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Abstract 

 

 Condition-based maintenance (CBM) can be viewed as a transformation of data 

gathered from a piece of equipment into information about its condition, and further into 

decisions on what to do with the equipment. Hidden Markov model (HMM) is a useful 

framework to probabilistically model the condition of complex engineering systems with 

partial observability of the underlying states. Condition monitoring and prediction of such 

type of system requires accurate knowledge of HMM that describes the degradation of 

such a system with data collected from the sensors mounted on it, as well as 

understanding of the uncertainty of the HMMs identified from the available data.  

 To that end, this thesis proposes a novel HMM estimation scheme based on the 

principles of Bayes theorem. The newly proposed Bayesian estimation approach for 

estimating HMM parameters naturally yields information about model parametric 

uncertainties via posterior distributions of HMM parameters emanating from the 

estimation process.  In addition, a novel condition monitoring scheme based on uncertain 

HMMs of the degradation process is proposed and demonstrated on a large dataset 
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obtained from a semiconductor manufacturing facility. Portion of the data was used to 

build operating mode specific HMMs of machine degradation via the newly proposed 

Bayesian estimation process, while the remainder of the data was used for monitoring of 

machine condition using the uncertain degradation HMMs yielded by Bayesian 

estimation. Comparison with a traditional signature-based statistical monitoring method 

showed that the newly proposed approach effectively utilizes the fact that its parameters 

are uncertain themselves, leading to orders of magnitude fewer false alarms. 

 This methodology is further extended to address the practical issue that 

maintenance interventions are usually imperfect. We propose both a novel non-ergodic 

and non-homogeneous HMM that assumes imperfect maintenances and a novel process 

monitoring method capable of monitoring the hidden states considering model 

uncertainty. Significant improvement in both the log-likelihood of estimated HMM 

parameters and monitoring performance were observed, compared to those obtained 

using degradation  HMMs that always assumed perfect maintenance.  

 Finally, behavior of the posterior distribution of parameters of unidirectional non-

ergodic HMMs modeling in this thesis for degradation was theoretically analyzed in 

terms of their evolution as more data become available in the estimation process. The 

convergence problem is formulated as a Bernstein-von Mises theorem (BvMT), and 

under certain regularity conditions, the sequence of posterior distributions is proven to 

converge to a Gaussian distribution with variance matrix being the inverse of the Fisher 

information matrix. An example of a unidirectional HMM is presented for which the 

regularity conditions are verified, and illustrations of expected theoretical results are 

given using simulation. The understanding of such convergence of posterior distributions 



ix 

enables one to determine when Bayesian estimation of degradation HMMs is justified 

and converges toward true model parameters, as well as how much data one then needs to 

achieve desired accuracy of the resulting model. Understanding of these issues is of 

utmost important if HMMs are to be used for degradation modeling and monitoring. 
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Chapter 1: Introduction 

1.1 BACKGROUND AND MOTIVATION 

Rapid technological advances that occurred in the last couple of decades have 

resulted in increasingly complicated engineering systems that pose significant challenges 

in terms of their reliable and safe manufacturing, operation and use over their life cycles. 

The costs associated with the pursuit of these challenges are rapidly escalating. For 

example, in 1981, maintenance costs in the United States economy were estimated at 

$600 billion, a figure that doubled in the subsequent 20 years, with an estimated 30-50% 

of these costs wasted through ineffective maintenance and unexpected failures [1]. 

These costs are among the key driving factors towards research in condition-

based maintenance (CBM), which can be viewed as a transformation of data gathered 

from a piece of equipment into information about its condition, and further into decisions 

on what to do with that equipment [2].  

Different stages of this transformation are illustrated in Figure 1. Information 

about health of any piece of equipment is obtained from the readings of possibly multiple 

sensors mounted on that equipment. Often, situations exist where sensor readings are 

augmented with historical knowledge about equipment behavior, engineering model of 

phenomena occurring in the equipment, or human expertise. Based on these sources of 

information, features relevant to equipment health are extracted from sensor readings 

through various forms of sensory signal processing and feature extraction. These features 

form behavior models of equipment in different health states (normal behavior and 

different faulty behavior modes). Those models may be in various different forms, 

including a statistical form (distributions of sensory signatures under normal or various 
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faulty conditions), dynamic model (differential equations describing various health states 

of the equipment), and others. Based on the models of normal and current equipment 

behavior, equipment health assessment can be accomplished by quantitatively expressing 

the proximity of the currently observed system behavior to the model describing its 

normal health state. This stage of CBM is also often referred to as the fault detection 

stage. Similarly, presence or absence of any fault can be diagnosed through proximity of 

the model of the currently observed equipment behavior to the behavior model 

corresponding to a specific fault. Finally, the temporal dynamics of signatures extracted 

from sensor readings can be captured and extrapolated to predict their behavior in the 

future and thus predict likelihoods of various behavior modes for the equipment.  

 

Figure 1: Concept of CBM as transformation of sensing data into information about 

equipment condition and further into maintenance and operational decisions. 

 

Based on the quantitative information about current and/or predicted equipment 

health, maintenance and operational decisions that are optimal from the system level 
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point of view can be made. In a manufacturing system, that entails maintenance and/or 

production decisions that optimize some operational metric of the system (productivity, 

quality, system availability etc.) [3], [4]. In practice this target decision point is defined 

by maximum profit or return on investment. Various aspects of this “data to information 

to decision” transformation have received significant attention, especially in the case of 

sophisticated, expensive and safety critical systems, such as manufacturing equipment, 

computer networks, automotive and aircraft engines, etc. A thorough survey of latest 

activities and achievements in CBM can be found in [5]. 

Traditional CBM approaches to extracting the information about the current or 

predicted condition of the monitored system rely on modeling the behavior of key 

signatures extracted from the available sensor readings and detecting or predicting when 

those signatures would exit areas in which they reside during normal system behavior. 

Such a paradigm implies an important assumption that sensory features directly indicate 

the condition of the monitored system. A problem occurs when such observables directly 

depicting system degradation cannot be ascertained. E.g, in a system whose condition is 

determined by a distributed phenomenon, such as plasma in various semiconductor 

manufacturing tools [6] or electrochemical field in a typical Li-ion battery [7], sensors 

provide information about the condition of a three dimensional field, but only at discrete 

points. Thus, even if more sensors are installed, a full picture about the state of the 

monitored system between the sensorized points can only be resolved using a highly 

detailed model of that field and its interactions with other surrounding subsystems. 

However, reliable and detailed multi-physics models of an entire plasma-based tool, such 

as a plasma-based etcher or plasma-based deposition tool, do not exist with sufficient 

fidelity or sufficient speed to be used for diagnostic purposes. In the case of batteries, 

highly detailed physics-based models became available only recently, but event these 
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models are computationally so expensive that their application for monitoring and 

diagnostics purposes is still unfeasible [8]. 

 The issue of needing to monitor systems with partial observability of their 

condition goes beyond just distributed systems. E.g., in cases when direct monitoring of a 

phenomenon requires sensors to operate in highly abrasive environments, such as in 

down-hole condition monitoring in oil and gas extraction, sensors are usually placed far 

away from the actual phenomenon and the relations between them and the actual 

condition they are monitoring are inherently indirect and nondeterministic. In addition, 

other complex systems, e.g. a diesel engine, may only have sensors for some critical 

variables, such as those related to performance and safety of the system. Unavailability of 

all of condition-related measurements results in partial characterization of the underlying 

condition of those systems. 

Such inability to reliably and fully deduce the condition of a monitored system 

leads to situations in which two systems may exhibit very similar sensory signatures, but 

their conditions are sufficiently different that one may be operating normally, while the 

other one produces poor products or behaves abnormally. A “knee-jerk” approach to 

remedying such apparent lack of observability of the system condition is to add more 

sensors to it, but as mentioned before, such an approach may be futile in the case of a 

phenomenon for which a detailed and computationally tractable model does not exist.  

Probabilistic modeling provides an alternative route to model the intuitive 

relations between the sensor information and machine condition. This can be done by 

assigning probabilities to obtain specific sensor signatures at different machine 

conditions, and by modeling the evolution of those conditions as a random process that is 

stochastically related to the sensor readings. Hidden Markov Model (HMM) [9] stands 
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out as a useful probabilistic model that enables such approach to the CBM paradigm of 

complex engineering systems.  

Identification of a HMM requires estimation of its parameters using the available 

sensory data. This estimation problem is commonly solved by finding the HMM 

parameters that maximize the likelihood of the sequence of observation used for 

identifying the HMM. The resulting Maximum Likelihood Estimator (MLE) has 

desirable asymptotic properties, including consistency [10] and asymptotic normality 

[11]. However the gradient-based search methods commonly used to obtain the MLE of 

HMM parameters, such as the Baum-Welch [9] or equivalently Expectation-

Maximization (EM) [12] methods, do not guarantee the global optimality of the solution 

to this multi-modal optimization problem. Furthermore, MLE-based methods do not 

readily provide the information as to how close or how far the actual solution is from the 

results produced by estimation. On the other hand, understanding the uncertainty of 

HMM parameters is a very important point. E.g., it is crucial for understanding how far 

such models can be used for meaningful prediction of the condition of the monitored 

system and for subsequent maintenance decision making based on such models. Namely, 

model uncertainties accumulate as one attempts to predict probabilities of degradation 

states (hidden HMM states) further and further ahead and could quickly render those 

predictions useless.  

In terms of anomaly detection, the traditional anomaly detection based on 

deterministic relation between sensor readings and condition of the system needs to take 

into account the stochasticity of the condition degradation model as well as the 

uncertainty in the estimation of that model.  Involving risk analysis into those decisions 

by including considerations of uncertainties in the nominal model could lead to 

substantial savings of maintenance costs, since these refined decisions may induce 
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significantly fewer false alarms than traditional signature based process control schemes 

[13] that neglect model uncertainty issues. Solutions to other decision-making problems, 

such as optimal scheduling of maintenance based on uncertain degradation models [14], 

should also benefit from the extra information of modeling uncertainty, though studies of 

these problems are outside of the scope of this PhD research.  

Despite the obvious allure and applicability of HMM in CBM, understanding of 

the estimation uncertainty in HMM parameters for various form of HMMs is far from 

complete. For instance, consistency is a desirable property of any statistical estimation 

procedure [15], [16]. Consistency of HMM parameter estimation would imply the 

convergence of HMM estimators towards the true parameters that generated the 

observations (sensor readings) and the decrease of the estimation uncertainties towards 

zero. This property has not been established yet for the full variety of possible HMM 

forms. Most notably, it has not been shown yet for non-ergodic HMMs, which are 

inherently needed to describe degradation processes. On the other hand, understanding of 

the consistency will enable one to determine when the estimation procedure of HMM is 

justified and converges towards true model parameters, as well as how much data one 

needs to achieve the desired accuracy of the resulting estimates, if the estimation 

procedure indeed converges. 

In this doctoral thesis, the aforementioned gaps will be addressed through a 

research on the problem of estimation of HMM parameters along with the understanding 

of parametric uncertainty of that estimation, as well as the use of such uncertain HMMs 

of system degradations for condition monitoring of complex engineering systems.   
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1.2 RESEARCH OBJECTIVES AND CHALLENGES 

The main objective of this doctoral research is to develop a methodology for estimating 

parameters of non-homogeneous and/or non-ergodic HMM along with the parametric 

uncertainties, and to understand the statistical properties of the estimation procedure for 

HMM parameters. 

The contribution of the work can be summarized as the following. 

1. An HMM estimation scheme based on the Bayes theorem. This scheme provides 

a distribution of HMM parameters that depicts the parametric uncertainties in the 

HMM trained using a set of observation sequences.   

2. Fault detection methods that can detect anomalous behavior based on an 

observation or an observation sequence using the uncertain HMM degradation 

models yielded by the novel estimation scheme.  

3. A mathematical analysis and proof of asymptotic consistency and normality of 

Bayesian posterior distributions as the amount of observation sequences increases 

to infinity. 

The challenges in achieving the contribution mentioned in this section involves 

the following. The first challenge lies in the development of a parameter estimation 

method that yields both point estimates and uncertainties of these estimates 

simultaneously for non-homogeneous and/or non-ergodic HMMs. Bayesian inference 

allows a formulation of such an estimation procedure, and sampling algorithm based on 

MCMC provides computational solution to the identification problem. The second 

challenge is to develop detection methods that take advantage of the newly available 

uncertainty information about HMM parameters to yield higher detection accuracy than 

traditional methods which ignore model uncertainty. The final challenge is to formulate 
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and prove the asymptotic properties of the distributions of parameter estimates, which has 

not been addressed using infinite amount observation sequences when the assumption of 

ergodicity of HMM is absent.
1
 

  

1.3 OUTLINE OF THE DISSERTATION  

The rest of this doctoral dissertation is organized as follows. Chapter 2 presents a 

review of the literature on HMM estimation methods, HMM-based fault detection 

research, as well as on the explorations of existing asymptotic properties of Bayesian 

estimators of parameter for stationary and some non-stationary HMMs. Chapter 3 

presents a novel Bayesian methodology for estimation of non-ergodic, non-homogeneous 

HMMs, as well as a new condition monitoring methodology based on degradation 

models described by HMMs identified using the aforementioned estimation procedure. 

The results from the application of the proposed methodologies on simulated datasets and 

real world datasets will be provided in the same chapter. In Chapter 4, a new type of 

HMM addressing the imperfect maintenance and a novel monitoring method that 

generates condition information based on such models are provided. Chapter 4 also offers 

results of applying the new HMM-based degradation modeling and monitoring methods 

that account for maintenance imperfections of a large fab data set, clearly indicating 

modeling and monitoring performance improvements over the corresponding methods 

that assume perfect maintenance operations. Chapter 5 gives the proof of asymptotic 

consistency and normality of posterior distribution for Bayesian estimation of HMMs 

under a set of commonly used regularity conditions but without assuming ergodicity of 

                                                 
1 Successful solution to this problem would enable quantification of the trade-off between the amount of 

data used for parameter estimation and the uncertainty level of the estimates. 
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HMM. Finally, Chapter 6 details the achievements of this doctoral research and outline 

some suggested directions of future research. 
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Chapter 2: Review of Model Identification, Process Monitoring, and 

Estimation Properties for Hidden Markov Model 

 

As we discussed in the previous chapter, condition-based maintenance (CBM) 

aims to facilitate maintenance operations based on the actual or predicted condition of the 

target system, as assessed from the available sensor readings. Key enabling factor for 

CBM is building of the model of the condition of the underlying system or process [1], 

[4], [19], [20]. First principle models of system degradation can be built where sufficient 

physics-based knowledge about systems exist. However these models are usually 

infeasible for degradation modeling of complex system for which such models are 

computationally too expensive to be determined or often cannot be determined at all [21]. 

Data-driven modeling is an alternative approach that utilizes sensory data to build various 

types of empirical models (statistical, dynamic, neural-network based) of the condition of 

the underlying system, enabling implementation of CBM for complex systems, such as 

diesel engine [22], biological system [23], semi-conductor manufacturing tools [23], etc. 

Though both physics-based and data-driven modeling approaches can complement each 

other in the so called hybrid models [24], recent availability of vast volumes of data in 

increasingly complicated manufacturing environment [26] provides unprecedented 

opportunities for data-driven models to play a more prominent role in CBM [27]-[29]. 

Recently, significant research attention has been dedicated to HMMs, which are 

essentially data driven models. As mentioned in Chapter 1, the proposed research 

concentrates on the use of HMMs for modeling and monitoring of degradation dynamics 

of complex engineering processes. Estimation of parameters of degradation HMM and 

the associated uncertainty are the prerequisites for the subsequent process monitoring of 
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the target system. Therefore, it is necessary to review the existing literature on HMM 

identification and Section 2.1 provides an extensive review of the currently available 

identification methods for many types of hidden Markov models. Given the monitoring 

focus of the application side of this dissertation, Section 2.2 offers a review of HMM 

based monitoring research. Finally, given the interest in understanding the properties of 

the newly proposed method for Bayesian estimation of HMM parameters, Section 2.3 

reviews theoretical work related to asymptotic behaviors of HMM parameter estimates. 

 

2.1 HIDDEN MARKOV MODEL IDENTIFICATION  

Parameter estimation in HMM is a difficult problem due to the hidden nature of 

the unobservable quantities and a large number of model parameters, which are needed 

for describing both the evolution of the underlying states and the probabilistic 

relationship between the states and the observables. This estimation problem is 

commonly solved by finding the HMM parameters that maximize the likelihood of the 

sequence of observations used for identifying the HMM. The resulting Maximum 

Likelihood Estimator (MLE) has desirable asymptotic properties, including consistency 

and asymptotic normality. However the gradient-based search methods commonly used 

to obtain the MLE of HMM parameters, such as the Baum-Welch [9] or Expectation-

Maximization (EM) [11] methods, do not guarantee the global optimality of the solution 

to this multi-modal optimization problem. Despite this known issue of the EM algorithm, 

it has been accepted as the standard approach to identify HMM in a variety of disciplines 

[17] and many HMM applications in CBM, including monitoring of a gearbox [30], 

drilling tools [31], rotary machines [32], and bearings [33]. 
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Despite the success of applying HMMs identified by EM to CBM of several 

systems, modern complex engineering processes pose further challenges that 

conventional EM-based identification of HMM parameters did not address. One 

challenge is quantifying uncertainty of estimation of HMM parameters and understanding 

when the estimation procedure converges. Another one is characterizing variability in 

degradation dynamics that could appear in complex engineering processes due to 

potentially strongly varying operating regimes.  

Statistical confidence intervals (CI) [34] are commonly used to represent 

parameter uncertainty for probability models. A majority CI-based characterization of 

HMM parametric uncertainty that one can find in literature pertains to the MLE of HMM 

parameters. Based on the established asymptotic property of MLE [17] for HMM, 

approximated CI can be obtained by exact calculation of the variance-covariance matrix 

of the MLE [35], [36], or by approximation using numerical differentiation [38]. 

However, these methods could be justified to apply to more generalized HMM only if 

asymptotic normality of MLE for those HMMs can be established. Alternatively, 

bootstrapping [39] provides approximated CI via iterative resampling of observation 

symbols followed by reestimation of HMM parameters, which does not require 

asymptotic normality of MLE. However, it requires the run of a costly EM algorithm for 

each bootstrap iteration and leads to an overall very expensive computation, which may 

only be mitigated by using high performance computers [37]. Visser et al. [38] conducted 

benchmarking through simulation to compare several methods that produce CIs of HMM 

parameters and concluded that numerical differentiation provided too narrow CIs for 

covering the true parameters, whereas bootstrapping yield desired CIs that match with the 

actual confidence level. Zucchini and MacDonald [40] used bootstrapping for a wide 

range of natural science applications of HMM and observed the common computational 
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issues of bootstrapping along with inaccurate estimates when true HMM parameters 

become degenerate. In sum, unless asymptotical theory can be established for a given 

HMM, bootstrapping is the standard choice for a likelihood-based approach to obtain CIs. 

However it suffers from very expensive computational cost, which limits its application 

to characterizing uncertainty of estimated HMM parameters, especially with large 

datasets frequently (usually) encountered in condition monitoring of complex systems.  

Bayesian approach [41] distinctively integrates estimation of HMM parameters 

and derivation of uncertainty of those parameters. For the case of ergodic HMMs, 

Bayesian approach can always produce an estimate that strictly or asymptotically 

minimize estimation risk [42]. Such Bayesian estimates have desirable asymptotical 

properties as those produced by MLE for HMM [18] and are typically obtained via state-

of-the-art Markov Chain Monte Carlo (MCMC) computation [43], whose convergence is 

guaranteed and can be robustly controlled [44]. Moreover, the output of MCMC can be 

immediately used to form a full (posterior) distribution of the estimated parameters to 

provide complete information about parameter uncertainty. From this distribution, 

Bayesian confidence intervals (or credible intervals) for the HMM parameters using its 

appropriate percentiles, yielding a result compatible with the CIs produced by MLE. 

Rydén [46] compared bootstrapping CI and Bayesian CI based on MCMC and concluded 

that both CIs have comparable performance, but bootstrapping was found to be much 

slower than MCMC. Martinez et al. [47] modeled epidemic in a population as hidden 

states of a HMM and use MCMC to identify parameter uncertainty of 2-state HMM with 

Gaussian emission density. They showed that Bayesian 95% CIs for two Gaussian means 

are non-overlapped which justifies their choices of using distinct Gaussian distributions.  

Chodera et al. [48] conducted a simulation study to show that Bayesian 95% CIs based on 

MCMC converge to the true parameters for a 3-state Gaussian HMM using samples of 
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growing size for estimating HMM parameters. Nam et al. [49], [50] developed a novel 

sequential Monte Carlo (SMC) method to identify uncertain parameters of a HMM with 

multivariate normal distribution modeling emission and used the full distribution of 

HMM parameters to further characterize the uncertainty of change-points in the time 

series. Despite the tractability and recent innovative application of Bayesian posterior 

distributions of HMM parameters, the dynamics of the hidden states are all assumed to be 

regular (ergodic) and stationary. However, many of engineering processes concerned by 

CBM community that could be modeled by HMM exhibit irregular or non-stationary 

behavior, and therefore extensions of HMM need to be taken into account. 

Engineering process data had primarily been considered as stationary in 

traditional CBM applications, either by assuming the data is independently and 

identically distributed (i.i.d) [13], [51] or by assuming a stationary time series model for 

the process data [52], [53]. However, modern engineering practices bring a plethora of 

sources that could generate non-stationary processes and process data. For example, 

system degradation occurs stochastically which could cause sudden abnormal 

measurements that, as was observed on automotive engines [54] or bearings [55] (these 

kinds of excursions typically happened during the start-up or shutdown of the machine 

[54]). Another source is the operator’s interaction with a machine that typically occurs in 

control of continuous processes, such as chemical process [56] or semiconductor 

manufacturing process [57]. In other words, process control especially through operator 

interventions can inherently introduce non-stationarities in the data. Furthermore, 

unpredictable operating environment such, as load variation, could directly result in 

dramatic fluctuation of signals, such as those from bit in oil drilling process [58] and 

from gearbox in ground excavation [59]. Although HMM can intuitively address the 

unobservability issue in the above mentioned applications, the various patterns of non-
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stationarity exhibited in these applications pose further challenges to process modeling 

and model identification using HMM. Therefore, adaptation of HMM is needed to deal 

with these sources of non-stationarity. 

Most of the HMMs addressed in the literature discussed so far are stationary in a 

rigorous sense that the marginal distributions are time-invariant, because ergodicity 

conditions are imposed or presumed in this literature [17]. In contrast, a non-stationary 

HMM has been initially proposed by Sin and Kim [60] and applied in different areas, 

such as anomaly detection [61] and biology [62]. Motivated by a potential wide 

application domain of this model, Djuric and Chun [63] conducted a focused study to 

extend the MCMC designed by [43] for conventional HMM and estimate parameters 

(with uncertainty) of a non-stationary HMM proposed in [60]. However, this model is 

essentially a hidden semi-Markov model [64] under the alias of non-stationary HMM 

with several synonyms, as explained by Yu [65], and therefore it may be non-stationary, 

but it is strictly not a HMM. To overcome the ambiguity in this intuitive and useful term, 

we follow the definition of a non-stationary Markov chain [66] and define the non-

stationary HMM (NSHMM) as a hidden Markov model (or equivalently, a HMM is non-

stationary) where the underlying Markov chain does not have a stationary dynamics. The 

generality in HMM defined above can be shown to exist in many useful extensions of 

HMM. It may also facilitate design of new HMMs by correlating the non-stationarity in 

the data and the properties of NS-HMM.  

When it comes to non-ergodic HMMs [9]
2
, they have been a popular choice to 

model machine degradation due to their applicability to both anomaly detection [55] and 

forecasting remaining useful life [67]. Identification of non-ergodic HMM, as pointed by 

                                                 
2 Non-ergodic HMM is non-stationary under generic conditions (see section 2.3 for further discussion). 
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multiple studies [9], [17], [55], requires multiple observations sequences. To estimate 

HMM parameters in such situation one can simply modify re-estimation steps using 

multiple sequences as a segmented long sequence (see [9], section V-B), or one can 

derive an ensemble estimate of HMM parameters from separate estimates by applying 

EM on each sequence [68]. However, inability to obtain uncertainty information persists 

in these extensions of EM algorithm, and to the best of author’s knowledge, no study has 

addressed the uncertainty of non-ergodic HMM parameter estimation (as one type of NS-

HMM) using likelihood approach or Bayesian approach, although some peripheral 

studies exist. Bibbona and Ditlevsen [70] developed asymptotic theory of MLE for 

parameters of a non-ergodic diffusion process and use the theory to derive confidence 

intervals of the MLE. Jarsa et al. [70] developed both MCMC and SMC to obtain 

Bayesian posterior distribution of parameters of a non-ergodic Markov chain with 

missing observations. The methodology to characterize uncertainty in these two recent 

studies is consistent with what is discussed in this chapter. 

Non-homogeneous HMMs have time-varying transition matrices for the 

underlying Markov chain as well as potentially time-varying observation symbols and 

emission matrices. They are a very flexible type of non-stationary HMM that has diverse 

applications in economics [72], [73], biomedical science [74], [75], and geoscience [76], 

[77]. Extraneous information (covariates) is typically utilized to drive the time-changing 

transition matrix, although it is possible to build seasonal variations within the transition 

matrix using Fourier series without using extra data [78]. To deal with additional 

parameters that describe non-homogeneous HMMs, extensions of EM [79] and MCMC 

[80] both exist for identifying their parameters.  Cholette and Djurdjanovic [81] modified 

the EM algorithm to identify a non-homogeneous and non-ergodic HMM. They showed 

an improvement in accuracy to found by their modified EM, but did not address 
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uncertainty of the MLE estimates. Bartolucci and Farcomeni [82] derived exact formula 

for information matrix needed for standard errors of MLE of non-homogenous HMM. 

They also showed that CIs using their formula have comparable performance as 

bootstrapping CI, but yield dramatic savings in computations for moderate-size dataset. 

However, they ignored establishing asymptotic normality of MLE for non-homogeneous 

HMM needed for justifying their CI, and it could result in undesirable performance of 

their CIs on larger datasets. On the other hand, Meligkotsidou and Dellaportas [83] 

developed a MCMC procedure that resolves both the parameter uncertainty and structural 

uncertainty (number of hidden states) for a non-homogeneous, but ergodic HMM. They 

also showed a significant improvement in predictive performance using non-homogenous 

HMM than conventional homogenous HMM.  

Despite this strong recent research interest in methodologies enabling 

identification of non-homogenous HMM and non-ergodic along with parameter 

uncertainty that is crucial for CBM applications, the review of the available literature 

reveals a gap between the need to use non-stationary non-ergodic HMMs to model 

complex engineering processes and limitations of practical methods and theory for HMM 

parameter identification and quantification of the associated uncertainties. The goal of the 

method pursued in this doctoral research is to address this gap and provide uncertainty 

estimation for a non-homogeneous and non-ergodic HMM parameter estimation. Specific 

details are given in Chapter 3.  
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2.2 FAULT DIAGNOSIS WITH HIDDEN MARKOV MODEL 

Once an anomaly is detected, root causes of such anomalous behavior are 

identified via the process of fault diagnosis (FD)
3
 in which the information contained in 

the features extracted from sensor readings is mapped to the space of machine faults
4
. 

The most widely used HMM-based FD approach matches HMM observation sequence 

indicating the actual system performance with one of the known faulty behavior models. 

Such matching is a selection of the HMM, among a collection of HMMs modeling 

different fault modes, that yields the largest likelihood of the given observation sequence. 

Despite the fact that multiple HMMs have to be trained, this method allows very efficient 

on-line diagnosis that only requires inexpensive calculation of the likelihoods of the 

observation sequence based on each HMM (known as the evaluation problem in [9]). 

