1,691 research outputs found

    Inferring Single-Cell 3D Chromosomal Structures Based On the Lennard-Jones Potential

    Get PDF
    Reconstructing threeā€dimensional (3D) chromosomal structures based on singleā€cell Hiā€C data is a challenging scientific problem due to the extreme sparseness of the singleā€cell Hiā€C data. In this research, we used the Lennardā€Jones potential to reconstruct both 500 kb and highā€resolution 50 kb chromosomal structures based on singleā€cell Hiā€C data. A chromosome was represented by a string of 500 kb or 50 kb DNA beads and put into a 3D cubic lattice for simulations. A 2D Gaussian function was used to impute the sparse singleā€cell Hiā€C contact matrices. We designed a novel loss function based on the Lennardā€Jones potential, in which the Īµ value, i.e., the well depth, was used to indicate how stable the binding of every pair of beads is. For the bead pairs that have singleā€cell Hiā€C contacts and their neighboring bead pairs, the loss function assigns them stronger binding stability. The Metropolisā€“Hastings algorithm was used to try different locations for the DNA beads, and simulated annealing was used to optimize the loss function. We proved the correctness and validness of the reconstructed 3D structures by evaluating the models according to multiple criteria and comparing the models with 3Dā€FISH data

    Deciphering hierarchical organization of topologically associated domains through change-point testing.

    Get PDF
    BACKGROUND: The nucleus of eukaryotic cells spatially packages chromosomes into a hierarchical and distinct segregation that plays critical roles in maintaining transcription regulation. High-throughput methods of chromosome conformation capture, such as Hi-C, have revealed topologically associating domains (TADs) that are defined by biased chromatin interactions within them. RESULTS: We introduce a novel method, HiCKey, to decipher hierarchical TAD structures in Hi-C data and compare them across samples. We first derive a generalized likelihood-ratio (GLR) test for detecting change-points in an interaction matrix that follows a negative binomial distribution or general mixture distribution. We then employ several optimal search strategies to decipher hierarchical TADs with p values calculated by the GLR test. Large-scale validations of simulation data show that HiCKey has good precision in recalling known TADs and is robust against random collisions of chromatin interactions. By applying HiCKey to Hi-C data of seven human cell lines, we identified multiple layers of TAD organization among them, but the vast majority had no more than four layers. In particular, we found that TAD boundaries are significantly enriched in active chromosomal regions compared to repressed regions. CONCLUSIONS: HiCKey is optimized for processing large matrices constructed from high-resolution Hi-C experiments. The method and theoretical result of the GLR test provide a general framework for significance testing of similar experimental chromatin interaction data that may not fully follow negative binomial distributions but rather more general mixture distributions

    Sequence-based Multiscale Model (SeqMM) for High-throughput chromosome conformation capture (Hi-C) data analysis

    Full text link
    In this paper, I introduce a Sequence-based Multiscale Model (SeqMM) for the biomolecular data analysis. With the combination of spectral graph method, I reveal the essential difference between the global scale models and local scale ones in structure clustering, i.e., different optimization on Euclidean (or spatial) distances and sequential (or genomic) distances. More specifically, clusters from global scale models optimize Euclidean distance relations. Local scale models, on the other hand, result in clusters that optimize the genomic distance relations. For a biomolecular data, Euclidean distances and sequential distances are two independent variables, which can never be optimized simultaneously in data clustering. However, sequence scale in my SeqMM can work as a tuning parameter that balances these two variables and deliver different clusterings based on my purposes. Further, my SeqMM is used to explore the hierarchical structures of chromosomes. I find that in global scale, the Fiedler vector from my SeqMM bears a great similarity with the principal vector from principal component analysis, and can be used to study genomic compartments. In TAD analysis, I find that TADs evaluated from different scales are not consistent and vary a lot. Particularly when the sequence scale is small, the calculated TAD boundaries are dramatically different. Even for regions with high contact frequencies, TAD regions show no obvious consistence. However, when the scale value increases further, although TADs are still quite different, TAD boundaries in these high contact frequency regions become more and more consistent. Finally, I find that for a fixed local scale, my method can deliver very robust TAD boundaries in different cluster numbers.Comment: 22 PAGES, 13 FIGURE

    Inferring Diploid 3D Chromatin Structures from Hi-C Data

    Get PDF
    The 3D organization of the genome plays a key role in many cellular processes, such as gene regulation, differentiation, and replication. Assays like Hi-C measure DNA-DNA contacts in a high-throughput fashion, and inferring accurate 3D models of chromosomes can yield insights hidden in the raw data. For example, structural inference can account for noise in the data, disambiguate the distinct structures of homologous chromosomes, orient genomic regions relative to nuclear landmarks, and serve as a framework for integrating other data types. Although many methods exist to infer the 3D structure of haploid genomes, inferring a diploid structure from Hi-C data is still an open problem. Indeed, the diploid case is very challenging, because Hi-C data typically does not distinguish between homologous chromosomes. We propose a method to infer 3D diploid genomes from Hi-C data. We demonstrate the accuracy of the method on simulated data, and we also use the method to infer 3D structures for mouse chromosome X, confirming that the active homolog exhibits a bipartite structure, whereas the active homolog does not

