). Figure 5.10(a)

presents image formed using DS beamforming, without wall clutter mitigation.

It can easily be seen that the wall reverberations dominate the targets, making

target detection difficult. Figure 5.10(b) depicts the scene image reconstructed

using Bayesian sparse estimation. We can observe that the sparsity-based scene

reconstruction recovers only the pixels in the wall region due to the wall clutter

domination. Hence, for target detection and localization, it is vital to remove the

wall contributions prior to scene reconstruction.
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Figure 5.9: TWRI data acquisition for a calibrated scene: (a) a photo of the scene;
(b) a top-view of the behind-the-wall scene.

For compressed TWR sensing, we randomly select 30% of the antenna loca-

tions (Mk = 17) and 10% of the frequencies (N f = 80) at each selected antenna

location. This collectively represents 3% of the total data volume. We conduct 100
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Figure 5.10: Reconstructed images using a full raw data set; (a) DS beamforming;
(b) sparse scene reconstruction.

trials for antenna coefficient estimation, wall clutter mitigation, and sparse scene

reconstruction. Figure 5.11 shows the formed images, averaged over 100 trials,

obtained with the SSCS model and proposed JBCS model, after wall clutter mit-

igation using the subspace projection method. In this case, the SSCS model does

not detect the target even after wall clutter mitigation, see Fig. 5.11(a), whereas

the JBCS model is able to localize the target, see Fig. 5.11(b). This is expected

because the proposed model yields a much higher signal-coefficient estimation

accuracy, thereby achieving more effective wall clutter mitigation and image for-

mation, compared to the SSCS model. The respective TCR values of the images

in Fig. 5.11 are 1.18 dB and 42.88 dB.

Figure 5.12 shows the reconstruction errors as a function of the antenna lo-

cation. The proposed model clearly produces much lower reconstruction errors

than does its SSCS counterpart. Furthermore, the proposed model is much more

stable than the conventional SSCS model: the standard deviation of reconstruction

errors for the JBCS model is significantly smaller than that for the SSCS model.

Table 5.4 presents the reconstruction errors obtained by averaging over all selected

antenna locations. The proposed JBCS model improves the coefficient estimation

more than 4-fold, compared with the conventional SSCS model. The stable re-

88



5.5. Experimental results and analysis

(a) (b)

Crossrange (m)

D
o

w
n

ra
n

g
e

 (
m

)

 

 

-2 -1 0 1 2
0

1

2

3

4

-50

-40

-30

-20

-10

0

Crossrange (m)

D
o

w
n

ra
n

g
e

 (
m

)

 

 

-2 -1 0 1 2
0

1

2

3

4

-50

-40

-30

-20

-10

0

Figure 5.11: Sparse scene images reconstructed from 3% of the total data volume,
averaged over 100 trials, by different schemes: (a) SSCS model; (d) proposed JBCS
model.

covery is enhanced 11-fold by the proposed model, compared to the SSCS model.

Fig. 5.13 shows the reconstructed coefficients at the first antenna location. Here

the x-axis represents the indices of signal coefficients in the DPSS transformed

domain. It is observed that the JBCS reconstruction has higher fidelity than the

SSCS reconstruction.

Table 5.4: Reconstruction comparison by the SSCS model and proposed JBCS
model.

Imaging models Reconstruction Error
Mean Standard Deviation

SSCS model 0.123 ±0.022
Proposed JBCS model 0.028 ±0.002

To evaluate the effectiveness of the models in exploiting the inter-signal cor-

relation, we fix the selected frequency ratio at 10% (N f = 80) and vary the num-

ber of selected antennas from 1% to 20% (Mk = 1, . . . , 11). For each reduced

dataset, the antenna coefficients are reconstructed using the two models (SSCS

and JBCS). The experiment is conducted for 100 trials, and the reconstruction

errors are recorded. Figure 5.14 depicts the reconstruction errors as a function

of the number of selected antennas Mk. This result shows that the SSCS model

does not improve the reconstruction accuracy even when more measurements
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Figure 5.12: Reconstruction errors by the SSCS model and the proposed JBCS
model as a function of selected antenna locations. Here, only 10% of selected
frequencies are used at each antenna. The results are averaged over 100 trials.
The error bars represent plus/minus one standard deviation.

are included; the reconstruction error remains almost constant at 0.123 ± 0.027.

By contrast, in the proposed model, the coefficient estimation is considerably en-

hanced by adding more measurements from other antennas. The recovery error

drops from 0.123± 0.027 (recovering one coefficient vector) to 0.03± 0.001 (recov-

ering 11 coefficient vectors jointly). Moreover, the error bars are progressively

reduced by the proposed model. In other words, the proposed model enhances

both the accuracy and stability of reconstruction by exploiting the signal sparsity

and inter-signal correlations.

In the next experiment, we evaluate the performance of the proposed approach

as a function of the number of selected frequencies at each antenna. We set the

number of selected antenna locations to Mk = 17 (30% of the total antennas) and

vary the number of randomly selected frequencies from 40 to 240 (5% to 30% of

the total number of frequencies). The experiment is conducted for 100 trials and

the reconstruction errors, TCR, and PD are recorded.
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Figure 5.13: Reconstructed antenna coefficients using the SSCS model, and the
proposed JBCS model. Note, this figure is zoomed in on significant coefficients
only.
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Figure 5.14: Reconstruction errors by the SSCS model and proposed JBCS model
as a function of number of antenna locations used (Mk). Here, 10% frequency mea-
surements (N f = 80 out of 801) are used at each antenna. The results are averaged
over 100 trials. The error bars represent plus/minus one standard deviation.
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Figure 5.15: Performance comparison of the SSCS model and the proposed JBCS
model: (a) the reconstruction errors as a function of percentage of selected fre-
quencies; (b) the average TCR as a function of percentage of selected frequencies;
(c) the detection rate at FAR of 5% as a function of percentage of selected frequen-
cies; (d) ROC curves at selected frequency N f/N = 15%.

Figure 5.15 illustrates the reconstruction error, TCR, and PD as a function of the

ratio of selected frequencies. Figure 5.15(a) shows that the proposed model pro-

duces a considerably lower error than does the SSCS model, especially when the

measurements are reduced below 10%. Furthermore, to achieve the same recon-

struction accuracy level, the proposed JBCS model requires far fewer frequency

measurements than does the SSCS model. For example, to obtain an average

recovery error of 0.03, the proposed model uses 10% of frequencies, whereas the

SSCS model requires 30% of frequency measurements. The proposed model out-

performs the SSCS model in terms of TCR, see Fig. 5.15(b). Also, the proposed

model requires far fewer measurements than the SSCS model to achieve the same
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TCR. For a TCR of 20 dB, the proposed model requires only 5% of the frequencies,

whereas the conventional SSCS model uses 15% of the frequencies. In terms of

Table 5.5: TCR and PD at 5% false alarm rate of the formed images using 15% fre-
quencies at each selected antennas (collectively using 4.5% of full measurements).

Imaging model TCR(dB) PD(%)

SSCS model 22.15 58.82
Proposed JBCS model 66.50 100
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Figure 5.16: Reconstructed images using a full raw data set collected by all anten-
nas and frequencies; (a) DS beamforming; (b) sparse scene reconstruction.

target detection, we can observe in Fig. 5.15(c) that the proposed model requires

far fewer measurements for detecting target correctly, compared to its SSCS coun-

terpart. For example, at FAR of 5%, to obtain a detection rate of 100%, the JBCS

model uses only 10% of frequencies, whereas the SSCS model needs more than

20% of frequencies. The ROC curves at 15% of selected frequencies are illustrated

in Fig. 5.15(d). The proposed JBCS model enhances target detection substantially.