Hence, it has been extensively applied to monitoring of dynamic systems, including 

rotating machinery (rotor [32], [89], drilling machine [90], [91], cutting tool [92], 

stamping machine [93], rotating shaft [94], rotating rig [55]), chemical plants (tank 

reactor [95]-[97], melting furnace [98], [99], multi-system plant [100], [101]), nuclear 

plant [102], as well as electronic system [103]. However, the major issue of this approach 

lies at its fault space that only consists of a fixed and often small number of faults known 

at the period of training 
5
. Depending on the complexity of the monitored system, such 

fault space is an over-simplification that limits its diagnostic coverage of all possible 

abnormal behaviors during system operation.  

                                                 
3  According to [84], “a fault is an unpermitted deviation of at least one characteristic property (feature) of 

the system from the acceptable, usual, standard condition.”  Degradation in this dissertation is defined as a 

type of constantly happening (if no intervention of operation) and accumulative fault that causes gradual 

deterioration of system performance. On the other hand, fault mode (or fault pattern, or simply faults if the 

context is clear) is a type of distinguishable fault whose cause can be clearly specified. 
4  Since there is a lack of consensus about the definition of FD ([27], [84]-[88]), the one that we adopt here 

is based on [5], which is widely accepted in CBM community. 
5 The number is usually less than 10 in the reviewed literature. 
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In previous approach, the most plausible HMM is chosen for explaining the actual 

data out of multiple HMMs. One can alternatively use a single HMM to model the system 

behavior traversing the faults, with the actual condition being modeled using the hidden 

states, and the most likely trajectory of the faults being determined by the most likely 

trajectory of hidden states. This approach allows physical interpretation of the hidden 

states [29], [104] as fault modes, and uncertainty statement of diagnosis [105], i.e., 

conditional probabilities of the occurrence of each known fault given the current 

observation sequence 
6
. However, it has been difficult to estimate the transition 

probability matrix (TPM) without an appropriate training set where the true system 

(hidden) state changes from one fault to another. Bunks et al. [29] encountered this 

difficulty for FD on a helicopter gearbox and suggested that physics-based model of the 

gearbox could be used to obtain the TPM. Smyth [105] overcame this difficulty in 

monitoring of an antenna by introducing prior reliability knowledge of that system to 

estimate transition probabilities between two known faults and the normal condition.  

A major advantage of the single-HMM approach over the multiple-HMMs 

approach is that the former offers an elegant framework to expand the fault space, by 

adding novel faults detected in the test period to the known faults in the training period. 

This is because the single HMM is used as a generative model, which is well known to be 

suited for on-line adaptation [106], [107]. Smyth [107] (following his earlier work [105]) 

introduced an unknown fault in the test data and showed that a flexible-state HMM can 

detect the existence of such new fault, while a fixed-state HMM constantly misclassified 

it as one of the known faults. Recently, Lee et al. [109] developed a scheme to update the 

HMM states and the associated HMM parameters as long as a novel fault is detected on-

                                                 
6 This method is similar to particle filtering method [106] for state space models where the underlying 

states are continuous.  
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line. This method was shown to outperform a fixed-state HMM significantly in detection 

rate.  Unfortunately, these extensions of the single-HMM approach still assume that the 

fault space is discrete and finite, and therefore the issue of limited coverage of all 

abnormalities mentioned earlier cannot be resolved using neither the multiple-HMMs nor 

the single-HMM approach. Thus, even if an appropriate training data are available [104], 

[55] and HMM parameters can be estimated purely using the training data (as it should), 

e.g., using the Baum-Welch algorithm, the faults remain fixed and finite for the studies 

reviewed so far.  

Modern engineering systems are highly complex that often consist of interacting 

dynamic systems. For such applications, the traditional approach for realizing HMM 

based diagnostic functionality
7
 becomes excessively cumbersome because of the need to 

train the condition monitoring processes to recognize a large number of faults or faults of 

various severities, some of which often cannot be anticipated in advance. Even for the 

cases one is able to anticipate in advance, many faults manifest themselves very 

differently under different control inputs and environmental conditions, which makes 

training of diagnostic units for all possible conditions and all possible faults infeasible. 

Finally, such systems consist of numerous subsystems, each of which could contain 

significant non-linearities, with multiple control and environmental inputs, as well as 

inputs from other subsystems. This situation permits anomalies in one system to cascade 

and incite anomalous behavior of other systems connected to it, which effectively masks 

the real source of the anomaly.  

Considering the contiguous variability of faults and multiple (or even convoluted) 

sources for the faults, the fault space for complex system should be continuous and multi-

                                                 
7 Diagnostics based on fault-specific HMMs. 
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dimensional. Fault Detection and Isolation (FDI) enables fault diagnosis under this 

realistic assumption and has been recently used for monitoring based on physics-based 

models [110]. It is a relatively new concept based on data-driven models for modeling 

dynamics of complex systems [111], [112] and its implementation using HMM has been 

initiated only recently [113]. FDI is a two-step procedure including fault detection
8
 stage, 

i.e., deciding whether a fault has happened, followed by fault isolation stage in which the 

source of the fault is localized.  

Anomaly detection with HMM can use limit checking based on probabilistic 

residuals that measure the discrepancy between new HMM observations and the nominal 

HMM trained under normal condition.  Fox et al. [113] and Brown et al. [114] 

demonstrated the efficacy of this approach to detect faults when HMM is used for 

modeling a robotic system and an electric power plant, respectively. More recently, 

Cholette and Djurdjanovic [81] used this approach to monitor a semiconductor 

manufacturing tool whose condition was modeled by regime specific degradation HMMs. 

A more robust approach based on hypothesis testing [117] allows detection of 

changes in the behavior model itself, i.e., the changes in the parameters of the HMM over 

time
 9

. LeGland and Mevel [119] developed a non-local and a local Generalized 

Likelihood Ratio Test (GLRT) to decide whether the TPM shifts from it nominal value 

given each new observation sequence of the same length. While the non-local test has a 

desirable theoretical property that both false alarm and missed detection rates converge to 

                                                 
8 Again, due the ambiguity of this term as that in fault diagnosis, we equate fault detection as anomaly 

detection [115] or novelty detection [116]. Following the literatures, Fault Diagnosis (FD) and anomaly 

detection (AD) terms are used interchangeably here. 
9 There is another approach by defining the residual as the goodness of fit given the data and the HMM 

[118]. However, it has majorly been used for model selection rather than fault detection. In model section, 

the same sample is fitted to multiple models. In fault detection, samples of possibly different sizes are fitted 

to the same model, and therefore the goodness of fit cannot be used if it cannot be compared between 

samples of different sizes. On the other hand, the likelihood slope can be viewed as a rate, which is free of 

the different size issue.  
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zero upon infinite observations, the local test is much simpler for implementation. Chen 

and Willett [120] developed a Sequential Likelihood Ratio Test (SLRT) to detect 

transient signals by detecting a change from one HMM (modeling the normal signal) to 

another HMM (modeling the transient signal). They demonstrated in simulation the 

superiority of this method over the conventional SLRT based on i.i.d models using 

various detection performance measures, including a receiver operating characteristic 

(ROC) curve. However, their experiments assumed that the HMM that models the 

transient signal is known, and therefore this method is not amenable to detect 

unanticipated dynamics, which, as mentioned before, is of paramount importance for 

fault detection in complex systems. Despite the fact that the methods mentioned above 

can robustly recognize the existence of anomalies using the concept of HMMs, the 

uncertainty of HMMs themselves has not been addressed in any of the fault detection 

method reviewed so far.  

Section 3.3 addresses this gap by introducing an anomaly detection method that is 

aware of the uncertainty of the degradation HMM. It accomplishes this task by explicitly 

incorporating the distribution of estimated degradation HMM parameters obtained from 

the identification procedure discussed in Section 3.2. 

 

2.3 CONVERGENCE PROPERTIES OF HMM PARAMETER ESTIMATION 

With increasing amount of data generated from a true HMM, it is desired to see 

the Bayesian posterior distributions for HMM parameters increasingly concentrating
10

 

around the true HMM parameters. Bernstein-von Mises Theorem (BvMT) formulated in 

[123] (or equivalently asymptotic normality of posterior distributions [124]) proves such 

                                                 
10 Studies exist for the concentration and its rate of posterior distribution for nonparametric HMMs, such 

as [125], whereas we focus on parametric HMMs. 
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convergence, under very general assumption on the prior distribution and the underlying 

HMM, demonstrating that the sequence of posterior distributions of HMM parameters 

tends toward a sequence of multi-variable Gaussian distributions with their centers 

converging to the true HMM parameters and with the covariance matrices converging to 

a zero matrix.  

Consistency and asymptotic normality of MLEs are typical essential properties for 

establishing a BvMT, and these properties have been well-studied for stationary HMMs, 

For HMM with discrete observations, Baum and Petrie [125] and Petrie [127] proved the 

consistency and asymptotic normality for MLE. For HMMs with general emission 

distributions, Leroux [10] proved the consistency, and Bickel et al. [11] proved the 

asymptotic normality of MLE of HMM parameters. Rydén [128] proved both consistency 

and asymptotic normality of the MLE of HMM paramaters by imposing the assumptions 

that the sequence of observations used for estimation can be segmented into sequences of 

equal length. Finally, for HMM with generalizable state space, i.e., HMM whose hidden 

states could be discrete or continuous, under a measure-theoretic framework, Cappe et al. 

[17] proved both consistency and asymptotic normality of MLE. Based on the previous 

properties of MLE, Gunst and Shcherbakova [18] recently proved the BvMT for 

stationary HMM. Nevertheless, the stationarity in HMM has been a critical assumption 

that exists in the aforementioned work
11

. Such stationarity assumption also requires that 

HMM starts with a predetermined initial distribution of the hidden states. 

For asymptotically stationary HMMs that have arbitrary initial distributions and 

converge to their stationary distributions, properties of MLE have also been explored and 

understood, but the BvMT has not been proven yet. More specifically, LeGland and 

                                                 
11 It enables their necessary technical treatments, e.g., approximation based on treating a finite observation 

sequence as a sequence with infinite past observations. 
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Mevel [129] proved the consistency and asymptotic normality of MLE [130] for such 

type of HMM. Furthermore, Mevel and Finesso [131] proved the convergence rate of 

MLE, and they then extended many known properties about MLE to the case when 

HMM is even misspecified [132]. However, the above results are still limited in that both 

stationary HMM and asymptotically stationary HMM require ergodicity of the transition 

probability matrix, meaning that a stationary distribution of the hidden states exist and is 

unique. 

As we mentioned in Section 2.1, many HMMs of practical interest are non-

stationary, and the studies on properties of MLE for non-stationary HMMs are rare. 

Because description of non-stationary dynamics in HMM usually requires additional 

HMM parameters or relaxation in the domain of parameters for stationary HMM, 

accommodation is needed in the formulation of asymptotic properties of both MLE and 

posterior distribution for non-stationary HMM parameters. For a type of non-ergodic 

HMM (known as partially HMM in [133] 
12

), Bordes and Vandekerkhove [133] provided 

a proof of consistency and asymptotical normality of MLE when assuming the data is 

generated from multiple observation sequences and the number of sequences of 

observations tends to infinity. Ailliot and Pene [134] recently proved the consistency of 

MLE for a non-homogeneous HMM under several regularity conditions on the covariate 

process that influences the time-varying transition probability matrix in this non-

homogeneous HMM. Such work was extended in [132] to address the asymptotic 

properties of MLE for mis-specified non-homogeneous HMMs. 

Considering the lack of understanding of limiting properties of Bayesian posterior 

distribution for non-stationary HMM parameters, we provide a BvMT formulated for 

                                                 
12 Such non-ergodic HMM contains an absorbing state that can correspond to a failure state in degradation 

modeling. 
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unidirectional non-ergodic HMM and the proof of that theorem is enclosed in Chapter 5 

of this doctoral dissertation. 
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Chapter 3: Identification for Hidden Markov Model and Monitoring 

Methodology using HMM 13 

 

3.1 HIDDEN MARKOV MODEL 

Hidden Markov model is a doubly embedded stochastic process {𝑋𝑡, 𝑌𝑡}𝑡=0
∞  in 

whose foundation is an unobservable Markov chain 𝑋𝑡, which drives an observable 

process 𝑌𝑡 for which at each time 𝑡, the observable variable 𝑌𝑡 is probabilistically related 

to the hidden state 𝑋𝑡. Assuming that the set of possible states for the hidden process 𝑋𝑡 is 

𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑁} and the set of possible observable symbols is 𝑂 = {𝑜1, 𝑜2, … , 𝑜𝑀}, the 

HMM can be described by a parameter triplet 
14

 𝜽 = (𝝂, 𝐏, 𝐐), composed of the initial 

state distribution 𝝂 ∈ [0,1]𝑁, state transition probability matrix 𝐏 ∈ [0,1]𝑁×𝑁 and 

emission probability matrix 𝐐 ∈ [0,1]𝑀×𝑁 . 

In many applications, physics of the process modeled using the HMM can lead to 

specific patterns in the state transition matrix. For example, if the states 𝑆 = {1,2,3} 

represent condition of a monitored system, with state 1 denoting excellent condition, state 

2 denoting OK condition and state 3 representing the bad condition, the state transition 

matrix 𝑃 is constrained to be an upper triangular matrix, or 𝑝𝑖𝑗 = 0, ∀𝑖 > 𝑗, since without 

a maintenance operation, degradation state of the system can only deteriorate. Such “left-

                                                 
13 This chapter is based on [152]: Deyi Zhang, Andrew D. Bailey III, and Dragan Djurdjanovic, "Bayesian 

identification of hidden Markov models and their use for condition-based monitoring," IEEE Transaction. 

on Reliability, vol. 65, no. 3,  pp. 1471-1482, June 2016. The contribution to this collaborated work from 

the first author includes: (1) proposing the identification method and the monitoring method; and (2) 

conducting data analysis on simulated datasets and a dataset collected from a PECVD tool by the third 

author along with his students. 
14 Note that this elaboration focuses on the HMMs with discrete states and observations, though other type 

of states and observation symbols can be considered, e.g.  continuous state-dependent emission 

distributions, such as Gaussian distributions, can be conceptualized and parameterized, leading to a vector 

of state dependent means and variances substituting the emission matrix 𝑄 in the parameter triplet 𝜽. 
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to-right” HMM structure [9] will indeed be utilized for degradation modeling in this 

chapter. 

Recently, the standard HMM construct described above has been extended to 

regime-specific HMMs by incorporating time-varying dynamics and observation models, 

in order to account for variability in degradation models due to potentially variable 

operating regimes of the monitored system [81]. Suppose the operating regimes over time 

are denoted by a sequence 𝑧𝑡 , 𝑡 = 0,1,2, … , with each 𝑧𝑡 having a known value from the 

set of possible operating regimes 𝑅 = {𝑟1, 𝑟2, … , 𝑟𝐿}. For each regime 𝑟, let us allow 

different HMM dynamics and observation probabilities by introducing a regime-specific 

HMM concept, which, assuming N hidden states {𝑠1, 𝑠2, … , 𝑠𝑁}, can be described by 

parameters 

 𝜽(𝑅) = (𝝂, 𝐏(𝑟1), 𝐐(𝑟1), 𝐏(𝑟2), 𝐐(𝑟2), … , 𝐏(𝑟𝐿), 𝐐(𝑟𝐿)),   

with initial state probability vector 

𝝂 = [𝜈1 𝜈2 ⋯ 𝜈𝑁]𝑇; 𝜈𝑖 = Pr(𝑋0 = 𝑠𝑖) , 𝑖 = 1,2, … ,𝑁 

regime-specific state transition matrices 𝐏(𝑟), 𝑟 ∈ {𝑟1, 𝑟2, … , 𝑟𝐿} where 

𝐏(𝑟) = [𝑝𝑖,𝑗
(𝑟)
]
𝑖,𝑗=1,2,…,𝑁

,  𝑝𝑖,𝑗
(𝑟)
= Pr(𝑋𝑡+1 = 𝑠𝑗|𝑋𝑡 = 𝑠𝑖) if 𝑧𝑡 = 𝑟 

regime-specific emission probability matrices 𝑸(𝑟), 𝑟 ∈ {𝑟1, 𝑟2, … , 𝑟𝐿} satisfying 

 𝐐(𝑟) = [𝑞𝑖,𝑗
(𝑟)
] 𝑖=1,2,…,𝑁
𝑗=1,2,…,𝑀

, 𝑞𝑖,𝑗
(𝑟)
= Pr(𝑌𝑡 = 𝑜𝑗|𝑋𝑡 = 𝑠𝑖) if 𝑧𝑡 = 𝑟   
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and the hidden states process 𝑋𝑡 progressing according to probabilities15 

 [

Pr (𝑋𝑡 = 𝑠1)
Pr (𝑋𝑡 = 𝑠2)

⋮
Pr (𝑋𝑡 = 𝑠𝑁)

] = 𝝂(∏ 𝐏(𝑧𝑖)𝑡
𝑖=0 )  (1) 

One should note that in the context of regime-specific HMMs being used for degradation 

modeling, Eq. (1) formalizes the well-known notion of continuity of degradation, 

stipulating that the last state of degradation after one operating regime becomes the initial 

state of degradation for the next operating regime. 

The HMM parameters 𝜽 need to be identified from the available sensor readings 

(realizations of observable variables), which is one of the classical HMM problems – 

model identification.  In the next section, we will introduce a novel Bayesian estimation 

based approach to identification of parameters of regime-specific HMMs. 

 

3.2 HMM IDENTIFICATION PROBLEM AND BAYESIAN ESTIMATION 

Following the traditional approaches to identification of HMM parameters, such 

as the well-known Baum-Welch procedure [9] one can pursue a likelihood based 

estimation of parameters for regime-specific HMMs, seeking model parameters for which 

the sequence of observations based on which the model is identified is the most likely. 

More formally, given a sequence of observables 𝒚𝑡 = (𝑦1, 𝑦2, … , 𝑦𝑡) and relevant 

operating regimes 𝒛𝑡 = (𝑧1, 𝑧2, … , 𝑧𝑡), with each 𝑧𝑖 ∈ 𝑅 = {1,2, … , 𝑟} being known at any 

                                                 
15 These probabilities assert the probability of degradation states in future time 𝑡 assuming current time is 

the starting time. If past observations are available, the probability of current state can be estimated by 

forward algorithm [9] and can be similarly used for assessing predicative degradation condition of the 

modeled system.  
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given time 𝑖 = 1,2, … 𝑡, Maximum Likelihood Estimate 𝜽̂𝒕
[𝑴𝑳𝑬]

 of parameters 𝜽(𝑅) of 

regime-specific HMMs can be pursued by solving the following optimization problem  

  𝜽̂𝑡
[𝑀𝐿𝐸] = max𝜽(𝑅)∈Ω(𝑅) Pr (𝒚𝑡|𝜽

(𝑅)), (2) 

where  

Ω(𝑅) = { 𝜽(𝑅) ∈ ℝ+
𝑁+𝐿⋅(𝑁2+𝑁⋅𝑀)

: ∑ 𝜈𝑖
𝑁

𝑖=1
= 1,∑ 𝑝𝑖,𝑗

(𝑟)
𝑁

𝑗=1
= 1,∑ 𝑞𝑖,𝑗

(𝑟)
𝑀

𝑗=1
= 1,∀1 ≤ 𝑖 ≤ 𝑁}. 

The multi-modal nature of the likelihood function Pr(𝒚𝑡|𝜽
(𝑹)) in (2) poses 

substantial difficulty in solving the optimization problem [9]. Gradient-based methods, 

such as the Baum-Welch procedure, potentially get trapped in local optima, which is a 

well-known inherent drawback of gradient-based searches. Recently, Cholette and 

Djurdjanovic addressed this concern by using a genetic algorithm to modify initial points 

for the gradient-based optimization of the problem [81]. Unfortunately, although this 

modified algorithm greatly improves the likelihood over the purely gradient-based 

search, optimality of the resulting solution still cannot be guaranteed. In addition, 

gradient-based methods (or metaheuristically modified gradient based methods, such as 

the one in [81]) do not give information about the distribution of estimation errors 

(distribution of how close or far the estimate is from the true model parameters 𝜽𝟎
(𝑹)

). 

Understanding this uncertainty of the solution to (2) is highly important if, for example, 

such a solution is to be used for condition monitoring and prediction for a system whose 

degradation is modeled using regime specific HMMs. Model uncertainty accumulates 

rapidly as one tries to predict system condition further and further ahead using an 

uncertain degradation model. Hence, pursuit of a methodology to estimate parameters of 

the regime-specific HMMs, along with the information how near or far that estimate is 
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from the true model parameters, is a highly useful and impacting goal that we will pursue 

now. 

In the foundation of the Bayesian estimation is the well-known Bayes theorem, 

which transforms and updates whatever prior knowledge about the underlying random 

variable or process, using observations obtained from that variable or process. More 

formally, let Ω(𝑅) denote the domain of possible values of model parameters 𝜽(𝑹). If we 

represent whatever prior knowledge about model parameters we have using a prior 

distribution 𝜋(⋅) defined on Ω(𝑅), the observation sequence 𝑌𝑡 emitted by the regime 

specific HMM and their corresponding regimes  𝑍𝑡 can be incorporated to update the 

information about model parameters using posterior distribution 

 𝜋t(𝜽
(𝑅)|𝒚𝑡) =

Pr(𝑦𝑡|𝜽
(𝑅))𝜋(𝜽(𝑅))

∫ Pr(𝑦𝑡|𝜽
(𝑅))𝜋(𝜽(𝑅))𝑑𝜽(𝑅)

𝛺(𝑅)
.  (3) 

In the Bayesian framework, 𝜋t(𝜽
(𝑅)|𝒚𝑡) can be maximized similarly as Pr(𝑦𝑡|𝜽

(𝑅)) in  

leading to the so called Maximum A Posteriori (MAP) estimate [136]. However MAP has 

the same issue of multimodality of the objective function as MLE [136]. Alternatively, 

the Bayesian estimate (BE) 𝜽̃𝑡
(𝑅)

 based on statistical decision theory [42] can be obtained 

by solving the following optimization problem 

  𝜽̃𝑡
(𝑅) ≔ argmin𝜽̃(𝑅)∈Ω(𝑅) ∫ ℒ(𝜽̃(𝑅), 𝜽(𝑅))𝜋𝑡(𝜽

(𝑅)|𝒚𝑡)𝑑𝜽
(𝑅)

Ω(𝑅)
, (4) 

where ℒ: 𝛺(𝑅) × 𝛺(𝑅) → ℝ is a ‘loss function’ that grows with the distance away from the 

true model parameters 𝜽0
(𝑅)

. For a commonly used quadratic loss16 ℒ(𝜽̃(𝑅), 𝜽(𝑅)) =

                                                 
16 Quadratic loss is more mathematically tractable. For other convex loss function such as 0-1 loss, explicit 

solution to (4) is in general not available. However (4) can be solved numerically using stochastic 

optimization techniques such as sample average approximation (4) that requires a sample from Π𝑡, which 

can be obtained by the Gibbs sampler described in this section. 
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∑ |𝜃̃ − 𝜃|𝜃̃∈𝜽̃(𝑅),𝜃∈𝜽(𝑅)
2
, it can be shown immediately that solution to (4) is in the form of 

the posterior mean [42] 

 𝜽̃𝑡
(𝑅) = ∫ 𝜽(𝑅)

𝛺(𝑅)
𝜋𝑡(𝜽

(𝑅)|𝒚𝑡)𝑑𝜽
(𝑅), 

or in terms of parameters of regime specific HMMs studied in this chapter, 

  

𝜈𝑖,𝑡 = ∫ 𝜈𝑖𝛺(𝑅)
𝜋𝑡(𝜽

(𝑅)|𝒚𝑡)𝑑𝜽
(𝑅), ∀1 ≤ 𝑖 ≤ 𝑁,

𝑝𝑖,𝑗,𝑡
(𝑟)
= ∫ 𝑝𝑖,𝑗

𝑟
𝛺(𝑅)

𝜋𝑡(𝜽
(𝑅)|𝒚𝑡)𝑑𝜽

(𝑅), ∀1 ≤ 𝑖, 𝑗 ≤ 𝑁, 𝑟 ∈ 𝑅,

𝑞̃𝑖,𝑗,𝑡
(𝑟) = ∫ 𝑞𝑖,𝑗

𝑟
𝛺(𝑅)

𝜋𝑡(𝜽
(𝑅)|𝒚𝑡)𝑑𝜽

(𝑅), ∀1 ≤ 𝑖 ≤ 𝑁, 1 ≤ 𝑗 ≤ 𝑀, 𝑟 ∈ 𝑅.

 (5) 

Considering the difficulty of numerically evaluating the high-dimensional 

integrals (5), we adapt a Gibbs sampling procedure from [137] to produce a random 

sample {𝜽𝑡
(𝑅),𝑘}

𝑘=1

𝛿

 from the distribution 𝜋𝑡(𝜽
(𝑅)|𝒚𝑡). This sample can be used not only 

for approximating the solution to (4), but also for obtaining credible intervals (a measure 

of uncertainty) for the model parameters via some approximation of the distribution 

𝜋𝑡(𝜽
(𝑅)|𝒚𝑡) from the sample {𝜽𝑡

(𝑅),𝑘}
𝑘=1

𝛿

. The following assumptions are made to initiate 

the sampling procedure. 

1. Following [17], it is assumed that 𝜣(𝑅) has independent prior distributions in each 

of its component 

𝜋(𝜽(𝑅)) = 𝜋(𝝂)∏ 𝜋(𝑷(𝑟))𝜋(𝑸(𝑟))
𝑟∈𝑅

. 

2. Following [17], initial probabilities, along with transition probabilities and 

emission probabilities conditioned at each state at all regimes are independently 

Dirichlet distributed17 as 

                                                 
17 The setting of Dirichlet distribution as priors allows derivation of closed form (see Lemma 13.1.6 on 

[17]) of the conditional distributions 𝜋(𝜈|𝒙𝑡
𝑘−1, 𝒚𝑡), 𝜋(𝑃

(𝑟)|𝒙𝑡
𝑘−1, 𝒚𝑡) and 𝜋(𝑄(𝑟)|𝒙𝑡

𝑘−1, 𝒚𝑡) needed in the 

Gibbs sampling (Fig. 2), and therefore the HMM parameters can be efficiently sampled. If the Dirichlet 

distribution is not flexible enough to represent prior information, hierarchical Dirichlet prior [139] may be 

used instead at the expense of more computation. 
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𝒱 ∼ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝛼𝜈),

𝒫𝑖,⋅
(𝑟) ∼ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝛼𝒫), 1 ≤ 𝑖 ≤ 𝑁, 𝑟 ∈ 𝑅,

𝒬𝑖,⋅
(𝑟) ∼ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝛼𝒬), 1 ≤ 𝑖 ≤ 𝑁, 𝑟 ∈ 𝑅,

  

where 𝛼𝒱 , 𝛼𝒫 , 𝛼𝒬 are the corresponding concentration parameters. Following 

[137], for a non-informative case, all elements of 𝛼𝒱 , 𝛼𝒫 , 𝛼𝒬 can be set to 0.518 

whereas other values these distribution parameters can reflect prior knowledge of 

the model parameters, which may accelerate learning of the model. 

3. The first sample point 𝜽𝑡
(𝑅),1

 can be directly obtained from the prior distribution of 

the model parameters. The Gibbs sampler then successively obtains more samples 

of the model parameters using the estimate of hidden states by conjugate Bayesian 

computation [41] and updates of the hidden states given the estimate of model 

parameters by Forward-Backward procedure [17]. 

4. After δ samples are obtained from this procedure, point estimate of model 

parameters can be obtained as the sample mean, i.e. 𝜽̃𝒕
(𝑅),δ ≔

1

δ
∑ 𝜽𝑡

(𝑅),𝑘δ
𝑘=1 . In 

addition, credible intervals of those parameters can be obtained from some 

approximation of the distribution 𝜋𝑡(𝜽
(𝑅)|𝒚𝑡) from the sample points {𝜽𝑡

(𝑅),𝑘}
𝑘=1

𝛿

 

(or just by simply obtaining appropriate empirical quantiles from the sample). 

