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Abstract

In the present paper we describe a bio-inspired non von Neumann controller for a simple sensorimotor
robotic system. This controller uses a bitwise version of the Gibbs sampling algorithm to select commands
so the robot can adapt its course of action and avoid perceived obstacles in the environment. The VHDL
specification of the circuit implementation of this controller is based on stochastic computation to perform
Bayesian inference at a low energy cost. We show that the proposed unconventional architecture allows
to successfully carry out the obstacle avoidance task and to address scalability issues observed in previous
works.
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1 Introduction
The present work is a part of the European BAMBI project (Bottom-Up Approaches to Machines dedicated to
Bayesian Inference). The project’s goal is to design low power unconventional (non von Neumann) bio-inspired
probabilistic machines based on Bayesian inference and to use them as a tool to understand natural cognition.
The main idea is that every living system processes information containing uncertainty, and at a microscopic
level does so with very low energy consumption. Bayesian modeling, widely used in behavior prediction and
decision making [1] [5], is used to emulate some of the qualities of these systems, on a macroscopic scale.

In previous works [3] [4], we have devised a compilation toolchain allowing to automatically generate VHDL
circuit specifications of probabilistic machines computing inferences on Bayesian models using stochastic arith-
metic. This first generation of Bayesian machines was based on the exhaustive inference paradigm: scanning all
possible values of the discrete search space. While this approach lead to solving the problem of Pseudo Noise
Sequence Acquisition [3] (a process by which emitters and receivers synchronize in law layers of telecommuni-
cation) and to control a simple sensorimotor robotic system [4] (which is able to make autonomous decisions by
inferring proper motor commands from its sensor information), the complexity (in terms of number and cardinal-
ity of the variables) of the problems it can address remains limited. To address this scalability issue, we present
in this paper a different approach based on approximate inference at the bit level. We show how a stochastic
implementation of bitwise Gibbs sampling allows autonomous decision making in a simple sensorimotor robotic
system, which we illustrate through an obstacle avoidance task.

This paper is organized as follows: we first give a quick overview of how our work fits in the landscape
of research at the cross-point of probabilistic machines design and stochastic computing. We then specify the
robotic problem of obstacle avoidance within the framework of Bayesian Programming (see [2]). We describe
the stochastic architecture used to implement this solution without the need of a Floating Point Unit. Finally
we show the results of experiments on a robot in a real life situation: a fully equipped modern apartment.

2 Previous Work
When evolving in uncontrolled environments, robots must handle uncertainty and need to take decisions based on
incomplete data. Bayesian approaches provide an efficient way of addressing this challenge [8] [14] [2]. However,
such approaches can be computationally expensive. This is why we propose to depart from the current paradigm:
instead of running exact software computations on robust hardware, we choose to run stochastic computations
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on dedicated hardware to dramatically reduce power needs (for instance [6] shows a decrease of several orders
of magnitude).

Stochastic computing was introduced by the work of [16] and [7] as a way to offer low-cost highly parallel
processing by coding probability values as temporal sequences and combining them with very simple operators.
Because of a precision vs. computation time trade-off, stochastic computing has not been able to sustain the
rise of faster processor units. Our approach keeps the simplicity of the stochastic operators on bitstreams, while
getting rid of the computation time issue. Indeed, explicitly computing an accurate approximation of the target
probability distribution is time expensive, and unnecessary when what you want is to choose one action relevant
to your task: it suffices to select the first value given by the time sequence as a correct sample.

The idea of developing hardware dedicated to probabilistic computation is knowing a renewed interest among
several teams [15] [10] [9] with goals similar to the BAMBI project’s: exploring different computation paradigms
to achieve better energy efficiency. Vigoda designed architectures [15] based on probabilities represented by
analog signals, and used the message passing algorithm to compute exact inference. Mansinghka tries to resolve
an approximate inference using sampling methods and Bayesian computation [10]. In a similar way, Jonas
designed Markov Chain Monte Carlo based algorithms to provide a representation of probability distributions
as sets of samplers [9]. Similar to the bio-inspired non von Neumann architectures of BAMBI Bayesian machines,
the True North [12] project emulates a neuromorphic system for neuron networks, but still using fixed-point
arithmetic units to compute a neuron’s output knowing its inputs.

In [4], a robotic controller based on a probabilistic machine computing exact inference with approximate
computation has been implemented. This exhaustive inference is very precise and fast on FPGAs, but presents
a major drawback that we address in our present work: it requires a small amount of variables to be effectively
implemented, which makes it not suitable for complex real-life applications. The aim of this paper is to show
that (i) a stochastic architecture implementing bitwise Gibbs sampling allows to solve the obstacle avoidance
task, and (ii) that this new implementation does not suffer from the previous scalability issues.