Table 5.5 depicts the TCR and PD of the two models. It is evident that the proposed

JBCS model enhances image quality and target detection significantly, compared

to the SSCS model.
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Figure 5.17: Scene images reconstructed using 30% of the full data volume: (a)
SSCS model (TCR=29.06 dB); (b) proposed JBCS model (TCR=43.16 dB).

5.5.3.3 Results for calibrated scene

For reference purposes, Fig. 5.16 depicts the images formed without clutter miti-

gation, using the full data with all antennas (M = 69) and all frequencies (N = 201).

Figure 5.16(a) presents image formed by DS beamforming. Again, the wall returns

dominate the targets, impeding target detection and localization. Figure 5.16(b)

shows the scene image formed by sparse Bayesian reconstruction. The sparsity-

based scene reconstruction recovers only the pixels belonging to the wall rever-

berations. It is, therefore, necessary to remove the wall contributions prior to

image reconstruction in order to detect targets behind the wall.

For compressed TWR sensing, we use full antennas (Mk = 69) and 30% of

total frequencies (N f = 40) at each selected antenna positions, which collectively

represents 30% of the total data measurements. Figure 5.17 shows images, av-

eraged over 100 trials, formed after applying the subspace projection technique

to the coefficients recovered by the SSCS model and the proposed JBCS model.

In the image of Fig. 5.17(a), produced by the SSCS model, the target region is

much weaker than the wall region and some targets are completely missing. By
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Figure 5.18: Performance comparison of the SSCS model and the proposed JBCS
model: (a) the reconstruction errors as a function of percentage of selected fre-
quencies; (b) the average TCR as a function of percentage of selected frequencies;
(c) the detection rate at FAR of 5% as a function of percentage of selected frequen-
cies; (d) ROC curves at selected frequency N f/N = 30%.

contrast, the target region in Fig. 5.17(b) is enhanced and the wall reverberations

are reduced. The TCR values for these two images are, respectively, 29.06 dB and

43.16 dB.

In the last experiment, we evaluate the performance of the proposed model by

varying the number of selected frequency measurements. We select frequencies

from 20 to 60 (10% to 30% of the full frequencies). The antenna signal coefficients

are recovered using the two models, followed with wall clutter mitigation and

sparse scene reconstruction. The performance measures (reconstruction error,

TCR, and PD) are recorded for 100 trials.

Figure 5.18(a) shows the reconstruction errors as a function of the ratio of the

selected frequencies. It is evident that the proposed model gives a substantially
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lower recovery error compared with the conventional SSCS model. For example,

with 10% of selected frequencies, the reconstruction errors of the proposed ap-

proach and the SSCS model are, respectively, 0.018 and 0.115 (a 6-fold increase in

signal accuracy). Figure 5.18(b) presents the average TCR of the formed images as

a function of the ratio of selected frequencies. The TCR of the proposed model is

consistently higher than that of the conventional SSCS model. Figure 5.18(c) de-

picts the PD at 5% FAR. Clearly, the proposed JBCS model outperforms the SSCS

model in target detection. Figure 5.18(d) shows the ROC curves at the selected

frequencies N f/N = 30%. Again, we find that the proposed JBCS model enhances

target detection compared to the SSCS model.

5.6 Chapter summary

This chapter presented a joint Bayesian CS approach for indoor scene reconstruc-

tion using a reduced set of measurements collected from a subset of antennas and

frequencies. It addresses the problem of compressed TWR sensing where dif-

ferent subsets of frequencies are sensed across different antennas. The proposed

joint Bayesian sparse approximation exploits the signal sparsity structure and

the inter-signal dependencies to estimate all antenna signal coefficients simulta-

neously. Following the joint Bayesian signal-coefficient estimation, a subspace

projection technique is applied directly to the recovered coefficients to suppress

the front wall radar returns. Furthermore, a compact linear imaging model is

developed for efficient Bayesian sparse scene reconstruction. Extensive experi-

mental results on simulated EM data and real radar data were presented, which

demonstrate the effectiveness of the proposed imaging model, especially when

the number of measurements is drastically reduced. The proposed approach en-

hances target detection and localization over existing compressed TWR sensing

model and allows a considerable reduction in the number of measurements for

high-quality indoor imaging.
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Multi-channel TWRI using joint

Bayesian compressed sensing
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Abstract

This chapter addresses the problem of scene reconstruction, incorporating wall-

clutter mitigation, for compressed multi-channel through-the-wall radar imaging.
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We consider the problem where the scene is sensed from multiple vantage points

or different polarizations. At each channel (view or polarization), only a reduced

set of antennas and frequencies are used to illuminate the same scene. The pro-

posed approach combines wall clutter mitigation and scene reconstruction in a

unified framework using multitask Bayesian compressed sensing. First, the radar

signals are sparsely represented using a dictionary. Then, a joint Bayesian sparse

recovery framework is employed to estimate the antenna signal coefficients simul-

taneously, by exploiting the sparsity and correlations between antenna signals.

Furthermore, a subspace projection technique is applied to segregate the target

coefficients from the wall contributions. Finally, a multitask linear model is de-

veloped to relate the target coefficients to the scene, and a composite scene image

is reconstructed by a joint Bayesian sparse framework, taking into account the

inter-channel dependencies. Experimental results show that the proposed ap-

proach improves reconstruction accuracy and produces a composite scene image

in which the targets are enhanced and the background clutter is attenuated.

6.1 Introduction

Enhancing detection and localization of targets behind walls and inside enclosed

structures using radio frequency sensors is essential for numerous civil and mili-

tary applications [2, 6, 67, 130]. In practice, urban sensing and TWRI face several

interferences, such as layover and shadow effects, which impede target detection

and localization. For example, when the antenna is placed facing a strong re-

flective target with another weak target behind, layover effects occur, rendering

the detection of the weak target more difficult, or impossible. Further, the target

reflectivity depends highly on the sensing aspect angle. Target reflections may

be strong if sensed from the front wall, but may be weak when illuminated from

Part of this chapter has been published in V. H. Tang, A. Bouzerdoum, S. L. Phung, and
F. H. C. Tivive, “Multi-view indoor scene reconstruction from compressed through-wall radar
measurements using a joint Bayesian sparse representation,” in Proc. IEEE Int. Conf. Acoustics,
Speech and Signal Processing, Brisbane, Australia, April 2015, pp. 2419–2423. Partial content of this
chapter has also been published in [10, 12].
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the side wall, and vice versa. These problems can be addressed by using multi-

view or multi-polarization sensing and then combining the data acquired from

different channels to enhance target detection and localization.

Multi-view TWRI methods typically involve image formation at individual

views, followed by image fusion [6, 100], target image correction [71], or target

detection [5]. These existing methods, however, are not concerned with the TWRI

problem in the compressed sensing (CS) context [14, 15]. The full data volume

at each view is required to form the images. In the past decade, CS has been

used for TWRI to save data acquisition, reduce computation cost, and improve

image formation and fusion [7, 91, 95, 116]. More recently, CS-based techniques

have been proposed which combine wall-clutter mitigation with image formation

[9, 108, 122]. These methods, however, are suitable for single-view TWRI problem

only; they do not consider the inter-view correlations in the imaging model.

During the sensing process, the scene can be imaged from the same view-

ing angle, but with different polarizations. The multi-polarization approach is

motivated by the fact that the strength of target returns depends on its radar

cross section (RCS) — a polarimetric-dependent factor [131]. As a result, multi-

polarimetric sensing provides more information about the target than does the

single polarization [132, 133, 134]. Several TWRI studies have used multi-

polarization of electromagnetic waves to improve the discrimination of targets

[6, 102, 113, 116, 131, 135, 136, 137]. In [131], a method for TWR detection of

certain types of weapons was developed by analyzing the target signature in

different polarizations. In [135], a polarimetric beamforming algorithm based on

Greens function was proposed for TWRI. The formed images show that the targets

exhibit different characteristics with respect to the polarizations, and thus these

features can be used for image enhancement. In [136], an adaptive target detec-

tion technique using multi-polarization images was developed. The technique

exploits the polarization diversity to improve target detection. In [102], features

extracted from multi-polarization images were employed for target classification.
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In [137], a fully polarimetric scattering model of the human body was proposed

for detecting a person behind walls. In [113] and [6], fuzzy logic based fusion

techniques were developed to combine multi-polarization images. In [116], a

multi-polarization image formation method was developed for TWRI.