Decision on how many samples are needed (how big should δ be) can be made ad 

hoc, which is what we did in this chapter, or perhaps more formally, using the 

width of the confidence interval on the posterior mean, following the central limit 

theorem reported in [43] (procedure can be terminated when the width of the 

confidence interval falls sufficiently). 

  

                                                 
18 These concentration parameters could be estimated using likelihood approach [139] if detailed prior 

information is available. 
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Figure 2: Gibbs sampling procedure for Bayesian estimation of HMM parameters. 
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A caution needs to be mentioned when such a sample of model parameters is used 

to characterize model uncertainty. Since the dynamics of observation process 𝑌𝑡 

generated by a HMM with parameters 𝜽(𝑅) remains identical under arbitrary permutation 

of labels of the hidden states and the associated HMM parameters, there could be mis-

ordered components within the sample of HMM parameters yielded by the Gibbs 

sampler. For ergodic HMMs, calibration of the order of the labels can be achieved by 

various methods, as suggested in [140], [141]. In the case of non-ergodic HMMs 

emphasized in this chapter, following [17], we propose to apply asymmetric priors on 

transition probabilities, namely, for each row of 𝐏 and for each row of 𝐐, so that labels 

for the states cannot be switched.  

The Bayesian approach described above has desirable convergence properties for 

the ergodic and homogeneous HMM [18]. Namely, for such HMMs, as the length of the 

observation sequence 𝒚𝑡 approaches infinity (as t approaches infinity), the posterior 

distribution 𝜋𝑡 of Bayesian estimates of HMM parameters obtained following the Gibbs 

sampling procedure illustrated in Figure 2 tends towards a multivariate normal 

distribution centered at true value of HMM parameters, with variance-covariance matrix 

shrinking toward zero at the rate of √𝑡. In other words, for ergodic and homogeneous 

HMMs, the Bayesian estimation procedure shown in Figure 2 yields estimates of HMM 

parameters that converge in distribution to the true values of those parameters. As we will 

see in Section 3.5, this desirable property of the distribution of estimated parameters 

shrinking around the true parameter values as more data is used to estimate the model 

will be empirically demonstrated for non-ergodic and non-homogenous HMMs used in 

this chapter for modeling and monitoring of degradation process, though firm theoretical 

proofs require future studies. 
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3.3 PROCESS MONITORING BASED ON UNCERTAIN HMM 

Following Fox et al. [113] and Brown et al. [114], Chollete and Djurdjanovic [81] 

proposed to monitor the slope of log-likelihoods of observation sequences, given the 

regime-specific degradation HMM defined by parameters 𝜽(𝑅).  For an observation 

sequence 𝒚𝑇 = [𝒚𝜏0
𝑇 , 𝒚𝜏1

𝑇 , … , 𝒚𝜏𝐻
𝑇 ]

𝑇
, where 1 = 𝜏0 < 𝜏1 < 𝜏2 < ⋯ < 𝜏𝐻 = 𝑇 indicate 

time instances where the regimes change, log likelihood slope 𝜆ℎ for the time interval 

(𝜏ℎ−1, 𝜏ℎ) is defined as  

  𝜆ℎ =
logPr(𝒚𝜏ℎ|𝜽

(𝑅))−logPr(𝒚𝜏ℎ−1+1|𝜽
(𝑅))

𝜏ℎ−𝜏ℎ−1−1
, 1 ≤ ℎ ≤ 𝐻, (6) 

Since the Bayesian HMM estimation procedure described in this chapter yields a 

distribution of model parameters, rather than a point estimate of those parameters [81], 

one should monitor the process degradation using the entire distribution of log-

likelihoods of slopes 𝛬ℎ, rather than a single slope estimate (6). Namely, the estimate of 

the degradation model parameters 𝜣(𝑅) is a distribution and thus, for a given observation 

sequence 𝒚𝑇 = [𝒚𝜏0
𝑇 , 𝒚𝜏1

𝑇 , … , 𝒚𝜏𝐻
𝑇 ]

𝑇
, the distribution 𝛬ℎ of log likelihood slopes for the 

time interval (𝜏ℎ−1, 𝜏ℎ) becomes  

  𝛬ℎ: =
logPr(𝒚𝜏ℎ|𝜣

(𝑅))−logPr(𝒚𝜏ℎ−1+1|𝜣
(𝑅))

𝜏ℎ−𝜏ℎ−1−1
 ,1 ≤ ℎ ≤ 𝐻, (7) 

and corresponds to the distribution of individual slopes (7), as model parameters 𝜽(𝑅) 

follow the distribution 𝜣(𝑅) obtained through the Bayesian estimation. 

Following Chollete and Djurdjanovic [81], distributions 𝛬ℎ can be normalized as 

follows to account for regime changing 

  𝛬̃ℎ: =
𝛬ℎ−𝜇

(𝑟ℎ)

𝜎(𝑟ℎ)
, 𝑟ℎ ∈ 𝑅 (8) 
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where 𝜇(𝑟ℎ) and 𝜎(𝑟ℎ) are the sample mean and sample standard deviation of the 

distribution of log-likelihood slopes for regime 𝑟ℎ relevant during the time interval19 

(𝜏ℎ−1, 𝜏ℎ), as observed in the training data.  

Once the normalized distributions 𝛬̃ℎ of log likelihood slopes corresponding to 

nominal behavior are available, one can quantitatively evaluate how much a given 

observation 𝒚𝑇 corresponds to that normal behavior. In order to do that, it is necessary to 

evaluate a similarity/dissimilarity measure of probability distributions of log-likelihood 

slopes observed on the dataset corresponding to the normal system behavior and that 

corresponding to a newly arrived observation sequence. For that purpose, one can use the 

Kolmogrov-Smirnov (KS) distance [142], a widely used tool in statistics, measuring the 

maximum difference between two cumulative distribution functions 𝐹0 and 𝐹1. It is a 

non-negative quantify defined as  

 𝐾𝑆(𝐹0, 𝐹1) = sup𝑥 |𝐹0(𝑥) − 𝐹1(𝑥)|. (9) 

and equaling 0 if and only if distributions 𝐹0 and 𝐹1 are identical 

Over time, one can monitor the KS distance of the normalized distributions of log 

likelihood slopes of newly arrived observation sequences away from those observed on 

the training data, i.e. on the data corresponding to the normal system behavior. In this 

chapter, we approximate slope distributions using simple histograms [143], i.e. non-

parametrically, without imposing specific assumptions on their forms 
20

. For monitoring 

and fault detection purposes, we propose to define a KS distance-based Confidence Index 

(CI) as 

                                                 
19 Note that during the time interval (𝜏ℎ−1, 𝜏ℎ), only one regime of operation 𝑟ℎ ∈ 𝑅 takes place (and hence 

only one of the regime-specific HMMs is relevant). 
20 Please note that KS distances of empirical distributions of 𝐹0 and 𝐹1 based on two samples can be 

computed exactly, and it will converge to 𝐾𝑆(𝐹0, 𝐹1) when sample sizes grow to infinity [142]. 
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 𝐶𝐼𝑡𝑒𝑠𝑡 = min1≤𝑖≤𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔_𝑠𝑖𝑧𝑒 𝐾𝑆(𝛬̃𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑖 , 𝛬̃𝑡𝑒𝑠𝑡), (10)  

where the term training_size is the number of training sequences. The CI can then be 

tracked using techniques from traditional statistical process control [13], raising alarms 

upon detection of CI values that violate some threshold. 

 

3.4 RESULTS AND DISCUSSION 

We will first use a simulated dataset to illustrate the capability of the Bayesian 

estimation method described in Section 3.3 to identify the HMM parameters along with 

the associated estimation uncertainty for parameters of a HMM with discrete emission 

symbols. Another simulated dataset consisting of data sequences generated from several 

HMMs with continuously distributed observations will then be utilized to demonstrate 

the capability of the monitoring method proposed in Section 3.4. Finally, Bayesian HMM 

estimation introduced in this chapter will be applied to degradation modeling and 

monitoring of a semiconductor-manufacturing tool operating in a major 300 mm wafer 

fabrication facility.  

3.4.1 Identification of Non-Ergodic Discrete HMM Parameters via Bayesian 

Estimation 

20 sequences, each with 20 observations, were simulated from a HMM with 3 

states and 5 observation symbols, with the true model parameters being 

 𝜽 = (𝝂, 𝐏, 𝐐) = ([
1
0
0
] , [
0.95 0.05 0
0 0.95 0.05
0 0 1

] , [
0.6 0.1 0.1 0.1 0.1
0.1 0.1 0.6 0.1 0.1
0.1 0.1 0.1 0.1 0.6

]).  

This is a HMM of a left-to-right state transition structure, which means that it is non-

ergodic and multiple sequences are necessary to train the model. We assumed the initial 
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distribution 𝝂 was known and hence the corresponding HMM parameters did not have to 

be estimated from the simulated sequences. Also, following [137], we assumed 

independent non-informative prior on each row of the transition matrix 𝑃, i.e. we 

assumed 𝐷𝑖𝑟(0.5, 0.5, 0.5), 𝐷𝑖𝑟(0, 0.5, 0.5) and 𝐷𝑖𝑟(0, 0, 0.5) to the prior distributions 

for rows 1 to 3 of the transition matrix P, respectively. For emission matrix 𝑄, we 

assigned 𝐷𝑖𝑟(0.5, 0.5, 0.5, 0.5, 0.5) as the prior distribution for each row [137]. Gibbs 

sampling procedure discussed in Section 3.2 was then evoked to generate a sample of 

HMM parameters from their posterior distribution, given the 20 observation sequences. It 

was assumed that the Gibbs sampling converged after the initial 200 iterations and the 

sample of HMM parameters was observed from the 800 subsequent iterations.  

Figure 3 shows the empirical 2.5% and 97.5% error limits (95% credible interval) 

for each of the HMM parameters as well as the corresponding posterior means, evaluated 

after more and more observation sequences are presented to the identification algorithm. 

It is clearly visible that the posterior distribution of the HMM parameters pursued by the 

newly proposed HMM identification procedure progressively shrink in their variance and 

concentrate around the true model parameters, as the amount of training data increases. 

This indicates that the posterior distributions converge towards the point mass at the true 

model parameters, with variances of the distribution of parameter estimates converging to 

zero. Moreover, such phenomenon occurred with all types of HMMs we examined in 

simulations, including HMMs with Gaussian or discrete observations, as well as non-

ergodic and non-homogeneous dynamics. To the best of authors’ knowledge, formal 

proofs of convergence property of Bayesian estimation of HMM parameters and its 

quantitative characterization exist only for ergodic and homogeneous HMM [18] and do 

not exist for non-ergodic, non-homogeneous HMMs, such as those studied in this chapter 
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21
. Though pursuit of these proofs is highly worthy of a focused study, it remains outside 

the scope of this chapter. 

 

Figure 3: Credible intervals and means of identified HMM parameters using 

20/50/100 sequences  

                                                 
21 As mentioned in Chapter 1, degradation processes are unidirectional and operation mode specific, which 

means the corresponding degradation HMMs are non-ergodic and non-homogenous.  
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3.4.2  Degradation Assessment Using Distributions of Slopes of Log-Likelihoods of 

Observation Sequences 

We consider a simulated system whose normal condition can be modeled by a 

HMM with 3 states and Gaussian observations, with true parameters being 

  𝜽 = (𝝂, 𝑷, 𝝁, 𝝈2) = ([

1/3
1/3
1/3

] , [
0.9 0.1 0.0
0.2 0.6 0.2
0.0 0.1 0.9

] , [
0
5
10
] , [
1
1
1
]).  

Again, we assumed that the initial distribution 𝝂 is known.  Figure 4 shows the time 

series plots (left) and corresponding histogram plots (right) of five observation sequences 

{𝒚[1], 𝒚[2], 𝒚[3], 𝒚[4], 𝒚[5]}, where 𝒚[1]and 𝒚[5] were simulated from the “normal 

condition”, i.e. using “faulty” HMM with parameters 𝜽, while 𝒚[2], 𝒚[3]and 𝒚[4] were 

simulated using HMMs with parameters different from 𝜽. To be more specific, 

probability 𝑃1,1 of remaining in state 1 was changed from 0.9 to 0.8, 0.7 and 0.6, 

respectively, for 𝒚[2], 𝒚[3] and 𝒚[4], with the probability 𝑃12 of transitioning from state 1 

to state 2 being adapted so that 𝑃1,1 + 𝑃1,2 =1. One can note from Figure 3 that very little 

difference is visible between the histograms of the five sequences, which means that 

traditional monitoring methods based on statistical analysis of sensory signatures would 

have a problem differentiating between those conditions.  
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Figure 4:  Time series plots (left) and histograms (right) of the simulated sequences: 

(normal, faulty, faulty, faulty, normal) 

In contrast, from Fig. 5 it can be clearly seen that the underlying changes are 

detectable using the concept of HMMs. Namely, once the HMM parameters were 

identified from 𝒚[1] using Bayesian estimation described in Section 3.2, the monitoring 

method introduced in Section 3.3 was applied on all five sequences 

{𝒚[1], 𝒚[2], 𝒚[3], 𝒚[4], 𝒚[5]} to investigate abnormalities within them. For these five 

sequences, we denote samples of the normalized log-likelihood slopes as 

{𝛬̃[1], 𝛬̃[2], 𝛬̃[3], 𝛬̃[4], 𝛬̃[5]}, with each 𝛬̃[𝑖] evaluated from the corresponding sequence 𝒚[𝑖] 

using the final sample of the HMM model parameters identified based on 𝒚[1]. It is 

visible that as the HMM dynamics deviate further from the nominal HMM model, the 

distribution of log-likelihood slopes deviates further and further away from that 

corresponding to the normal system condition (corresponding to sequence 𝒚[1]). 
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Figure 5:  Distribution of normalized slopes evaluated for all observation sequences. 

Many metrics exist that can characterize this change [144], including the KS distance 

mentioned in Section 3.3. As can be seen from the results of the two-sample KS 

goodness-of-fit test listed in Table 1. Unlike the direct analysis of observation 

distributions, the normalized slopes can clearly and reliably discriminate between the 

underlying conditions from which the time-series were generated.  
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 Purely statistical approach 
HMM based approach proposed in 

this chapter 

First Sample 

(Normal) 

𝒚[1] 
observation sequence 

𝛬̃[1] 

normalized log-likelihood slope 

Second 

Sample 
𝒚[2] 𝒚[3] 𝒚[4] 𝒚[5] 𝛬̃[2] 𝛬̃[3] 𝛬̃[4] 𝛬̃[5] 

True 

Condition of 

the 2
nd

 

samples 

Faulty Faulty Faulty Normal Faulty Faulty Faulty Normal 

KS-statistics 0.10 0.11 0.14 0.08 0.86 0.96 1.00 0.09 

P-value 0.27 0.22 0.05 0.63 0.00 0.00 0.00 0.38 

Significant 

Difference 

Detected 

No No No No Yes Yes Yes No 

Correctness No No No Yes Yes Yes Yes Yes 

Table 1:  Results of two sample Kolmogorov-Smirnov tests based on the HMM 

models and pure distribution based characterization of time series simulated in Section 

3.4.2. 

 

3.4.3  Application of HMM/Slopes-Based Monitoring Methodology on PECVD 

Data 

In this section, we present the results of applying the proposed method for 

degradation modeling and monitoring to a Plasma-Enhanced Chemical Vapor Deposition 

(PECVD) process [145] routinely used in semiconductor manufacturing. 

3.4.3.1 Description of the PECVD Dataset 

A PECVD process performs deposition of thin films on a silicon wafer substrates 

via chemical reactions executed in electromagnetic plasma, which facilitates reaction at 

temperatures low enough not to damage circuits on the wafer. This process requires 

proper and accurate operations of numerous interacting subsystems on the PECVD tool, 

including reaction chamber, radio frequency (RF) plasma generation system, gas delivery 
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system, vacuum pump, pendulum valve and seals [147]. The production procedure on a 

PECVD tool usually involves deposition of thin films onto wafers and periodic in-situ 

cleans
22

 designed to remove residual depositions that accumulated on various parts of the 

tool (chamber walls, wafer pedestal, showerheads bringing gas into the reaction chamber, 

etc.). Occasionally, preventative maintenance (PM) in the form of a so-called wet-clean 

(manual scrubbing of chamber surfaces) is needed to remedy the side effect of 

imperfections
23

 accumulated over multiple in-situ cleans and avoid production of bad 

wafers. Although numerous sensors are commonly available on the tool to measure the 

physics of the deposition process, a consequence of the complex interacting phenomena 

and distributed nature of electro-chemical reactions that take place in this tool is that its 

true degradation condition is inherently not fully observable and is often barely 

discernable from the sensory information. 

Figure 6 illustrates how operation of a PECVD tool can be related to the 

terminology of operating regime specific HMMs of its degradation. Namely, each 

sequence of observations consists of sensory signatures observed between two in-situ 

cleans (each in situ clean restores the system condition and in between the in-situ cleans, 

the system degrades following operating regime specific HMMs). Within each sequence, 

several film thicknesses could be produced on the wafers, with degradation processes 

(HMM parameters) being different for each of those film thicknesses. In other words, 

different film thicknesses correspond to different operating regimes of this tool and hence 

a regime specific (film thickness specific) HMM is needed to describe its degradation. 

                                                 
22 In-situ cleans on the tool considered here are performed by flowing ionized fluoride into the chamber, 

which reacts with depositions in the chamber and removes them. 
23 Unfortunately, in-situ cleaning agent (ionized fluoride in this case) also reacts, though much less 

intensely, with chamber walls and other tool parts, while potentially leaving small residual film depositions 

in some parts of the tool. All these imperfections accumulate over multiple in-situ clean cycles, resulting in 

long-term degradation of the tool. 
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In this study, multiple sensory signals are collected over several months from a 

PECVD tool operating in a major 300-mm semiconductor manufacturing facility. The 

tool was used to deposit four possible thicknesses of tetraethyl orthosilicate (TEOS) films 

onto silicon wafers. Automatic in-situ cleans were triggered based on the total thickness 

of deposited films since the last in-situ clean. Sampling rate of 10Hz was used to 

concurrently acquire signals from the tool’s radio-frequency (RF) circuitry, as well as 

temperatures, pressures and flow rates from various parts of the tool. In total, the dataset 

consisted of signals corresponding to 1662 sequences of wafers, with each sequence 

containing approximately 25 to 100 wafers that were processed between two consecutive 

in-situ cleans. 

 

 

Figure 6:  Illustration of PECVD tool operation in the context of operating regime 

specific HMMs of degradation. 
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Along with this massive dataset, the corresponding maintenance event logs and 

metrology data24 were also available and were used for validation of the monitoring 

results25. Based on those logs, two periods of abnormal tool behavior were identified. 

Shortly after the first PM, the tool operation was stopped due to dramatically elevated 

particle counts on the wafers, followed by several repairs on the tool and a return to 

normal behavior. The interval between the first PM and the last repair on the tool after 

that PM is treated as the first faulty period, during which 5 faulty wafer sequences were 

recorded (those were attempts to bring the tool back up, but each of them produced 

wafers with high particle counts and more repairs needed to be taken). A second faulty 

period corresponds to a dramatic particle excursion event (Coulomb crystal formations 

[146]) and corresponds to the last 36 wafer sequences in the dataset (the excursions 

started soon after the second PM event in the maintenance logs and stretches to the end of 

this dataset, which is when the tool was finally stopped and taken down for a lengthy 

repair). According to these two periods, all 1662 sequences of wafers were labeled as 

either normal or faulty, allowing evaluation of fault detection capabilities of the 

monitoring methods to be discussed in the next subsection. 
 

3.4.3.2 Process Monitoring on the PECVD Dataset 

From the raw sensor readings (traces) collected during processing of each wafer, a 

set of 40 dynamic and statistical features was extracted, as described in [147]. This 

feature set is listed in Table 2 and was reduced using Fisher’s Linear Discriminate 

Analysis (LDA) [148], yielding a subset of features that change the most between two in-

situ cleans and can thus be seen as the most sensitive to the degradation condition of the 

                                                 
24 Particle counts, as well as means and ranges of film thicknesses on the wafers output by the tool. 
25 The metrology and maintenance logs were used to identify periods of normal and abnormal tool behavior 

and evaluate how well the monitoring results conform to those logs. 
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tool [147]. These features were then discretized using a growing Self-Organizing Map 

(SOM) [149] constructed on the training dataset, which consisted of the first 499 wafer 

sequences. This set was selected since both the maintenance and metrology logs indicated 

that during that period, the tool behaved normally. The SOM based discretization step 

yielded 1163 sequences of observation symbols, out of which the first 499 (the training 

set) were used for model building
26

, while the monitoring results were evaluated on all 

1163 sequences in the dataset. 

 

Signal Signal Features 

Top Plate Temperature Mean Minimum Amplitude  

Chamber Temperature Mean Minimum Amplitude  

Pedestal 1 Temperature Mean Minimum Amplitude  

LF Forward Power Steady State Error Tune Time   

LF Reflected Power Steady State Error Tune Time Maximum  

HF Forward Power Steady State Error Tune Time Overshoot High Overshoot Low 

HF Load Power Steady State Error Tune Time Overshoot High Overshoot Low 

HF Reflected Power Steady State Error Tune Time   

Load Capacitor Voltage Steady State Tune Time   

Tune Capacitor Voltage Steady State Tune Time   

Pendulum Valve Angle Steady State Maximum   

Process Chamber 

Pressure 
Steady State Error Rise Time Overshoot Minimum 

Liquid Flow Rate 

TEOS 
Steady State Error Rise Time Overshoot  

Table 2:  Features extracted from the PECVD tool sensors. 

                                                 
26 Please note that selecting more or fewer wafer sequences for model building would have led to 

degradation models with more, or less model uncertainty. Explorations of how much data is needed to build 

a “sufficiently confident model” (model with sufficiently small model uncertainty) are very relevant to the 

issue of convergence of the Bayesian HMM identification procedure introduced in Section 2, which is 

outside of the scope of this chapter and will not be discussed here. 
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A non-ergodic (left-to-right) regime (film-thickness) dependent HMM with 4 

regimes, 4 hidden states and 60 observation symbols (size of the SOM) was identified 

from the training set, using the Bayesian estimation procedure introduced in Section 3.2 

and a non-informative prior for its parameters 𝜣(𝑅). This HMM was then used for 

degradation monitoring, using the procedure introduced in Section 3.3. Figure 7(a) shows 

CIs defined by for all 1163 sequences in the dataset. For contrast, an industry-standard 

multivariate process monitoring method based on the Principal Component Analysis 

(PCA) and the use of T
2
 statistics [150] was applied to the same dataset, using the same 

portion of the data for training. In order to enable 1-1 comparison of the two methods, 

each period between two in-situ cleans27 was modeled using a distribution of T
2
 statistics 

corresponding to that set of wafers. This enabled monitoring using CI indices based on 

the T
2
 statistics defined by (10) , only not using distributions of normalized log-likelihood 

slopes, but distributions of T
2
 statistics observed on the wafers between any two adjacent 

in situ cleans. Those CI indices are shown in Figure 7 (b). 

  

                                                 
27 One sequence of observations for which the HMM based monitoring method from Section 3 yields one 

KS distance-based CI. 
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Figure 7:  SPC chart of CI for HMM/LS and PCA/ T2. The control limits designated 

by the red horizontal lines are set based on yielding 65% true alarms in the 

test sequences in each case. The circled points are out-of-control points. The 

CI for the PCA case has been logarithmically (monotonically) transformed 

for visual comparison with the HMM case.  
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Receiver Operating Characteristic (ROC) curve and associated Area Under the 

Curve (AUC) [151] are utilized to evaluate the monitoring performance of the newly-

proposed HMM-based and traditional PCA/T2 based methods.  Figure 8 shows the ROC 

curves and the associated AUCs for the two methods. It is obvious that the ROC curve 

yielded by the new method outperforms the one produced by the PCA/ T2 based 

monitoring method for most potential control limits. Firstly, AUC corresponding to the 

HMM-based monitoring method is 23.6% larger than that of the PCA/T2 based method. 

Although the PCA/T2 based method captures the largest outlier sequences with slightly 

higher true positive rates than the HMM-based method (better performance for false 

positive rates less than 0.02), for false alarm rates above 0.02, the HMM-based method 

yields often dramatically higher true positive rates than the PCA/T2 based method. For a 

commonly used 5% false alarm rate level, the newly proposed approach has the true 

positive alarm rate of 81%, while the true positive alarm rate for the PCA/T2 based 

method is at 62%.  
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Figure 8: ROC curves and AUCs for HMM/Slopes and PCA/ T2. Each symbol 

represents the false positive vs. true positive rate of an entire SPC chart 

resulting from the re-categorization of a single additional sequence due to 

changing the control limit.  
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3.5  CONCLUSION 

This chapter presented a novel condition-based monitoring methodology based on 

operating regime specific HMMs of system degradation, where HMM parameters are 

identified along with the corresponding estimation uncertainty using a Bayesian 

estimation approach. The use of the HMM concept overcomes the challenge of partial 

observability of the underlying condition seen in many engineering processes today, 

while Bayesian estimation naturally provided understanding of the uncertainties 

associated with the estimation of parameters of degradation HMMs. Simulations were 

used to demonstrate capabilities of the Bayesian estimation procedure to identify HMM 

parameters and the associated parametric uncertainties, as well as to detect changes in the 

process dynamics using HMMs identified via Bayesian estimation. Monitoring 

capabilities of the newly proposed degradation modeling and monitoring methods based 

on HMMs identified via Bayesian estimation were then demonstrated on a vast dataset 

obtained over several months from a PECVD tool operating in a major semiconductor 

fabrication facility. 

Several directions for potential future work can be extended from this chapter. 

The newly proposed process monitoring methodology could be adapted and tried on other 

engineering processes where partial observability of the underlying conditions persists, 

such as etching process in semiconductor manufacturing or oil rig performance 

monitoring. Furthermore, statistical asymptotic theory for Bayesian estimation of HMM 

parameters, which exists for ergodic, homogeneous HMMs, needs to be pursued also for 

the case of non-ergodic and regime-specific HMMs. In this chapter, we offered empirical 

results that imply consistency of the newly proposed Bayesian estimator, even for non-

ergodic and regime-specific HMMS, but we stopped short of formally proving this 

property. Besides the obvious theoretical allure, understanding of the asymptotic behavior 
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of posterior distributions of Bayesian estimates of HMM parameters is of high practical 

importance too. Ascertaining whether more data indeed leads to a better model and 

enabling one to know how much data is really needed to estimate HMM with sufficient 

confidence are of high practical value in any discipline in which HMMs are utilized. 
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Chapter 4: Modeling Imperfect Maintenance and Monitoring with 

Individual Observation with HMM 

 

4.1 INTRODUCTION 

Condition-Based Maintenance (CBM) aims at facilitating maintenance operations 

exactly where needed and exactly when needed, based on sensor readings that reflect the 

actual condition of the maintained assets [2]. However, sensor readings obtained from 

highly complex engineering systems, such as distributed fields (plasma) or systems of 

many interconnected subsystems (automotive engines) usually provide insufficient 

information about the underlying conditions due to the insufficiently detailed physical 

models or the insufficient number and character of sensors. Monitoring of such systems 

therefore hinges on the development of degradation models capable of handling partial 

information about the system condition within the available sensory data.  

The intuitive relation between the sensor readings and the underlying machine 

condition can be modeled probabilistically, by associating probabilities of the various 

levels of system degradation with the observed signatures extracted from the sensor 

readings. The concept of hidden Markov models (HMMs) [9], with its observable 

variables modeling the signatures extracted from the sensors mounted on the monitored 

machine, while its hidden states model the conditions of that machine. Such modeling 

approach was recently proposed in [81] and [152], and was successfully demonstrated in 

monitoring of a plasma-based deposition tool operating over multiple months in a major 

semiconductor-fabrication facility. 