    Data mining and machine learning methods for chromosome conformation data analysis

    Get PDF
    Sixteen years after the sequencing of the human genome, the Human Genome Project (HGP), and 17 years after the introduction of Chromosome Conformation Capture (3C) technologies, three-dimensional (3-D) inference and big data remains problematic in the field of genomics, and specifically, in the field of 3C data analysis. Three-dimensional inference involves the reconstruction of a genome's 3D structure or, in some cases, ensemble of structures from contact interaction frequencies extracted from a variant of the 3C technology called the Hi-C technology. Further questions remain about chromosome topology and structure; enhancer-promoter interactions; location of genes, gene clusters, and transcription factors; the relationship between gene expression and epigenetics; and chromosome visualization at a higher scale, among others. In this dissertation, four major contributions are described, first, 3DMax, a tool for chromosome and genome 3-D structure prediction from H-C data using optimization algorithm, second, GSDB, a comprehensive and common repository that contains 3D structures for Hi-C datasets from novel 3D structure reconstruction tools developed over the years, third, ClusterTAD, a method for topological associated domains (TAD) extraction from Hi-C data using unsupervised learning algorithm. Finally, we introduce a tool called, GenomeFlow, a comprehensive graphical tool to facilitate the entire process of modeling and analysis of 3D genome organization. It is worth noting that GenomeFlow and GSDB are the first of their kind in the 3D chromosome and genome research field. All the methods are available as software tools that are freely available to the scientific community.Includes bibliographical reference

    Doubly stochastic continuous-time hidden Markov approach for analyzing genome tiling arrays

    Full text link
    Microarrays have been developed that tile the entire nonrepetitive genomes of many different organisms, allowing for the unbiased mapping of active transcription regions or protein binding sites across the entire genome. These tiling array experiments produce massive correlated data sets that have many experimental artifacts, presenting many challenges to researchers that require innovative analysis methods and efficient computational algorithms. This paper presents a doubly stochastic latent variable analysis method for transcript discovery and protein binding region localization using tiling array data. This model is unique in that it considers actual genomic distance between probes. Additionally, the model is designed to be robust to cross-hybridized and nonresponsive probes, which can often lead to false-positive results in microarray experiments. We apply our model to a transcript finding data set to illustrate the consistency of our method. Additionally, we apply our method to a spike-in experiment that can be used as a benchmark data set for researchers interested in developing and comparing future tiling array methods. The results indicate that our method is very powerful, accurate and can be used on a single sample and without control experiments, thus defraying some of the overhead cost of conducting experiments on tiling arrays.Comment: Published in at http://dx.doi.org/10.1214/09-AOAS248 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Analysis methods for studying the 3D architecture of the genome

    Get PDF

    Latent Factor Analysis to Discover Pathway-Associated Putative Segmental Aneuploidies in Human Cancers

    Get PDF
    Tumor microenvironmental stresses, such as hypoxia and lactic acidosis, play important roles in tumor progression. Although gene signatures reflecting the influence of these stresses are powerful approaches to link expression with phenotypes, they do not fully reflect the complexity of human cancers. Here, we describe the use of latent factor models to further dissect the stress gene signatures in a breast cancer expression dataset. The genes in these latent factors are coordinately expressed in tumors and depict distinct, interacting components of the biological processes. The genes in several latent factors are highly enriched in chromosomal locations. When these factors are analyzed in independent datasets with gene expression and array CGH data, the expression values of these factors are highly correlated with copy number alterations (CNAs) of the corresponding BAC clones in both the cell lines and tumors. Therefore, variation in the expression of these pathway-associated factors is at least partially caused by variation in gene dosage and CNAs among breast cancers. We have also found the expression of two latent factors without any chromosomal enrichment is highly associated with 12q CNA, likely an instance of ā€œtransā€-variations in which CNA leads to the variations in gene expression outside of the CNA region. In addition, we have found that factor 26 (1q CNA) is negatively correlated with HIF-1Ī± protein and hypoxia pathways in breast tumors and cell lines. This agrees with, and for the first time links, known good prognosis associated with both a low hypoxia signature and the presence of CNA in this region. Taken together, these results suggest the possibility that tumor segmental aneuploidy makes significant contributions to variation in the lactic acidosis/hypoxia gene signatures in human cancers and demonstrate that latent factor analysis is a powerful means to uncover such a linkage
    • ā€¦
    corecore