Most multi-polarization TWRI studies assume that the wall reflections are

removed, or at least significantly suppressed, prior to image formation. Further-

more, the existing methods assume that the same set of frequencies are collected

across the antenna array aperture and polarizations, and thereby not addressing

the logistic difficulties in data acquisition. The problem of imaging with multiple

polarizations is that the target may exhibit different responses when interrogated

by different polarized signals. Furthermore, in practical applications, not all radar

signals from the antenna array aperture can be acquired successfully due to oc-

clusions by metallic obstacles or EM interferences. Therefore, the main aim of a

practical multi-polarimetric TWRI system is to effectively reconstruct scene im-

ages that have low background clutter and high target reflections from reduced

polarimetric measurements.

In this chapter, we propose a new approach for addressing the problem of

wall-clutter mitigation and compressed multi-channel TWR scene reconstruction

using multitask Bayesian compressed sensing framework. The multi-channel

sensing operation refers to the multi-view or multi-polarization sensing mode

where several data sets are obtained by illuminating the same scene. In the

proposed approach, a joint Bayesian sparse model is employed to reconstruct the

antenna signal coefficients simultaneously, by exploiting both the sparsity and

correlations between antenna signals. This joint model differs from the single-

signal CS recovery model presented in [108, 122], where each antenna signal is

recovered independently. This chapter demonstrates that joint reconstruction

requires far fewer measurements and yields higher recovery accuracy than the

single-signal CS model, where each antenna signal is reconstructed separately.

Furthermore, a subspace projection technique is applied directly to the estimated
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signal coefficients to segregate the wall reflections from target returns. For scene

reconstruction, a multitask linear model is developed in which a fused vector

of clutter-free signal coefficients is used to recover a composite scene image.

The composite image of the scene and the images related to different channels

are jointly reconstructed using sparse Bayesian learning framework, taking into

account inter-channel dependences.

The remainder of the chapter is organized as follows. Section 6.2 introduces the

multi-channel TWRI signal model. Section 6.3 describes the proposed approach,

including joint Bayesian antenna signal coefficient estimation, wall-clutter mitiga-

tion, and joint Bayesian image reconstruction. Section 6.4 presents experimental

results and analysis. Section 6.5 gives concluding remarks.

6.2 Multi-channel TWRI signal model

Consider a monostatic multi-channel TWRI system illuminating a scene behind a

wall or inside an enclosed structure. Assume that the scene containing P targets is

imaged by L channels. In multi-view mode, these L sensing views are performed

by shifting the same antenna array to new locations vertically or horizontally

along the front and side walls. In multi-polarimetric radar, the scene is imaged

from a single view, but using different polarizations. At each channel, the TWRI

system uses M antenna locations and N narrowband signals to scan the scene. In

the stepped-frequency approach, a stepped-frequency signal is used consisting of

N frequencies, equispaced over the desired bandwidth fN−1 − f0,

fn = f0 + (n − 1)∆ f , n = 1, . . . ,N − 1, (6.1)

where f0 is the lowest frequency in the frequency band and ∆ f is the frequency

step size.

Let zl(m,n) denote the signal of frequency fn, received by the m-th antenna
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from the l-th channel. This signal can be expressed as

zl(m,n) = zwt
l (m,n) + νl(m,n), (6.2)

where zwt
l

(m,n) represents the signal due to the wall and target reflections, and

νl(m,n) is the noise term. The signal zwt
l

(m,n) is modeled as the superposition of

the wall and target returns,

zwt
l (m,n) = zw

l (m,n) + zt
l(m,n), (6.3)

=

R
∑

r=1

σwar exp(− j2π fnτ
r
m,w) +

P
∑

p=1

σl
p exp(− j2π fnτm,p), (6.4)

where zw
l

(m,n) and zt
l
(m,n) are the signals representing wall and target returns,

respectively, σw is the reflectivity of the wall, R is the number of wall reverber-

ations, ar is the path loss factor associated with the r-th wall return, τr
m,w is the

propagation delay of the r-th wall reverberation, σl
p is the complex reflectivity of

the p-th target at the l-the channel, and τm,p is the round-trip travel time of the

signal from the m-th antenna to the p-th target.

Assume that the scene is partitioned into a rectangular grid consisting of Q

pixels. Let sl(q) denote a weighted indicator function representing the scene image

at the l-th channel. The weighted indicator function can be defined as

sl(q) = sw
l (q) + st

l(q) =











































σw, if the wall occupies the q-th pixel;

σl
p, if the p-th target occupies the q-th pixel;

0, otherwise,

(6.5)

where sw
l

(q) and st
l
(q) represent the wall and target components, respectively. We

denote by zl,m, zwt
l,m

, and νl,m the column vectors containing, respectively, the fre-

quency measurements zl(m,n), zwt
l

(m,n), and νl(m,n) collected by the m-th antenna

at the l-th channel, see Eq. (6.2). Similarly, let sl, sw
l

, and st
l
be the lexicographically

102



6.2. Multi-channel TWRI signal model

ordered column vectors containing the pixel values of the l-th channel image. It

follows from Eqs. (6.2)–(6.5) that

zl,m = zwt
l,m + νl,m, (6.6)

zwt
l,m =Ψl,m sl =Ψl,m sw

l +Ψl,m st
l , (6.7)

where Ψl,m is an N × Q matrix. The (n, q)-th element, Ψl,m(n, q), of this matrix is

given byΨl,m(n, q) = e− j2π fnτm,q , with τm,q being the propagation delay between the

m-th antenna and the q-th pixel. By concatenating the received signals at all M

antennas, we can write

zl = zwt
l + νl, (6.8)

zwt
l =Ψl sl, (6.9)

where zl = [zT
l,0
, . . . , zT

l,M−1
]T, zwt

l
= [zwt

l,0
T, . . . , zwt

l,M−1
T]T, Ψl = [ΨT

l,0, . . . ,Ψ
T
l,M−1]T, and

νl = [νT
l,0
, . . . ,νT

l,M−1
]T.

The image of the scene sl can be recovered from (6.8)–(6.9) by applying the

delay-and-sum (DS) beamforming or backprojection [1, 2, 66]. However, this

approach is suitable for single-channel TWRI only where the image at each chan-

nel is reconstructed independently, ignoring the correlations between channels.

Note that before image formation, the wall contributions need to be removed or

significantly reduced; otherwise, the wall returns dominate the target reflections,

rendering target detection difficult or even impossible. In the next section, we

present a new approach for compressed multi-channel TWRI which incorporates

wall clutter mitigation and takes into account the correlations between antenna

signals and inter-channel dependencies.
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6.3 Joint Bayesian multi-channel TWRI model

This section presents the proposed approach for compressed multi-channel TWRI.

In the proposed approach, the antenna signals are first represented by a sparsify-

ing dictionary. Then, the signal coefficients are simultaneously estimated using

a joint Bayesian sparse framework. Next, a subspace-projection technique is ap-

plied to the estimated coefficients to segregate the wall returns from the target

coefficients [120]. Finally, a multitask linear model is developed which combines

the single channel scene images with a composite scene image. All the scene

images are recovered jointly using a multitask Bayesian approximation model.