Despite the importance of these two studies, they implicitly assumed that after 

each maintenance action, the monitored system always returns to the state of being as-
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good-as-new upon completion of the maintenance intervention. However, maintenance 

actions are not perfect [153], and the post-maintenance condition depends on the 

effectiveness of that maintenance action. For example, chamber cleaning [154] is a type 

of periodical maintenance event commonly scheduled on semiconductor manufacturing 

tools to reestablish purity in the chamber environment. Such operation may leave residue 

on some surfaces inside the chamber and at the same time etch away some useful 

surfaces in that chamber. As a consequence, the tool condition after maintenance is a 

stochastic variable itself [155]. 

Monitoring of a system whose condition is modeled by hidden states of an HMM 

can be pursued in multiple ways once the parameters of the underlying HMM become 

available. One approach is to identify the most likely condition of the system via 

likelihoods of the newly arrived sensor data, given the HMMs modeling the degradation 

of the target system. This approach has been applied to diagnose historical wear patterns 

by Wang et. al [156] and detect deviations from the good-as-new tool by Ocak and 

Loparo [157]. Alternatively, one can monitor the departure of the dynamics in the new 

data from the dynamics in the nominal HMM modeling the normal system behavior. Fox 

et al. [113] and Brown et al. [114] demonstrated the efficacy of this approach in detecting 

faults when HMM is used for modeling the behavior of a robot and an electric power 

plant, respectively. Recently, Cholette and Djurdjanovic [81] used the later approach to 

model the degradation of a semiconductor-manufacturing tool using regime-specific 

degradation HMMs. Zhang et al. [152] extended the previous work by enabling 

estimation of parametric uncertainties in estimation of the HMMs that model the system 

degradation, as well as by introducing a novel HMM based condition monitoring method 

that incorporates those parametric uncertainties in the degradation HMMs into the fault 

detection decision. 
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Recognition of the degradation state in a HMM based model of degradation is a 

well-known problem about using available observation sequences to identify the 

corresponding hidden HMM states. A traditional approach to identifying the hidden 

HMM states is the Viterbi algorithm [158], which finds the sequence of hidden states that 

maximizes the log-likelihood for a given observation sequence. This algorithm has been 

applied to detect machine failure [69], and recognize degradation states of bearings [159] 

as well as the condition of a turbofan engine [160]. Even though entropy of the entire 

trajectory provided by the Viterbi algorithm was recently analyzed [161], uncertainty 

information of any individual state is not available through the Viterbi algorithm. On the 

other hand, estimation of the probability of the most recent state, or filtering, is another 

approach to the state recognition problem. This approach provides a full distribution of 

the current hidden state and has been utilized for recognizing degradation condition in a 

drilling tool [104] and an antenna [105]. However, in both the approaches mentioned 

above, the HMM parameters are assumed to be perfectly known
28

, without any parameter 

uncertainties in them. As we have argued in [152], the parametric uncertainty of 

degradation HMM is highly important for modeling and monitoring of engineering 

systems. Unfortunately, to the best of authors’ knowledge, a method capable of 

recognizing degradation states in an engineering system whose condition is modeled by 

HMMs with uncertain parameters does not exist. 

Despite all the advances in applying HMMs for condition monitoring, modeling 

the variability in degradation condition caused by the imperfection in maintenance 

effectiveness has not been addressed. Considering this gap, we extend the condition 

modeling via hidden states of regime-specific HMMs from condition modeling only in 

                                                 
28 The well-known and frequently used B-W algorithm for identifying HMM parameters provide results in 

such form. 
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the operating regimes where degradation state worsens, to also modeling potentially 

imperfect maintenance operations as yet another operating regime where degradation 

state probabilistically recovers, as modeled using right-to-left HMMs. We also propose a 

new method for performance assessment based on the newly proposed degradation and 

maintenance HMM whose parameters and corresponding uncertainties are obtained via 

the Bayesian identification procedure described in [152]. 

The remainder of this chapter is organized as follows. In Section 4.2, the concept 

of HMMs is briefly discussed, after which a novel HMM based degradation modeling 

framework that incorporates models of imperfect maintenance operations is described. A 

novel fault detection method based on the understanding of parametric uncertainties of 

the degradation HMM will be presented in Section 4.3. Section 4.4 will show results of 

degradation modeling and monitoring of an industrial semiconductor-manufacturing 

process accomplished using the new HMM based degradation modeling and monitoring 

methods described in Section 4.3. Finally, Section 4.5 offers conclusions of this chapter 

and outlines some possibilities for future research. 

 

4.2 HIDDEN MARKOV MODEL 

Hidden Markov model is a doubly embedded stochastic process {𝑋𝑡, 𝑌𝑡}𝑡=0
∞  with 

an unobservable Markov chain 𝑋𝑡 and the observable process 𝑌𝑡 for which at each time 𝑡, 

the observable variables 𝑌𝑡 are probabilistically related to the hidden state 𝑋𝑡 at each time 

𝑡. Assuming that the set of possible states for the hidden process 𝑋𝑡is 𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑁} 

and the set of possible observable symbols is 𝑂 = {𝑜1, 𝑜2, … , 𝑜𝑀}, the HMM can be 



58 

described by a parameter triplet29 𝜽 = (𝝂, 𝐏, 𝐐), consisting of the initial state distribution 

𝝂 ∈ [0,1]𝑁, state transition probability matrix 𝐏 ∈ [0,1]𝑁×𝑁 and emission probability 

matrix 𝐐 ∈ [0,1]𝑀×𝑁 . 

 In many applications, physics of the process modeled using the HMM can lead to 

specific patterns in the state transition matrix. For example, if the hidden states 𝑆 =

{1,2,3} represent condition of a monitored system, with state 1 denoting the excellent 

condition, state 2 denoting the OK condition and state 3 representing the bad condition, 

the state transition matrix 𝑃 is constrained to be an upper triangular matrix, or 𝑝𝑖𝑗 =

0, ∀𝑖 > 𝑗, since without a maintenance operation, degradation state of the system can 

only deteriorate. Such “left-to-right” HMM structure has been utilized for degradation 

modeling in [81], [152].  

Recently, the standard HMM construct described above has been extended to 

regime-specific HMMs by incorporating time-varying dynamics and observation models, 

in order to account for variability in the degradation models caused by the potentially 

variable operating regimes of the monitored system [81], [152]. However in those papers, 

each maintenance operation was assumed to be perfect meaning that the condition after 

each maintenance was assumed to be as good as new with probability 1. 

In order to model the potential imperfections of maintenance operations, in this 

chapter, we will model the degradation state recovery caused by a maintenance 

intervention as yet another Markovian hidden state transition, only this time encoded by a 

left-to-right structure of the state transition matrix, denoting a stochastic and thus 

imperfect recovery. Suppose the operating regimes over time are denoted by a sequence 

                                                 
29 Emission distributions, such as Gaussian distributions, can be conceptualized and parameterized, leading 

to a vector of state dependent means and variances substituting the emission matrix 𝑄 in the parameter 

triplet 𝜽. 
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𝑧𝑡, 𝑡 = 0,1,2, … , with each 𝑧𝑡 having a known value from the set of possible operating 

regimes  

𝑅 = {𝑟1, 𝑟2, … , 𝑟𝐿 , 𝜌1, 𝜌2, … , 𝜌𝐿′} 

where 𝑟’s denote the production regimes improving the system condition and 𝜌’s are the 

maintenance regimes (system condition restoring). For each regime in the set 𝑅, let us 

allow different HMM dynamics and observation probabilities by introducing a regime-

specific HMM concept, which, assuming N hidden states {𝑠1, 𝑠2, … , 𝑠𝑁}, can be described 

by parameters 

𝜽(𝑅)

= (𝝂, 𝐏(𝑟1), 𝐐(𝑟1), 𝐏(𝑟2), 𝐐(𝑟2), … , 𝐏(𝑟𝐿), 𝐐(𝑟𝐿), 𝐏(𝜌1), 𝐐(𝜌1), 𝐏(𝜌2), 𝐐(𝜌2), … , 𝐏(𝜌𝐿′), 𝐐(𝜌𝐿′)), 

with initial state probability vector 

𝝂 = [𝜈1 𝜈2 ⋯ 𝜈𝑁]𝑇; 𝜈𝑖 = Pr(𝑋0 = 𝑠𝑖) , 𝑖 = 1,2, … ,𝑁 

regime-specific left-to-right state transition matrices 𝐏(𝑟), 𝑟 ∈ {𝑟1, 𝑟2, … , 𝑟𝐿}  

𝐏(𝑟) = [𝑝𝑖,𝑗
(𝑟)
]
𝑖,𝑗=1,2,…,𝑁

,  𝑝𝑖,𝑗
(𝑟)
= Pr(𝑋𝑡+1 = 𝑠𝑗|𝑋𝑡 = 𝑠𝑖) , for 𝑧𝑡 = 𝑟  

describing state transitions that degrade the system state
30

, “right-to-left” transition 

matrices 𝐏(𝜌), 𝜌 ∈ {𝜌1, 𝜌2, … , 𝜌𝐿′} 

                                                 
30 These matrices describe production regimes of the system and satisfy 𝑃𝑖𝑗

(𝑟)
= 0, for 1 ≤ 𝑖 < 𝑗 ≤ 𝑁, 1 ≤

𝑙 ≤ 𝐿. 
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𝐏(𝜌) = [𝑝𝑖,𝑗
(𝜌)
]
𝑖,𝑗=1,2,…,𝑁

,  𝑝𝑖,𝑗
(𝜌)
= Pr(𝑋𝑡+1 = 𝑠𝑗|𝑋𝑡 = 𝑠𝑖) , for 𝑧𝑡 = 𝜌 

describing the maintenance related state transitions that recover the system state31, 

regime-specific emission probability matrices 𝑸(𝑟), 𝑟 ∈ {𝑟1, 𝑟2, … , 𝑟𝐿 , 𝜌1, 𝜌2, … , 𝜌𝐿′} 

satisfying 

𝐐(𝑟) = [𝑞𝑖,𝑗
(𝑟)
] 𝑖=1,2,…,𝑁
𝑗=1,2,…,𝑀

, 𝑞𝑖,𝑗
(𝑟)
= Pr(𝑌𝑡 = 𝑜𝑗|𝑋𝑡 = 𝑠𝑖), for 𝑧𝑡 = 𝑟 

and the hidden states process 𝑋𝑡 progressing according to probabilities32 

 [

Pr (𝑋𝑡 = 𝑠1)
Pr (𝑋𝑡 = 𝑠2)

⋮
Pr (𝑋𝑡 = 𝑠𝑁)

] = 𝝂(∏ 𝐏(𝑧𝑖)𝑡
𝑖=0 ).  (11) 

Let us note that Eq. (11) formalizes the well-known notion of the continuity of 

degradation, stipulating that the last state of degradation after one operating regime 

becomes the initial state of degradation for the next one. 

 The HMM parameters 𝜽 need to be identified from the available realizations of 

the observable variables (sensor readings), and Chapter 3 described a Bayesian estimation 

based approach to identification of those parameters. 

 

                                                 
31 These matrices describe maintenance regimes of the system and satisfy 𝑃𝑖𝑗

(𝜌)
= 0, for 1 ≤ 𝑗 < 𝑖 ≤

𝑁, 1 ≤ 𝑙 ≤ 𝐿′. 
 
32 These probabilities assert the probability of degradation states in future time 𝑡 assuming current time is 

the starting time. If past observations are available, the probability of the current state can be estimated by 

the so-called forward algorithm [9], and can be similarly used for assessing the predicative degradation 

condition of the modeled system.  
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4.3 CONDITION MONITORING 

Condition monitoring needs to be done for each newly arrived observation to 

facilitate on-line condition monitoring of the system without any delay. For a system 

whose degradation is modeled by HMMs, as proposed by Chollette and Djurdjanovic 

[81] and Zhang et al. [152], one approach to realize this is to use the well-known Viterbi 

algorithm [158] to determine the most likely sequence of states 

𝒙𝑡
∗ = argmax

𝑥𝑡

Pr(𝑥𝑡, 𝑦𝑡|𝜽
(𝑅)) 

Nevertheless, as mentioned earlier this method does not take into account the uncertainty 

of the model, nor does it offer information on the uncertainties regarding the most likely 

states 𝒙𝑡
∗. 

 As an alternative, let us estimate the probability of the current state 𝑥𝑡 being the 

most degraded state given an observation sequence 𝒚𝑡. Following [9], it can be calculated 

by using forward probabilities 𝛼𝑡(𝑖) defined by  

𝛼𝑡(𝑛) = Pr(𝑥𝑡 = 𝑛, 𝒚𝑡|𝜽
(𝑅)) 

followed by a normalization step 

  𝛼̅𝑡(𝑛) =
𝛼𝑡(𝑖)

∑ 𝛼𝑡(𝑖)
𝑛
𝑖=1

= Pr(𝑥𝑡 = 𝑛|𝒚𝑡, 𝜽
(𝑅))  (12) 

Since the Bayesian HMM estimation procedure introduced in Chapter 3 and utilized in 

this chapter yields a distribution of model parameters, rather than a point estimate of 

those parameters, one should monitor the probability of the worst state 33, using the entire 

distribution of 𝛼̅𝑡(𝑛), rather than a single state probability estimate in (12). Namely, the 

                                                 
33 State n. 
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estimate of the degradation model parameters 𝜣(𝑅) from the Bayesian estimation 

procedure is a distribution and the distribution of 𝛼̅𝑡(𝑛) over the entire distribution 𝜣(𝑅) 

can be considered. One possibility is to monitor the expected value for the distribution of 

𝛼̅𝑡(𝑛)  

   𝐴𝑡 = ∫ 𝛼̅𝑡(𝑛) 𝜋(𝜽
(𝑅)) 𝑑𝜽(𝑅)

𝛺(𝑅)
∫ Pr(𝑥𝑡 = 𝑛|𝒚𝑡, 𝜽

(𝑅)) 𝜋(𝜽(𝑅)) 𝑑𝜽(𝑅)
𝛺(𝑅)

 

which can be estimated as the average obtained through sampling in 𝜣(𝑅), as described in 

[152]. This is the method pursued in the rest of the chapter. 

 

4.4 RESULTS AND DISCUSSION 

4.4.1 Description of the PECVD Datasets 

The dataset used in this study is collected from a PECVD tool used to deposit thin 

films of multiple thicknesses onto silicon wafers, with residual depositions in the tool 

champer removed by periodic in-situ cleans [147], or so-called wet cleans [154], which 

take place less frequently and remove residual depositions caused by imperfections in the 

in-situ cleans. Figure 9 illustrates operation of a PECVD tool in terms of operating 

regime-specific HMMs of its degradation and maintenance operations. Namely, each 

sequence of observations consists of sensory signatures observed between two in situ 

cleans, with each in situ clean stochastically improving the system condition, while in 

between the in situ-cleans, the system degrades according to the operating regime-

specific HMMs). Within each sequence, several film thicknesses could be deposited on 

the wafers (multiple subsequences of film depositions can be observed), with degradation 

processes being different for each of those film thicknesses34. In other words, different 

                                                 
34 I.e., also the parameters of the corresponding degradation HMMs are different for each film thickness. 
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film thicknesses correspond to different operating regimes of this tool, and hence, a 

regime-specific (film thickness specific) HMM is needed to describe its degradation.  

Ideally, HMMs for modeling condition recoveries from maintenance operations 

could be identified from sensory signatures collected during those interventions, just like 

degradation models are identified from the corresponding sensory signatures. However, 

in spite of its unique size and granularity35, this data set does not contain sensory 

signatures corresponding to the in-situ cleans and hence, an alternative approach was 

needed. Different regimes of deposition can leave different byproduct or residue levels on 

the chamber, and thus the effectiveness of each in situ clean depends to a large degree on 

the last deposition sequence executed prior to that in situ clean. On the other hand, 

condition of the PECVD tool at the start of each wafer sequence36 reflects the condition 

to which the previous in-situ clean brought the tool. Therefore, the state-transition 

between the state just after processing the last pre-clean wafer and the state just before 

processing the first post-clean wafer reflects the maintenance (in-situ clean) activity and 

is assumed to follow an in situ clean regime that is associated with the last pre-clean 

deposition regime. As described in Sec. 4.2, all in-situ clean regimes are associated with 

right-to-left state transition matrices, illustrating recoveries of system conditions when 

those cleans take place. Eventually, the overall regime-specific HMM contains regimes 

for all deposition thicknesses, as well as in-situ clean regimes. 

 In this study, multiple sensory signals are collected over several months from a 

PECVD tool operating in a major 300-mm semiconductor-manufacturing facility. The 

tool was used to deposit four possible thicknesses of tetraethyl orthosilicate (TEOS) films 

                                                 
35 Signals from dozens of sensors collected during more than 30,000 depositions, all collected concurrently 

at 10Hz. 
36 I.e, just after the in-situ clean. 
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onto silicon wafers. Automatic in situ cleans were triggered based on the total thickness 

of deposited films since the last in situ clean. Sampling rate of 10 Hz was used to 

concurrently acquire signals from the tool’s RF circuitry, as well as temperatures, 

pressures, and flow rates from various parts of the tool. In total, the dataset consisted of 

signals corresponding to 2556 sequences of wafers, with each sequence containing 

signals from approximately 25 to 100 wafers that were processed between two 

consecutive in situ cleans. 

 

 

Figure 9:  Illustration of regime-specific HMM of system conditions assuming perfect 

maintenance (referred to as the Perfect Maintenance HMM or PfM-HMM) 

and regime-specific HMM assuming imperfect HMM (referred to as 

Backward Coupling Maintenance HMM or BCM-HMM). The terminology 

is adopted to emphasize the association of regimes between each in situ 

clean and the last deposition regime before that in-situ clean. 

Along with this massive dataset, the corresponding maintenance event logs and 

metrology data were also available and were used for validation of the monitoring results. 

Based on those logs, two periods of abnormal tool behavior were identified. Shortly after 

the first PM, the tool operation was stopped due to dramatically elevated particle counts 

on the wafers. The interval between the first PM and the last repair on the tool after that 

PM is treated as the first faulty period, 

The second faulty period corresponds to a dramatic particle excursion event 

caused by Coulomb crystal formations [146] and correspond to the last 36 wafer 
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sequences in the dataset. Consequently, all 2556 sequences of wafers were labeled as 

either normal or faulty, allowing evaluation of fault detection capabilities of the 

monitoring methods, which is to be discussed in the next section.  

 

4.4.2 Data Processing and Process Modeling by Regime-Specific HMM 

From the raw sensor readings collected during processing of each wafer, a set of 

40 dynamic and statistical features was extracted, as described by Bleakie and 

Djurdjanovic [147]. These features were then discretized using a growing self-organizing 

map (SOM) [149] constructed on the training dataset. The training dataset consisted of 

the first 512 wafer sequences and was selected for training since both the maintenance 

and metrology logs indicated that during that period, the tool behaved normally. 

 

 

Figure 10:  Comparison of distribution of loglikelihood slopes based on the regime-

specific HMM assuming perfect maintenance and regime-specific HMM 

assuming imperfect maintenance. 

A regime (film-thickness and in-situ clean) dependent HMM with 8 regimes (4 

deposition thicknesses and 4 in-situ clean regimes), 4 hidden states, and 60 observation 
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symbols (size of the SOM) was identified from the training set, along with the 

corresponding parameter uncertainties, using the Bayesian estimation procedure 

introduced in Chapter 3 and a non-informative prior for HMM parameters. This HMM 

will be referred to as Backward Coupling Maintenance HMM, or BCM-HMM for the rest 

of the chapter. In contrast, the same amount of training data and the same estimation 

method were used to train regime dependent degradation HMMs assuming perfect 

maintenance operations, which yielded in 4 degradation HMM regimes with 4 states and 

60 observation symbols. This method corresponds to the degradation model used in 

Chapter 3 and will be referred to as the Perfect Maintenance HMM or PfM-HMM. The 

distribution of log-likelihoods yielded by these two models, as evaluated on the training 

set, is shown in Figure 10 and some properties of the corresponding distributions are 

listed in Table 3. It is clear that the BCM-HMM outperforms the PfM-HMM significantly 

in terms of likelihood, which indicates that modeling of maintenance imperfections 

considerably improves the model of degradation dynamics within the PECVD process. 

 

 

Model Mean of Log-

likelihood 
Variance of 

Log-likelihood 
Sample 

Size 

Improvement in 

Mean of  Log-

likelihood 

PfM-HMM -60156.8 2805.826 500 NA 

BCM-HMM -59675.4 495.5023 4000 0.8% 

Table 3:  Improvement in log-likelihood based on the HMM with and without 

modeling of imperfect maintenance, using the same training dataset. 
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4.4.3 Improvement in Detection Performance for Sequence-Based Process 

Monitoring 

Receiver operating characteristic (ROC) curve, and the associated areas under the 

curve (AUC) [151] are utilized to evaluate 37 the monitoring performance of the newly 

proposed BCM-HMM-based method, the PfM-HMM-based method proposed in Chapter 

3, as well as the traditional PCA/T
2
 based statistical process control monitoring method 

[150]. Figure 11 shows the ROC curves and the associated AUCs for the three methods. 

It is evident that the ROC curve yielded by the new method outperforms the other two 

monitoring methods for almost all potential control limits. Furthermore, AUC 

corresponding to the BCM-HMM-based monitoring method is 2.75% larger than that of 

the PfM-HMM-based method, and 27.23% larger than that of the PCA/T
2
 based method.  

 

 

Figure 11:  ROC curves for detection of faulty sequences using the models of PCA/T
2
 

PfM-HMM/LS, BCM-HMM/LS. 

                                                 
37 The evaluation of the three methods is based only on the 1163 sequences of deposition regimes from the 

entire 1803 test sequences, because we only know the ground truth about the faultiness of these selected 

sequences.  
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4.4.4 Evaluation and Analysis of Wafer-Based Monitoring Methods 

In this section, we assess the monitoring performance of the fault detection 

method based on the use of degradation HMMs that account for maintenance 

imperfections (BCM-HMM) and individual observations, as described in Section 4.3. 

This method, denoted as the BCM-HMM/filtering method, was evaluated on the 

aforementioned PECVD tool data and compered to several benchmark methods. 

These methods include the traditional PCA/T2 SPC method based on observations 

from each individual wafer, monitoring based on HMMs that do not account for 

maintenance imperfections and the newly proposed filtering that evaluates hidden state 

probabilities for any given sensory observation (labeled as the PfM-HMM/filtering 

method), monitoring based on degradation HMMs that assume perfect maintenance 

operations, but using the mean log-likelihood slopes within a given observation sequance 

for monitoring, as suggested in [81] and [152](labeled as the PfM-HMM/slope method) 

and finally, method based on the newly proposed degradation HMMs that model 

maintenance imperfections, but using mean log-likelihood slopes of observation 

sequences (labeled as BCM HMM/slope method). Figure 12 shows results of this 

comparison and it is evident that the BCM-HMM/filtering monitoring method 

outperforms all the other approaches for all false positive alarm rates. It is interesting to 

note that the PfM-HMM/filtering method has dramatically worse performance than the 

counterpart method that uses the BCM-HMM degradation model (or any other method 

for that matter). Such poor performance may be attributed to the fact that the accuracy of 

the probabilities of the hidden state sequence relies heavily on the accuracy of 

recognition of the initial condition for each sequence. Within the PfM-HMM degradation 

model, the initial conditions were always assumed to be as-good-as-new and that 

deteriorated the resulting monitoring performance based on state filtering. On the other 
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hand, the PfM-HMM degradation model coupled with monitoring based on the mean log-

likelihood slopes for any given sequence provides a slightly better (higher) AUC value 

than the BCM-HMM degradation model coupled with monitoring based on the mean log-

likelihood slopes. This advantage can be attributed to the fact that the log-likelihood 

slopes in the degraded states become steeper when the initial wafer state is modeled as 

perfect, as opposed to being recognized as random, which is the case with the BCM-

HMM degradation model. 

 

 

Figure 12: ROC curves for detection of faults in individual wafers from the PECVD 

dataset.  
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4.5 CONCLUSIONS 

This chapter introduced a new method for modeling of degradation in complex 

systems using regime-specific HMMs that model imperfections in maintenance activities. 

Furthermore, a novel monitoring method based on the estimation of probabilities of 

hidden condition states using degradation HMMs with uncertain parameters was also 

proposed. Unlike the HMM-based monitoring methods introduced in [81] and [152], the 

newly proposed method enables on-line performance evaluation based on each individual 

observation symbol, rather than monitoring solely based on an entire sequence of 

observations. 

Using a large-scale semiconductor manufacturing production dataset, it was 

demonstrated clearly that the newly proposed model yields significantly higher data 

likelihoods compared to the previously reported degradation models that assumed perfect 

maintenance operations, thus indicating better representation of the data when the new 

method is used. Furthermore, the newly proposed monitoring method based on the 

degradation HMMs that are aware of maintenance imperfections and fault detection 

based on estimating probabilities of hidden degradation states using uncertain HMMs of 

system degradation yielded significantly and consistently better performance compared to 

a set of benchmark methods. 

Many extensions to the research presented in this chapter are possible. The 

methodology seems to be obviously applicable monitoring of plasma etch processes in 

semiconductor manufacturing, where the periodic yet imperfect chamber cleans take 

place after periods of production. Furthermore, other complex and insufficiently 

observable systems, such as Li-ion battery, or oil/gas extraction systems could be 

monitored using HMM-based models of degradation. In addition, sensory signatures 

collected during maintenance operations could be used to estimate maintenance-related 
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HMMs of condition dynamics (condition recoveries), similarly to how degradation 

HMMs were estimated in [81], [152] and in this chapter. Finally, let us note that ultimate 

benefits of the work presented in this chapter and even this thesis would be realized once 

degradation information from multiple machines in a system gets collected, coordinated 

and utilized for cost-effective operational decision-making. In a recent thesis [164], Celen 

proposed optimized operational decision-making for systems of machines whose 

degradations followed operating regime dependent HMMs described in this thesis. 

Nevertheless, degradation HMMs in [164] were assumed to be perfectly known and were 

not obtained from any realistic piece of equipment. Hence, full integration of degradation 

modeling described in this chapter and operational decision-making described in [164] 

remains to be done in the future. 
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Chapter 5: Analysis of Convergence Properties of Bayesian Estimator 

for HMM Parameters 

 

5.1 FORMULATION 

Hidden Markov model with finite state space is a doubly embedded stochastic 

process {(𝑋𝑡,  𝑌𝑡)}𝑡=0
∞

 following a probability law ℙ 
38

 on a measurable space (𝒳ℕ ×

𝒴ℕ, ℬ𝑥
⨂ℕ⨂ℬ𝑦

⨂ℕ) 39, based on a probability space (𝒮,𝒜, 𝜇𝒮) , where {𝑋𝑡: 𝒮 → 𝒳, ∀𝑡 ≥ 0} 

is a set of (hidden) random variables with values in a finite state space 

𝒳 = {𝑠1, 𝑠2, … , 𝑠𝑁}, and {𝑌𝑡: 𝒮 → 𝒴, ∀𝑡 ≥ 0} is a set of (observable) random variables 

with values in the observation space 𝒴 that could be discrete or continuous40. We assume 

that both 𝒳 and 𝒴 are equipped with appropriate 𝜎-finite positive measures 𝜇𝑋 and 𝜇𝑌, as 

reference measures based on which density functions can be defined
41

. In addition, we 

use abbreviation 𝑿𝑡1:𝑡2 for the subsequence (𝑋𝑡1 , 𝑋𝑡1+1, … , 𝑋𝑡2) of the state sequence 

{𝑋𝑡}𝑡=0
∞ , along with 𝒙𝑡1:𝑡2for its realization (when 𝑡1 = 0, we simply denote 𝑿𝑡 and 𝒙𝑡), 

and such convention is applied to the observations {𝑌𝑡}𝑡=0
∞  as well. Using the above 

notation, we assume the following Markov properties: 

M1)  𝑓𝑋𝑡|𝑿𝑡−1,𝒀𝑡−1(𝑥𝑡|𝒙𝑡−1, 𝒚𝑡−1) = 𝑓𝑋𝑡|𝑋𝑡−1(𝑥𝑡|𝑥𝑡−1), ∀𝑥𝑡, 𝑥𝑡−1 ∈ 𝒳, ∀𝑡 ≥ 1. 

