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ABSTRACT 

Sixteen years after the sequencing of the human genome, the Human Genome Project (HGP), and 

17 years after the introduction of Chromosome Conformation Capture (3C) technologies, three-

dimensional (3-D) inference and big data remains problematic in the field of genomics, and 

specifically, in the field of 3C data analysis. Three-dimensional inference involves the 

reconstruction of a genome’s 3D structure or, in some cases, ensemble of structures from contact 

interaction frequencies extracted from a variant of the 3C technology called the Hi-C technology. 

Further questions remain about chromosome topology and structure; enhancer-promoter 

interactions; location of genes, gene clusters, and transcription factors; the relationship between 

gene expression and epigenetics; and chromosome visualization at a higher scale, among others. 

 In this dissertation, four major contributions are described, first, 3DMax, a tool for chromosome 

and genome 3-D structure prediction from Hi-C data using optimization algorithm, second, GSDB, 

a comprehensive and common repository that contains 3D structures for Hi-C datasets from novel 

3D structure reconstruction tools developed over the years, third, ClusterTAD, a method for 

topological associated domains (TAD) extraction from Hi-C data using unsupervised learning 

algorithm. Finally, we introduce a tool called, GenomeFlow, a comprehensive graphical tool to 

facilitate the entire process of modeling and analysis of 3D genome organization. It is worth noting 

that GenomeFlow and GSDB are the first of their kind in the 3D chromosome and genome research 

field. All the methods are available as software tools that are freely available to the scientific 

community. 
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1 Introduction 

After decades of research about the organization of the nucleus of the eukaryotic cell, there exists 

substantial evidence that the genome architecture plays a key role in nuclear functions. [1–8]. For 

instance, the spatial arrangement and proximity of genes has been linked to biological functions 

such as gene replication, regulation, and transcription. [6, 9–11]. 

The impact of genome architecture on nuclear processes spans multiple hierarchical levels, 

including the spatial compartmentalization of the process, the higher-order organization of 

chromatin and the arrangement of the genome within the nucleus. Despite the dynamic nature of 

their process components, processes such as transcription and DNA repair have been shown to be 

constrained to specific spatial locations rather than randomly dispersed throughout the nucleus. 

Genes tend to be more active in sparse euchromatin than dense heterochromatin, purportedly due 

to the impact of folding density on regulatory factor availability. The homogeneous topology of 

chromatin has the potential to capture nuclear proteins, affecting their probability of interaction 

with binding sites. Small, kilo-base sized chromatin loops can localize promoters with upstream 

elements, while larger mega-base sized loops can spatially segregate nuclear regions, imposing 

independence on different processes. 

Understanding the 3-D organization of the eukaryotic genome is essential to explain the important 

chromosomal activities within the cell. Hence, a fundamental question in genome and biological 

studies is how the spatial conformation of the chromosome in the nucleus affects a number of 

genetic and biological functions such as gene regulation [12, 13], gene expression [14], 

transcription regulation [15], DNA repair, and DNA replication [16, 17]. 

Early studies of chromosome conformation relied on the use of cytogenetic techniques, such as 

Fluorescence In Situ Hybridization (FISH), which has been employed to detect the presence of a 
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specific chromosome region and the proximity between two regions in a genome sequence [18,19]. 

Fluorescence in situ hybridization uses fluorescent probes that bind to specific regions of a 

chromosome with a high degree of sequence complementarity. Using fluorescence microscopy, 

the location of the loci or DNA sequence with which a probe is expected to bind may be 

determined. This method is especially useful, as it allows direct, one-to-one estimation of genome 

loci proximity. However, due to technical limitations such as low-throughput, low resolution of 

FISH data, and probe requirements for every analysis, it is not optimal for examining multiple 

positions simultaneously. As a result, the method is not used when studying the organization of 

chromosomes at a genome-wide scale.  

Other microscopy techniques that have been developed to study the chromatin organization are 

aimed at providing details about the genome positioning and activities. Some of these methods are 

called the Super Resolution Microscopy Strategies, as they were developed to provide imaging at 

a high resolution. Examples include Saturated Structured Illumination Microscopy (SSIM), 

Stimulated Emission Depletion (STED), and Ground State Depletion (GSD) [20, 21]. The 

introduction of Stochastic Super-Resolution Microscopy techniques such as Photo-Activated 

Localization Microscopy (PALM or FPALM), and Stochastic Optical Reconstruction Microscopy 

(STORM) produced a different set of ways for investigating the chromatin organization [22, 23]. 

Generally, the microscopy techniques for studying the chromatin organization could be 

categorized as light versus electron microscopy-based techniques. The more detailed description 

of the microscopy-based techniques for studying genome organization is given in the section 

“Genome Organization by Microscopy-Based Techniques”. 