6.3.1 Joint signal coefficient estimation

We introduce a joint Bayesian sparse model for signal coefficient estimation by

exploiting both the signal sparsity and inter-signal correlations. In this approach,

the intra-signal sparsity structure is enforced by imposing a sparseness prior on

the signal coefficient vectors (model parameters). The inter-signal correlations are

modeled by imposing a shared hyperparameter vector on the model parameters.

The hyperparameters are used to control the common sparsity structure among

the coefficient vectors. The model parameters and hyperparameters are estimated

by maximizing the marginal likelihood and combining all measurement sets.

The signal model in Eqs. (6.8)–(6.9) represents for TWRI where a full data

volume is collected using all M antenna locations and N frequencies at each

channel. In compressed TWR sensing, only a subset of antennas are used for data

collection, and at each selected antenna location, only a reduced set of frequencies

are available for sensing the scene. Assume that only Ma (Ma < M) antenna

locations are selected at each channel. At each selected antenna, only N f (N f ≪

N) frequencies are used for illuminating the scene. Due to the constraint of

compressive sampling, the frequencies are different from one antenna to another.

The signal zwt
l,ia

due to wall and target returns can be sparsely represented using a
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dictionary W ∈ RN×J containing J (J ≥ N) basis functions or atoms,

zwt
l,ia
=W θwt

l,ia
, (6.10)

where θwt
l,ia

is a vector of signal coefficients corresponding to the ia-th antenna and

the l-th channel.

In compressed multi-channel TWRI, instead of collecting the full N samples at

each antenna, only a reduced set of N f (N f ≪ N) measurements is acquired at the

ia-th antenna location. Let yl,ia be a vector containing the compressed frequency

samples. The sparse sampling process can be mathematically expressed as

yl,ia =Φl,ia zl,ia , (6.11)

where Φl,ia is an N f × N selection matrix containing a single unit value in each

row and each column. Here, the selection matrixΦl,ia has a similar structure to an

identity matrix, where each row contains only one non-zero element representing

the selected frequency. From Eqs. (6.6) and (6.10), it follows that

yl,ia =Φl,ia W θwt
l,ia
+Φl,ia νl,ia = Dl,ia θ

wt
l,ia
+ ǫl,ia

, (6.12)

where Dl,ia =Φl,ia W and ǫl,ia
=Φl,ia νl,ia .

Given the measurement vector yl,ia and the dictionary Dl,ia , the coefficient

vector θwt
l,ia

can be recovered using different approaches. In [91, 108], the vector

θwt
l,ia

is recovered independently at each antenna. These methods, however, do not

consider the correlations between antenna signals. In contrast, here we consider

the multitask inverse problem (6.12) as a joint sparsity model, which assumes

that all the coefficient vectors θwt
l,ia

have overlapping support. By exploiting the

joint sparsity structure, the accuracy of signal reconstruction can be enhanced

significantly. Several algorithms have been proposed which take the inter-signal

correlations into account [123, 124, 125]. However, these methods assume that the
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compressed measurements are obtained by using the same sensing matrix Φl,ia .

In the TWRI context, this assumption corresponds to a constraint of having the

same frequency measurements for all antennas at all channels, and thus this is not

possible in TWR sensing due to frequency interferences and radar jamming. To

relax this constraint, we propose to use a joint Bayesian sparse recovery framework

for jointly estimating all the coefficient vectors θwt
l,ia

.

In the sparse Bayesian model, the noise term in Eq. (6.12) is modeled as a com-

plex Gaussian distribution, p(ǫl,ia) ∼ CN(0, βI), with zero-mean and covariance

βI. The likelihood of θwt
l,ia

is therefore a multivariate complex Gaussian function,

which can be expressed as [52, 126]

p(yl,ia |θwt
l,ia
, β) = (π/β)−N f exp

(

−β
∥

∥

∥yl,ia −Dl,iaθ
wt
l,ia

∥

∥

∥

2

2

)

. (6.13)

The joint sparsity of the coefficient vectors is enforced using a shared complex

Gaussian prior imposed on θwt
l,ia

:

p(θwt
l,ia
|α) =

J
∏

j=1

CN(θwt
l,ia

( j) | 0, α−1
j ), (6.14)

=

J
∏

j=1

1

π α j
exp













−
|θwt

l,ia
( j)|2

α j













= CN(0,A),

where A = diag(α) andα = [α1, . . . , αJ] is the vector of hyperparameters. Note that

the hyperparameter vector α is used to capture the correlations among coefficient

vectors θwt
l,ia

, controlling which elements of the vectors θwt
l,ia

are non-zero or which

basis functions of the dictionary Dl,ia are selected.

Given the hyperparameters α and β, by Bayes rule, the posterior of θwt
l,ia

is a
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multivariate complex Gaussian distribution:

p(θwt
l,ia
|yl,ia ,α, β) =

p(yl,ia |θwt
l,ia
, β) p(θwt

l,ia
|α)

p(yl,ia |α, β)
, (6.15)

=
1

(π)N f |Σl,ia |
exp

{

−(θwt
l,ia
− µl,ia

)H
Σ
−1
l,ia

(θwt
l,ia
− µl,ia

)
}

, (6.16)

with mean and covariance given by

µl,ia
= β Σl,ia DH

l,ia
yl,ia , (6.17)

Σl,ia = (βDH
l,ia

Dl,ia +A)−1. (6.18)

The problem now becomes searching for the hyperparameters α and β, which can

be obtained by maximizing the logarithm of the marginal likelihood:

L(α, β) =

Ma
∑

a=1

log p(yl,ia |α, β), (6.19)

=

Ma
∑

a=1

log

∫

p(yl,ia |θwt
l,ia
, β) p(θwt

l,ia
|α) dθwt

l,ia
, (6.20)

= −1

2

Ma
∑

a=1

[

N f log 2π + log |Bl,ia | + yH
l,ia

B−1
l,ia

yl,ia

]

, (6.21)

with Bl,ia = β
−1I +Dl,ia A−1 DH

l,ia
.

An expectation-maximization algorithm is used to maximize L(α, β) with re-

spect to the hyperparameters α and β. This algorithm is an efficient estimation

procedure that iterates among expectation (E) and maximization (M) steps. In the

E-step, the iterative algorithm estimates the posterior mean (6.17) and covariance

(6.18). For M-step, by taking the derivatives of the cost function L(α, β) with

respect to α and β and setting the results to zero, we derive the following update
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rules:

α̂ j =
Ma − α j

∑Ma

a=1 Σl,ia( j, j)
∑Ma

a=1 |µl,ia( j)|2
, (6.22)

β̂ =

∑Ma

a=1

[

N f − J +
∑J

j=1
α j Σl,ia( j, j)

]

∑Ma

a=1 ‖yl,ia −Dl,ia µl,ia
‖2

2

, (6.23)

where µl,ia( j) is the j-th component of µl,ia
, and Σl,ia( j, j) is the j-th diagonal ele-

ment of Σl,ia . The algorithm iterates between (6.17)-(6.18) and (6.22)-(6.23) until

convergence is achieved or a stopping criterion is satisfied [52, 63]. Once the

hyperparameters α̂ and β̂ are estimated, the signal coefficient vector θ̂
wt

l,ia
is given

by the mean of the posterior in (6.17):

θ̂
wt

l,ia
= µl,ia

|α=α̂, β=β̂ = (β Σl,ia DH
l,ia

yl,ia)|α=α̂, β=β̂. (6.24)

Here, it is important to note that all the compressed measurement sets {yl,ia}Ma

a=1

are employed for the estimation of the hyperparameters, as shown by the sum-

mation of the conditional distributions in (6.19). Hence, the correlations between

the antenna signals are exploited through the learning of the hyperparameters.