M2) 𝑓𝑌𝑡|𝑿𝑡,𝒀𝑡−1(𝑦𝑡|𝒙𝑡, 𝒚𝑡−1 ) = 𝑓𝑌𝑡|𝑋𝑡(𝑦𝑡|𝑥𝑡), ∀𝑥𝑡 ∈ 𝒳, 𝑦𝑡 ∈ 𝒴, ∀𝑡 ≥ 0. 

Then the probability law ℙ can be completely defined by the initial density 

𝑣:𝒳 → [0,1] such that 𝜈(𝑠𝑖) = 𝑓𝑋0(𝑠𝑖), ∀𝑖, transition densities {𝑝𝑡}𝑡=1
∞ such that 𝑝𝑡: 𝒳 ×

𝒳 → ℝ+ and 𝑝𝑡(𝑠𝑖, 𝑠𝑗) = 𝑓𝑋𝑡+1|𝑋𝑡(𝑠𝑗|𝑠𝑖), ∀𝑡 ≥ 0, and conditional densities {𝑞𝑡}𝑡=1
∞  that 

                                                 
38 ℙ is a generic notation for probability measure, and will be specified using subscript in specific contexts. 
39 This infinite product measurable space is commonly used in literature on asymptotic analysis for ergodic 

HMM [10], [11], [18], [128]. 
40 Observations don’t have to be scalar and could be multidimensional, e.g. when 𝒴 could be ℝ2. 
41 E.g., Lebesgue measure or counting measure. 
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relate hidden states and observations so that  𝑞𝑡: 𝒳 × 𝒴 → ℝ+ and 𝑞𝑡(𝑠𝑖, 𝑦) =

𝑓𝑌𝑡|𝑋𝑡(𝑦|𝑠𝑖), ∀𝑡 ≥ 0, where 𝑞𝑡(𝑠𝑖, 𝑦) is measurable in 𝑦 for any 𝑠𝑖.   

Let ℙ𝜽 be the law that governs a time-homogeneous 42 HMM {(𝑋𝑡,  𝑌𝑡)}𝑡=0
∞

 and is 

parameterized by a 𝑑-dimensional parameter vector 𝜽 = (𝝂,𝑷,𝝓) composed of a 

stochastic vector 𝑣 ∈ ℝ+
𝑁, a stochastic matrix 𝑷 ∈ ℝ+

𝑁×𝑁 with 𝑃𝑖𝑗 = 𝑝(𝑠𝑖, 𝑠𝑗), as well as a 

parameter vector43 𝜙 ∈ ℝ𝑑𝜙 that determines the function 𝑞 such that the density functions 

𝑓𝑌|𝑋(𝑦|𝑠𝑖), 1 ≤ 𝑖 ≤ 𝑁 are from the same parametric family. Let 𝜽0 = (𝝂𝟎, 𝑷𝟎, 𝝓𝟎) be an 

unknown, but fixed parameter. Let ℙ0 be the law determined by 𝜽0 44 and 𝔼0[⋅] be the 

corresponding expectation of some random variable. In the Bayesian statistics 

framework, 𝜽 can be viewed as realization of a random vector 𝜣: 𝒮 → Ω with a prior 

distribution 𝛱, which is induced from (𝒮,𝒜, 𝜇) and has density 𝜋(⋅) with respect to some 

reference measure 𝜇Ω.  

Traditional studies of large sample properties of parameter estimates for HMM 

parameters 𝜽0 use an observation sequence generated from a single process {(𝑋𝑡,  𝑌𝑡)}𝑡=0
∞

  

of infinite length [10], [11], [18], [128], [133], [165]. Instead, multiple independent 

observation sequences of finite length are typically collected from degrading 

manufacturing system and need to be used to build a HMM that models its degradation 

[81]. Hence, we consider a growing number of independent identically distributed (i.i.d) 

processes  

                                                 
42 Despite the non-homogeniety of the regime-specific HMM discussed in previous chapters, we limit 

ourselves to the homogeneous HMM where both 𝑝𝑡s and 𝑞𝑡𝑠 are constant over time and can be denoted, as 

𝑝 and 𝑞. 
43 For instance, 𝑄𝑡 ∈ ℝ+

𝑁×𝑀 and 𝑄𝑖𝑗
𝑡 = 𝑞𝑡(𝑠𝑖 , 𝑜𝑗), ∀𝑡, 𝑖, 𝑗, when the observation space is  

𝒴 = {𝑜1, 𝑜2, … , 𝑜𝑀}. 
44  Since we can use 𝜽0 = (𝝂𝟎, 𝑷𝟎, 𝝓𝟎) to define any finite dimensional measure on 

(𝒳𝑗 × 𝒴𝑗 , ℬ𝑥
⨂𝑗
⨂ℬ𝑦

⨂𝑗
), ∀𝑗 > 0,, a unique ℙ0 must exist for the measure space (𝒳ℕ × 𝒴ℕ, ℬ𝑥

⨂ℕ⨂ℬ𝑦
⨂ℕ, ℙ0) 

by the Kolmogorov consistency theorem. Also, for each realization 𝜔, we consider (𝑋𝑖 , 𝑌𝑖) is the coordinate 

projection, i.e. 𝑋𝑖(𝜔) = 𝜔𝑛,1, 𝑌𝑖(𝜔) = 𝜔𝑛,2.  
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   {{(𝑋𝑘,𝑡,  𝑌𝑘,𝑡)}𝑡=1
𝑇
}
𝑘=1

∞

, 

each of which follows the marginal law ℙ0 on the first T component {(𝑋𝑘,𝑡,  𝑌𝑘,𝑡)}𝑡=1
𝑇

. In 

addition, the infinite product measure followed by these processes will be denoted by 

ℙ0
∞. In general, the marginal density function for the 𝑘th observation sequence 𝒚𝑘,𝑇 =

[𝑦𝑘,1, 𝑦𝑘,2, … , 𝑦𝑘,𝑇] is 

  𝑓𝒀𝑘,𝑇|𝛩(𝒚𝑘,𝑇|𝜽) = ∑  𝜈(𝑥1)𝑓(𝑦1|𝑥1)∏ 𝑝𝑥𝑖𝑥𝑖+1𝑓(𝑦𝑖+1|𝑥𝑖+1)
𝑇−1
𝑖=1𝒙𝑇∈𝒳𝑇

.  

Accordingly, the log-likelihood function of 𝜽 given 𝒚𝑘,𝑇 is  

ℓ̃𝑘(𝜽, 𝒚𝑘,𝑇) = log 𝑓𝒀𝑘,𝑇|𝜣(𝒚𝑘,𝑇|𝜽) , ∀𝑘 ≥ 1. 

For the first 𝑘 sequences {𝒚𝑖,𝑇}𝑖=1
𝑘

, let the likelihood function be 

 ℓ𝑘 (𝜽, {𝒚𝑖,𝑇}𝑖=1
𝑘
) = log 𝑓

{𝒀𝑖,𝑇}𝑖=1
𝑘
|𝜣
({𝒚𝑖,𝑇}𝑖=1

𝑘
|𝜽) , ∀𝑘 ≥ 1.  (13) 

We define the information matrix 𝐼(𝜽) = [𝐼𝑖𝑗(𝜽)]1≤𝑖,𝑗≤𝑑
45 where 

  𝐼𝑖𝑗(𝜽):= 𝐸𝜽 [
𝜕ℓ1(𝜽,𝒚𝑇)

𝜕𝜃𝒊
⋅
𝜕ℓ1(𝜽,𝒚𝑇)

𝜕𝜃𝒋
] , ∀1 ≤ 𝑖, 𝑗 ≤ 𝑑, 

Given the prior density 𝜋(𝜽), Bayes' theorem yields the posterior densities with respect 

to 𝜇Ω as ( Theorem 1.31 in [166] ) 

  𝜋𝑘 (𝜽|{𝒚𝑖,𝑇}𝑖=1
𝑘
) =

𝑓({𝒚𝑖,𝑇}𝑖=1
𝑘
|𝜽)𝜋(𝜽)

∫ 𝑓({𝒚𝑖,𝑇}𝑖=1
𝑘
|𝜽)𝜋(𝜽)

Ω
𝑑𝜇Ω

∝ 𝑒ℓ𝑘(𝜃)𝜋(𝜽), ∀𝑘, 

                                                 
45 The definition of this matrix is different from the Fisher information matrix defined by eq. (12.25) in 

[17] defined for ergodic HMM, and it follows the limiting covariance matrix in Theorem 4 in [165].  
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Furthermore, we use | ⋅ | to denote the norm of an object in the rest of the chapter: 

absolute value for scalars, Euclidean norm for vectors, and Frobenius norm46 for 

matrices.    

The following assumptions will be made. 

A1. Ω is a compact set47 in ℝ𝑑 , and 𝜽0 is an interior point of Ω. 

A2. The initial distribution 𝝂 is known to be 𝑣1 = 1, and 𝜈𝑖 = 0, ∀𝑖 ≠ 1. In other 

words, ∀𝑘 ≥ 1 𝑋𝑘,1 = 𝑠1. 

A3. For all 𝑥, 𝑥′ ∈ 𝒳 and 𝑦 ∈ 𝒴, the maps 𝜽 → 𝜈𝑥, 𝜽 → 𝑝𝑥𝑥′, and 𝜽 → 𝑓𝑌|𝑋,𝜣(𝑦|𝑥, 𝜽) 

have continuous second derivatives on Ω.  

A4. The support of 𝑓𝑌1|𝑋1,𝜣(𝑦|𝑥, 𝜽) is 𝒴 for every 𝑥 ∈ 𝒳, and for all 𝑥, 𝜽, 𝑦,there 

exists deterministic and integrable functions 𝑔1: 𝒴 → ℝ+ and 𝑔2: 𝒴 → ℝ+, and a 

positive constant 𝑀𝑔, such that 48 

𝑔1(𝑦) ≤ 𝑓𝑌1|𝑋1,𝜣(𝑦|𝑥, 𝜽) ≤ 𝑔2(𝑦) , 

and 

∫ |log(𝑔𝑖(𝑦))|
𝒴

𝑔2(𝑦)𝑑𝜇𝑦 ≤ 𝑀𝑔 < ∞, 𝑖 = 1 or 2. 

A5. For all 1 ≤ 𝑖 ≤ 𝑑 and all 𝑥 ∈ 𝒳, there exists a function 𝑔3: 𝒴 → ℝ+ and 𝛿 > 0 

such that 

sup
|𝜽−𝜽𝟎|≤ 𝛿

|
𝜕

𝜕𝜃𝑖
log 𝑓𝑌1|𝑋1,𝜣 (𝑦|𝑥, 𝜽)| ≤ 𝑔3(𝑦) 

and 

∫𝑔3(𝑦)
𝒴

𝑔2(𝑦)𝑑𝜇𝑦 < ∞, and ∫𝑔3(𝑦)
2𝑔2(𝑦)

𝒴

𝑑𝜇𝑦 < ∞. 

                                                 
46 The Frobenious norm has the property that |𝐴 ⋅ 𝐵| ≤ |𝐴| ⋅ |𝐵| for all multipliable matrices A and B.  
47 Study of the case when Ω is non-compact is out of the scope of this thesis.  
48 The conditional density functions 𝑓𝑌1|𝑋1,𝛩 in A4 to A6 are for every sequence and thus the sequence 

subscript for 𝑋, 𝑌 are omitted. 
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A6. For all 1 ≤ 𝑖, 𝑗 ≤ 𝑑 and all 𝑥 ∈ 𝒳, there exists a function 𝑔4:𝒴 → ℝ+ and 𝛿 > 0  

such that 

sup
|𝜽−𝜽0|≤ 𝛿

|
𝜕2

𝜕𝜃𝑖𝜕𝜃𝑗
log 𝑓𝑌1|𝑋1,𝛩(𝑦|𝑥, 𝜽)| ≤ 𝑔4(𝑦), 

and  

∫𝑔4(𝑦)𝑔2(𝑦)
𝒴

𝑑𝜇𝑦 < ∞. 

A7. For each 𝜽 for which the distributions ℙ𝜽 and ℙ0 agree almost everywhere on the 

product observation space, it must be true that 𝜽 = 𝜽0 (up to a possible 

permutation of states). 

A8. For the components {𝜙𝑖}𝑖=1
𝑁  of 𝜙, each of which is a parameter for a different 

conditional density function 𝑓𝑌1|𝑋1,Θ(𝑦|𝑠, 𝜽), e.g. 𝜙𝑖 = 𝜇𝑠𝑖 is the conditional mean 

given the state 𝑠𝑖, {𝜙𝑖}𝑖=1
𝑁  satisfies the order constraint, i.e.,  

𝜙𝑖 < 𝜙𝑗 , ∀1 ≤ 𝑖 < 𝑗 ≤ 𝑁. 

A9. The prior density 𝜋 is positive and continuous for all 𝜽 ∈ Ω. 

A10. 𝐼(𝜽0) is nonsingular and finite. 

  

Remarks regarding assumptions A1-A10: 

 Assumption A1 is assumed to avoid pathological cases, such as when 𝜽0 is on 

the boundary of Ω or ℝ𝑑.  

 Assumption A2 on the initial state distribution of each sequence is similar to 

what we see in several ergodic HMM studies [10], [128]. 

 Assumptions A3-A6 are adapted from [128], and these conditions regulate the 

boundedness of the likelihood functions, as well as their first and second order 

derivatives. Similar conditions can be found in theorems for consistency and 

asymptotic normality of MLE of HMM parameters in [10], [11], [18].  
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 Assumptions A7 and A8 together ensure the true parameters 𝜽0 can be uniquely 

identified from 𝒳𝑇 ×𝒴𝑇. Examples of conditional distributions that satisfy 

Assumption A7 are Gaussian and Poisson distributions. The order constraint in 

Assumption A8 is mentioned in [128], [133], and [17], and allows unique 

labeling of the hidden states. 

 Assumption A9 pertains to the prior distribution and is typically assumed in the 

formulation of BvMT, including those for i.i.d. models [165] and ergodic HMMs 

[18]. 

 Assumption A10 ensures the finiteness of the limiting covariance matrix of the 

normal approximation of the posterior distribution of 𝜽.  

 

 The following theorem corresponds to the scenario when observation sequences 

of equal length 𝑇 are collected. In the context of machine monitoring, this corresponds to 

the situation when a fixed-schedule Preventive Maintenance (PM) policy is implemented 

and each sequence 𝒚𝑖,𝑇 terminates when a scheduled PM action is executed 49.  

  

                                                 
49 This means the sample space for each process is (𝒴𝑇 , ℬ𝑌

⨂𝑇 , 𝜇𝑌
𝑇), where the joint density 𝑓𝒀𝑇|𝚯(𝒚𝑇|𝜽)is 

defined on. 
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Theorem 1 (PM-inspired Bernstein-von Mises Theorem) Let   

𝝉𝑘 = 𝜽0 +
1

𝑘
𝐼−1(𝜽0)𝛻ℓ𝑘(𝜽0), ∀𝑘 > 0,  

and  let 𝜋𝑘
∗ (𝒖|{𝒚𝑖,𝑇}𝑖=1

𝑘
) be the posterior density of 𝒖 = √𝑘(𝜽 − 𝝉𝑘). Assume A1-A10 

hold, then for any 𝜖 > 0 

𝑙𝑖𝑚
𝑘→∞

ℙ0
∞ (∫ |𝜋𝑘

∗ (𝒖|{𝒚𝑖,𝑇}𝑖=1
𝑘
) −

1

√|2𝜋𝐼−1(𝜽0)|
𝑒−𝒖

𝑇𝐼(𝜽0) 𝒖/2|
ℝ𝑑

𝑑𝒖 ≤ 𝜖) = 1. 

 

Outline of the proof:  

To prove the above-formulated BvMT, a prerequisite is the establishment of several 

limiting properties of lower order derivatives for the log-likelihood functions, such as 

those for ergodic HMMs [10], [11]. We will prove those properties for left-to-right 

HMMs in Lemmas 6-11, and then follow Bickel's strategy from [165] by showing 

through Lemmas 12-14 the desired convergence in 𝐿1 distance. 

 

Remark: 

The BvMT formulated above claims that under certain regularity conditions, a sequence 

of normalized posterior distributions given a set of observation sequences {𝒚𝑖,𝑇}𝑖=1
𝑘

 

converges to a fixed Gaussian distribution in total variation distance. In this limiting 

process, the centers of the posterior distributions are asymptotically efficient, while the 

posterior standard deviation decreases to 0 at the rate of 1/√𝑘. The resulting asymptotic 

normal approximation to the posterior distributions enables analysis of the dependency of  

model uncertainty on the number of observation sequences, allowing solution to the 
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Sample Size Determination (SSD)  problems [169], which is of utmost important for 

condition-monitoring problems.  

 

5.2 PROOF 

The following two propositions are already proven results from the literature. 

Proposition 1: (Theorem 2 in [168]) Let 𝑿 be a random vector defined on a probability 

space (Ω, Σ, 𝜇), where 𝑿 induces a law ℙ𝑿 on a measurable space (ℝ𝑛, ℬ⊗𝑛). Let 𝑔 be a 

real-valued function on ℝ𝑛 × 𝛩. Assume that 

(i) 𝛩 is a compact subset of ℝ𝑚. 

(ii) 𝑔(𝒙, 𝜽) is continuous in 𝜽 given each 𝒙, and is a measurable function of 𝒙 given each 

𝜽. 

(iii) |𝑔(𝒙, 𝜽)| ≤ ℎ(𝒙) for almost every 𝒙 in ℝ𝑛, where ℎ(𝒙) is measureable and has finite 

expectation. 

Then the following holds. 

 ℙ𝑿
∞ (lim𝑘→∞ sup𝜽∈Ω |

1

𝑘
∑ 𝑔(𝒙𝑖, 𝜽)
𝑘
𝑖=1  − 𝔼𝑋[𝑔(𝒙, 𝜽)]| = 0) = 1.  

 

Proposition 2: (Theorem 16.8 in [171]) Let (𝛺, ℱ, 𝜇) be a measure space and  suppose 

𝑔(𝜔, 𝜃) is a real valued function on the Cartesian product space Ω × (𝑎, 𝑏), where (𝑎, 𝑏) 

is a finite open interval in ℝ. Assume 𝑔 satisfies the following: 

(i) For each fixed 𝜃 ∈ (𝑎, 𝑏), the function 𝑔(𝜔, 𝜃) is a Borel function, i.e., measurable 

w.r.t. the Borel sigma-algebra, and  

∫ |𝑔(𝜔, 𝜃)|𝑑𝜔 < ∞. 
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(ii) There’s a null-set 𝒩 such that for all 𝜔 ≠ 𝒩, the derivative 𝜕𝑔(𝜔, 𝜃)/𝜕𝜃 exists for 

all 𝜃 ∈ (𝑎, 𝑏). 

(iii) There is an integrable function 𝐺:Ω → ℝ such that for all 𝜔 ∉ 𝒩 and all (𝑎, 𝑏)  

|
𝜕𝑔

𝜕𝜃
(𝜔, 𝜃)| ≤ 𝐺(𝜔). 

Then for each fixed 𝜃 ∈ (𝑎, 𝑏), 𝜕𝑔(𝜔, 𝜃)/𝜕𝜃 is integrable w.r.t. 𝜇 and the derivative and 

integration are interchangeable, i.e., 

𝑑𝑔

𝑑𝜃
∫𝑔(𝜔, 𝜃)
𝛺

𝑑𝜇(𝜔) = ∫
𝑑𝑔

𝑑𝜃
(𝜔, 𝜃)

𝛺

𝑑𝜇(𝜔). 

 The notations in each of the Lemmas 1-4 are self-contained, and the results in 

those Lemmas are generic in the sense that they are not restricted to the usage for proving 

HMM-related properties.  

 

Lemma 1: Consider two parameterized sequences of random vectors {𝑋𝑛(𝑡)} where 

𝑋𝑛(𝑡) ∈ ℝ
𝑚×𝑙  and {𝑌𝑛(𝑡)}, where 𝑌𝑛(𝑡) ∈ ℝ

𝑙×𝑘 . If supt∈τ|𝑋𝑛(𝑡) − 𝐶|
ℙ
→0 and 

supt∈τ|𝑌𝑛(𝑡) − 𝐷|
ℙ
→0 as 𝑛 → ∞, where 𝐶 and 𝐷 are two constant vectors, then  

(i) supt∈τ|𝑋𝑛(𝑡) ⋅ 𝑌𝑛(𝑡) − 𝐶 ⋅ 𝐷|
ℙ
→0;  

(ii) supt∈τ|𝑋𝑛(𝑡) + 𝑌𝑛(𝑡) − 𝐶 − 𝐷|
ℙ
→0.  

Proof: (i) First notice that the assumed uniform convergence in probability of 𝑌𝑛(𝑡) 

implies uniform boundedness in probability of 𝑌𝑛(𝑡), i.e., for any positive 𝜖 > 0, there 

exists 𝑁 ∈ ℕ and 𝑀 ∈ ℝ+ such that for all 𝑛 ≥ 𝑁, we have ℙ(supt∈τ|𝑌𝑛(𝑡)| ≤ 𝑀) > 1 −

𝜖.  



81 

 Assuming 𝐶 ≠ 0,  then for any positive 𝜖1, 𝜖2 > 0, there exists 𝑁1, 𝑁2, 𝑁3 ∈ ℕ and 

𝑀 ∈ ℝ+ such that ℙ(supt∈τ|𝑌𝑛(𝑡)| ≤ 𝑀) ≥ 1 − 𝜖2, ℙ (supt∈τ|𝑋𝑛(𝑡) − 𝐶| ≤
𝜖1

2𝑀
) ≥ 1 −

𝜖2, and ℙ(sup𝑡∈𝜏|𝑌𝑛(𝑡) − 𝐷| ≤
𝜖1

2|𝐶|
) ≥ 1 − 𝜖2. Hence, for all 𝑛 ≥ max{𝑁1, 𝑁2, 𝑁3},  

  ℙ(supt∈τ|𝑋𝑛(𝑡) ⋅ 𝑌𝑛(𝑡) − 𝐶 ⋅ 𝐷| ≤ 𝜖1) 

 ≥ ℙ (supt∈τ|𝑋𝑛(𝑡) − 𝐶| ⋅ |𝑌𝑛(𝑡)| ≤
𝜖1

2
 and supt∈τ|𝑌𝑛(𝑡) − 𝐷| ⋅ |𝐶| ≤

𝜖1

2
 ) 

≥ ℙ (supt∈τ|𝑋𝑛(𝑡) − 𝐶| ≤
𝜖1

2𝑀
, supt∈τ|𝑌𝑛(𝑡)| ≤ 𝑀, supt∈τ|𝑌𝑛(𝑡) − 𝐷| ⋅ |𝐶| ≤

𝜖1

2
)   

≥ ℙ (sup
t∈τ
|𝑋𝑛(𝑡) − 𝐶| ≤

𝜖1
2𝑀
) + ℙ(sup

t∈τ
|𝑌𝑛(𝑡)| ≤ 𝑀) + ℙ(sup

𝑡∈𝜏
|𝑌𝑛(𝑡) − 𝐷| ≤

𝜖1
2|𝐶|

)

− 2 

≥ 1 − 𝜖2. 

The case when 𝐶 = 0 can be proven similarly. 

 

(ii) For all 𝜖1, 𝜖2 > 0, there exists 𝑁1, 𝑁2 ∈ ℕ such that for 𝑛 ≥ 𝑁1, ℙ(supt∈τ|𝑋𝑛(𝑡) −

𝐶| ≤
𝜖1

2
) ≥ 1 −

𝜖2

2
, and for 𝑛 ≥ 𝑁2, ℙ(supt∈τ|𝑌𝑛(𝑡) − 𝐷| ≤

𝜖1

2
) ≥ 1 −

𝜖2

2
. It follows that  

ℙ(supt∈τ|𝑋𝑛(𝑡) + 𝑌𝑛(𝑡) − 𝐶 − 𝐷| ≤ 𝜖1)  

≥ ℙ (supt∈τ|𝑋𝑛(𝑡) − 𝐶| ≤
𝜖1

2
 and supt∈τ|𝑌𝑛(𝑡) − 𝐷| ≤

𝜖1

2
)  

≥ ℙ (supt∈τ|𝑋𝑛(𝑡) − 𝐶| ≤
𝜖1

2
 ) + ℙ (supt∈τ|𝑌𝑛(𝑡) − 𝐷| ≤

𝜖1

2
) − 1  

≥ 1 − 𝜖2,  

Q.E.D. □ 
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Lemma 2: If a sequence of parameterized random vectors {𝑋𝑛(𝜃)} converges to a 

constant vector 𝐶 uniformly in probability on a compact set 𝛩 in a Euclidean space ℝ𝑛, 

i.e., if lim𝑛→∞ℙ(sup𝜃∈𝛩 |𝑋𝑛(𝜃) − 𝐶 | < 𝜖) = 1 ∀𝜖 > 0, and if 𝑔(𝑥) is a continuous 

real-valued function in 𝑥, then ∀𝜖 > 0, 

  lim𝑛→∞ℙ(sup𝜃∈𝛩 |𝑔(𝑋𝑛(𝜃)) − 𝑔(𝐶) | < 𝜖) = 1. 

Proof: For any positive 𝑀 such that –𝑀 < 𝐶 < 𝑀, 𝑔(𝑥) is uniformly continuous on 

[–𝑀,𝑀]. Thus, for any 𝛿 > 0, there exists 𝜖 > 0, such that for all |𝑥1 − 𝑥2| ≤ 𝜖, there is 

|𝑔(𝑥1) − 𝑔(𝑥2)| ≤ 𝛿.  It follows that for any 𝜃 ∈ 𝛩, 

  ℙ(|𝑋𝑛(𝜃) − 𝑐| ≤ 𝜖) ≤ ℙ(|𝑔(𝑋𝑛(𝜃)) − 𝑔(𝑐)| ≤ 𝛿), 

and therefore 

  ℙ(sup𝜃∈𝛩|𝑋𝑛(𝜃) − 𝑐| ≤ 𝜖) ≤ ℙ(sup𝜃∈𝛩|𝑔(𝑋𝑛(𝜃)) − 𝑔(𝑐)| ≤ 𝛿). 

Then the right hand side converges to 1 as well, Q.E.D. □ 

 

Lemma 3: If a sequence of random matrices {𝑌𝑛} is bounded in ℙ-probability and if {𝐶𝑛} 

is a sequence of random matrices tending to 0 in ℙ-probability, then 𝐶𝑛𝑌𝑛
ℙ
→0, assuming 

𝐶𝑛𝑌𝑛 are compatible in matrix multiplication. 

Proof:  For any 𝜖1, 𝜖2 > 0, there exists 𝑁 and 𝑀 such that for all 𝑛 > 𝑁,  

  ℙ(|𝑌𝑛| ≤ 𝑀) ≥ 1 −
𝜖2

2
, and ℙ (|𝐶𝑛| ≤

𝜖1

𝑀
) ≥ 1 −

𝜖2

2
, 

and hence,  
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 ℙ(|𝐶𝑛 ⋅ 𝑌𝑛| ≤ 𝜖1) ≥ ℙ (|𝐶𝑛| ≤
𝜖1

𝑀
 𝑎𝑛𝑑 |𝑌𝑛| ≤ 𝑀 ) 

 ≥ ℙ(|𝐶𝑛| ≤
𝜖1

𝑀
) +  ℙ(|𝑌𝑛| ≤ 𝑀 ) − 1 

 ≥ 1 − 𝜖2, 

Q.E.D.  □ 

 

Lemma 4: Suppose a sequence of random vectors {𝑌𝑛} is bounded by a sequence of 

nonnegative numbers {𝑓𝑛} with probability 1, i.e., lim𝑛→∞ℙ(|𝑌𝑛| ≤ 𝑓𝑛) = 1. Then  

lim
𝑛→∞

𝑓𝑛 = 0 implies 𝑌𝑛
ℙ
→0. 