In 2002, Dekker et al. [24] developed 3C, a high-throughput methodology that can be used to 

generate interaction frequency (IF) between nearby genomic loci in a cell population. Since then, 
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a number of 3C variants [25–27] such as 4C [28], 5C [29], Hi-C [30], TCC [31], ChIA-PET [32, 

33] and, later on, single-cell Hi-C [34], have been developed to study the 3-D organization of the 

chromosome and genome. The development of 3C techniques has substantially benefited the study 

of the spatial proximity, interaction, and genome conformation of a number of cells. Today, Hi-C 

is the most widely used and well-known 3C variant. Using next-generation sequencing strategies, 

such as high-throughput and parallel sequencing, Hi-C enables researchers to profile read-pair 

interactions on an all-versus-all basis—that is, to profile interactions for all read pairs in an entire 

genome. It also allows them to detect and compute the number of interactions between fragments 

within a chromosome—i.e., the intra-chromosome IF—or between different chromosomes—i.e., 

the inter-chromosome interaction frequency. Fragments, alternatively known as bins or genomic 

loci, are the regions into which a chromosome have been divided into. Each fragment has a defined 

length or size which is the number of base pair (bp) in it. The size of the fragment is determined 

by the resolution, e.g. a 1 MB resolution signifies that 1,000,000 bp are contained within each 

fragment. 

The IFs obtained are commonly represented in a two-dimensional matrix, also known as a contact 

matrix, with rows and columns representing the number of fragments in the chromosome or 

genome. 

The Hi-C technique is especially relevant because the IFs it yields can be used to construct 3-D 

chromosome and genome structures. These structures, in turn, help explain a series of events such 

as genome folding, gene regulations, the connection between regulatory elements, and the higher-

order structural features in the nucleus of a cell [1, 2, 14, 35, 36]. 

Within the past decade, a number of computational methods and algorithms have been proposed 

for the construction of chromosome and genome 3-D structures from Hi-C data. Most of these 
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methods adopt different strategies for 3-D structure prediction, have different technical 

requirements for algorithms, and use different noise reduction techniques to analyze Hi-C data. In 

this review, we categorize these methods based on how they model IF from Hi-C data, highlight a 

common approach to method evaluation and validation, and finally point to the future direction 

and challenges of chromosome and genome 3-D structure prediction. 

1.1 Description of the Hi-C Experiment and Chromosomal Contact Map 
Using next generation sequencing technology, the emergence of the Hi-C technique, an extension 

of 3C, has enabled the identification of the chromosome conformation at a genome wide scale [26, 

27, 30, 37, 38]. Compared to other variant of the 3C technique, the Hi-C technique is the first 

method [30, 38] to capture chromosome conformation on a “all versus all” basis —that is, it can 

profile interactions for all read pairs in an entire genome. The Hi-C protocol begins by using 

formaldehyde to crosslink the cells, which results in the covalent linking of the chromosomal loci 

through their protein-DNA interactions. The cross-linked chromatin segment is then cut out with 

a restriction enzyme, and the segment restriction ends are marked by filing in with biotin-labeled 

nucleotides [25, 30]. Next, the resulting blunt-end segments are ligated randomly under 

appropriate conditions for ligation events between the cross-linked DNA segments. DNA is 

purified and sheared, and a biotin pull-down is performed to ensured that only the biotinylated 

junctions are selected for further high throughput pair-end sequencing and computational analysis. 

After the sequencing of the pair-reads, the generated output usually in .fastq format is mapped to 

a reference genome, filtered, and used to create a contact map [39]. Notable tools that support the 

mapping of the sequenced pair reads to generate contact map are GenomeFlow [40], Juicer [41], 

HiC-Pro [42], Hi-Cpipe [43], and HiCUP [44]. 
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Interaction frequency (IF), sometimes referred to as contact frequency, is a measure of the number 

of interactions between a pair of chromosomal or genomic regions in the Hi-C data [45–48]. The 

combined contact counts for all pairwise regions or loci may be represented as a symmetric matrix 

to form an IF matrix of all interacting fragments. The IF matrix is sometimes also referred to as a 

contact matrix or contact map [30, 47]. A chromosome contact matrix is a n-by-n matrix 

representing the interaction of loci or chromosomal regions as captured in the Hi-C experiment 

[27, 30, 31, 49]. The rows and columns of the matrix correspond to the index of the equal-sized 

regions which partition the chromosome. The length of one equal-sized region (e.g., 1 Mb base 

pair) is referred to as the resolution [30]. Each entry in the matrix represents a count of read pairs 

that connect two corresponding chromosome regions in a Hi-C experiment [30]. Alternatively, the 

contacts can be represented in a 3-column sparse matrix [49], where columns 1 and 2 refer to the 

genomic location or the fragment number of the interacting loci and column 3 represents the IF 

between them. 

1.2 Polymer Model 
Polymer models are based on the underlying idea that interactions between molecular subunits, 

such as monomers, result in large molecular structures known as polymers. This approach was 

adopted from polymer physics, a branch of statistical physics [50–52]. Polymers produced by 

living organisms are referred to as biopolymers. Two well-known examples of biopolymers are 

DNA and proteins, with nucleotides and amino acids as their monomers, respectively. 