3 Bayesian controller for obstacle avoidance
In this section we present the Bayesian program allowing the robot to avoid obstacles. To allow for comparisons,
we used the same robotic platform as described in [4], which provides a realistic set-up.

3.1 Variables
The small robot we used as a test platform is a simple sensorimoter system, perceiving its environment through
three infrared sensors (IR0, IR1 and IR2) coupled with three ultrasound sensors (US0, US1 and US2). These
sensors allow the robot to infer the distances (D0, D1 and D2) to potential obstacles in three directions (D0

being "front left", D1 "front" and D2 "front right") as described in Figure 1.

Figure 1: Schematic view and picture of the robot used for the experiment.

The robot, which is moving forward at a constant linear velocity, can adapt its trajectory by selecting as
motor orders desired values of the differential rotation velocity, VROT = V2−V1, which is the difference between
the front left wheel rotational speed V2 and the front right wheel rotational speed V1, as shown in Figure 1.
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3.2 Joint distribution decomposition
The joint probability distribution over the model variables P (D0D1D2IR0IR1IR2US0US1US2VROT ) is defined
as a product of simpler probability distributions (priors, sensor models and action policy):

P (D0D1D2IR0IR1IR2US0US1US2VROT ) =

P (D0)× P (D1)× P (D2)×
P (IR0|D0)× P (IR1|D1)× P (IR2|D2)×
P (US0|D0)× P (US1|D1)× P (US2|D2)×
P (VROT |D0D1D2) .

(1)

3.3 Parametric forms
Each of the sensor models P (IR0|D0), P (IR1|D1), P (IR2|D2), P (US0|D0), P (US1|D1) and P (US2|D2) repre-
sents the confidence in the sensor reading given the actual distance of the object. They are modeled by Gaussian
probability distributions whose mean is the sensor value and whose variance depends on the sensor’s precision.
The action policy P (VROT |D0D1D2) is modeled as a set of Gaussian probability distributions, which share the
same variance, but whose mean value is computed as a function of the values of D0, D1 and D2 with a simple
model based on comparisons.

3.4 Probabilistic inference
To turn away from obstacles, the robot controller needs to select a motor command VROT knowing the values
of the sensor readings. Bayesian inference yields:

P (VROT |IR0IR1IR2US0US1US2) =∑
D2

[
P (D2)P (US2|D2)P (IR2|D2)∑

D1

(
P (D1)P (US1|D1)P (IR1|D1)

∑
D0

[
P (D0)P (US0|D0)P (IR0|D0)P (VROT |D0D1D2)

])]
(2)

In order to issue an order we simply draw a sample from this distribution on VROT and send it to the robot.

4 Stochastic architecture based on Gibbs sampling
To draw a sample from the target probability distribution P (VROT |IR0IR1IR2US0US1US2), instead of using
floating point computations, we propose to use a new type of architecture based on stochastic bitstreams which
implements bitwise sampling of all unknown variables.

4.1 The Gibbs sampling algorithm for obstacle avoidance
Our system is composed of a set of 10 variables: V = {VROT , D0, D1, D2, IR0, IR1, IR2, US0, US1, US2}. We
partition V into three subsets: one subset containing our Known variables,K = {IR0, IR1, IR2, US0, US1, US2};
one subset containing the Searched variable, S = {VROT }; and finally one subset containing the Free vari-
ables: F = {D0, D1, D2}. We can also define the subset containing the "Unknown" variables: U = F ∪ S =
{D0, D1, D2, VROT }. We are interested in the probability distribution over the possible values of VROT , knowing
the values of the six sensor readings IR0, IR1, IR2, US0, US1, US2. We use the Gibbs sampling algorithm as
shown in Figure 2.

The main difficulty here is to compute a sample from P (Ui|ki, ..., k[K], u1, ..., ui−1, ui+1, u[U ]) without using
a floating point unit. We address this issue by sampling this term bit by bit. Indeed, since we use only discrete
variables (without loss of generality) their values have an equivalent binary representation.

4.2 Adapting the Gibbs algorithm to sample at the bit level
We explain our bitwise Gibbs sampling algorithm through the following example. Let us suppose that at
a given step the system state is the following: VROT = vrot, D0 = d0, D1 = d1, D2 = d2, US0 = us0,
US1 = us1, US2 = us2. To get a sample of D0, we need to draw according to the probability distribution
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Initialization:
for Ki ∈ K do

Set Ki to the sensor reading value ki
end for
for Ui ∈ U do

Draw a value ui at random
end for
Sampling:
while TRUE do

for Ui ∈ U do
Draw a sample ui according to
P (Ui|ki, ..., k[K], u1, ..., ui−1, ui+1, u[U ])

Update Ui with the value ui

end for
end while

Figure 2: Gibbs algorithm used to compute samples of VROT .

