801 research outputs found

    Parameter Identification And Fault Detection For Reliable Control Of Permanent Magnet Motors

    Get PDF
    The objective of this dissertation is to develop new fault detection, identification, estimation and control algorithms that will be used to detect winding stator fault, identify the motor parameters and optimally control machine during faulty condition. Quality or proposed algorithms for Fault detection, parameter identification and control under faulty condition will validated through analytical study (Cramer-Rao bound) and simulation. Simulation will be performed for three most applied control schemes: Proportional-Integral-Derivative (PID), Direct Torque Control (DTC) and Field Oriented Control (FOC) for Permanent Magnet Machines. New detection schemes forfault detection, isolation and machine parameter identification are presented and analyzed. Different control schemes as PID, DTC, FOC for Control of PM machines have different control loops and therefore it is probable that fault detection and isolation will have different sensitivity. It is very probable that one of these control schemes (PID, DTC or FOC) are more convenient for fault detection and isolation which this dissertation will analyze through computer simulation and, if laboratory condition exist, also running a physical models

    Processing and inferential methods to improve shaft-voltage-based condition monitoring of synchronous generators

    Get PDF
    This thesis focuses on improving shaft-voltage-based condition monitoring of synchronous generators. The work presents theory for describing and modelling shaft voltages using fundamental electromagnetic principles. A modern framework is adopted in developing an online, automated and intelligent fault-diagnosis system. Novel processing and inferential methods are used by the system to provide accurate and reliable incipient-fault detection and diagnosis. The literature shows that shaft-voltage analysis is recognised as a technique with potential for use in condition monitoring. However, deficiencies in the fundamental theory and the inadequacy of methods for extracting useful information has limited its widespread application. This work extends the knowledge of shaft voltages, validates the merits of its use for fault diagnosis, and provides methods for practical application. Validation of the model is completed using an experimental synchronous generator, and results indicate that simulated shaft voltages compare well with the measurements - i.e. total average error of the model combined with experimental uncertainty is below 16%. The fault detection and diagnosis components are tested separately and together as a complete shaft-voltage-based conditionmonitoring system in an experimental setting. Results indicate that the system can accurately diagnose faults and it represents a unique and valuable contribution to shaft-voltage-based condition monitoring. Additionally, techniques such as optimal measurement selection, multivariate model monitoring, and fault inference developed for the investigations and system presented in this thesis, will assist engineers and researchers working in the field of condition monitoring of electrical rotating machines

    Data Science-Based Full-Lifespan Management of Lithium-Ion Battery

    Get PDF
    This open access book comprehensively consolidates studies in the rapidly emerging field of battery management. The primary focus is to overview the new and emerging data science technologies for full-lifespan management of Li-ion batteries, which are categorized into three groups, namely (i) battery manufacturing management, (ii) battery operation management, and (iii) battery reutilization management. The key challenges, future trends as well as promising data-science technologies to further improve this research field are discussed. As battery full-lifespan (manufacturing, operation, and reutilization) management is a hot research topic in both energy and AI fields and none specific book has focused on systematically describing this particular from a data science perspective before, this book can attract the attention of academics, scientists, engineers, and practitioners. It is useful as a reference book for students and graduates working in related fields. Specifically, the audience could not only get the basics of battery manufacturing, operation, and reutilization but also the information of related data-science technologies. The step-by-step guidance, comprehensive introduction, and case studies to the topic make it accessible to audiences of different levels, from graduates to experienced engineers

    Data Science-Based Full-Lifespan Management of Lithium-Ion Battery

    Get PDF
    This open access book comprehensively consolidates studies in the rapidly emerging field of battery management. The primary focus is to overview the new and emerging data science technologies for full-lifespan management of Li-ion batteries, which are categorized into three groups, namely (i) battery manufacturing management, (ii) battery operation management, and (iii) battery reutilization management. The key challenges, future trends as well as promising data-science technologies to further improve this research field are discussed. As battery full-lifespan (manufacturing, operation, and reutilization) management is a hot research topic in both energy and AI fields and none specific book has focused on systematically describing this particular from a data science perspective before, this book can attract the attention of academics, scientists, engineers, and practitioners. It is useful as a reference book for students and graduates working in related fields. Specifically, the audience could not only get the basics of battery manufacturing, operation, and reutilization but also the information of related data-science technologies. The step-by-step guidance, comprehensive introduction, and case studies to the topic make it accessible to audiences of different levels, from graduates to experienced engineers

    Deep Learning-Based Machinery Fault Diagnostics

    Get PDF
    This book offers a compilation for experts, scholars, and researchers to present the most recent advancements, from theoretical methods to the applications of sophisticated fault diagnosis techniques. The deep learning methods for analyzing and testing complex mechanical systems are of particular interest. Special attention is given to the representation and analysis of system information, operating condition monitoring, the establishment of technical standards, and scientific support of machinery fault diagnosis