Polymerization involves the combination of small molecules through chemical bonding to form a 

network at equilibrium called a polymer. Various authors have adopted two states of the polymer 

to model the architecture of chromosomal regions in a cell: the equilibrium globule [53, 54] and 

the fractal globule [37, 55, 56]. A characteristic feature of the equilibrium globule model is that it 
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is highly knotted [30]. Mirny [37] has pointed out that this configuration is disadvantageous, as it 

restricts genomic processes such as unfolding—an important property for gene activation—or 

refolding [57]. Alternatively, Barbieri et al. [55] showed that polymer collapse after exposure to a 

topological constraint can result in the formation of a long-lived, untangled, non-equilibrium 

configuration state called a “crumpled” or “fractal” globule. A fractal globule is knot-free, and it 

is organized such that it allows for unfolding or refolding processes while in a highly compact 

state. Hence, the polymer exhibits a “beads-on-a-string” configuration, with beads representing 

monomers connected by linkers; DNA connections in eukaryotic chromatin are similarly 

configured. The fractal globule can be illustrated as a dense multicolor ball of yarn, where each 

color has its own end, but one can pull out threads with a specific color and put them back in, 

without disturbing the structure of the overall ball at all. This important property makes the fractal 

globule suitable for organizing chromatin in a cell because this topology facilitates rapid and easy 

unfolding, refolding [58], and large-scale opening of genome loci loop that affects and explains 

biological processes, e.g. the connection of distal single-nucleotide polymorphisms (SNPs) with 

their target genes, gene activation, gene repression, or the cell cycle [59–63]. 

When studying these two globules, two biophysical properties are considered: the genomic 

distance between two loci and the probability of contact between them. It is worth noting that 

genomic distance (s) is measured by FISH, while the contact probability is obtained from 

chromosome conformation methods such as Hi-C. The equilibrium and fractal globules yield 

different estimates for these properties, and therefore also varying predictions on the three-

dimensional distance between pairs of loci. Lieberman-Aiden et al. [30] and Mirny [37] report, 

through simulation, that equilibrium and fractal globule scaling for three dimensional-distance are 

s1/2 and s1/3 (s: genomic distance - number of nucleotides between two loci), respectively. 
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Equilibrium and fractal globule scaling for contact probability are s−3/2 and s−1, respectively. As 

shown in [37], the properties exhibited by the fractal globule model make it more effective at 

fitting Hi-C data than the equilibrium globule. 

Some methods adopt the knowledge about polymer chain for chromosome structure representation 

by simulating a physically realistic, bead-chain polymer model of the 30-nm chromatin fiber [64, 

65]. As a result, when constructing either a chromosome structure for instance, a locus for a 

chromosome is represented using a conventional beads-and-spring polymer model, where each 

bead represents a specific genomic location with well-defined initial and final genomic 

coordinates. Hence, viewing the chromatin fiber as a polymer model implies that conformation 

energies such as bending, stretching, and excluding energies of chromatin segments needs to be 

considered and integrated with the IF for 3-D structure reconstruction (Figure 1.1a). 

 

Figure 1.1. Chromosome and genome 3-D structure representation for models from Hi-C data. 

The different models used for representing 3-D chromosome and genome structure by various 

methods using Hi-C data for modeling chromosomes and genome 3-D structure. (a) polymer 

model (b) sphere (c) points. 
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1.3 Spheres and Points 
An alternative structure representation model adopted by methods is representing the chromosome 

region or loci as series of connected spheres or interacting points. Methods using this approach 

presents the 3-D structure in a simplified model, where the spheres [66–68] or points [45, 46, 69, 

70] are synonymous to a chromosome region or loci of a chromosome (Figure 1.1b, c). Using a 

bead on string configuration, each bead is modeled as a spherical shape with a defined radius, and 

an excluded volume used to penalize overlaps between two spheres. The defined radius and the 

sphere volume could consequently be considered as a restraint to be satisfied during the 

algorithm’s 3-D structure reconstruction process. The Points representation represent the 

chromatin region simply as a point, with no radius nor volume, to mark the presence or absence of 

a loci. 

1.4 Methodologies for Chromosome and Genome 3-D Structure 

Reconstruction 
The methods for chromosome and genome 3-D structure inference are categorized below based 

on the IF modeling adopted by them. All methods adopt a stepwise approach to achieve the 3-D 

structure reconstruction, and a summarization of these steps is provided in Figure 1.2. 

1.4.1 Distance-Based Methods 

Over the years, a number of approaches have been proposed for chromosome 3-D structure 

inference from Hi-C contact data. A group of these methods involve a two-step process: (1) IF is 

converted to distance, ultimately defining the problem of 3-D genome or chromosome structure 

reconstruction as a problem of converting distances into 3-D coordinates; and (2) non-linear 

optimization is subsequently applied to the problem in order to find the genomic coordinates that 

satisfy converted distances. The most notable differences between these proposed methods are: (1) 

the way in which IF is converted into distance, and (2) the optimization technique used to infer the 
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3-D structure from loci distance. The aim of a distance-based modeling is to create a map that 

shows the relative spatial positioning of a number of objects whose inter-point distance is known. 