Once the signal coefficient vectors θ̂
wt

l,ia
are obtained, the scene image reconstruc-

tion can proceed. However, the estimated coefficient vectors θ̂
wt

l,ia
contain the

wall-reverberation components, which usually dominate the target signal and

hinder the visibility of stationary targets in the image. Therefore, before image

reconstruction, the wall reverberations need to be identified and suppressed.

6.3.2 Wall coefficient mitigation

Usually, wall mitigation techniques are applied to the radar signals [96, 119, 120],

which can be recovered from the estimated coefficients θ̂
wt

l,ia
using Eq. (6.10). In

the proposed approach, however, we apply a subspace-projection method directly

to the estimated coefficients to segregate the wall contributions from the target

returns. Let Θ̂
wt

denote a matrix comprising in its columns the antenna coefficients
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θ̂
wt

l,ia
obtained from all channels. Using singular value decomposition, the matrix

Θ̂
wt

can be expressed as

Θ̂
wt
= U ΣVH, (6.25)

where U = [u1, . . . ,uJ] and V = [v1, . . . ,vMaL] are unitary matrices containing

the left and right singular vectors, respectively, and Σ is a matrix containing the

singular values along the main diagonal arranged in descending order.

In TWRI, the wall returns are relatively stronger than the target reflections.

Hence, the wall contributions are captured by the first few singular vectors as-

sociated with the dominant singular values. The wall subspace can be defined

as

Pw =
∑

i∈W
ui vH

i , (6.26)

whereW denotes the index set of the singular vectors spanning the wall subspace

determined by a classification technique [119]. To suppress the wall coefficients,

the matrix Θ̂
wt

is projected onto a subspace orthogonal to the wall subspace:

Θ̃
t
= (I − PwPH

w) Θ̂
wt
, (6.27)

where I denotes the identity matrix. Now the wall-clutter free coefficients Θ̃
t
,

which contain in its columns the target coefficient vectors θ̃
t

l,ia
, can be used for

image reconstruction.

6.3.3 Joint Bayesian sparse scene reconstruction

The scene can be formed by first reconstructing the radar signal from the target

coefficients θ̃
t

l,ia
using (6.10), and then applying DS beamforming [91], or ℓ1 mini-

mization [108, 122]. However, these methods are designed for single-view image

formation, which ignore the inter-channel dependencies. Here, we formulate a

multitask linear model that maps the clutter-free coefficients to the corresponding

images of the scene and incorporates a composite coefficient vector representing

the fused image of the scene.
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Let θ̃
t

l,ia
, for a = 0, 1, . . . ,Ma − 1 and l = 1, 2, . . . ,L be the remaining signal

coefficients after removing those associated with the wall returns. Using Eqs.

(6.7) and (6.10), we can relate the target coefficients to the l-th channel target

image of the scene st
l

as

θ̃
t

l,ia
=W†

Ψl,ia st
l + ξl,ia , (6.28)

where † denotes the pseudo-inverse operator and ξl,ia is the residual noise. The

target coefficient vectors θ̃
t

l,ia
obtained from all selected antenna locations for the

l-th channel can be concatenated to form a composite measurement vector, which

can be used to reconstruct the corresponding image of the scene of the l-th channel.

However, this approach yields a very high-dimensional measurement vector of

size MaJ×1 and a huge dictionary of size MaJ×Q, which leads to inefficient image

reconstruction. We therefore apply a principal component analysis technique to

compress the measurement vector and the dictionary and obtain a compact linear

model.

Let C denote the covariance matrix of the new measurements given in Eq.

(6.28). Using the eigendecomposition, we can write

C = GΛGH, (6.29)

where G = [g0, . . . ,gJ−1] is a matrix of eigenvectors and Λ is a diagonal matrix

of eigenvalues, arranged in descending order. We define a projection matrix

P = [g0, . . . ,gNp−1] consisting of the first Np (Np ≪ J) eigenvectors; Np is determined

by using an information theoretic criterion, such as Akaike Information Criterion

(AIC) or Minimum Description Length (MDL) [128]. Applying the projection

matrix PH to Eq. (6.28) yields the compressed signal coefficient vector ỹia,l ∈ CNp ,

ỹl,ia = PH θ̃
t

l,ia
= PH W†

Ψl,ia st
l + PH ξl,ia = Ψ̃l,ia st

l + ξ̃l,ia , (6.30)

where Ψ̃l,ia = PH W† Ψl,ia and ξ̃l,ia = PH ξl,ia . Now, we stack all the compressed
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6.3. Joint Bayesian multi-channel TWRI model

signal coefficient vectors belonging to the l-th channel into a composite vector ỹl =

[ỹT
l,0
, . . . , ỹT

l,Ma−1
]T ∈ CMaNp×1, arrange the individual compressed dictionaries into

a composite dictionary Ψ̃l = [Ψ̃
T

l,0, . . . , Ψ̃
T

l,Ma−1]T ∈ CMaNp×Q, and noise component

ξ̃l = [ξ̃
T

l,0, . . . , ξ̃
T

l,Ma−1]T. We can obtain the following compact linear model

ỹl = Ψ̃l st
l + ξ̃l. (6.31)

In the linear model (6.31), the scene vectors st
l
have a common sparsity support

since they represent images of the same scene targets. Note that for multi-view

sensing, we need to adopt a pixel scanning scheme in which all the vectors st
l

have the same sparsity support [138] since the imaging coordinates are different

between viewing angles. Now, the scene images st
l

can be jointly reconstructed

using the multitask Bayesian CS technique that considers the inter-channel corre-

lations. Furthermore, because the vectors st
l

represent images of the same scene,

a composite image of the scene can be obtained by using image fusion techniques

after each single-channel image has been reconstructed and aligned. Here instead

we propose to first combine the coefficient vectors from different channels, then

perform fusion using joint Bayesian sparse learning.

We formulate a composite coefficient vector ȳl as a linear combination of the

coefficient vectors of different channels: ȳ =
∑L

l=1 wl ỹl, where wl’s are positive

weights satisfying
∑L

l=1 wl = 1, computed based on mutual information (MI) [116].

Similarly, we can form a composite dictionary as Ψ̄ =
∑L

l=1 wlΨ̃l. A linear imaging

model relating the composite coefficient vector ȳ to the fused image of the scene

s̄t can be formulated as ȳ = Ψ̄ s̄t. By combining the composite linear model with

(6.31), we obtain an overall multitask model for the multi-channel TWRI problem:

ỹl = Ψ̃l st
l + ξ̃l, l = 1, . . . , (L + 1), (6.32)

where ỹL+1 = ȳ, Ψ̃L+1 = Ψ̄, and s̃L+1 = s̄t. The solution of (6.32) yields (L + 1)
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6.3. Joint Bayesian multi-channel TWRI model

images corresponding to the L individual channels plus a composite image of the

scene. This multitask problem can be solved efficiently using the joint Bayesian

sparse model, taking the inter-channel correlations into account.

In the sparse Bayesian framework, the noise vector in (6.32) is modeled as

ξ̃l ∼ CN(0, β̃I), with zero-mean and covariance β̃I. Then, the likelihood for st
l

is a

multivariate complex Gaussian distribution:

p(ỹl|st
l , β̃) = (πβ̃)−MaNp exp

(

−β̃‖ỹl − Ψ̃l st
l‖22

)

. (6.33)

The inter-channel correlation structure is enforced using a shared sparseness prior:

p(st
l |α̃) =

Q
∏

q=1

CN(st
l(q) | 0, α̃−1

q ), (6.34)

=

Q
∏

q=1

1

πα̃q
exp

(

−
|st

l
(q)|2

α̃q

)

= CN(0|Ã), (6.35)

where Ã = diag(α̃), and α̃ = [α̃1, . . . , α̃Q] is the vector of hyperparameters.

