25 research outputs found

    Autonomous Robot Controller Using Bitwise GIBBS Sampling

    Get PDF
    International audienceIn the present paper we describe a bio-inspired non von Neumann controller for a simple sensorimotor robotic system. This controller uses a bitwise version of the Gibbs sampling algorithm to select commands so the robot can adapt its course of action and avoid perceived obstacles in the environment. The VHDL specification of the circuit implementation of this controller is based on stochastic computation to perform Bayesian inference at a low energy cost. We show that the proposed unconventional architecture allows to successfully carry out the obstacle avoidance task and to address scalability issues observed in previous works

    Quick and energy-efficient Bayesian computing of binocular disparity using stochastic digital signals

    Get PDF
    Reconstruction of the tridimensional geometry of a visual scene using the binocular disparity information is an important issue in computer vision and mobile robotics, which can be formulated as a Bayesian inference problem. However, computation of the full disparity distribution with an advanced Bayesian model is usually an intractable problem, and proves computationally challenging even with a simple model. In this paper, we show how probabilistic hardware using distributed memory and alternate representation of data as stochastic bitstreams can solve that problem with high performance and energy efficiency. We put forward a way to express discrete probability distributions using stochastic data representations and perform Bayesian fusion using those representations, and show how that approach can be applied to diparity computation. We evaluate the system using a simulated stochastic implementation and discuss possible hardware implementations of such architectures and their potential for sensorimotor processing and robotics.Comment: Preprint of article submitted for publication in International Journal of Approximate Reasoning and accepted pending minor revision

    Stochastic Bayesian Computation for Autonomous Robot Sensorimotor System

    Get PDF
    International audienceThis paper presents a stochastic computing implementationof a Bayesian sensorimotor system that performsobstacle avoidance for an autonomous robot. In a previouswork we have shown that we are able to automatically design aprobabilistic machine which computes inferences on a Bayesianmodel using stochastic arithmetic. We start from a high levelBayesian model description, then our compiler generates anelectronic circuit, corresponding to the probabilistic inference,operating on stochastic bit streams. Our goal in this paper isto show that our compilation toolchain and simulation devicework on a classic robotic application, sensor fusion for obstacleavoidance. The novelty is in the way the computations are implemented,opening the way for future low power autonomousrobots using such circuits to perform Bayesian Inference

    Autonomous Robot Controller Using Bitwise GIBBS Sampling

    Get PDF
    International audienceIn the present paper we describe a bio-inspired non von Neumann controller for a simple sensorimotor robotic system. This controller uses a bitwise version of the Gibbs sampling algorithm to select commands so the robot can adapt its course of action and avoid perceived obstacles in the environment. The VHDL specification of the circuit implementation of this controller is based on stochastic computation to perform Bayesian inference at a low energy cost. We show that the proposed unconventional architecture allows to successfully carry out the obstacle avoidance task and to address scalability issues observed in previous works

    Design of Stochastic Machines Dedicated to Approximate Bayesian inferences

    Get PDF
    International audienceWe present an architecture and a compilation toolchain for stochastic machines dedicated to Bayesian inferences. These machines are not Von Neumann and code information with stochastic bitstreams instead of using floating point representations. They only rely on stochastic arithmetic and on Gibbs sampling to perform approximate inferences. They use banks of binary random generators which capture the prior knowledge on which the inference is built. The output of the machine is devised to continuously sample the joint probability distribution of interest. While the method is explained on a simple example, we show that our machine computes a good approximation of the solution to a problem intractable in exact inference

    A Practical Investigation into Achieving Bio-Plausibility in Evo-Devo Neural Microcircuits Feasible in an FPGA

    Get PDF
    Many researchers has conjectured, argued, or in some cases demonstrated, that bio-plausibility can bring about emergent properties such as adaptability, scalability, fault-tolerance, self-repair, reliability, and autonomy to bio-inspired intelligent systems. Evolutionary-developmental (evo-devo) spiking neural networks are a very bio-plausible mixture of such bio-inspired intelligent systems that have been proposed and studied by a few researchers. However, the general trend is that the complexity and thus the computational cost grow with the bio-plausibility of the system. FPGAs (Field- Programmable Gate Arrays) have been used and proved to be one of the flexible and cost efficient hardware platforms for research' and development of such evo-devo systems. However, mapping a bio-plausible evo-devo spiking neural network to an FPGA is a daunting task full of different constraints and trade-offs that makes it, if not infeasible, very challenging. This thesis explores the challenges, trade-offs, constraints, practical issues, and some possible approaches in achieving bio-plausibility in creating evolutionary developmental spiking neural microcircuits in an FPGA through a practical investigation along with a series of case studies. In this study, the system performance, cost, reliability, scalability, availability, and design and testing time and complexity are defined as measures for feasibility of a system and structural accuracy and consistency with the current knowledge in biology as measures for bio-plausibility. Investigation of the challenges starts with the hardware platform selection and then neuron, cortex, and evo-devo models and integration of these models into a whole bio-inspired intelligent system are examined one by one. For further practical investigation, a new PLAQIF Digital Neuron model, a novel Cortex model, and a new multicellular LGRN evo-devo model are designed, implemented and tested as case studies. Results and their implications for the researchers, designers of such systems, and FPGA manufacturers are discussed and concluded in form of general trends, trade-offs, suggestions, and recommendations
    corecore