Additionally, representing chromosome structure prediction as a distance-based modeling problem 

is tempting because methods based on distances are simple and clear: there is no ambiguity 

regarding metric definition, and therefore the proximity between objects can eventually be derived. 

In relation to 3-D genome structure prediction, the distance-based approach makes it easier to 

handle a large spectrum of modeling problems at different Hi-C data resolutions. 

The distance-based approach attempts to reproduce the original metric or distance as accurately as 

possible. The earliest application of the metric Multi-Dimensional Scaling (MDS) [82, 99] to 

chromosome 3-D conformation construction, known as 5C3D [45], assumed that the relationship 

of IF to distance between DNA fragments or loci follows an inverse relation; it then used an 

optimization approach to find the best 3-D conformation through a misfit objective function of the 

converted distance and the 3-D Euclidean distance between points. While this method was applied 

to the 5C variant of 3C data, it could be applied to Hi-C datasets as well. Similarly, in their work 

based on yeast 3-D genome structure reconstruction, Duan et al. [66] designed a metric that 

estimated the corresponding Euclidean distance from the mean of the curves obtained from two 

restriction enzyme libraries for each contact frequency. To aid modeling and ensure that intra- and 

inter-chromosomal features (e.g., centromeres), distance, and properties were satisfied [66, 67], 

researchers introduced a series of constraints such as minimum and maximum distances between 

adjacent beads, minimum distances between pair beads to avoid overlapping and clashes, specific 

positioning of RNA coding regions, telomeres, and centromeres to guide the construction of the 

3-D model; this constituted an improvement over the previous method. Duan et al. used IPOPT 

[71], an open-source software for nonlinear constrained optimization problems, to minimize the 
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objective function; this ensured that the predicted coordinates of two interacting loci, from which 

the distance between said loci in the 3-D structure is derived, closely matched the expected distance 

obtained from IF. Tanizawa et al. [67] developed a method similar to [66] to construct the 3-D 

structure of the fission yeast genome. 

Although Lieberman-Aiden et al. [30] showed that IF can be used to determine the spatial distance 

between interacting loci, certain factors regarding this conversion are still worth considering. As 

shown by [76, 100–102] in their work, the IF-distance correlation might vary from one dataset 

resolution to another, and from one organism to another. Hence, an efficient method is required 

for a distance-based approach to generate a more reliable distance estimate from IF data. To solve 

this problem, Zhang et al.  [76] made two novel propositions for the two-step genome structure 

prediction pipeline. First, they used a modified version of the golden section search method [103] 

to determine the best scale parameter, conversion factor (α), to convert IF to its approximate 

distance equivalent: Dij ∝ Fij
−α; this ensures that an appropriate conversion factor is obtained for 

each dataset. Secondly, for the 3-D structure prediction from a distance matrix, they presented an 

algorithm called ChromSDE (Chromosome Semi-Definite Embedding). Unlike earlier methods, 

ChromSDE relaxed the optimization problem to a semi-definite programming (SDP) problem. The 

proposed approach to IF-distance conversion defined by Zhang et al. introduced a new convention 

for defining the IF-distance relationship, followed by a series of distance-based algorithms that 

were subsequently developed. 

According to Yaffe and Tanay [104], raw Hi-C data obtained from 3C experiments may contain 

numerous systematic biases, such as GC content, length of restriction fragments, and mappability 

between fragments. Long-range frequencies are typically noisy and unreliable; this represents a 

substantial drawback for the construction of 3-D chromosome and genome structures. In order to 
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overcome these limitations, a number of methods have been developed to pre-process Hi-C data 

through normalization [9, 42, 104–108] before using the data for 3-D reconstruction. Alternatively, 

certain algorithms for 3-D structure construction incorporate bias removal. Peng et al. [77] 

proposed a normalization approach to reduce experimental sequencing depth bias, which affects 

the IF yielded by Hi-C data and makes it hard to compare structures from data obtained from 

different experiments. The method, called AutoChrom3D, provides an automated pipeline for 3-

D modeling, enabling structural comparison at various data resolutions. Two linear 

transformations were used to determine the frequency-distance correlation, and the structure was 

then predicted through nonlinear constrained optimization. 
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Figure 1.2. Chromosome and genome 3-D structure reconstruction workflow. A summarization 

of the steps for genome and chromosome 3-D structure taken by the different methods. Starting 

from the user input in Step 1: The input preparation, usually, Hi-C contact matrix or sometimes 

with extra parameters requirement. Step 2: One of the three IF modeling approach is used to 

represent the IF depending on the method’s algorithm. Step 3: Modeling is done using defined 

sampling algorithms, and Step 4, a consensus average structure or a group of structure is generated 

depending on the method’s structure class. 
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Shavit et al. [81] designed an MDS-based optimization approach that used FISH distance to guide 

the conversion of IF to Hi-C loci distances; this approach aimed to reduce noise, improve the data 

quality, ensure the consistency of data used for 3-D structure construction, and cover key 

functionality features in the Hi-C and FISH datasets, which will eventually overlap if these features 

are vital. Zou et al. [47] designed a flexible algorithm capable of handling biases introduced by 

restriction enzymes during Hi-C data sequencing. Restriction enzymes are known to have various 

cutting sites across the genome, so combining different Hi-C tracks provides further information 

about genomic loci for modeling. The tool developed by Zou et al., called HSA, takes advantage 

of the uniqueness of the contact map obtained from different restriction enzymes in Hi-C 

experiments; it creates a generalized linear model through an iterative algorithm that combines 

simulated annealing and Hamiltonian dynamics. By using HSA, Zou et al. discovered that the 

obtained 3-D structure fits the contact map obtained from different restriction enzymes. Bau et al. 