Proof:  For any 𝜖1, 𝜖2 > 0, there exists 𝑁1 such that for all 𝑛 > 𝑁1, 0 ≤ 𝑓𝑛 ≤ 𝜖1, and 𝑁2 

such that for all 𝑛 > 𝑁2, ℙ(|𝑌𝑛| ≤ 𝑓𝑛) ≥ 1 − 𝜖2. Therefore, for all 𝑛 ≥ max(𝑁1, 𝑁2), 

ℙ(|𝑌𝑛| ≤ 𝜖1) ≥ ℙ(|𝑌𝑛| ≤ 𝑓𝑛) ≥ 1 − 𝜖2, 

which proves the lemma. □ 

 

Lemma 5: Define  

 𝜔𝑘(𝒖) = ℓ𝑘 (
1

√𝑘
𝒖 + 𝝉𝑘, {𝒚𝑖,𝑇}𝑖=1

𝑘
) − ℓ𝑘 (𝜽0, {𝒚𝑖,𝑇}𝑖=1

𝑘
) 

−
1

2𝑘
 ∇ℓ𝑘 (𝜽0, {𝒚𝑖,𝑇}𝑖=1

𝑘
)
T

𝐼−1(𝜽0)∇ℓ𝑘 (𝜽0, {𝒚𝑖,𝑇}𝑖=1
𝑘
)  

where ℓ𝑘 is defined by (13) and  

  𝑅𝑘(𝜽) = −∇
2ℓ𝑘 (𝜽𝑘

∗ , {𝒚𝑖,𝑇}𝑖=1
𝑘
) − 𝑘𝐼 (𝜽0, {𝒚𝑖,𝑇}𝑖=1

𝑘
), 

where 𝜽𝑘
∗   is a point between 𝜽 and 𝜽0 that satisfies50 

                                                 
50 This point exists per (14) being a Taylor series expansion. 
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 ℓ𝑘 (𝜽, {𝒚𝑖,𝑇}𝑖=1
𝑘
) = ℓ𝑘 (𝜽0, {𝒚𝑖,𝑇}𝑖=1

𝑘
) + (𝜽 − 𝜽0)∇ℓ𝑘 (𝜽0, {𝒚𝑖,𝑇}𝑖=1

𝑘
) 

+
1

2
(𝜽 − 𝜽0)

𝑇∇2ℓ𝑘 (𝜽𝑘
∗ , {𝒚𝑖,𝑇}𝑖=1

𝑘
) (𝜽 − 𝜽0).  (14) 

Then, we have the following equality 

𝜔𝑘(𝒖) = −
𝒖𝑇𝐼(𝜽0)𝒖

2
−
1

2𝑘
(𝒖 +

1

√𝑘
𝐼−1(𝜽0)∇ℓ𝑘 (𝜽0, {𝒚𝑖,𝑇}𝑖=1

𝑘
))

T

𝑅𝑘 (
𝒖

√𝑘
+ 𝝉𝑘) 

 (𝒖 +
1

√𝑘
𝐼−1(𝜽0)∇ℓ𝑘 (𝜽0, {𝒚𝑖,𝑇}𝑖=1

𝑘
)). (15) 

Proof:  

 𝜔𝑘(𝒖) 

= (
𝒖

√𝑘
+
1

𝑘
𝐼−1(𝜽0)∇ℓ𝑘 (𝜽0, {𝒚𝑖,𝑇}𝑖=1

𝑘
))
T

∇ℓ𝑘 (𝜽0, {𝒚𝑖,𝑇}𝑖=1
𝑘
) 

−
1

2
(
𝒖

√𝑘
+
1

𝑘
𝐼−1(𝜽0)∇ℓ𝑘 (𝜽0, {𝒚𝑖,𝑇}𝑖=1

𝑘
))
T

⋅ 

(𝑅𝑘 (
𝒖

√𝑘
+ 𝝉𝑘) + 𝑘𝐼(𝜽0)) (

𝒖

√𝑘
+
1

𝑘
𝐼−1(𝜽0)∇ℓ𝑘 (𝜽0, {𝒚𝑖,𝑇}𝑖=1

𝑘
)) 

−
1

2𝑘
 ∇ℓ𝑘 (𝜽0, {𝒚𝑖,𝑇}𝑖=1

𝑘
)
T

𝐼−1(𝜽0)∇ℓ𝑘 (𝜽0, {𝒚𝑖,𝑇}𝑖=1
𝑘
) 

 =
𝒖T∇ℓ𝑘(𝜽0)

√𝑘
+
1

𝑘
 ∇ℓ𝑘 (𝜽0, {𝒚𝑖,𝑇}𝑖=1

𝑘
)
T

𝐼−1(𝜽0)∇ℓ𝑘 (𝜽0, {𝒚𝑖,𝑇}𝑖=1
𝑘
)  

−
1

2𝑘
(𝒖 +

1

√𝑘
𝐼−1(𝜽0)∇ℓ𝑘 (𝜽0, {𝒚𝑖,𝑇}𝑖=1

𝑘
))
T

𝑅𝑘 (
𝒖

√𝑘
+ 𝝉𝑘)  
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(𝒖 +
1

√𝑘
𝐼−1(𝜽0)∇ℓ𝑘 (𝜽0, {𝒚𝑖,𝑇}𝑖=1

𝑘
)) 

−
1

2
(𝒖 +

1

√𝑘
𝐼−1(𝜽0)∇ℓ𝑘 (𝜽0, {𝒚𝑖,𝑇}𝑖=1

𝑘
))
T

𝐼(𝜽0) 

(𝒖 +
1

√𝑘
𝐼−1(𝜽0)∇ℓ𝑘 (𝜽0, {𝒚𝑖,𝑇}𝑖=1

𝑘
)) 

−
1

2𝑘
 ∇ℓ𝑘 (𝜽0, {𝒚𝑖,𝑇}𝑖=1

𝑘
)
T

𝐼−1(𝜽0)∇ℓ𝑘 (𝜽0, {𝒚𝑖,𝑇}𝑖=1
𝑘
) 

=−
𝒖T𝐼(𝜽0)𝒖

2
−

1

2𝑘
(𝒖 +

1

√𝑘
𝐼−1(𝜽0)∇ℓ𝑘 (𝜽0, {𝒚𝑖,𝑇}𝑖=1

𝑘
))
T

𝑅𝑘 (
𝒖

√𝑘
+ 𝝉𝑘)  

(𝒖 +
1

√𝑘
𝐼−1(𝜽0)∇ℓ𝑘 (𝜽0, {𝒚𝑖,𝑇}𝑖=1

𝑘
)), 

Q.E.D.   □ 

 

Lemma 6: Assume A1-A10 hold, then   

   ℙ0
∞ (lim𝑘→∞ sup𝜽∈Ω |

1

𝑘
ℓ𝑘 (𝜽, {𝒚𝑖,𝑇}𝑖=1

𝑘
) − 𝔼0[ℓ1(𝜽, 𝒚𝑇)]| = 0 ) = 1,  

Proof: We will show that conditions of Proposition 1 are satisfied, which directly leads to 

the proof. Consider the log-likelihood function 

  ℓ1(𝜽, 𝒚𝑇) = log(∑ ∏ 𝜈𝑥1𝑓(𝑦1|𝑥1)𝑝𝑥𝑖𝑥𝑖+1𝑓(𝑦𝑖+1|𝑥𝑖+1)
𝑇−1
𝑖=1𝒙𝑇∈𝒳𝑇

), (16) 

which is defined on Ω × ℝ𝑇 . Prop. 1 (i) is clear by A1. On the right hand side of (16), all 

initial probabilities 𝜈𝑠𝑖, transition probabilities  𝑝𝑥𝑖𝑥𝑖+1, and conditional densities 𝑓(𝑦|𝑠𝑖) 

are continuous function on Ω by A3, and are therefore all measurable functions as 

probability density or mass functions. Since continuity and measurability are preserved 

under algebraic operations [172], the likelihood function satisfies Prop. 2 (ii).  
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 Let us now show the boundedness of ℓ1(𝜽, 𝒚𝑇). When ℓ1(𝜽, 𝒚𝑇) ≤ 0, we have  

 |ℓ1(𝜽, 𝒚𝑇)| = |log∑ 𝜈𝑥1𝑓(𝑦1|𝑥1)∏ 𝑝𝑥𝑖𝑥𝑖+1𝑓(𝑦𝑖+1|𝑥𝑖+1)
𝑇−1
𝑖=1𝒙𝑇∈𝒳𝑇

|  

≤ |log∑ 𝜈𝑥1 (∏ 𝑝𝑥𝑖𝑥𝑖+1
𝑇−1
𝑖=1 𝑔1(𝑦𝑖))𝒙𝑇∈𝒳𝑇

|  

≤ ∑ (|log 𝑔1(𝑦𝑖)| + |log𝑔2(𝑦𝑖)|)
𝑇
𝑖=1  , 

When ℓ1(𝜽, 𝒚𝑇) > 0,    

 |ℓ1(𝜽, 𝒚𝑇)| = |log∑ 𝜈𝑥1𝑓(𝑦1|𝑥1)∏ 𝑝𝑥𝑖𝑥𝑖+1𝑓(𝑦𝑖+1|𝑥𝑖+1)
𝑇−1
𝑖=1𝒙𝑇∈𝒳𝑇

|  

≤ |log∑ 𝜈𝑥1∏ 𝑝𝑥𝑖𝑥𝑖+1𝑔2(𝑦𝑖)
𝑇
𝑖=1𝒙𝑇∈𝒳𝑇

|  

≤ ∑ (|log 𝑔1(𝑦𝑖)| + |log𝑔2(𝑦𝑖)|)
𝑇
𝑖=1 .  

In either case, the log-likelihood function is then bounded by  

 𝑀ℓ(𝒚𝑇) = ∑ (|log𝑔1(𝑦𝑖)| + |log 𝑔2(𝑦𝑖)|)
𝑇
𝑖=1 .  

Since 𝔼0[𝑀ℓ] ≤ 𝑇 ⋅ 2𝑀𝑔 < ∞ according to A4, 𝑀ℓ(𝒚𝑇) is ℙ0-integrable and therefore, 

Prop. 1 (iii) also holds, Q.E.D. □ 

 

Lemma 7: Assume A1-A10 hold, then 𝔼0[ℓ1(𝜽)] is a continuous function in 𝜽 for all 

𝜽 ∈ Ω.  Furthermore, define Kullback-Leibler information 

𝒦(𝜽0, 𝜽) = 𝔼0 [log
𝑓(𝒚𝑇|𝜽0)

𝑓(𝒚𝑇|𝜽)
]. 

Then 𝒦(𝜽0, 𝜽) ≥ 0 with equality if only if 𝜽 = 𝜽0. 

Proof: This proof follows [128]. It is known from Lemma 6 that  
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𝔼0[ℓ1(𝜽, 𝒚𝑇)] ≤ 𝔼0[𝑀ℓ] < ∞. 

For any 𝒚𝑇, any 𝜽∗ ∈ Ω, and any sequence converging sequence 𝜽𝑛 → 𝜽∗, the continuity 

of ℓ1(𝜽) guarantees that ℓ1(𝜽𝑛, 𝒚𝑇) → ℓ1(𝜽∗, 𝒚𝑇). Then the continuity of 𝔼0[ℓ1(𝜽)] is 

given by  

 lim𝑛→∞ ∫ ℓ1(𝜽𝑛, 𝒚𝑇)𝑓(𝒚𝑇|𝜽0)𝑑𝒚𝑇 = ∫ lim𝑛→∞ ℓ1(𝜽𝑛, 𝒚𝑇)𝑓(𝒚𝑇|𝜽0) 𝑑𝒚𝑇  

= ∫ ℓ1(𝜽∗, 𝒚𝑇)𝑓(𝒚𝑇|𝜽0)𝑑𝒚𝑇 

as a result of Lebesgue's Dominated Convergence Theorem.  

 Due to Jensen's inequality, 

−𝒦(𝜽0, 𝜽) ≤ log 1 = 0, 

and 𝒦(𝜽0, 𝜽) = 0 if and only if  𝑓(𝒚𝑇|𝜽) = 𝑓(𝒚𝑇|𝜽𝟎) almost everywhere on 𝒴𝑇, which 

implies 𝜽 = 𝜽0. Q.E.D. □ 

 

Lemma 8: Assume A1-A10 hold, then for any 𝛿 > 0 there exists 𝜖 > 0 such that  

  lim𝑘→∞ ℙ0
∞ (sup|𝜽−𝜽0|≥𝛿

1

𝑘
(ℓ𝑘 (𝜽, {𝒚𝑖,𝑇}𝑖=1

𝑘
) − ℓ𝑘 (𝜽0, {𝒚𝑖,𝑇}𝑖=1

𝑘
)) ≤ −𝜖) = 0.   

Proof: This proof follows the line of [18]. First we show that there exists a positive 

constant 𝐶 such that  

  Sup|𝜽−𝜽0|≥δ 𝔼0[ℓ1(𝜽, 𝒚𝑇)] − 𝔼0[ℓ1(𝜽0, 𝒚𝑇)] ≤ −𝐶 < 0. (17) 

Suppose such 𝐶 does not exist, then for any sequence {𝐶𝑛}𝑛=1
∞  such that lim𝑛→∞ 𝐶𝑛 =

0, there is a sequence {𝜽𝑛}𝑛=1
∞  from {𝜽: |𝜽 − 𝜽0| ≥ δ} such that  
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  𝔼0[ℓ1(𝜽𝑛, 𝒚𝑇)] − 𝔼0[ℓ1(𝜽0, 𝒚𝑇)] > −𝐶𝑛. 

This sequence has a limit point 𝜃∗ due to the compactness of {𝜽: |𝜽 − 𝜽0| ≥ δ}.  

  Following continuity of 𝔼0[ℓ1(𝜽, 𝒚𝑇)] proven in Lemma 7, we have 

lim𝑛→∞ 𝔼0[ℓ1(𝜽𝑛, 𝒚𝑇)] = 𝔼0[ℓ1(𝜽∗, 𝒚𝑇)] ≥ 𝔼0[ℓ1(𝜽0, 𝒚𝑇)]. This, however, contradicts 

with the fact that 𝜽0 is the unique maximum of 𝐸0[ℓ1(𝜽)], as per by Lemma 7, and 

therefore 𝐶 exists for (17). Now, following Lemma 6, for any 𝜖 > 0 there exits 𝐾1 such 

that for all 𝑘 > 𝐾1  

 ℙ0
∞ (sup|𝜽−𝜽0|≥𝛿 |

1

𝑘
(ℓ𝑘 (𝜽, {𝒚𝑖,𝑇}𝑖=1

𝑘
) − 𝔼0[ℓ1(𝜽, 𝒚𝑇)])| ≤

𝐶

4
) ≥ 1 −

𝜖

2
, (18) 

and there exists 𝐾2 such that for all 𝑘 > 𝐾2,  

 ℙ0
∞ (|

1

𝑘
(ℓ𝑘 (𝜽0, {𝒚𝑖,𝑇}𝑖=1

𝑘
) − 𝔼0[ℓ1(𝜽0, 𝒚𝑇)])| ≤

𝐶

4
) ≥ 1 −

𝜖

2
, (19) 

Combining (17), (18), and (19), we have 

 ℙ0
∞ (sup|𝜽−𝜽0|≥𝛿

1

𝑘
(ℓ𝑘 (𝜽, {𝒚𝑖,𝑇}𝑖=1

𝑘
) − ℓ𝑘 (𝜽0, {𝒚𝑖,𝑇}𝑖=1

𝑘
)) ≤ −

𝐶

2
) 

 = ℙ0
∞ (sup|𝜽−𝜽0|≥𝛿 [(

1

𝑘
ℓ𝑘 (𝜽, {𝒚𝑖,𝑇}𝑖=1

𝑘
) − 𝔼0[ℓ1(𝜽, 𝒚𝑇)]) + (𝔼0[ℓ1(𝜽0, 𝒚𝑇)] −

1

𝑘
ℓ𝑘 (𝜽0, {𝒚𝑖,𝑇}𝑖=1

𝑘
)) + (𝔼0[ℓ1(𝜽, 𝒚𝑇)] − 𝔼0[ℓ1(𝜽0, 𝒚𝑇)])] ≤ −

𝐶

2
) 

≥ ℙ0
∞ (sup|𝜃−𝜃0|≥𝛿

1

𝑘
|ℓ𝑘 (𝜽, {𝒚𝑖,𝑇}𝑖=1

𝑘
) − 𝔼0[ℓ1(𝜽, 𝒚𝑇)]| ≤

𝐶

4
 and 

1

𝑘
|ℓ𝑘 (𝜽0, {𝒚𝑖,𝑇}𝑖=1

𝑘
) −

𝔼0[ℓ1(𝜽0, 𝒚𝑇)]|  ≤
𝐶

4
 and sup|𝜃−𝜃0|≥δ(𝔼0[ℓ1(𝜽, 𝒚𝑇)] − 𝔼0[ℓ1(𝜽0, 𝒚𝑇)]) ≤ −𝐶)  

≥ 1 − 𝜖,  

 Q.E.D. □ 
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Lemma 9: Assume A1-A10 hold, then  

(i) 
1

√𝑘
∇ℓ𝑘 (𝛉0, {𝒚𝑖,𝑇}𝑖=1

𝑘
)
ℒ
→𝑁(0, 𝐼(𝜽0)). 

(ii) 
1

𝑘
∇ℓ𝑘 (𝛉0, {𝒚𝑖,𝑇}𝑖=1

𝑘
)
ℙ0
∞

→ 0. 

(iii) The centering sequence {𝝉𝑘} defined by 𝛕k = 𝜽0 +
1

k
𝐼−1(𝜽0)∇ℓk(𝜽0) satisfies 

  lim𝑘→∞ ℙ0
∞(|𝝉𝑘 − 𝜽0| ≤ 𝜖) = 1, 

for any 𝜖 > 0. 

Proof: (i) This proof has similar content as in Lemma 5.1 from [133]. By assumption 

A10, 𝐼(𝜽0) is finite, and it remains to show that  𝔼0[∇ℓ1(𝛉0)] = 0, which can be proven 

as the consequence of 

  ∫
𝜕

𝜕𝜃𝑖
𝑓(𝒚𝑇|𝜽0)𝑑𝜇𝑌

𝑇
𝒴𝑇

=
𝜕

𝜕𝜃𝑖
∫ 𝑓(𝒚𝑇|𝜽0)𝑑𝜇𝑌

𝑇
𝒴𝑇

= 0, ∀1 ≤ 𝑖 ≤ 𝑑. (20) 

by the Weak Law of Large Numbers.  

To show (20), we will verify that 𝑓(𝒚𝑇|𝜽), which is constrained on 𝒴𝑇 ×

{𝜽: |𝜽 − 𝜽0| ≤ 𝛿} , where 𝛿 = min{𝛿0/2, (1 − 𝛿0)/2}, satisfies the three conditions in 

Proposition 2. For Prop. 2 (i), 𝑓(𝒚𝑇|𝜽) for each fixed  𝜽 is a density function that is 

integrable and is measurable with respect to ℬ𝑌
𝑇. As for Prop. 2 (ii), considering A4 and 

eq. (16), 𝑓(𝒚𝑇|𝜽) is continuously differentiable w.r.t each 𝜃𝑖 , 1 ≤ 𝑖 ≤ 𝑑, and therefore 

Prop 2. (ii) is satisfied. For Prop. 2 (iii), define the set of all probable state sequences of 

length 𝑇 by  

  𝒳+
𝑇 ≔ {𝒙𝑇 ∈ 𝒳

𝑇: ℙ0(𝑥𝑇) > 0}. 

Then let 𝜉1(𝒙𝑇) = 𝜈(𝑥1)𝑓(𝑦1|𝑥1) and 𝜉𝑡(𝒙𝑇) = 𝑃𝑥𝑡−1𝑥𝑡𝑓(𝑦𝑡|𝑥𝑡), ∀2 ≤ 𝑡 ≤ 𝑇, so that 

𝑓(𝒚𝑇|𝜽) = ∑ ∏ 𝜉𝑡
𝑇
𝑡=1 (𝒙𝑇) 𝒙𝑻∈𝒳+

𝑇  and that  
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𝜕𝑓(𝒚𝑇|𝜽)

𝜕𝜃𝑖
= ∑ ∑

𝜕𝜉𝑡(𝒙𝑇)

𝜕𝜃𝑖

𝑇
𝑡=1 ⋅ ∏ 𝜉𝑡′(𝒙𝑇)𝑡′≠𝑡𝒙𝑻∈𝒳+

𝑇 .  (21) 

Note that 

  |
𝜕𝜉1

𝜕𝜃𝑖
| = |

𝜕𝜉1/𝜕𝜃𝑖

𝜉1
𝜉1| = |[

𝜕𝜈𝑥1/𝜕𝜃𝑖

𝜈𝑥1
+
𝜕𝑓(𝑦1|𝑥1)/𝜕𝜃𝑖

𝑓(𝑦1|𝑥1)
] 𝜉1| ≤ [𝐶𝑃 + 𝑔3(𝑦1)]𝜉1, 

and for ∀𝑡, 2 ≤ 𝑡 ≤ 𝑇, 

  |
𝜕𝜉𝑡

𝜕𝜃𝑖
| = |

𝜕𝜉𝑡/𝜕𝜃𝑖

𝜉𝑡
𝜉𝑡| = |[

𝜕𝑃𝑥𝑡−1𝑥𝑡/𝜕𝜃𝑖

𝑃𝑥𝑡−1𝑥𝑡
+
𝜕𝑓(𝑦𝑡|𝑥𝑡)/𝜕𝜃𝑖

𝑓(𝑦𝑡|𝑥𝑡)
] 𝜉𝑡| ≤ [𝐶𝑃 + 𝑔3(𝑦𝑡)]𝜉𝑡, 

where 𝐶𝑃 > max{2/𝛿0, 2/(1 − 𝛿0)}. It follows that for all 𝒚𝑇 and all 𝜽 ∈ {𝜽: |𝜽 −

𝜽0| ≤ 𝛿}, 

|
𝜕𝑓(𝒚𝑇|𝜽)

𝜕𝜃𝑖
| ≤ ∑ ∑ [𝐶𝑃 + 𝑔3(𝑦𝑡)]

𝑇
𝑡=1 ∏ 𝜉𝑡′(𝒙𝑇)

𝑇
𝑡′=1𝒙𝑻∈𝒳+

𝑇  ,  

= ∑ ℙ0(𝒙𝑇)∑ [𝐶𝑃 + 𝑔3(𝑦𝑡)]
𝑇
𝑡=1 ∏ 𝑓(𝑦𝑡′|𝑥𝑡′)

𝑇
𝑡′=1𝒙𝑻∈𝒳+

𝑇   

≤ ∑ [𝐶𝑃 + 𝑔3(𝑦𝑡)]
𝑇
𝑡=1 ∏ 𝑔2(𝑦𝑡′)

𝑇
𝑡′=1   (22) 

where the right-hand side is integrable based on Fubini’s theorem and Assumption A5. 

Hence, Prop 2. (iii) holds and therefore the sufficient condition (20) is satisfied.  

As for condition (ii), the corresponding convergence in probability is implied by (i) 

according to [173]. Finally, when it comes to (iii), this is obvious according to 𝛕k = 𝛉0 +
1

k
I−1(𝛉0)∇ℓk(𝛉0), Q.E.D.  □ 

 

Lemma 10: Assume A1-A10 hold, then for any 𝜖 > 0, 

  lim𝑘→∞ ℙ0
∞ (|

1

𝑘
∇2ℓ𝑘 (𝜽0, {𝒚𝑖,𝑇}𝑖=1

𝑘
) + 𝐼(𝜽0)| ≤ 𝜖) = 1. 
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Proof: By the Weak Law of Large Numbers, it is sufficient to show that  

 ∫
𝜕2

𝜕𝜃𝑖𝜕𝜃𝑗
𝑓(𝒚𝑇|𝜽0)𝑑𝜇𝑌

𝑇
𝒴𝑇

=
𝜕

𝜕𝜃𝑗
∫

𝜕

𝜕𝜃𝑖
𝑓(𝒚𝑇|𝜽0)𝑑𝜇𝑌

𝑇
𝒴𝑇

= 0, ∀𝑖, 𝑗, 1 ≤ 𝑖, 𝑗 ≤ 𝑑. (23) 

so that 𝔼0[−∇
2ℓ1(𝜽0)] = 𝔼0[∇ℓ1(𝜽0)∇ℓ1(𝜽0)

T] = 𝐼(𝜽0) < ∞. Let us check for the 

three conditions in Proposition 2 for 
𝜕

𝜕𝜃𝑖
𝑓(𝒚𝑇|𝜽). It is integrable by (22) and is 

measurable, which is implied by the fact that 𝑓(𝒚𝑇|𝜽) is measurable, and hence (i) holds.  

Due to (21) and A3, (ii) also holds because 𝜕2𝑓(𝒚𝑇|𝜽)/𝜕𝜃𝑖𝜕𝜃𝑗  exists almost everywhere 

on {𝜽: |𝜽 − 𝜽0| ≤ 𝛿} for every 𝒚𝑇. As for condition (iii), let 𝒳+
𝑇, 𝜉𝑡, and 𝐶𝑃 be defined in 

the same way as in the proof of Lemma 9. One immediately obtains that  

 |
𝜕2

𝜕𝜃𝑖𝜕𝜃𝑗
𝜉𝑡| ≤ (𝑔4(𝑦𝑡) + (𝐶𝑃 + 𝑔3(𝑦𝑡))

2
) ⋅ 𝜉𝑡  

 and then, 

    |
𝜕2

𝜕𝜃𝑖𝜕𝜃𝑗
𝑓(𝒚𝑇|𝜽)|  

= |
𝜕

𝜕𝑗
(∑ ∑

𝜕𝜉𝑡(𝒙𝑻)

𝜕𝜃𝑖

𝑇
𝑡=1 ⋅ ∏ 𝜉𝑡′(𝒙𝑻)𝑡′≠𝑡𝒙𝑻∈𝒳+

𝑇 )|  

= |∑ ∑ (
𝜕2𝜉𝑡

𝜕𝜃𝑖𝜕𝜃𝑗
∏ 𝜉𝑡′(𝒙𝑻)𝑡′≠𝑡 +

𝜕𝜉𝑡(𝒙𝑻)

𝜕𝜃𝑖
∑

𝜕𝜉
𝑡′
(𝒙𝑻)

𝜕𝜃𝑖
𝑡′≠𝑡 ∏ 𝜉𝑡"(𝒙𝑻)𝑡"≠𝑡,𝑡′ )𝑇

𝑡=1𝒙𝑻∈𝒳+
𝑇 |  

 ≤ ∑ ∑ (|
𝜕2𝜉𝑡

𝜕𝜃𝑖𝜕𝜃𝑗
|∏ 𝜉𝑡′(𝒙𝑻)𝑡′≠𝑡 + |

𝜕𝜉𝑡(𝒙𝑻)

𝜕𝜃𝑖
| |∑

𝜕𝜉
𝑡′
(𝒙𝑻)

𝜕𝜃𝑖
𝑡′≠𝑡 ∏ 𝜉𝑡"(𝒙𝑻)𝑡"≠𝑡,𝑡′ |)𝑇

𝑡=1𝒙𝑻∈𝒳+
𝑇  

≤ ∑ ∏ 𝜉𝑡′(𝒙𝑇)
𝑇
𝑡′=1 ∑ (𝑔4(𝑦𝑡) + (𝐶𝑃 + 𝑔3(𝑦𝑡))

2
+ ∑ (𝐶𝑃 + 𝑔3(𝑦𝑡′))(𝐶𝑃 +𝑡′≠𝑡

𝑇
𝑡=1𝒙𝑻∈𝒳+

𝑇

𝑔3(𝑦𝑡)))  

≤ ∑ (𝑔4(𝑦𝑡) + (𝐶𝑃 + 𝑔3(𝑦𝑡))
2
+ ∑ (𝐶𝑃 + 𝑔3(𝑦𝑡′))(𝐶𝑃 + 𝑔3(𝑦𝑡))𝑡′≠𝑡 )𝑇

𝑡=1 ∏ 𝑔2(𝑦𝑡")
𝑇
𝑡"=1   
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where the right hand side of the inequality is integrable based on Fubini’s theorem and 

assumptions A4-A6. Hence, (iii) holds and therefore, the sufficient condition (23) is 

satisfied, Q.E.D. □ 

 

Lemma 11 51: Assume A1-A10 hold, then for any sequence of positive numbers 𝛿𝑛 → 0, 

we have 

lim
𝑛→∞

lim
𝑘→∞

sup
|𝜽−𝜽0|≤𝛿𝑛

|
∇2ℓ𝑘 (𝜽, {𝒚𝑖,𝑇}𝑖=1

𝑘
)

𝑘
+ 𝐼(𝜽0)|

ℙ0
∞

→ 0. 