Given the hyperparameters α̃ and β̃, by applying the Bayes rule, the posterior

for st
l

is a multivariate complex Gaussian distribution:

p(st
l |ỹl, α̃, β̃) =

p(ỹl|st
l
, β̃) p(st

l
|α̃)

p(ỹl|α̃, β̃)
, (6.36)

=
1

(π)MaNp |Σ̃l|
exp

{

−(st
l − µ̃l)

H
Σ̃
−1

l (st
l − µ̃l)

}

, (6.37)

with the mean and covariance given by

µ̃l = β̃ Σ̃l Ψ̃
H

l ỹl, (6.38)

Σ̃l = (β̃ Ψ̃
H

l Ψ̃l + Ã)−1. (6.39)

The learning problem now is to search for the hyperparameters α̃ and β̃.

These hyperparameters are estimated by maximizing the marginal likelihood, or
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6.3. Joint Bayesian multi-channel TWRI model

equivalently its logarithm:

L(α̃, β̃) =

L+1
∑

l=1

log p(ỹl|α̃, β̃), (6.40)

=

L+1
∑

l=1

log

∫

p(ỹl|st
l , β̃) p(st

l |α̃) dst
l , (6.41)

= −1

2

L+1
∑

l=1

[

MaNp log 2π + log |B̃l| + ỹH
l B̃−1

l ỹl

]

, (6.42)

where B̃l = β̃
−1I + Ψ̃l Ã−1 Ψ̃

H

l .

The expectation-maximization algorithm is used to maximize L(α̃, β̃) with

respect to α̃ and β̃. For E-step, it computes the posterior mean (6.38) and covariance

(6.39). For M-step, it takes the derivatives of the cost functionL(α̃, β̃) with respect

to α̃ and β̃, leading to the following update rules:

ᾱq =
L + 1 − α̃q

∑L+1
l=1 Σ̃l(q, q)

∑L+1
l=1 |µ̃l(q)|2

, (6.43)

β̄ =

∑L+1
l=1

[

MaNp −Q +
∑Q

q=1
α̃qΣ̃l(q, q)

]

∑L+1
l=1

∥

∥

∥yl − Ψ̃l µ̃l

∥

∥

∥

2

2

, (6.44)

where µ̃l(q) is the q-th component of µ̃l, and Σ̃l(q, q) is the q-th diagonal element of

Σ̃l. The algorithm iterates between (6.38)-(6.39) and (6.43)-(6.44) until convergence.

Once the hyperparameters ᾱ and β̄ are estimated, the scene image ŝt
l

is given by

the mean of the posterior in (6.38):

ŝt
l = µ̃l|α̃=ᾱ, β̃=β̄ = (β̃ Σ̃l Ψ̃

H

l ỹl)|α̃=ᾱ, β̃=β̄. (6.45)

Here, it is important to note that all the compressed coefficient sets ỹl, for

l = 1, . . . ,L + 1, are combined to estimate the hyperparameters, as shown by the

summation of the conditional distributions in Eqs. (6.40)–(6.42). Hence, the corre-

lations between channels are exploited through learning of the hyperparameters

and estimating of the posterior mean and covariance.
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6.4 Experimental results and analysis

In this section, we present experimental results for multi-channel TWRI. Both

multi-view and multi-polarization radar signals are used to validate the proposed

approach. The performance of the proposed approach is compared with conven-

tional single-channel imaging model where the image at each channel is formed

separately, followed by fusion in the image domain to generate a fused image of

the scene. Before presenting the imaging results, we give the experimental setup

for simulations.

6.4.1 Experimental setup

To represent the radar signals sparsely, see Eq. (6.10), in all experiments, the dic-

tionary W is constructed using modulated discrete prolate spheroidal sequences

(DPSS) since the DPSS dictionary is overcomplete and can represent bandpass

radar signals more compactly in the range profile than does the Fourier basis

[122]. The formulation for the dictionary W is given in Section 5.5.

To quantify the performances of different imaging models, three common

measures are used: the reconstruction error (RE), the target-to-clutter ratio (TCR),

and the receiver operating characteristic (ROC) curve. The reconstruction error is

calculated as

RE = ||z − ẑ||2/||z||2, (6.46)

where ẑ and z are the reconstructed and true signals, respectively. The target-to-

clutter ratio (in dB) is computed as

TCR = 10 log10(Ptarget/Pclutter), (6.47)

where Ptarget and Pclutter are the average power in the target and clutter regions,

respectively. The ground-truth target regions are selected manually in the vicinity

of the true targets, and the clutter region is the remainder of the reconstructed
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image. The receiver operating characteristic (ROC) curve is used to measure the

probability of target detection for a given false alarm rate. The probability of

detection, or detection rate, denotes the percentage of pixels in target regions that

are correctly detected. By contrast, the probability of false alarm, or false alarm

rate, is the percentage of pixels in the clutter region that are incorrectly detected

as targets.

6.4.2 Results of multi-view data

In this section, the proposed approach is evaluated using multi-view radar signals.

The radar signals were generated by electromagnetic simulations using XFDTD,

a full-wave EM simulator developed based on the Finite Difference Time Domain

method [139]. We build a computer model of an enclosed structure scene con-

taining three dihedral targets. Dihedral 1 and Dihedral 2 have orientation angle

facing the front wall, whereas Dihedral 3 has its corner oriented towards the side

wall. The scene behind a concrete wall is illuminated from two different aspect

angles: 0◦ view (through the front wall) and 90◦ view (through the side wall of

the enclosed structure), see Fig. 6.1. At each view, the transceiver is placed at 51

positions parallel to the wall at a standoff distance of 1 m, to synthesize an array

aperture of length 1.2 m. The transmitted frequency range is 1 GHz, centered at

2.5 GHz, with a step frequency of 3 MHz (i.e. 334 frequency bins).

In the first experiment, we used half of the antennas (Ma = 25 out of 51

antennas) and varied the selected frequencies from 10% to 40% (N f = 33 to

134 out of 334 frequencies) of the full frequencies at each view. For each set

of measurements, the signal coefficients were recovered by the single-signal CS

model and joint Bayesian CS model. The reconstruction errors were recorded for

100 trials.

Figure 6.2 shows the reconstruction errors for both models. Compared to the

single-signal CS model, the proposed joint Bayesian CS model produces a consid-

erably lower reconstruction error, especially when the number of measurements
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Figure 6.1: Multi-view TWRI data acquisition for an enclosed structure target
scene. Left: the scene is imaged through a homogeneous concrete wall from two
vantage points; Right: the schematic diagram of the scene.

is very low. At the ratio of 10% frequencies, the average reconstruction errors

by the proposed joint Bayesian CS model and the conventional single-signal CS

model are 0.05 and 0.4, respectively (an 8-fold improvement of reconstruction

accuracy). Moreover, to obtain the same reconstruction accuracy, the proposed

approach requires far fewer measurements than does the single-signal CS model.

For example, to obtain an average RE = 0.05, the joint Bayesian sparse approach

requires only 10% of the frequency measurements, whereas the single-signal CS

model uses 25%. The reconstruction superiority of the proposed joint Bayesian

model is because it exploits the signal sparsity and the correlations among the sig-

nals, whereas the conventional single-signal CS model considers only the signal

sparsity.

In the second experiment, the signals recovered using 20% of the total measure-

ments are used for scene reconstruction, after wall clutter mitigation. Figure 6.3

shows the images formed by different methods using the signals recovered with

the single-signal CS model. Figures 6.3(a)–(b) present the front-view and side-

view images formed using DS beamforming, averaged over 100 trials; these

images contain heavy clutter and very weak targets. Figure 6.3(c) presents the

composite image obtained from the images of Figs. 6.3(a) and (b) using MI-based
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Figure 6.2: Reconstruction errors for signal coefficient estimation using the single-
signal CS model and the proposed joint Bayesian CS model. The results are aver-
aged over 100 trials. The error bars represent plus/minus one standard deviation.

fusion. In this case, the targets are not detectable, even in the fused image.