[72] performed a log transformation and the Z-score computation to normalize the contact counts. 

They converted observed interactions between loci to points and spatial restraints, and used the 

Integrative Modeling Platform (IMP) [73] to produce possible confirmations that satisfies their 

defined constraints and maximizes their structure to fit the IF data. Each loci was first represented 

as a point connected by a “string” to create a pairwise interaction in which the length of the string 

depended on the number of interactions between the loci. 

To date, a number of other distance-based methods have been developed. These algorithms create 

3-D models by first converting contact frequency to distance [9, 46, 69, 70, 77, 88, 97, 109, 110] 

and then apply optimization to predict chromosome structure. Usually, these methods perform 

chromosome 3-D reconstruction by first defining a random 3-D structure; this structure 

coordinates are then updated by an objective function that is iteratively optimized until a 
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convergence condition is satisfied. Chromosome3D [46], applied a modified version of the 

distance geometry simulated annealing (DGSA) based method for chromosome and genome 3-D 

structure reconstruction from Hi-C data. The DGSA method has been popularly used for protein 

structure construction over the years and implemented in the Crystallography & NMR System 

(CNS) suite [111, 112]. The Hi-C distances are used as restraints for the defined simulated 

annealing (SA) optimization pipeline. SA is carried out through multiple steps of temperature 

change until the defined structure energy is optimally minimized. Because Chromosome3D uses 

one of the rigorously tested approaches in protein structure to inferring chromosome and genome 

3-D structure, it is reliable and robust against noise in Hi-C data. 

LorDG [69] introduced a novel method to address inconsistent chromosomal contacts generated 

from multi-cell Hi-C data. It used a nonlinear Lorentzian function as the objective function—to 

enforce the satisfaction of consistent restraints, which is resistant against noisy distance restraints. 

Unlike the square error function that is susceptible to outliers, LorDG aims to maximize the 

satisfaction of realistically satisfied restraints rather than unsatisfiable noisy ones. The objective 

function is optimized by the highly scalable adaptive step-size gradient descent method. Its 

resilience against noisy contacts and scalability make it a suitable method for constructing the 

structure of the entire genome involving noisy inter-chromosomal contacts. 3DMax [70] defined 

a maximum likelihood objective function for chromosome 3-D structure inference from Hi-C data. 

It is based on the simplified assumption that the contact data is normally distributed and that each 

Hi-C data point is conditionally independent given a structure. A log likelihood objective function 

for chromosome structure reconstruction was defined in order to determine the structure that 

maximizes the likelihood function. 3DMax uses a variant of gradient ascent called Adagrad [113] 

that adapts the learning rate to each objective function parameter automatically to regulate its 
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learning rate. 3-DMax is robust against noise and structural variability, and it is computationally 

fast and memory efficient. 

miniMDS [92] and Hierarchical3DGenome [98] are the distance-based algorithms that reconstruct 

high-resolution 3-D models at the topologically associating domain (TAD) level. Eventually, these 

TAD models are assembled to form a complete, high-resolution 3-D chromosomal structure. After 

the assembly of TAD models, Hierarchical3DGenome uses the contacts between all regions in a 

chromosome to further refine the assembled whole chromosome model, which leads to high-

resolution (e.g. 5 KB) models of good quality. 

The conformational space of a chromosomal structure is large, given that Hi-C data are drawn 

from a population of cells, each with its own independent and unique 3-D structure. Hence, an 

ensemble of predicted structures obtained through so-called ensemble-based modeling appears to 

provide a better representation of chromosomal structure than a single structure obtained through 

consensus modeling. Unfortunately, like Hi-C data at large, this dataset contains a number of 

biases: the fact that it is noisy, coupled with other technical factors, makes it extremely difficult to 

determine the various unique 3-D structures of cells used in Hi-C experiments. Due to the 

drawbacks involved in using multi-cell Hi-C data, studying single-cell Hi-C data has become 

increasingly relevant [34]. In particular, it does not require designing an algorithm to satisfy the 

variability of each cell used in the Hi-C experiment. As expected, single-cell Hi-C datasets are 

sparser than multi-cell Hi-C datasets. Hence, conventional distance and restraint-based methods 

are not suitable for 3-D structure reconstruction based on these data. Carstens et al. [90] extended 

Rieping et al.’s [114] Bayesian probabilistic framework to statistically infer ensembles of 3-D 

chromosome structures from single-cell Hi-C data using MCMC sampling. They combined single-

cell Hi-C contact information with FISH data and a csoarse-grained model of the chromatin fiber. 
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Lesne et al. [79] formulated a two-step algorithm known as “shortest-path reconstruction in 3-D” 