Proof: Following Lemma 2 in [11] and Lemma 5.2 in [133], we will prove that  

lim
𝑛→∞

lim
𝑘→∞

sup
|𝜽−𝜽0|≤𝛿𝑛

|
𝜕2

𝜕𝜃𝑖𝜕𝜃𝑗
ℓ𝑘 (𝜽, {𝒚𝑖,𝑇}𝑖=1

𝑘
) + 𝐼𝑖𝑗(𝜽0)|

ℙ0
∞

→ 0, ∀𝑖, 𝑗. 

Due to Lemma 10, it is sufficient to prove  

lim
𝑛→∞

lim
𝑘→∞

sup
|𝜽−𝜽0|≤𝛿𝑛

|
𝜕2

𝜕𝜃𝑖𝜕𝜃𝑗
ℓ𝑘 (𝜽, {𝒚𝑖,𝑇}𝑖=1

𝑘
) −

𝜕2

𝜕𝜃𝑖𝜕𝜃𝑗
ℓ𝑘(𝜽0)|

ℙ0
∞

→ 0, ∀𝑖, 𝑗. 

For any 𝜖 > 0, 

lim sup
𝑛→∞

lim sup
𝑘→∞

ℙ0
∞ ( sup

|𝜽−𝜽0|≤𝛿𝑛

1

𝑘
|
𝜕2ℓ𝑘 (𝜽, {𝒚𝑖,𝑇}𝑖=1

𝑘
)

𝜕𝜃𝑖𝜕𝜃𝑗
−
𝜕2ℓ𝑘 (𝜽0, {𝒚𝑖,𝑇}𝑖=1

𝑘
)

𝜕𝜃𝑖𝜕𝜃𝑗
| ≥ 𝜖) 

≤ lim sup
𝑛→∞

lim sup
𝑘→∞

ℙ0
∞ (
1

𝑘
∑ sup

|𝜽−𝜽0|≤𝛿𝑛

𝑘

𝑖=1
|
𝜕2ℓ̃𝑖(𝜽, 𝒚𝑖,𝑇)

𝜕𝜃𝑖𝜕𝜃𝑗
−
𝜕2ℓ̃𝑖(𝜽0, 𝒚𝑖,𝑇)

𝜕𝜃𝑖𝜕𝜃𝑗
| ≥ 𝜖) 

                                                 
51 This lemma stipulates about a locally uniform convergence, which is strictly weaker than the uniform 

convergence in assumption (B2) for [5, Theorem 8.2], which requires a fixed 𝛿 for the supremum tending 

to 0 as k tends to infinity.    
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≤ lim sup
𝑛→∞

lim sup
𝑘→∞

(∑ 𝔼0 [ sup
|𝜽−𝜽0|≤𝛿𝑛

|
𝜕2ℓ̃𝑖(𝜽,𝒚𝑖,𝑇)

𝜕𝜃𝑖𝜕𝜃𝑗
−
𝜕2ℓ̃𝑖(𝜽0,𝒚𝑖,𝑇)

𝜕𝜃𝑖𝜕𝜃𝑗
|]𝑘

𝑖=1 )

𝑘𝜖
 

= lim sup 
𝑛→∞

𝔼0 [ sup
|𝜽−𝜽0|≤𝛿𝑛

|
𝜕2ℓ1(𝜽,𝒚𝑇)

𝜕𝜃𝑖𝜕𝜃𝑗
−
𝜕2ℓ1(𝜽0,𝒚𝑇)

𝜕𝜃𝑖𝜕𝜃𝑗
|]

𝜖
   

≤

𝔼0 [lim sup 
𝑛→∞

sup
|𝜃−𝜃0|≤𝛿𝑛

|
𝜕2ℓ1(𝜽,𝒚𝑇)

𝜕𝜃𝑖𝜕𝜃𝑗
−
𝜕2ℓ1(𝜽0,𝒚𝑇)

𝜕𝜃𝑖𝜕𝜃𝑗
|]

𝜖
 

= 0. 

Please note that the third inequality is derived by Markov inequality, while the 

fourth inequality is obtained by Fatou's Lemma and using the integrable bound by which 

for all 𝑛 ≥ 1,  

 sup
|𝜽−𝜽0|≤δ𝑛

|
𝜕2

𝜕𝜃𝑖𝜕𝜃𝑗
ℓ1(𝜽, 𝒚𝑇) −

𝜕2

𝜕𝜃𝑖𝜕𝜃𝑗
ℓ1(𝜽0, 𝒚𝑇)| 

 ≤ 2 ⋅ sup
|𝜽−𝜽0|≤sup{𝛿𝑛}

|
𝜕2

𝜕𝜃𝑖𝜕𝜃𝑗
ℓ1(𝜽, 𝒚𝑇)| 

≤ 2 ⋅  (sup|𝜽−𝜽0|≤sup{𝛿𝑛} |
𝜕2

𝜕𝜃𝑖𝜕𝜃𝑗
𝑓(𝒚𝑇|𝜽)| + sup|𝜽−𝜽0|≤sup{𝛿𝑛} |

𝜕𝑓(𝒚𝑇|𝜽)

𝜕𝜃𝑖
| ⋅

sup|𝜽−𝜽0|≤sup{𝛿𝑛} |
𝜕𝑓(𝒚𝑇|𝜽)

𝜕𝜃𝑗
| sup|𝜽−𝜽0|≤sup{𝛿𝑛} |

1

𝑓(𝒚𝑇|𝜽)
|)  

and the last equation is given by the uniform continuity of  ∇2ℓ1(𝜽) over the closed set 

|𝜽 − 𝜽0| ≤ sup {𝛿𝑛},  Q.E.D. □ 
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Lemma 12: Assume A1 – A10 hold, then for any ℳ < ∞ and for any 𝜖 > 0,  

lim
𝑘→∞

ℙ0
∞ (∫ |𝜋 (

1

√𝑘
𝒖 + 𝝉𝑘) 𝑒

𝜔𝑘(𝒖) − 𝜋(𝜽0)e
−
𝒖T𝐼(𝜽0)𝒖

2 |
|𝒖|≤ℳ

d𝒖 ≤ 𝜖) = 1. 

Proof: This proof follows Theorem 8.2 in [165]. Since by Lemma 9, 𝝉𝑘 converges to 𝜽0 

in probability and since sup
|𝒖|≤ℳ

𝑘−
1

2𝒖 converges to 0 as 𝑘 → ∞, we have   

  sup|𝑢|≤ℳ |
1

√𝑘
𝒖 + 𝝉𝑘 − 𝜽0|

ℙ0
∞

→ 0.  (24) 

Then by A9 and Continuous Mapping Theorem (Lemma 2),  

sup
|𝒖|≤ℳ

|𝜋 (
1

√𝑘
𝒖 + 𝝉𝑘) − 𝜋(𝜽0)|

ℙ0
∞

→ 0 

By Lemma 9, 𝐼−1(𝜽0)∇ℓ𝑘 (𝜽0, {𝒚𝑖,𝑇}𝑖=1
𝑘
) /√𝑘 converges in distribution and is therefore 

bounded in probability. It follows that sup
|𝑢|≤ℳ

(𝒖 + 𝐼−1(𝜽0)∇ℓ𝑘 (𝜽0, {𝒚𝑖,𝑇}𝑖=1
𝑘
) /√𝑘)

2

 is 

also bounded in probability. Furthermore, Lemma 11 implies that 

   sup
|𝑢|≤ℳ

|
1

2𝑘
𝑅𝑘 (𝝉𝑘 +

𝒖

√𝑘
)|
ℙ0
∞

→ 0.  (25) 

This is because for any 𝜖 > 0 and for any sequence 𝛿𝑛 → 0 , 

 lim sup𝑘→∞ℙ0
∞ ( sup

|𝒖|≤ℳ
|
1

2𝑘
𝑅𝑘 (𝝉𝑘 +

𝒖

√𝑘
)| ≥ 𝜖) 

≤ lim sup𝑘→∞[ℙ0
∞ ( sup

|𝒖|≤ℳ
|
1

2𝑘
𝑅𝑘 (𝝉𝑘 +

𝒖

√𝑘
)| ≥ 𝜖, sup

|𝒖|≤ℳ
|
1

√𝑘
𝒖 + 𝝉𝑘 − 𝜽0| ≤

𝛿𝑛) +ℙ0
∞ ( sup

|𝒖|≤ℳ
|
1

√𝑘
𝒖 + 𝝉𝑘 − 𝜽0| > 𝛿𝑛)] 
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≤ lim sup
𝑘→∞

ℙ0
∞ ( sup

|𝜽−𝜽0|≤ 𝛿𝑛

|
1

2𝑘
𝑅𝑘(𝜽)| ≥ 𝜖)

+ lim sup
𝑘→∞

ℙ0
∞ ( sup

|𝒖|≤ℳ
|
1

√𝑘
𝒖 + 𝝉𝑘 − 𝜽0| > 𝛿𝑛). 

Notice that following (24), the second term is 0 for any 𝛿𝑛 > 0, while the first term 

vanishes as 𝑛 → ∞ by the locally uniform convergence in Lemma 10. Thus, (24) is 

proven. 

It follows by Lemma 3 that 

sup
|𝒖|≤ℳ

|
1

2𝑘
(𝒖 +

𝐼−1(𝜽0)∇ℓ𝑘 (𝜽0, {𝒚𝑖,𝑇}𝑖=1
𝑘
)

𝑘
)

−1

𝑅𝑘 (𝝉𝑘 +
𝒖

√𝑘
)(𝒖 +

𝐼−1(𝜽0)∇ℓ𝑘 (𝜽0, {𝒚𝑖,𝑇}𝑖=1
𝑘
)

𝑘
)|

ℙ0
→ 0, 

and consequently, by Lemma 5 we have that  

sup
|𝑢|≤𝑀

|𝜔𝑘(𝒖) +
𝒖T𝐼(𝜽0)𝒖

2
|
ℙ0
∞

→ 0. 

Hence, per Lemma 1, we know that 

sup
|𝒖|≤𝑀

|𝜋 (
1

√𝑘
𝒖 + 𝝉𝑘) 𝑒

𝜔𝑘(𝒖)+
𝒖T𝐼(𝜽0)𝒖

2 − 𝜋(𝜽0)|
ℙ0
∞

→ 0, 

which proves the lemma, Q.E.D. □ 

 

Lemma 13: Assume A1 – A10 hold, then for any positive sequence {𝑎𝑘} such that 

𝑎𝑘/√𝑘 → 0, there exists an integrable function ℋ(𝑢) such that  

lim
𝑘→∞

ℙ0
∞ (∫ |𝜋 (

1

√𝑘
𝒖 + 𝝉𝑘) 𝑒

𝜔𝑘(𝒖) − 𝜋(𝜽0)e
−
𝒖T𝐼(𝜽0)𝒖

2 |
|𝒖|≤𝑎𝑘

𝑑𝒖 ≤ ∫ 𝐻(𝒖)
|𝒖|≤𝑎𝑘

𝑑𝒖) = 1 
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Proof: The proof follows Theorem 8.2 in [165]. Since 𝜋(𝜽0)e
−𝒖T𝐼(𝜽0)𝒖/2 is integrable by 

itself, it suffices to show that some integrable function 𝐻(𝒖) exists such that 

 lim𝑘→∞ ℙ0
∞ (𝜋 (

1

√𝑘
𝒖 + 𝝉𝑘) 𝑒

𝜔𝑘(𝒖) ≤ 𝐻(𝒖), ∀|𝒖| ≤ 𝑎𝑘) = 1,  (26) 

Since 𝜏𝑘 converges to 𝜃0 in probability and by Lemma 9 sup|𝒖|≤𝑎𝑘 |𝑘
−
1

2𝒖|
𝑘→∞
→  0, we 

have 

 sup|𝒖|≤𝑎𝑘 |
1

√𝑘
𝒖 + 𝝉𝑘 − 𝜽0|

ℙ0
∞

→ 0, 

 and then per Lemma 2, sup|𝒖|≤𝑎𝑘 |𝜋 (
1

√𝑘
𝒖 + 𝝉𝑘) − 𝜋(𝜽0)|

ℙ0
∞

→ 0.  

For 𝐶1 = 𝜖 + 𝜋(𝜽0) where  𝜖 is any postive number, 

 lim𝑘→∞ ℙ0
∞ (sup|𝒖|≤𝑎𝑘 |𝜋 (

1

√𝑘
𝒖 + 𝝉𝑘)| ≤ 𝐶1) = 1. (27) 

Based on the fact that 𝐼−1(𝜽0)∇ℓ𝑘 (𝜽0, {𝒚𝑖,𝑇}𝑖=1
𝑘
) /√𝑘 is bounded in probability, as 

proven in Lemma 9, and the fact that 

sup
|𝒖|≤𝑎𝑘

|
1

2𝑘
𝑅𝑘 (𝝉𝑘 +

𝒖

√𝑘
)|
ℙ0
∞

→ 0, 

which follows from (25) and Lemma 11 52. Applying Lemma 3, we obtain  

sup
|𝒖|≤𝑎𝑘

|
1

√𝑘
𝐼−1(𝜽0)∇ℓ𝑘 (𝜽0, {𝒚𝑖,𝑇}𝑖=1

𝑘
)|
2

|
1

2𝑘
𝑅𝑘 (𝝉𝑘 +

𝒖

√𝑘
)|
ℙ0
∞

→ 0. 

                                                 

52 Considering that for any 𝛿 > 0, 𝑘 and 𝜏𝑘, {𝜽: 𝜽 = |
1

√𝑘
𝒖 + 𝝉𝑘|  where sup

ℳ≤|𝒖|≤ℳ+𝑎𝑘

|
1

√𝑘
𝒖 + 𝝉𝑘 − 𝜽0| ≤

𝛿} ⊆ {𝜽: 𝜽 =  |𝜽 − 𝜽0| ≤ 𝛿}. 
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Let 𝜆𝑚𝑖𝑛 > 0 be the smallest eigenvalue of the nonsingular matrix 𝐼(𝜽0). Then, for any 

𝜖, 𝜖1 > 0, there exists 𝐾 such that ∀𝑘 ≥ 𝐾,  

 ℙ0
∞ (|

1

2𝑘
𝑅𝑘 (𝝉𝑘 +

𝒖

√𝑘
)| ≤

1

8
𝜆𝑚𝑖𝑛, ∀|𝒖| ≤ 𝑎𝑘) > 1 − 𝜖,  (28) 

 and  

 ℙ0
∞ (|

1

√𝑘
𝐼−1(𝜽0)∇ℓ𝑘(𝜽0)|

2

|
1

2𝑘
𝑅𝑘 (𝝉𝑘 +

𝒖

√𝑘
)| ≤ 𝜖1, ∀|𝒖| ≤ 𝑎𝑘 ) > 1 − 𝜖.  (29) 

Since ∀|𝒖| ≤ 𝑎𝑘, we have 

 |
1

2𝑘
(𝒖 +

1

√𝑘
𝐼−1(𝜽0)∇ℓ𝑘 (𝜽0, {𝒚𝑖,𝑇}𝑖=1

𝑘
))
T

𝑅𝑘 (
𝒖

√𝑘
+ 𝝉𝑘) (𝒖 +

1

√𝑘
𝐼−1(𝜽0)∇ℓ𝑘 (𝜽0, {𝒚𝑖,𝑇}𝑖=1

𝑘
))| 

≤ 2|𝒖|2 |
1

2𝑘
𝑅𝑘 (

𝒖

√𝑘
+ 𝝉𝑘)| + 2 |

1

√𝑘
𝐼−1(𝜽0)∇ℓ𝑘 (𝜽0, {𝒚𝑖,𝑇}𝑖=1

𝑘
)|
2

|
1

2𝑘
𝑅𝑘 (𝝉𝑘 +

𝒖

√𝑘
)|.  (30) 

In addition, we have 

𝜔𝑘(𝒖) = −
𝒖𝑇𝐼(𝜽0)𝒖

2
−

1

2𝑘
(𝒖 +

1

√𝑘
𝐼−1(𝜽0)∇ℓ𝑘 (𝜽0, {𝒚𝑖,𝑇}𝑖=1

𝑘
))
T

𝑅𝑘 (
𝒖

√𝑘
+ 𝝉𝑘) (𝒖 +

1

√𝑘
𝐼−1(𝜽0)∇ℓ𝑘 (𝜽0, {𝒚𝑖,𝑇}𝑖=1

𝑘
))  

≤ −
1

2
|𝒖|2𝜆𝑚𝑖𝑛 + |

1

2𝑘
(𝒖 +

1

√𝑘
𝐼−1(𝜽0)∇ℓ𝑘 (𝜽0, {𝒚𝑖,𝑇}𝑖=1

𝑘
))
T

𝑅𝑘 (
𝒖

√𝑘
+ 𝝉𝑘) (𝒖 +

1

√𝑘
𝐼−1(𝜽0)∇ℓ𝑘 (𝜽0, {𝒚𝑖,𝑇}𝑖=1

𝑘
))|.   (31) 

It follows from eqs. (28-31) that  

ℙ0
∞ (𝜔𝑘(𝒖) ≤ −

1

4
|𝒖|2𝜆𝑚𝑖𝑛 + 𝜖1, ∀|𝒖| ≤ 𝑎𝑘) ≥ 1 − 2𝜖, 
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which leads to  

 lim𝑘→∞ ℙ0
∞ (𝑒𝜔𝑘(𝒖) ≤ 𝑒−

1

4
|𝒖|2𝜆𝑚𝑖𝑛+𝜖1 , ∀|𝒖| ≤ 𝑎𝑘) = 1, 

Therefore, eq. (26) is satisfied by choosing 𝐻(𝑢) = 𝑒log𝐶1−
1

4
|𝒖|2𝜆𝑚𝑖𝑛+𝜖1, Q.E.D. □ 

 

Lemma 14. Assume A1-A10 hold, and denote 

𝐽𝑘(𝛿) = ∫ |𝜋 (
1

√𝑘
𝒖 + 𝝉𝑘) 𝑒

𝜔𝑘(𝒖) − 𝜋(𝜽0)e
−
𝒖T𝐼(𝜽0)𝒖

2 |
√𝑘𝛿≤|𝒖|

𝑑𝒖. 

Then, the following is true: 

(i) For any fixed 𝛿 > 0, 𝐽𝑘(𝛿)
ℙ0
∞

→ 0. 

(ii) There exists a sequence of positive numbers 𝛿𝑘 such that 𝛿𝑘 → 0, 𝛿𝑘√𝑘 → ∞, and 

𝐽𝑘(𝛿𝑘)
ℙ0
∞ 
→ 0. 

Proof: The first part of the proof follows Theorem 8.2 in [165], and the second part of the 

proof follows Theorem 3.2 in [18]. 

(i) The expression 𝜋(𝜽0)e
−
𝒖T𝐼(𝜽0)𝒖

2  is proportional to some Guassian density and therefore 

is negligible in the integration for sufficiently large 𝑘. It suffices to prove that  

∫ 𝜋 (
1

√𝑘
𝒖 + 𝝉𝑘) 𝑒

𝜔𝑘(𝒖)

𝛿√𝑘≤|𝒖|

d𝒖 

converges to zero in ℙ0
∞-probability. One can observe that 

∫ 𝜋 (
1

√𝑘
𝒖 + 𝝉𝑘) 𝑒

𝜔𝑘(𝒖)

𝛿√𝑘≤|𝒖|

d𝒖 
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 = √𝑘 ∫ 𝜋(𝜽)𝑒ℓ𝑘(𝜽,{𝒚𝑖,𝑇}𝑖=1
𝑘
)−ℓ𝑘(𝜽0,{𝒚𝑖,𝑇}𝑖=1

𝑘
)−
∇ℓ𝑘(𝜽0,{𝒚𝑖,𝑇}𝑖=1

𝑘
)

T

𝐼−1(𝜽0)∇ℓ𝑘(𝜽0,{𝒚𝑖,𝑇}𝑖=1

𝑘
)

2𝑘
|𝜽−𝝉𝑘|≥𝛿 

𝑑𝜽.  

According to Lemma 8, for any 𝛿 > 0, there exists 𝜖𝛿 such that  

lim
𝑘→∞

ℙ0
∞ ( sup

|𝜽−𝜽0|≥
𝛿

2

𝑒ℓ𝑘(𝜽,{𝒚𝑖,𝑇}𝑖=1
𝑘
)−ℓ𝑘(𝜽0,{𝒚𝑖,𝑇}𝑖=1

𝑘
) ≤ 𝑒−𝑘𝜖𝛿) = 1. 

 Since for any 𝑘, 

    ℙ0
∞( sup

|𝜽−𝜽0|≥
𝛿

2

𝑒ℓ𝑘(𝜽,{𝒚𝑖,𝑇}𝑖=1
𝑘
)−ℓ𝑘(𝜽0,{𝒚𝑖,𝑇}𝑖=1

𝑘
) ≤ 𝑒−𝑘𝜖𝛿   ) 

≤  ℙ0
∞( sup

|𝜽−𝜽0|≥
𝛿

2

𝑒ℓ𝑘(𝜽,{𝒚𝑖,𝑇}𝑖=1
𝑘
)−ℓ𝑘(𝜽0,{𝒚𝑖,𝑇}𝑖=1

𝑘
) ≤ 𝑒−𝑘𝜖𝛿    and  |𝝉𝑘 − 𝜽0| <

𝛿

2
) +

ℙ0
∞ (|𝝉𝑘 − 𝜽0| <

𝛿

2
)  

≤ ℙ0
∞ ( sup

|𝜽−𝝉𝑘|≥𝛿
𝑒ℓ𝑘(𝜽,{𝒚𝑖,𝑇}𝑖=1

𝑘
)−ℓ𝑘(𝜽0,{𝒚𝑖,𝑇}𝑖=1

𝑘
) ≤ 𝑒−𝑘𝜖𝛿) + ℙ0

∞ (|𝝉𝑘 − 𝜽0| <
𝛿

2
),  (32) 

and since 𝝉𝑘
ℙ0
∞

→ 𝜽0, we obtain that 

lim
𝑘→∞

ℙ0
∞ ( sup

|𝜽−𝝉𝑘|≥𝛿
𝑒ℓ𝑘(𝜽,{𝒚𝑖,𝑇}𝑖=1

𝑘
)−ℓ𝑘(𝜽0,{𝒚𝑖,𝑇}𝑖=1

𝑘
) ≤ 𝑒−𝑘𝜖𝛿) = 1. 

Since sup
|𝜽−𝝉𝑘|≥𝛿

𝑒ℓ𝑘(𝜽,{𝒚𝑖,𝑇}𝑖=1
𝑘
)−ℓ𝑘(𝜽0,{𝒚𝑖,𝑇}𝑖=1

𝑘
) ≤ 𝑒−𝑘𝜖𝛿 implies that  
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√𝑘 ∫ 𝜋(𝜽)𝑒ℓ𝑘(𝜽,{𝒚𝑖,𝑇}𝑖=1
𝑘
)−ℓ𝑘(𝜽0,{𝒚𝑖,𝑇}𝑖=1

𝑘
)−
∇ℓ𝑘(𝜽0,{𝒚𝑖,𝑇}𝑖=1

𝑘
)

T

𝐼−1(𝜽0)∇ℓ𝑘(𝜽0,{𝒚𝑖,𝑇}𝑖=1

𝑘
)

2𝑘
|𝜽−𝜏𝑘|≥𝛿 

𝑑𝜽  

≤ √𝑘 sup
|𝜽−𝜏𝑘|≥𝛿

𝑒ℓ𝑘(𝜽,{𝒚𝑖,𝑇}𝑖=1
𝑘
)−ℓ𝑘(𝜽0,{𝒚𝑖,𝑇}𝑖=1

𝑘
)∫ 𝜋(𝜽)𝑒−

∇ℓ𝑘(𝜽0,{𝒚𝑖,𝑇}𝑖=1

𝑘
)

T

𝐼−1(𝜽0)∇ℓ𝑘(𝜽0,{𝒚𝑖,𝑇}𝑖=1

𝑘
)

2𝑘

|𝜽−𝜏𝑘|≥𝛿 

𝑑𝜽 

≤ 𝐶3√𝑘𝑒
−𝑘𝜖∫ 𝜋(𝜽)

|𝜽−𝝉𝑘|≥𝛿 

𝑑𝜽 

≤ 𝐶3√𝑘𝑒
−𝑘𝜖. 

Hence, for a given 𝛿, the ℙ0
∞-probability that 

√𝑘∫ 𝜋(𝜽)𝑒ℓ𝑘(𝜽,{𝒚𝑖,𝑇}𝑖=1
𝑘
)−ℓ𝑘(𝜽0,{𝒚𝑖,𝑇}𝑖=1

𝑘
)−
∇ℓ𝑘(𝜽0,{𝒚𝑖,𝑇}𝑖=1

𝑘
)

T

𝐼−1(𝜽0)∇ℓ𝑘(𝜽0,{𝒚𝑖,𝑇}𝑖=1

𝑘
)

2𝑘

|𝜽−𝜏𝑘|≥𝛿 

𝑑𝜽 

        ≤ 𝐶3√𝑘𝑒
−𝑘𝜖 

 converges to 1. The proof is complete per Lemma 4. Q.E.D.  

 

Figure 13.  A univariate illustration of the probability events considered in the chain of 

inequalities (32) used in the proof of Lemma 14, part (i). 
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(ii) According to (i), for any strictly decreasing sequence of positive constants  {𝛿𝑖}𝑖=1
∞  

that converges to 0, there exists an integer sequence {𝑁(𝛿𝑖)}𝑖=1
∞  such that for each 𝑖 ≥ 1 

and for all 𝑛 ≥ 𝑁(𝛿𝑖),  

 ℙ0
∞(𝐽𝑛(𝛿𝑖) ≥ 𝛿𝑖) ≤ 𝛿𝑖. (33) 

Then, let us construct a monotonically increasing sequence {𝑁′(𝛿𝑖)}𝑖=1
∞  such that 

𝑁′(𝛿1) = 𝑁(𝛿1) and 

𝑁′(𝛿𝑖) = max(𝑁(𝛿𝑖),𝑁
′(𝛿𝑖−1) + 1, [𝛿𝑖

−2−𝛼] + 1) , ∀𝑖 ≥ 2,  

for some 0 < 𝛼 < 1. Since  𝛿𝑖√𝑁′(𝛿𝑖) > 𝛿𝑖
−𝛼/2 

. we have   

  𝛿𝑖√𝑁′(𝛿𝑖) → ∞, as i → ∞. (34) 

Considering eq. (33), for any 𝜖 > 0 there exists 𝐼 such that for all 𝑖 ≥ 𝐼, we have  𝛿𝑖 < 𝜖 

and 

ℙ0
∞(𝐽𝑁′(𝛿𝑖)(𝛿𝑖) ≥ 𝜖) ≤ ℙ0

∞(𝐽𝑁′(𝛿𝑖)(𝛿𝑖) ≥ 𝛿𝑖) ≤ 𝛿𝑖. 