P (D0 | d1, d2, ir0, ir1, ir2, us0, us1, us2).We will draw the next value of D0 bit by bit. Let us suppose in the
current state d0 = 1 and we are drawing for instance a new value for the third bit of d0 (the principle will be
the same for the other bits). The odds of this third bit to be a 1 are defined by the following probability ratio:

O(D0 | d1, d2, ir0, ir1, ir2, us0, us1, us2) =
P (D0 = 5 | d1d2ir0ir1ir2us0us1us2)
P (D0 = 1 | d1d2ir0ir1ir2us0us1us2)

(3)

According to the Bayes theorem, we have:

P (D0 | d1d2ir0ir1ir2us0us1us2) =
P (D0d1d2ir0ir1ir2us0us1us2)

P (d1d2ir0ir1ir2us0us1us2)

(4)

If we combine equations (3) and (4), the normalization constant disappears, and by using the decomposition of
the joint probability distribution given by equation (1) we get:

O(D0 | d1d2ir0ir1ir2us0us1us2) =
P ([D0 = 5]) P (d1) P (d2)

P ([D0 = 1]) P (d1) P (d2)
×

P (ir0 | [D0 = 5]) P (ir1 | d1) P (ir2 | d2)
P (ir0 | [D0 = 1]) P (ir1 | d1) P (ir2 | d2)

×

P (us0 | [D0 = 5]) P (us1 | d1) P (us2 | d2)
P (us0 | [D0 = 1]) P (us1 | d1) P (us2 | d2)

×

P (vrot | [D0 = 5] d1d2)

P (vrot | [D0 = 1] d1d2)

(5)

The model terms which are uninformative for the considered variable disappear:

O(D0 | d1, d2, ir0, ir1, ir2, us0, us1, us2) =
P ([D0 = 5])

P ([D0 = 1])
× P (ir0 | [D0 = 5])

P (ir0 | [D0 = 1])
×

P (us0 | [D0 = 5])

P (us0 | [D0 = 1])
× P (vrot | [D0 = 5] d1d2)

P (vrot | [D0 = 1] d1d2)

(6)

Our bitwise Gibbs algorithm needs to be able to draw all the bits of all variables (although after a proper burn-in
period we are interested only on getting one correct sample of VROT ). The same steps going from equations (3)
to (6) can be used to show that the odds of any bit of any variable of our model can be obtained as a product
of probability ratios.
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4.3 Stochastic implementation of bitwise sampling
We compute these products by first generating a bitstream corresponding to each probability ratio using a
Conditional Distribution Element (CDE), and then using an Extended C-Elements (ECEs) to calculate the
products, as described in Figure 3.

IR0 IR1 IR2 US0 US1 US2 D0 D1 D2 VROT

Inputs

ir0, ir1, ir2, us0, us1, us2

CDE ECE

ECE

GIBBS automaton
c=(c+1)%4

d0, d1, d2, vrot

P(VROT|D0D1D2)

c

CDE

CDE

CDE

ECE

Figure 3: Architecture of a Gibbs sampler: the variable current values are stored in a bank of registers, and
the Gibbs automaton chooses the c variable bit to update at each iteration while CDEs and ECEs compute the
probabilistic operations needed. For clarity, we show only components needed to draw a new bit for D0. The
binarization of the variables is implicit.

In the architecture we propose, CDEs generate stochastic bitstreams which encode a probability ratio quan-
tifying the likelihood of the considered bit to be equal to one given the value of the other bits. We define a
stochastic bitstream as follows: in a stream of N bits, we note N1 the number of bits of value 1. The bitstream

encodes a value pj when
N1

N
→ pj when N →∞. The probability ratios we consider are homogeneous to some

odds value o, from which we compute the bitstream probability p = o/(1 + o).
From the bitstreams encoding the probability ratios we compute a new bitstream the odds of which are the

product of all probability ratios. For this purpose we use ECEs, which are an extension with more memory
of Müller C-elements which have already been used to compute the "product in odds" operation in an energy
efficient way to realize Bayesian inference [6]. Any bit of the resulting stream generated with the right probability
can be used as the new sample.