(ShRec3D), which combines the shortest-path distance between two points from graph theoretic 

methods with MDS to achieve chromosome reconstruction. This method is designed for both 

multi-cell and single-cell Hi-C data. In the case of single-cell Hi-C data, instead of distances 

between two points, binary numbers signify the presence or absence of interaction. ShRec3D+ 

[96] extended Lesne et al.’s algorithm by using a golden-section algorithm (an approach similar 

to Zhang et al. [76]) with an adaptable distance conversion factor for different Hi-C chromosome 

datasets. Wang et al. [64] proposed a method that combined knowledge of the conformational 

energy model of a chromatin structure and a Bayesian inference approach. They represented the 

chromosome structure as a polymer model with a conformational energy, and integrated the IF 

data as input for an expectation maximization based algorithm under a Bayesian like framework. 

They took advantage of the prior information about the conformation energy to construct a 

Bayesian inference of the chromatin structure. An approach proposed by Paulsen et al. [84] 

employed manifold-based optimization (MBO), which is basically the application of optimization 

techniques to the manifold of positive semi-definite matrices of fixed rank [115]. Paulsen et al. 

reported that MBO is capable of generating a consensus 3-D chromosome structure consistent with 

the original contact map. 

Another approach for solving the distance-based problem is called Non-Metric MultiDimensional 

Scaling (NMMDS), which assumes that only distance ranks are known; distances themselves are 

not provided. The method aims to yield a map of these ranks [116, 117]. Using this approach, Ben-

Elazar et al. [118] developed a method for structure prediction based on the hypothesis that a pair 

locus A with a higher IF is closer in 3-D space than any other locus pair B with a lower frequency. 
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Varoquaux et al. [78] also proposed an optimization method to solve the NMDS problem by 

minimizing the Shepard-Kruskal scaling cost function [119]. 

1.4.2 Contact Based Methods 

Certain methods do not convert IF but use it directly for modeling. These methods are regarded as 

contact-based methods [15, 80, 83, 91, 93]. MOGEN [49, 80] used contact directly and designed 

an optimization-based approach that relied mostly on Hi-C intra- and inter-chromosomal contact 

data to build an ensemble of 3-D conformations for genome and chromosome structures. The 

contact-based optimization is carried out by the adaptive step-size gradient descent/ascent method 

that is highly scalable and therefore is well suited for large-scale genome structure modeling. 

MOGEN does not require two contacted regions to satisfy a specific distance as the distance-based 

approach does. Instead it only tries to make the distance between the two contact regions below a 

threshold (i.e. in contact). MOGEN is capable of producing ensemble models that are highly 

consistent with each other. MOGEN is also robust against noise in the data, particularly the noise 

in inter-chromosomal contacts, and therefore it is able to build 3-D structures of large genomes 

such as the entire human genome. Gen3D [83] used a series of meta-heuristic algorithms (e.g. 

genetic algorithms and simulated annealing) to infer 3-D structure from IF. Zhu et al. [93] 

proposed a manifold-based framework called GEM, which first uses IF to create an interaction 

network representing the spatial organization of the loci from Hi-C data. Zhu et al.’s aim was to 

use a manifold learning algorithm to uncover the low-dimensional (3-D) geometry embedded in a 

high-dimensional (Hi-C) space, while satisfying certain defined conformation energy 

requirements. An improvement over this method integrates Hi-C data with FISH data for 3-D 

structure inference [94]. To ensure the modeling of realistic structures consistent with cellular 

organization, Paulsen et al. [91] introduced Chrom3-D, a genome-modeling algorithm that 
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combines Hi-C and Lamina-associated domain (LAD) information from ChIP-seq data to generate 

an ensemble of 3-D genome structures in which loci and TAD positioning and interaction 

requirements are satisfied. 

On the other hand, certain methods convert contact frequency into defined spatial restraints. As is 

the case with distance-based approaches, these restraints are satisfied through an optimization 

method. In their seminal study, Kalhor et al. [68] developed a 3C variant known as tethered 

conformation capture (TCC), aimed at increasing the signal-to-noise ratios in conformation 

capture experiments. This is relevant because it allows for a more accurate representation of IF, 

especially for genome structure analysis, where low inter-chromosomal interactions are recorded 

using existing approaches. Using TCC data, researchers proposed a novel modeling approach 

whereby a variety of genome structures were generated. This approach, called population-based 

modeling, produces a population of structures representative of genomic configuration and 

consistent with contact probability. Serra et al. [85] followed certain constraints in order to 

transform IF into spatial restraints; for instance, consecutive and non-consecutive loci were treated 

differently. As in the case of Bau et al. [72], these restraints were satisfied by using the IMP. 

1.4.3 Probability Based Methods 

Methods in this category define a probabilistic measure for contact frequency, hence their name. 