    Process fault prediction and prognosis based on a hybrid technique

    Get PDF
    The present study introduces a novel hybrid methodology for fault detection and diagnosis (FDD) and fault prediction and prognosis (FPP). The hybrid methodology combines both data-driven and process knowledge driven techniques. The Hidden Markov Model (HMM) and the auxiliary codes detect and predict the abnormalities based on process history while the Bayesian Network (BN) diagnoses the root cause of the fault based on process knowledge. In the first step, the system performance is evaluated for fault detection and diagnosis and in the second step, prediction and prognosis are evaluated. In both cases, an HMM trained with Normal Operating Condition data is used to determine the log-likelihoods (LL) of each process history data string. It is then used to develop the Conditional Probability Tables of BN while the structure of BN is developed based on process knowledge. Abnormal behaviour of the system is identified through HMM. The time of detection of an abnormality, respective LL value, and the probabilities of being in the process condition at the time of detection are used to generate the likelihood evidence to BN. The updated BN is then used to diagnose the root cause by considering the respective changes of the probabilities. Performance of the new technique is validated with published data of Tennessee Eastman Process. Eight of the ten selected faults were successfully detected and diagnosed. The same set of faults were predicted and prognosed accurately at different levels of maximum added noise

    An investigation into the prognosis of electromagnetic relays.

    Get PDF
    Electrical contacts provide a well-proven solution to switching various loads in a wide variety of applications, such as power distribution, control applications, automotive and telecommunications. However, electrical contacts are known for limited reliability due to degradation effects upon the switching contacts due to arcing and fretting. Essentially, the life of the device may be determined by the limited life of the contacts. Failure to trip, spurious tripping and contact welding can, in critical applications such as control systems for avionics and nuclear power application, cause significant costs due to downtime, as well as safety implications. Prognostics provides a way to assess the remaining useful life (RUL) of a component based on its current state of health and its anticipated future usage and operating conditions. In this thesis, the effects of contact wear on a set of electromagnetic relays used in an avionic power controller is examined, and how contact resistance combined with a prognostic approach, can be used to ascertain the RUL of the device. Two methodologies are presented, firstly a Physics based Model (PbM) of the degradation using the predicted material loss due to arc damage. Secondly a computationally efficient technique using posterior degradation data to form a state space model in real time via a Sliding Window Recursive Least Squares (SWRLS) algorithm. Health monitoring using the presented techniques can provide knowledge of impending failure in high reliability applications where the risks associated with loss-of-functionality are too high to endure. The future states of the systems has been estimated based on a Particle and Kalman-filter projection of the models via a Bayesian framework. Performance of the prognostication health management algorithm during the contacts life has been quantified using performance evaluation metrics. Model predictions have been correlated with experimental data. Prognostic metrics including Prognostic Horizon (PH), alpha-Lamda (α-λ), and Relative Accuracy have been used to assess the performance of the damage proxies and a comparison of the two models made

    Detection and Diagnosis of Out-of-Specification Failures in Mixed-Signal Circuits

    Get PDF
    Verifying whether a circuit meets its intended specifications, as well as diagnosing the circuits that do not, is indispensable at every stage of integrated circuit design. Otherwise, a significant portion of fabricated circuits could fail or behave correctly only under certain conditions. Shrinking process technologies and increased integration has further complicated this task. This is especially true of mixed-signal circuits, where a slight parametric shift in an analog component can change the output significantly. We are thus rapidly approaching a proverbial wall, where migrating existing circuits to advanced technology nodes and/or designing the next generation circuits may not be possible without suitable verification and debug strategies. Traditional approaches target accuracy and not scalability, limiting their use to high-dimensional systems. Relaxing the accuracy requirement mitigates the computational cost. Simultaneously, quantifying the level of inaccuracy retains the effectiveness of these metrics. We exercise this accuracy vs. turn-around-time trade-off to deal with multiple mixed-signal problems across both the pre- and post-silicon domains. We first obtain approximate failure probability estimates along with their confidence bands using limited simulation budgets. We then generate “failure regions” that naturally explain the parametric interactions resulting in predicted failures. These two pre-silicon contributions together enable us to estimate and reduce the failure probability, which we demonstrate on a high-dimensional phase-locked loop test-case. We leverage this pre-silicon knowledge towards test-set selection and post-silicon debug to alleviate the limited controllability and observability in the post-silicon domain. We select a set of test-points that maximizes the probability of observing failures. We then use post-silicon measurements at these test-points to identify systematic deviations from pre-silicon belief. This is demonstrated using the phase-locked loop test-case, where we boost the number of failures to observable levels and use the obtained measurements to root-cause underlying parametric shifts. The pre-silicon contributions can also be extended to perform equivalence checking and to help diagnose detected model-mismatches. The resultant calibrated model allows us to apply our work to the system level as well. The equivalence checking and model-mismatch diagnosis is successfully demonstrated using a high-level abstraction model for the phase-locked loop test-case
    corecore