Therefore, 

   lim𝑖→∞ℙ0
∞(𝐽𝑁′(𝛿𝑖)(𝛿𝑖) ≥ 𝜖) = 0,  (35) 

Let us now construct a sequence {𝛿𝑘
′ }𝑘=1
∞  by choosing 𝛿𝑘

′ = 𝛿𝑖 for 𝑁′(𝛿𝑖) ≤ 𝑘 <

𝑁′(𝛿𝑖+1), ∀𝑘, Then we have:  

1) 𝛿𝑘
′ → 0, since 𝛿𝑖 → 0;  

2) 𝛿𝑘
′√𝑘 → ∞, since 𝛿𝑘

′√𝑘 > 𝛿𝑖√𝑁′(𝛿𝑖) (where 𝛿𝑘
′ = 𝛿𝑖) and (34); 

3) 𝐽𝑘(𝛿𝑘)
ℙ0
→ 0, since ℙ0(𝐽𝑘(𝛿𝑘

′ ) ≥ 𝜖) > ℙ0(𝐽𝑁′(𝛿𝑖)(𝛿𝑖) ≥ 𝜖) and (35).  

Hence, {𝛿𝑘
′ }𝑘=1
∞  is the desired sequence, for Lemma 14 (ii), Q.E.D. □ 
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Proof of Theorem 1: The proof follows the line of the proofs of Theorem 8.2 in [165] and 

Theorem 2.1 in [18]. Let 

 𝒞𝑘 = ∫ 𝑒𝜔𝑘(𝒖)𝜋 (
1

√𝑘
𝒖 + 𝝉𝑘) 𝑑𝒖ℝ𝑑

.  

One readily shows that  

 𝜋𝑘
∗(𝒖|𝒘𝑘) =

1

𝒞𝑘
𝜋 (

1

√𝑘
𝒖 + 𝝉𝑘) 𝑒

𝜔𝑘(𝒖).  

It follows that 

  𝒞𝑘 ⋅ ∫ |𝜋k
∗(𝒖|𝒘𝑘) −

1

√2𝜋𝐼−1(𝜽0)
𝑒−

𝐼(𝜽0)𝒖
2

2 |
ℝ𝑑

𝑑𝒖  

  ≤ ∫ |𝜋 (
1

√𝑘
𝒖 + 𝝉𝑘) 𝑒

𝜔𝑘(𝒖) − 𝜋(𝜽0)e
−
𝐼(𝜽0)𝒖

2

2 |
ℝ𝑑

𝑑𝒖 

      +∫ |
𝒞𝑘

√2𝜋𝐼−1(𝜽0)
e−𝐼

(𝜽0)
𝒖2

2 − 𝜋(𝜽0)e
−
𝐼(𝜽0)𝒖

2

2 |
ℝ𝑑

𝑑𝒖. (36) 

It now suffices to show that the first expression on the right hand side of (36) converges, 

i.e. 

  ∫ |𝜋 (
1

√𝑘
𝒖 + 𝝉𝑘) 𝑒

𝜔𝑘(𝒖) − 𝜋(𝜽0)e
−
𝐼(𝜽0)𝒖

2

2 |
ℝ𝑑

d𝑢
ℙ0
∞

→ 0, (37) 

because (37) immediately implies the convergence of 𝒞𝑘 in probability ℙ0
∞ to a finite 

value, as well as the convergence in probability ℙ0
∞ of the second expression on the right 

hand side of inequality (36) to 0.  

 To show that (37) holds, let 𝐽𝑘(𝒖) be the integrand in the integral (36), i.e.,  
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𝐽𝑘(𝒖) = ∫ |
𝒞𝑘

√2𝜋𝐼−1(𝜽0)
e−𝐼

(𝜽0)
𝒖2

2 − 𝜋(𝜽0)e
−
𝐼(𝜽0)𝒖

2

2 |
ℝ𝑑

𝑑𝒖. 

Then, for any positive 𝜖 ≥ 0, choose ℳ according to the integrable function 𝐻(𝒖) from 

Lemma 13 such that ∫ 𝐻(𝒖)
∞

ℳ
𝑑𝒖 ≤ 𝜖/3. In addition, following Lemma 14 (ii), we can 

choose a sequence {𝛿𝑘} such that 

∫ |𝜋 (
1

√𝑘
𝒖 + 𝝉𝑘) 𝑒

𝜔𝑘(𝒖) − 𝜋(𝜽0)e
−
𝒖T𝐼(𝜽0)𝒖

2 |
√𝑘𝛿𝑘≤|𝒖|

𝑑𝒖
ℙ0
∞

→ 0. 

Then let 𝑎𝑘 = max{0, √𝑘𝛿𝑘 −ℳ} , ∀𝑘. Finally, let us choose a common 𝐾 from Lemma 

12, 13, and 14 such that for all 𝑘 ≥ 𝐾, 

    ℙ0
∞ (∫ 𝐽𝑘(𝒖)|𝒖|≤ℳ

𝑑𝒖 ≤
𝜖

3
) ≥ 1 −

𝜖

3
,  

 ℙ0
∞  (∫ 𝐽𝑘(𝒖)ℳ≤|𝒖|≤ℳ+𝑎𝑘

𝑑𝒖 ≤
𝜖

3
) ≥ 1 −

𝜖

3
, 

  ℙ0
∞ (∫ 𝐽𝑘(𝒖)ℳ+𝑎𝑘≤|𝒖|

𝑑𝒖 ≤
𝜖

3
) ≥ 1 −

𝜖

3
. 

Such choices lead to (22) and the proof is now completed.  □ 

 

5.3 ILLUSTRATIVE EXAMPLE 

We provide here an example to demonstrate the applicability of Theorem 1.53 

Consider using the data {𝒚𝑘,𝑇}𝑘=1
∞

 with 𝑇 = 2 to estimate a 2-state Gaussian HMM with 

transition probability matrix 

                                                 
53 This example could be extended for HMM with 3, 4, or even larger number of states. However, the 

mathematical expressions in the fulfilment of the assumptions would become intractable and therefore 

avoided in this chapter.   
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𝑷0 = [
𝛼0 1 − 𝛼0
0 1

], 

conditional distributions 𝑌𝑡|𝑋𝑡 = 𝑖 ∼ 𝒩(𝜇0𝑖, 1), ∀𝑡 ≥ 0 54, with a known initial 

distribution 𝜈0 = [1,0], The HMM parameter vector 𝜽𝟎 = (𝛼0, 𝜇01, 𝜇02) is an interior 

point of the parameter space defined by 

  Ω = {𝜽 ∈ ℝ3: 𝛼𝑚𝑖𝑛  ≤ 𝛼 ≤ 𝛼𝑚𝑎𝑥 ; 𝜇𝑚𝑖𝑛 + Δ𝜇 ≤ 𝜇1 + Δ𝜇 ≤ 𝜇2 ≤ 𝜇𝑚𝑎𝑥},  (38) 

where 0 < 𝛼𝑚𝑖𝑛 < 𝛼𝑚𝑎𝑥 < 1,−∞ < 𝜇𝑚𝑖𝑛 < 𝜇𝑚𝑎𝑥 < ∞, Δ𝜇 > 0. Assume the prior for 𝛼 

is scaled Beta(𝑎, 𝑏) distribution with support on [𝛼𝑚𝑖𝑛, 𝛼𝑚𝑎𝑥], and each prior for the 𝜇𝑖′s 

is independently from normal distribution 𝑁(𝜇0
′ , 𝜎0

′2). It follows that the joint prior 

distribution on Ω satisfies   

  𝜋(𝛼, 𝜇1, 𝜇2) =
(𝛼−𝛼𝑚𝑖𝑛)

𝑎−1(𝛼𝑚𝑎𝑥−𝛼)
𝑏−1

(𝛼𝑚𝑎𝑥−𝛼𝑚𝑖𝑛)𝐵(𝑎,𝑏)
×∏

1

√2𝜋𝜎0
′𝐶𝜋
𝑒

(𝜇𝑖−𝜇0
′ )
2

2𝜎0
′ 22

𝑖=1 , 

where 𝐶𝜋 is a normalizing constant so that ∏
1

√2𝜋𝜎0
′𝐶𝜋
𝑒

(𝜇𝑖−𝜇0
′ )
2

2𝜎0
′ 22

𝑖=1  integrates to 1 on 

{(𝜇1, 𝜇2): 𝜇𝑚𝑖𝑛 + Δ𝜇 ≤ 𝜇1 + Δ𝜇 ≤ 𝜇2 ≤ 𝜇𝑚𝑎𝑥}.  

 Now we check the assumptions needed for Theorem 1. A1-A3 hold obviously.  

For A4-A6, the bounding functions 𝑔𝑖 's for 𝑖 = 1,2,3,4 can be constructed in the 

following manner.  

                                                 
54 Please note that in this example we assume known conditional variances for observation distributions. 
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𝑔1(𝑦) =

{
  
 

  
 

1

√2𝜋
𝑒−

(𝑦−𝜇𝑚𝑎𝑥)
2

2 𝑦 < 𝜇𝑚𝑖𝑛,

1

√2𝜋
𝑒−

(𝜇𝑚𝑎𝑥−𝜇𝑚𝑖𝑛)
2

2 𝜇𝑚𝑖𝑛 ≤ 𝑦 ≤ 𝜇𝑚𝑎𝑥,

1

√2𝜋
𝑒−

(𝑦−𝜇𝑚𝑖𝑛)
2

2 𝜇𝑚𝑎𝑥 < 𝑦,

 

𝑔2(𝑦) =

{
  
 

  
 
1

√2𝜋
𝑒−

(𝑦−𝜇𝑚𝑖𝑛)
2

2 𝑦 < 𝜇𝑚𝑖𝑛,

1

√2𝜋
𝜇𝑚𝑖𝑛 ≤ 𝑦 ≤ 𝜇𝑚𝑎𝑥,

1

√2𝜋
𝑒−

(𝑦−𝜇𝑚𝑎𝑥)
2

2 𝜇𝑚𝑎𝑥 < 𝑦,

 

𝑔3(𝑦) = max{|𝑦 − 𝜇01| + 𝛿, |𝑦 − 𝜇02| + 𝛿}, 

and 𝑔4(𝑦) = 1. It is clear that ∫𝑔2(𝑦) 𝑑𝑦 = 1 +
(𝜇𝑚𝑎𝑥−𝜇𝑚𝑖𝑛)

√2𝜋
< ∞ and therefore 

    ∫ |log 𝑔1|𝑔2ℝ
𝑑𝑦  

≤ ∫ |log 𝑔1|𝑔2𝑦<𝜇𝑚𝑖𝑛
𝑑𝑦 + ∫ |log 𝑔1|𝑔2[𝜇𝑚𝑖𝑛,𝜇𝑚𝑎𝑥]

𝑑𝑦 + ∫ |log 𝑔1|𝑔2𝜇𝑚𝑎𝑥<𝑦
𝑑𝑦  

≤ ∫ (
(𝑦−𝜇𝑚𝑎𝑥)

2

2
+ 𝐶1) 𝑔2𝑦<𝜇𝑚𝑖𝑛

𝑑𝑦 + ∫ (
(𝜇𝑚𝑎𝑥−𝜇𝑚𝑖𝑛)

2

2
+ 𝐶1) 𝑔2[𝜇𝑚𝑖𝑛,𝜇𝑚𝑎𝑥]

𝑑𝑦 

+ ∫ (
(𝑦−𝜇𝑚𝑖𝑛)

2

2
+ 𝐶1)𝑔2𝜇𝑚𝑎𝑥<𝑦

𝑑𝑦  

≤ ∫ (
(𝑦−𝜇𝑚𝑖𝑛)

2−2(𝜇𝑚𝑎𝑥−𝜇𝑚𝑖𝑛)(𝑦−𝜇𝑚𝑖𝑛)+(𝜇𝑚𝑎𝑥−𝜇𝑚𝑖𝑛)
2

2
 + 𝐶1)𝑔2𝑦<𝜇𝑚𝑖𝑛

𝑑𝑦  

+∫ (
(𝜇𝑚𝑎𝑥−𝜇𝑚𝑖𝑛)

2

2
+ 𝐶1)𝑔2[𝜇𝑚𝑖𝑛,𝜇𝑚𝑎𝑥]

𝑑𝑦   

+ ∫ (
(𝑦−𝜇𝑚𝑎𝑥)

2+2(𝜇𝑚𝑎𝑥−𝜇𝑚𝑖𝑛)(𝑦−𝜇𝑚𝑎𝑥)+(𝜇𝑚𝑎𝑥−𝜇𝑚𝑖𝑛)
2

2
+ 𝐶1)𝑔2𝜇𝑚𝑎𝑥<𝑦

𝑑𝑦  
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≤ ∫
(𝑦2+2(𝜇𝑚𝑎𝑥−𝜇𝑚𝑖𝑛)|𝑦|)

2

1

√2𝜋
𝑒−

𝑦2

2
ℝ

𝑑𝑦 + (
(𝜇𝑚𝑎𝑥−𝜇𝑚𝑖𝑛)

2

2
 + 𝐶1)∫ 𝑔2ℝ

𝑑𝑦  

≤
1

2
+
2(𝜇𝑚𝑎𝑥−𝜇𝑚𝑖𝑛)

√2𝜋
+ (

(𝜇𝑚𝑎𝑥−𝜇𝑚𝑖𝑛)
2

2
 + 𝐶1) (1 +

(𝜇𝑚𝑎𝑥−𝜇𝑚𝑖𝑛)

√2𝜋
) 

< ∞,  

where 𝐶1 = log √2𝜋. Based on [167], the identifiability in assumption A7 can be 

established using the same argument as in Section 3 in [128]. Assumptions A8 and A9 

are obviously satisfied. For A10, it is sufficient to show that 𝐼(𝜽0) is positive definite, or 

equivalently to show that for any 𝑎1, 𝑎2, 𝑎3,  

 𝑉𝑎𝑟𝜃0 [𝑎1
𝜕ℓ1

𝜕𝛼
+ 𝑎2

𝜕ℓ1

𝜕𝜇1
+ 𝑎3

𝜕ℓ1

𝜕𝜇2
] = 0, if and only if 𝑎1 = 𝑎2 = 𝑎3 = 0,   (39) 

since 𝔼0[∇ℓ1(𝛉0)] = 0 and 𝐼(𝜽0) = 𝑉𝑎𝑟𝜽0[∇ℓ1(𝛉0)]. Note that 

 𝑉𝑎𝑟𝜽0 [𝑎1
𝜕ℓ1

𝜕𝛼
+ 𝑎2

𝜕ℓ1

𝜕𝜇1
+ 𝑎3

𝜕ℓ1

𝜕𝜇2
]       

= ∫ (𝑎1 (
𝜕𝑓𝜽0(𝑦1,𝑦2)

𝜕𝛼
)
2

+ 𝑎2 (
𝜕𝑓𝜽0(𝑦1,𝑦2)

𝜕𝜇1
)
2

+ 𝑎3 (
𝜕𝑓𝜽0(𝑦1,𝑦2)

𝜕𝜇2
)
2

)
1

𝜕𝑓𝜽0(𝑦1,𝑦2)
 𝑑𝑦1𝑦2  

where is based on  

 𝑓𝜽0(𝑦1, 𝑦2) = 𝛼0𝑓(𝑦1|𝜇01)𝑓(𝑦2|𝜇01) + (1 − 𝛼0)𝑓(𝑦1|𝜇01)𝑓(𝑦2|𝜇02), 

it can be shown that  ∫ 𝑎1 (
𝜕𝑓𝜽0(𝑦1,𝑦2)

𝜕𝛼
)
2

1

𝜕𝑓𝜽0(𝑦1,𝑦2)
𝑑𝑦1𝑦2 > 0, 

∫ 𝑎2 (
𝜕𝑓𝜽0(𝑦1,𝑦2)

𝜕𝜇1
)
2

1

𝜕𝑓𝜽0(𝑦1,𝑦2)
𝑑𝑦1𝑦2 > 0, and ∫ 𝑎3 (

𝜕𝑓𝜽0(𝑦1,𝑦2)

𝜕𝜇2
)
2

1

𝜕𝑓𝜽0(𝑦1,𝑦2)
𝑑𝑦1𝑦2 > 0. 

Therefore (24) is proven, and hence the nonsingularity of 𝐼(𝜽0) is established. 

Consequently, Theorem 1 applies to this HMM.  
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5.4 ILLUSTRATION OF THEOREM 1 

Let us now consider a 2-state degradation (left-to-right) HMM of the form 

discussed in Sec. 5.3, with parameters 𝜽0 = (𝑃0,11, 𝜇0,1, 𝜇0,2) = (0.8, 5, 10) and known 

variances 𝜎0,1 = 𝜎0,2 = 1 per discussion. In Section 5.3, this HMM satisfies assumption 

A1-A10. Conjugate priors were set for each of the three parameters, including Beta(1, 1) 

as the flat prior for 𝛼, Gaussian  𝑁(0, 10) as the prior for 𝜇1 and 𝜇2. The model 

parameters were then estimated using the Gibbs sampling algorithm presented in Chapter 

3. This estimation procedure was repeated 30 times, with the number of observation 

sequences increasing from 100 to 3100 sequences, each of which contains 5 observations.  

Figure 14 shows the sequence of posterior means with two posterior standard 

deviations above and below the means, for each parameter. It is clear that as the number 

of sequences grows, each sequence of posterior means becomes closer to the 

corresponding actual parameter value, while the posterior standard deviation decreases 

towards 0. Figure 15 shows the posterior standard deviations for each parameters, as well 

as the least square approximation to the progression of those standard deviations by a 

curve decreasing at the rate of 1/√𝑘.  
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Figure 14:  Posterior mean with 2-sigma error limits based on approximated posterior 

distribution as the number of observation sequences increases.   
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Figure 15:  Posterior standard deviations based on the approximated posterior 

distribution as the number of observations varies. For each parameter, the 

sequence of standard deviations is fitted by a curve proportional to 1/√𝑘 in 

a least-square sense.   



110 

5.5 DISCUSSION 

The BvMT formulated as Theorem 2.1 in [18] is similar to Theorem 1 proven in 

this chapter. However, there are significant distinctions between these two theorems. 

While the BvMT in [18] depicts asymptotic behavior of posterior distribution as the 

number of observations tends to infinity which limits it to applicability only to ergodic 

HMMs. Theorem 1 asserts the asymptotic posterior normality given an infinite amount of 

observation sequences of finite length, which makes it applicable even to non-ergodic 

HMMs. There is also a clear distinction between our formulation and the one in [18] in 

the way the limiting Fisher information matrix is considered. The information matrix 

𝐼(𝜽0) defined in this chapter represents the information gain about HMM parameters 𝜽 

per sequence, whereas the information matrix from [18] expresses that gain with respect 

to each observation symbol.  

Finally, it should be noted that the character and rate of decline of the posterior 

standard deviations derived by Theorem 1 enables prediction of how many observation 

sequences are needed until uncertainties in the posterior distribution decline under a 

certain tolerance. This is of utmost importance if one wants to build and use HMMs for 

modeling of degradation of machine conditions in condition based-maintenance. 
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Chapter 6: Conclusions and Future Work 

 

6.1  SUMMARY OF ACCOMPLISHMENTS 

This dissertation focuses on a scientific study and engineering application of 

potentially non-stationary HMMs, including uncertainty quantification of Bayesian 

estimation of HMM parameters, condition-based monitoring of complex machines using 

HMM models with uncertain parameters as well as derivation of an asymptotic theory for 

Bayesian HMM parameter estimation and the associated uncertainty in the case of 

unidirectional time-homogeneous HMMs. 

In Chapter 3, we proposed a novel Markov Chain Monte Carlo method that 

produces a probability distribution of model parameters for a non-homogeneous and non-

ergodic HMM, and such distribution was utilized further in a novel degradation condition 

monitoring method that tracks discrepancy between the new data and the nominal HMM.  

Monitoring capabilities of the newly proposed degradation modeling and monitoring 

methods based on HMMs were then demonstrated on a massive dataset collected over 

several months from a PECVD tool operating in a major semiconductor fab. Results of 

this work were published in a recent journal paper [152]. 

In the degradation modeling approach in Chapter 3, each maintenance action was 

assumed to recover the degradation level
55

 to the "as-good-as-new" level. This 

assumption was relaxed in Chapter 4, where imperfect maintenance operations were 

considered. A novel non-homogeneous and non-ergodic HMM was proposed to 

probabilistically model the recovery of the degradation level due to each maintenance 

                                                 
55 I.e. perfecst maintenance operations were assumed.  
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event, which was, unlike what was considered in Chapter 3, potentially imperfect. 

Experiments with the large PECVD data set showed using that the newly-proposed HMM 

of system degradation that acknowledged maintenance imperfections yields significantly 

higher likelihood, as well as fault detection capabilities than the HMM assuming perfect 

maintenance operations. A novel filtering method was also proposed to provide 

degradation condition for each observation, rather than only for each sequence of 

observations, as suggested in [152]. Once again, dramatic improvements in terms of fault 

detection performance were observed when compared to fault detection based on the 

traditional PCA/T
2
 based multivariate SPC method. 

Motivated by the empirical convergences of HMM parameter distribution 

demonstrated in Chap. 3, a rigorous theoretical framework was proposed in Chap. 5 for 

studying the asymptotic behavior of Bayesian posterior distributions of parameters of 

HMMs, including left-to-right HMMs, obtained as more and more observation sequences 

became available during a Bayesian estimation process. Under a set of regularity 

conditions, the expected value of the posterior distribution was proven to convergence 

toward actual parameters, and the posterior standard deviation was proven to converge to 

0 at approximately the rate of 1/√𝑛, where n is the number of sequences of observations 

used for modeling. This theoretical rate was shown to be consistent with the empirical 

convergence rate via a simulated example that was shown to satisfy all the assumptions 

for such convergence. Although convergence studies with infinite sequence for ergodic 

HMMs [18], we are not aware of any studies regarding the convergence of Bayesian 

estimation using infinitely many finite sequences which addresses unidirectional and 

hence non-ergodic HMMs. 



113 

6.2  SCIENTIFIC CONTRIBUTIONS 

Quantification of model uncertainty is paramount to any application of data-

driven models in CBM, and the newly proposed Bayesian estimation method delivers 

such confidence information about model parameters for several types of non-stationary 

HMMs. To the best of author's knowledge, this work was the first to obtain confidence 

evaluation in estimation of non-ergodic and non-homogeneous HMMs.  

Furthermore, the fault detection method proposed in this thesis can robustly detect 

behavior changes in complex systems whose degradation dynamics are not perfectly 

(deterministically) observable. The newly introduced monitoring methods are the first 

HMM-based fault detection methods that incorporate the degradation model uncertainties 

into the decision-making process as to whether a fault occurred or not. 

Finally, the theoretical analysis of the Bayesian estimation procedure provides 

further understanding of Bayesian estimation of parameters without assuming “usual” 

HMMs (ergodic) and can provide performance guarantees of the identified model in 

terms of its uncertainty levels. Such understanding can enable formal determination of 

the number of observation samples needed to achieve a desired level of model 

uncertainty, which in turn would enable economical considerations for the model 

identification that would balance the model precision and modeling cost. 

 

6.3  PUBLICATIONS 

The publications already produced or anticipated based on this doctoral research 

are as follows: 

 Deyi Zhang, Andrew D. Bailey III, and Dragan Djurdjanovic, "Bayesian 

Identification of Hidden Markov Models and Their Use for Condition-Based 
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Monitoring," IEEE Transactions on Reliability, vol. 65, no. 2, pp. 1471-1482, 

2016. 

 Deyi Zhang and Dragan Djurdjanovic, “A hidden Markov model based approach 

to modeling and monitoring of processes with imperfect maintenance,” the 16th 

IFAC Symposium on Information Control Problems in Manufacturing, INCOM 

2018, submitted. 

 Deyi Zhang and Dragan Djurdjanovic, “A Bernstein-von Mises theorem for 

hidden Markov models,” anticipated journal paper based on Chapter 5. 

 

6.4  POSSIBLE FUTURE WORK  

Firstly, maintenance events in advanced manufacturing, as well as many other 

areas, entail collation of signals that reflect the character and quality of those 

interventions. Utilization of those signals for evaluating the quality of maintenance 

operations (or lack thereof) is a tremendous opportunity for future research that would 

improve HMM based CBM. Unfortunately, the datasets considered in this thesis, though 

they indeed reflected real-life manufacturing processes, did not contain any signals 

collected during maintenance operations and hence this work remained outside the scope 

of this research and should be considered in the future. In addition, wider scale 

implementation of the HMM based monitoring methods to CBM of other complex 

processes, such as semiconductor etching or downhole condition monitoring in oil/gas 

extraction, as well as utilization of such models for optimal scheduling of production, 

logistic and maintenance operations, as considered in [164], remains a promising 

direction for future research. 

When it comes to theoretical considerations of Bayesian estimation of HMM 

parameters, various extensions to Theorem 1 from Chapter 5 are foreseeable. The single-



115 

regime left-to-right HMM was addressed by Theorem 1, and one future direction would 

be to show a BvMT for a more general class of nonhomogeneous (multiple-regime), non-

ergodic HMMs. Another potentially fruitful avenue is to consider the convergence of 

posterior distributions of HMM parameters based on observation sequences of variable-

lengths. Many practical maintenance schemes would necessitate the length of each 

observation sequence to be non-constant and related to some properties of the sample 

path for the hidden states. Finally, further refinement of posterior normality can be 

pursued via quantification of the convergence rate in terms of the L1 distance between 

the posterior distributions and their Gaussian appoximants, if higher accuracy of the 

approximation is of interest. 
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Acronyms 

 

AUC Area Under the Curve 

BvMT Bernstein-von Mises Theorem 

CBM Condition Based Maintenance 

CI Confidence Interval 

CI Confidence Index 

EM Expectation Maximization 

FD Fault Diagnosis 

HMM Hidden Markov Model 

i.i.d independent and identically distributed 

KS Kolmogorov-Smirnov 

LDA Linear Discriminate Analysis 

MAP Maximum A Posteriori 

MCMC Monte Carlo Markov Chain 

MLE Maximum Likelihood Estimator 

PECVD Plasma-Enhanced Chemical Vapor Deposition 

SMC Sequential Monte Carlo 

SOM Self Organizing Map 

SPC Statistical Process Control 

TPM Transition Probability Matrix 

ROC Receiver’s Operating Characteristics 
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Summary of Notations 

 

𝑁  Number of hidden states 

𝑀  Number of observations 

𝐿  Number of regimes 

𝑂 = {𝑜1, 𝑜2, … , 𝑜𝑀}  Set of observation symbols 

𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑁}  Set of hidden states 

𝑅 = {𝑟1, 𝑟2, … , 𝑟𝐿}  Set of operating regimes 

𝝂 = [𝜈1 𝜈2 ⋯ 𝜈𝑁]𝑇 Probability vector as initial distribution 

𝐏(𝑟) = [𝑝𝑖,𝑗
(𝑟)
]
𝑖,𝑗=1,2,…,𝑁

  Transition probability matrix for regime 𝑟 ∈ 𝑅 

𝐐(r) = [𝑞𝑖,𝑗
(𝑟)
] 𝑖=1,2,…,𝑁
𝑗=1,2,…,𝑀

  Emission probability matrix for regime 𝑟 ∈ 𝑅 

𝜽(𝑅) = (𝝂, 𝐏(𝑟1), 𝐐(𝑟1), 𝐏(𝑟2), 𝐐(𝑟2), … , 𝐏(𝑟𝐿), 𝐐(𝑟𝐿))  

 Parameter of a regime-specific hidden Markov model 

Ω(𝑅)  Parameter space for a regime-specific hidden Markov model 

𝒙𝑇  Sequence of hidden states 

𝒚𝑇  Sequence of observations 

𝒛𝑇  Sequence of operating regimes 

𝜆ℎ  Log-likelihood slopes 

ℝ+  Set of positive real numbers 

ℓ𝑘(⋅,⋅) Log-likelihood of first k observation sequences 

𝜋𝑘(⋅ | ⋅)  Posterior density given first k observation sequences 
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