Using a probabilistic approach to model 3-D structures has a number of advantages; key among 

them is that such an approach allows uncertainties in experimental Hi-C data to be easily 

considered through probabilistic representation. In addition, statistical calculations of specific 

structural properties or noise sources can be carried out. Due to the fact that Hi-C data are drawn 

from cell populations, IF can be considered as an average; most probability-based methods assume 

that an ensemble of structures underlies a contact map. In addition, they consider the problem of 
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3-D structure inference as either a Bayesian inference problem or a maximum likelihood problem. 

However, some probabilistic modeling may be more time consuming than other methods. 

Rousseau et al. [48] developed the first method in this category, called MCMC5C. They defined a 

probabilistic model of IF and used a Markov chain Monte Carlo (MCMC) sampling to generate an 

ensemble of structures. MCMC5C through a Gaussian model based on Hi-C data, whose variance 

was estimated using an improvised approach. A MCMC sampling-based algorithm was selected 

over alternatives methods because of its inherent ability to estimate the distribution of various 

structural properties. As previously mentioned, raw Hi-C data contain a number of systematic 

biases such as GC content, restriction enzyme cutting frequency, and sequence uniqueness [104]. 

These factors all need to be considered when designing a 3-D genome reconstruction method. To 

overcome these limitations, Hu et al. [75] proposed two Bayesian models for 3-D genome structure 

reconstruction from Hi-C data. Their methods combined bias removal with 3-D genome structure 

construction. They corrected known biases and used a Poisson model to fit contact data, an 

improvement over MCMC5C when it came to estimating the Gaussian variance. Varoquaux et al. 

[78] also defined a probabilistic model of IF. Similar to the model defined by Hu et al., it defined 

the structure inference problem as a maximum likelihood problem and used an optimization 

method to solve it. 

A typical drawback of high-resolution Hi-C data is the sparsity of long-range contacts on the 

contact matrix and the high proportion of zero-contact counts between loci in the matrix. Hence, 

certain existing methods might be incapable of modeling at a higher resolution. Park and Lin [87] 

proposed an algorithm that is robust to resolution specification and corrects known systematic 

biases. They modeled the contact count using a Poisson distribution and addressed excess zero 
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problems in high resolution datasets. They suggested that these problems could be solved by 

adjusting the Poisson distribution adopted for modeling. 

Nagano et al. and Stevens et al. [34, 120, 121] applied a simulated annealing technique to sample 

single-cell datasets, while sometimes using contacts as distance restraints at different data 

resolutions. A novel study by Tjong et al. [86] has proposed a population-based modelling 

approach called PGS. Different from the ensemble-based approach—where a variety of structures 

with different variabilities are generated to simulate the heterogeneity of cells in the Hi-C 

experiment—the population of genome structures generated by PGS is consistent with the 

normalized contact probability matrix. Tjong et al. have formulated a probabilistic framework that 

uses an EM algorithm with constraint assignment at the E step and optimization of the structure 

population through simulated annealing and conjugate gradient descent at the M step. This method 

takes advantage of other external experimental data, such as lamina information for improved 

modeling. Rosenthal et al. [95] proposed an approach to recover missing contacts in single-cell 

Hi-C contact maps by filling missing parts with structures obtained from the corresponding cell 

populations, while imposing certain penalties on the generated structures. 

1.5 Correcting Biases in Hi-C Data by Data Normalization 
As is the case for most sequencing experiments, raw Hi-C data contain several systematic biases 

that could potentially affect the 3-D genome reconstruction. An inexhaustive list of these 

systematic biases include GC content, distance between restriction sites, restriction enzyme cutting 

frequency, sequence uniqueness, and experimental artifacts [104]. In a Hi-C experiment protocol, 

a minimum of 25 million cells was used to produce a Hi-C library [27, 30, 38, 69] with the goal of 

analyzing the contact frequencies between genomic sites in a cell population. One of the reasons 
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for using a population of cells in Hi-C experiments is more sequence reads can be produced from 

a population of cells than a single cell. 

The number of paired-end reads linking two genomic regions is interpreted as the interaction 

frequency between two genomic regions. This implies that a higher interaction frequency on a 

contact map means that a higher read count was observed, and that the two regions are spatially 

close to each other. However, many of these systematic biases affect the observed Hi-C read counts 

for two interacting regions (or fragments) on a contact matrix [106]. Hence, when these biases are 

left unhandled, the 3-D model construction is predicated on inaccurate information and 

consequently may be adversely affected. Additionally, if the effect of duplication, deletion, 

inversion and ploidy is significant in the pair reads, this could cause a direct effect on the number 

of paired-end reads linking two genomic regions which will alter the derived contact map. Because 

the Hi-C contact data is used for 3-D genome modeling, the level of correctness of the Hi-C data 

largely determines the accuracy of the generated model. 

To overcome these limitations, most 3-D reconstruction methods apply normalization methods 

that focus on removing biases introduced by experimental procedures and by intrinsic properties 

of the genome to preprocess the data [9, 42, 104–108]. With the application of a normalization and 

pre-processing technique before 3-D genome reconstruction, the noise and systematic biases 

introduced by external factors, such as DNA shearing, and cutting, during the Hi-C experiment 

makes the Hi-C data more suitable for chromosome/ genome 3-D structure reconstruction. 