Figures 6.3(d)–(f) illustrate the images obtained separately from the front view,

side view, and their fused image, respectively, using the conventional CS recon-

struction. Again, it is impossible to localize all the targets.

Figure 6.4 shows the scene images formed by different imaging methods

using the signals jointly recovered by the proposed Bayesian sparse model.

Figures 6.4(a)–(c) present, respectively, the front-view, side-view, and compos-

ite images reconstructed using standard CS model. Note that the composite

image is formed by combining the measurements from the two views, but these

images are recovered separately using the existing single-view CS method. The

single-view images in Figs. 6.4(a) and (b) do not provide a complete picture of

the scene content: Dihedrals 1 and 2 are weak in the side view, and Dihedral 3 is

weak in the frontal view. Moreover, we can observe the outliers in the composite

image shown in Fig. 6.4(c). By contrast, Figs. 6.4(d)–(f) show the images formed

by the joint Bayesian sparse model; they contain much less clutter and reveal all
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Figure 6.3: Images reconstructed from signals recovered by the single-signal CS
model: (a)–(c) images reconstructed using the DS beamforming, (d)–(f) images
reconstructed separately using the standard CS model.

the targets. The TCRs of the composite scene images formed by the conventional

CS and the proposed Bayesian approach are 15.02 dB and 34.68 dB, respectively.

Figure 6.5 illustrates the ROC curves of the different imaging models. This

figure shows that by reconstructing multiple images jointly and exploiting the

inter-view dependencies, target detection is significantly enhanced, compared

with the methods that form the images individually at each view.

6.4.3 Results of multi-polarization data

We also use radar signals acquired from a single vantage point using co-horizontal

(HH) and co-vertical (VV) polarizations for evaluating the proposed approach.

The horizontal and vertical polarization data sets were collected from a dihedral

scene illustrated in Fig. 5.8. It contained a 0.4 m high and 0.3 m wide dihedral,

placed on a turntable made of two 1.2 m x 2.4 m sheets of 0.013 m thick plywood.

For each polarization setting, the scene is illuminated by a stepped-frequency
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Figure 6.4: The scene reconstructed using signals jointly recovered by the pro-
posed Bayesian model: (a)–(c) images reconstructed separately using the standard
CS model, (d)–(f) images formed using the joint Bayesian sparse reconstruction.
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Figure 6.5: ROC curves of target detection on composite images formed by the
standard CS model and the proposed joint Bayesian CS model.
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synthetic aperture radar (SAR) system. The synthetic linear aperture consisted of

57 uniformly spaced elements, with inter-element spacing of 0.022 m. The antenna

aperture was located at a height of 1.22 m above the floor and a standoff distance

of 1.016 m away from a 0.143 m-thick solid concrete wall. The stepped-frequency

signal comprised 801 frequencies, ranged between 0.7 and 3.1 GHz, with 3 MHz

frequency step. The imaged scene extended from [0, 4] m in downrange and

[−2, 2] m in crossrange. The pixel size was equal to the Rayleigh resolution of the

radar, which resulted in a scene image of size 64 × 25 pixels.

(a) (b)

Dihedral
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.0

1
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3
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Figure 6.6: Multi-polarization TWRI data acquisition: (a) a photo of the scene; (b)
a top-view of the behind-the-wall scene.

In the first experiment, the performance of the proposed approach is evaluated

by using several compressed measurement sets. We selected Ma = 6 out of 57

antennas (10% of the total antennas) at each channel and varied the frequencies

from 10% to 25% of the full frequencies (N f = 80, . . . , 200 out of 801). Using the

compressive data sets, the signal coefficients were reconstructed by the single-

signal CS model and the proposed joint Bayesian CS model. The reconstruction

errors were recorded for 100 trials.

Figure 6.7 shows the average reconstruction error by different CS models as a
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function of the ratio of selected frequencies. It is observed that the proposed joint

Bayesian CS model reconstructs the antenna signals with substantially lower

errors than does the single-signal CS model. This observation applies to all

the sampling rates, and is more noticeable at low sampling rates. At the ratio

N f/N = 10%, the average reconstruction errors by the single-signal CS model and

the proposed joint Bayesian model are 0.135 and 0.039, respectively. Furthermore,

the reconstruction by the proposed approach is much more stable than the single-

signal CS model. The standard deviations of the reconstruction errors by the

single-signal CS model and the proposed joint Bayesian model are, respectively,

0.011 and 0.002 at N f/N = 10%.
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Figure 6.7: Reconstruction errors of multi-channel dihedral scene signals by dif-
ferent imaging models as a function of the percentage of selected frequencies.
The results are averaged over 100 trials. The error bars represent plus/minus one
standard deviation.

In the second experiment, the signal coefficients reconstructed from N f/N =

10% of frequencies (collectively representing for just 1% of the total data volume

at each polarimetric channel) are used for image formation, after wall-clutter

mitigation. Figure 6.8 shows the polarimetric images formed by different methods
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using the signals recovered with the single-signal CS. Figures 6.8(a)–(b) present

the HH and VV images formed using DS beamforming, averaged over 100 trials.

In these images, the target is shadowed due to heavy clutter. Figure 6.8(c) presents

the composite image obtained from the images of Figs. 6.8(a) and (b) using MI-

based fusion. Clearly, it is impossible to detect the dihedral target, even in the

fused image. Figures 6.8(d)–(f) illustrate the images obtained separately from

the HH channel, VV channel, and their composite image, respectively, using the

conventional CS reconstruction. Again, in these formed images, it is impossible

to localize the target.

(d) HH channel (e) VV channel (f) Composite image

(a) HH channel (b) VV channel (c) Composite image
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Figure 6.8: Polarimetric images reconstructed from signals recovered by single-
signal CS model: (a)–(c) images reconstructed using the DS beamforming, (d)–(f)
images reconstructed separately using the standard CS model.

Figure 6.9 shows polarimetric images formed by different imaging meth-

ods using the signals jointly recovered by the proposed Bayesian sparse model.

Figures 6.9(a)–(c) present, respectively, the HH, VV, and composite images recon-

structed using standard CS model. Note that the composite image is formed by
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(d) HH channel (e) VV channel (f) Composite image

(a) HH channel (b) VV channel (c) Composite image
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Figure 6.9: Polarimetric images reconstructed using signals jointly recovered
by the proposed Bayesian model: (a)–(c) images reconstructed separately using
the standard CS model, (d)–(f) images formed using the joint Bayesian sparse
reconstruction.

combining the measurements from the two polarimetric channels, but these im-

ages are recovered separately using the existing single-channel CS method. The

single-channel images in Figs. 6.9(a) and (b) do not localize the dihedral target

well: the intensities in the target region are as weak as that of the outliers. The

same effect can be observed in the composite image shown in Fig. 6.9(c). By

contrast, Figs. 6.9(d)–(f) show the images formed by the joint Bayesian sparse

model; they contain much less clutter and reveal the target with strong intensi-

ties. The TCRs of the composite scene images formed by the conventional CS

and the proposed Bayesian approach are, respectively, 23 dB and 35.58 dB. This

imaging improvement is because the proposed approach incorporates the joint-

channel correlations into the imaging model, and thereby providing more prior

knowledge for the imaging problem.

Figure 6.10 illustrates the ROC curves of the different imaging models. This
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figure shows that by reconstructing multiple polarimetric images jointly and ex-

ploiting the inter-channel dependencies, target detection rate is significantly en-

hanced, compared with the methods that form the images individually for each

channel.
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Figure 6.10: ROC curves of target detection on composite images formed by the
standard CS model and the proposed joint Bayesian CS model.