4.4 Use of Gray code
Standard binary coding may induce some states to have very low probabilities, while they are mandatory
intermediate states between two high probability states. This “probability desert” may prevent some high
probability states from being reached in a reasonable time. This can be dealt with by using a Gray code [13]
while interpreting our discrete variables as binary values, as shown Table 1. It guarantees that the coded values
of any integer and its successor differ by exactly one bit.
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Integer 0 1 2 3 4 5 6 7
Binary 000 001 010 011 100 101 110 111

Gray code 000 001 011 010 110 111 101 100

Table 1: Gray code for 3-bit integers

5 Experimentation

5.1 Controller implementation
In order to implement the stochastic Gibbs circuit, a compilation toolchain was developed. It takes as input any
Bayesian program on discrete variables used to specify the probability models, described with the ProBT [11]
programming language. The outputs of this compilation toolchain are i) a VHDL program that precisely
describes the architecture of the circuit used to perform stochastic inference using Gibbs sampling, and ii) a
memory initialization file containing the odd ratios encoding the model specification. This compiler generated
a circuit implementing the program from section 3.

This VHDL circuit specification will later be used for FPGA simulations and real circuit implementations,
but for now we use it as an input for our own C++ simulation of the architecture, which is significantly faster in
terms of computational speed than the standard EDA tool Modelsim. In our experiments we compare simulated
architectures based on three different discretization of our values. The first one, named A, uses a discretization
factor similar to the one used for the exhaustive inference controller in [4], namely a discretization on 3 values
for distances and 5 for the rotation speed. The second one, named B, has 8 values for distances and 7 for the
rotation speed (uneven number as one of them is “forward”) and the third one, named C, has 16 values for
distances and 15 for the rotation speed. One of our goals was to monitor the effect of a larger discretization in
terms of computational speed and robot behavior. We restrain ourselves to these sets of values so as to be able
to operate the robot in real time with our simulator, but of course future FPGA and circuit implementations
will reduce computation time by several orders of magnitude.

5.2 Experimental setting
In order to check that our stochastic architectures successfully implement functional controllers, we tested them
in a real life situation: we placed the robot in an apartment with obstacles such as chairs, tables and sofas.
We then made it progress at a constant 0.15ms−1 linear velocity. The controller iterates (i) reading the sensor
data, (ii) running the inference for 100ms and (iii) sending the inferred differential rotation velocity order so
the robot can avoid potential obstacles. We made sure that the starting point was the same for the runs of
the three different architectures. The picture in Figure 4 shows a view of the experimental ground where the
obstacle avoidance took place.

Figure 4: View of the apartment used as our experiment field.
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(a) Architecture A (b) Architecture B (c) Architecture C

Figure 5: Trajectories computed by the program embedded on our robotic platform. Ground map is represented
by black lines. In red, one can see the view of obstacles detected by the robot laser sensor. Note that the robot
is ”blind“ behind him with its lidar leading to the triangle at the bottom of each figure. In green, trajectories
followed by the robot for three different architectures.

5.3 Results
5.3.1 Trajectories

Figure 5 shows a map of the apartment and the trajectories taken by the robot for our different architectures.
We see that the robot is able to change its trajectory to avoid obstacles. A video of the experiment (using
architecture B) is also available online 1. We notice that on architecture A, the robot’s trajectory angles are
very abrupt, almost 90 degrees for each change of direction, and that for higher discretization values (architecture
B and C) the trajectory is remarkably smoother.

5.3.2 Scalability of the proposed architecture

We compare in Table 2 the number of components for the three architectures A, B and C produced by the
exhaustive inference controller described in [4], and our approximate inference controller. We see that the
number of components exponentially increases when discretization is more precise for the exhaustive inference
controller. We note that the number of components used by our approximate inference controller increases in
a slower logarithmic way due to the bitwise sampling of our variables.

Architecture A B C
Exhaustive inference architecture from [4] 1825 78190 2297310

Bitwise Gibbs sampling 92 119 149

Table 2: Comparison of the number of component instances in the VHDL circuits for two types of stochastic
architectures.

6 Conclusion and Future Work
We presented a sensorimotor robot controller, defined by a Bayesian program, and implemented as an unconven-
tional hardware architecture which does not require a Floating Point Unit, as shown in Figure 3. The obstacle
avoidance task is realized by taking decisions through approximate inference thanks to Gibbs sampling at the
level of stochastic bits. The proposed architecture relies on only two components: Conditional Distribution
Elements (CDEs) to generate bitstreams sampling the probability quotients needed for Gibbs sampling, and
Extended C-Elements (ECEs) to compute a bitstream encoding the product of these ratios.

We proved that this stochastic implementation of our robot controller was suitable for a real-life situation in
a modern apartment, and this for 3 implementations corresponding to different discretizations of the problem’s
variables. While working with a relatively small amount of variables our controller is able to successfully replace
a von Neumann processor in the decision process of this robotic system.

The fact that the scalability issue presented in [4] has been addressed in this paper allows us to believe that
Bayesian systems based on stochastic architectures will be able to process more complicated applications such
as occupancy filters and dynamic trajectory adjustment.

1https://www.youtube.com/watch?v=LcXwHg45jPM
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