6.5 Chapter summary

This chapter presented a novel approach for compressed multi-channel TWRI

using joint Bayesian sparse representation. It combines multiple compressed

measurement sets acquired from multi-view or multi-polarization sensing to en-

hance indoor target detection. Using these measurement sets, a joint Bayesian

sparse approximation is proposed for estimating simultaneously the signal co-

efficients of different antennas. Furthermore, a subspace-projection technique is

applied directly to the recovered coefficients to segregate wall clutter from the

target returns. The remaining coefficients are combined to form a multitask imag-

ing model. A composite image of the scene is reconstructed using joint Bayesian

sparse learning, taking inter-channel dependences into account. Experimental
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results show that the proposed approach enhances the scene reconstruction and

target detection, compared with conventional imaging methods that form images

independently for each channel.
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Reliable imaging of indoor scenes using a small fraction of the entire data volume

is essential for several civil applications and military operations. Forming images

with reduced data volume, however, has traditionally hindered high-resolution

imaging due to the restrictions on both bandwidth and aperture. Problems re-

lated to TWRI include prolonged data collection, extending objects, strong wall

reflections, shadowing effects and target obstructions. To relax constraints on

signal sampling schemes and logistic difficulties in data acquisition, and to ad-

dress such problems for enhancing TWRI, this research investigates techniques

based on compressed sensing and joint Bayesian CS. Several imaging models are

proposed and their efficiency is validated through experimental results. The pro-

posed research has produced efficient solutions for enhancing the capabilities of

TWRI systems. A behind-the-wall scene can be imaged at a faster speed with far

reduced data samples and thereby decreasing the time of data acquisition and cost

of operation. In this chapter, Section 7.1 summarizes the major research activities

and contributions of this project, and Section 7.2 suggests research directions for

future work.
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7.1 Research summary

The research activities have been presented in several chapters of the thesis and

the main contributions are summarized as follows.

• Chapter 2 presents a comprehensive review of compressed sensing, a new

area of signal processing, that has attracted considerable research interests

recently. The aim of CS is to reconstruct robustly and precisely signals from

far fewer measurements than is required by the Nyquist-Shannon sampling

theorem. This chapter examines the principles of the CS theory including

signal model, sparsity, compressibility, and incoherence. It also considers

the conditions for stable and precise signal recovery and investigates several

numerical algorithms for CS reconstruction. Furthermore, we introduce a

Bayesian perspective for CS, namely Bayesian compressed sensing. The

Bayesian CS framework extends the standard CS model and is useful for

practical applications because the Bayesian CS produces a sparse solution as

a full posterior distribution, rather than a point estimate as in conventional

CS solvers.

• Chapter 3 introduces the principles of high-resolution TWR systems for

imaging behind-the-wall objects. It describes TWR signal model and a con-

ventional beamforming technique for image formation. The conventional

beamforming method uses a full data volume collected by a huge array

antenna and a large bandwidth signal to generate a high-resolution image

of the scene. This chapter also reviews two major CS techniques for TWR

image formation and signal reconstruction using only a reduced measure-

ment set. It follows by discussions highlighting the challenges faced with

existing CS techniques and identifying the research gaps that are addressed

in this research project.

• Chapter 4 proposes a two-stage CS-based approach for TWR image for-
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mation. The proposed approach is motivated by the fact that the sparsity

assumption of the scene is usually not satisfied in practical applications due

to multipath effects, wall returns, and large objects. The proposed algo-

rithm includes two stages. In the first stage, an additional Gabor dictionary

is incorporated to sparsely represent the scene. The use of the sparsifying

dictionary increases the sparsity and thus enhances the CS recovery accuracy

and reduces the number of measurements needed for scene reconstruction.

In the second stage, the recovered data is used to form the scene image

by employing the backprojection algorithm. Experimental results on both

simulated and real data are presented which demonstrate the effectiveness

of the proposed approach.

• Chapter 5 proposes a Bayesian scene reconstruction approach for com-

pressed TWR sensing where not all the same frequencies are available along

antennas. The Bayesian sparse model is used to jointly reconstruct TWR

signal coefficients by exploiting both the intra-signal sparsity structure and

the inter-signal correlations. An effective subspace-projection technique is

applied directly to the recovered coefficients to suppress the wall clutter

and reverberations. For efficient Bayesian scene reconstruction, a compact

linear model is developed using PCA technique, which further compresses

the measurement vector and dictionary. The experimental results show that

the proposed approach enhances significantly the reconstruction accuracy,

image quality in terms of target-to-clutter ratio and target detection rate.

More importantly, the proposed imaging model can detect the targets even

when the measurements are drastically reduced or several data samples are

missing or corrupted.

• Chapter 6 addresses the problem of multi-channel TWRI using joint Bayesian

compressed sensing. Multi-view or multi-polarization TWRI enhances the

target detection and localization by combining multiple data sets acquired
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from several sensing vantage points or channels. Collecting data at sev-

eral vantage points improves imaging visibility, but also leads to prolonged

data acquisition time, complex computation, and expensive hardware. To

tackle such challenges and improve target detection, we propose a joint

Bayesian CS model for multi-channel TWRI. The proposed approach recon-

structs all the antenna signal coefficients simultaneously by exploiting the

signal sparsity and inter-signal correlations, followed by subspace projec-

tion technique for wall clutter removal. A multitask linear imaging model is

formulated including a composite scene image and images associated with

different channels. All these scene images are jointly reconstructed by the

joint Bayesian sparse approximation, taking the inter-channel dependen-

cies into account. Experimental results using multi-view and multi-channel

radar data demonstrate that the proposed approach improves reconstruc-

tion accuracy and produces a composite scene image in which the targets

are enhanced and the background clutter is attenuated.

7.2 Future research directions

Using compressed sensing and Bayesian CS, this research project has developed

efficient approaches for enhancing TWRI and urban sensing. The proposed ap-

proaches have been validated via extensive experiments. The results show they

enhance the image quality and resolution, improve target detection and local-

ization, and reduce the sampling rates and data acquisition times. Following

the investigations presented in this dissertation, here is a list of possible research

directions for future work.

• Enhancing the sparse representation with learning dictionary: In the pro-

posed approaches, the scene image and antenna signals are sparsely repre-

sented using dictionaries with fixed atoms, such as Gabor, Fourier, wavelets,

or DPSS. Dictionaries with their atoms learned from training data may be

beneficial to scene representation and reconstruction. The training data can
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be collected through long-term sensing surveillance. Dictionary learning

techniques can potentially improve TWRI performances due to compact

sparse representation and concise basis selection. Furthermore, learning

dictionary approaches may enable us to model the inaccuracy and uncer-

tainty caused by unknown wall parameters or radar positions in the problem

of multi-view radar image reconstruction and multipath exploitation.

• Optimizing compressed TWR sensing: Compressed frequency measure-

ments are acquired randomly for scene image formation and target detec-

tion. Because in TWR sensing, the RCS of targets depends on the frequency

and the viewing angles, an optimized compressed sensing scheme, which

automatically selects the measurements containing strong target reflections,

can enhance the proposed approaches and reduce the number of data sam-

ples and the cost of processing.

• Separating wall returns and target signals directly with reduced data vol-

ume: In TWRI, the wall reflections reside in a low-rank subspace, and the

target signals are sparse. Combining the prior knowledge of low-rank and

sparsity may enhance the separation of the wall and target contributions

even if several measurements are corrupted or missing. Furthermore, this

approach may be useful for the reconstruction of scenes with moving targets

since the motion can be captured by the sparse part of the received signals.

• Classifying targets directly in the compressed signal domain: The proposed

approaches and other existing CS-based TWRI techniques aim to form high-

quality scene images and enhance image-based target detection and local-

ization. Developing a CS-based signal processing model that directly per-

forms feature extraction and then classifies targets in the compressed signal

domain may enhance the capabilities of real-time TWR sensing systems.
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