Alternatively, some probability-based reconstruction methods handle the noise and biases 

differently by taking the biases into consideration in their algorithm design [75]. 

A common problem observed in some Hi-C data is the omission of the contact frequency of some 

genomic positions in the contact matrix. When this occurs, the reconstructed 3-D model from this 
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data varies across the different tools due to difference in the way the methods represent omissions 

in their 3-D model. Generally, this leaves some doubt about which 3-D model is better when this 

occurs. 

1.6 Validation and Evaluation 
According to the literature on chromosome and genome 3-D construction methods, algorithms are 

most often validated by a simulated dataset to assess their reconstruction ability, the consistency 

with the Hi-C data, known genome and chromosome structural features [49], or Fluorescence in 

situ hybridization (FISH) data. In the simulation case, most methods use a 3-D polymer model 

meant to serve as a gold standard model with which to compare the final 3-D reconstructed 

structure. A set of chromosomal contact data is then simulated from this structure, and a certain 

degree of Gaussian noise is often added to the data as well. The noise is usually added to assess 

the methods’ responsiveness and accuracy to noisy data. Eventually, the algorithms’ ability to 

reconstruct the true model is tested. A commonly used synthetic dataset is the one generated by 

Trussart et al. [122]. Trussart et al. created a series of simulated Hi-C contact matrices in which 

genomic architectures are pre-defined, and the noise level and structural variability (SV) are both 

simulated. 

FISH provides a powerful tool for identifying the location of a DNA sequence. It is used to study 

the 3-D organization of chromosomes and genomes and determine the proximity of a gene relative 

to other genes through the use of fluorescent probes [123]. It has been determined to be much more 

accurate, simple, and reliable than all other molecular profiling techniques [124]. Hence, it is often 

used to determine the distance between loci in a genome and for single-cell analysis of gene and 

loci positioning [125–128]. However, its major limitations are low throughput and resolution at 

higher scales, such as the entire genome or an ensemble of cells. Nonetheless, FISH data can be 
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used to validate the distance between loci in a reconstructed 3-D structure at a lower scale. Given 

that the FISH method is considered reliable, it is useful in the study of chromosomal and genomic 

3-D spatial organization when loci in the structure being evaluated are physically proximal. 

Once the structure construction is complete, a method is often needed to assess its accuracy. The 

most common approach to structure evaluation is to calculate the Pearson Correlation Coefficient 

(PCC), the Spearman Correlation Coefficient (SCC), or the Root Mean Square Error (RMSE) of 

the distance representation of the Hi-C data and the Euclidean distance of the 3-D chromosomal 

structure. Since these metrics are obtained for distance, they are sometimes referred to as the 

distance Pearson Correlation Coefficient (dPCC), the distance Spearman Correlation Coefficient 

(dSCC), and the distance Root Mean Square Error (dRMSE). The value of dSCC and dPCC is in 

the range of − 1 to + 1, with higher values being preferable. In the case of dRMSE, on the other 

hand, a lower value is preferred. The latter may vary between 0—which signifies no difference 

between distances—and a large upper limit dependent on the number of fragments in the structure 

being compared when they are completely different. The dRMSE is also an appropriate metric to 

assess the similarity between 3-D structures. In order to do so, a linear transformation that includes 

translation, orthogonal rotation, and rescaling is performed on one of the structures, so that they 

are at the same 3-D-coordinate scale as in [49]. 

Let the pairwise distance between Hi-C data IF be represented by the vector {Di, …, Dn} and the 

Euclidean distance between loci in a 3-D chromosome model be represented as {EDi, …, EDn}, 

where n is the number of loci pairwise distances. The dSCC, dPCC, and dRMSE can be computed 

as shown below: 

(1) The dPCC is defined as: 



 

24 
 

dPCC = 
∑ (𝐷𝑖−�́�)(𝐸𝐷𝑖−𝐸�́�)𝑛

𝑖=1

√∑ (𝐷𝑖−�́�)
2𝑛

𝑖=1 ∑ (𝐸𝐷𝑖−𝐸�́�)
2𝑛

𝑖=1

 

where: 

• 𝐷𝑖 and 𝐸𝐷𝑖 are single distance samples indexed with i, 

• 𝑛 is the number of loci pairwise distances, 

• �́� and 𝐸�́�represent sample means. �́� =
1

𝑛
∑ 𝐷𝑖

𝑛
𝑖=1  , 𝐸�́�= 

1

𝑛
∑ 𝐸𝐷𝑖

𝑛
𝑖=1  . 

(2) The dSCC is defined as: 

dSCC = 
∑ (𝐴𝑖−�́�)(𝐵𝑖−�́�)𝑛

𝑖=1

√∑ (𝐴𝑖−�́�)
2𝑛

𝑖=1 ∑ (𝐵𝑖−�́�)
2𝑛

𝑖=1

 

dSCC is calculated by converting distance variable 𝐷𝑖 and 𝐸𝐷𝑖into ranked variables 𝐴𝑖 and 𝐵𝑖 i , 

and then, computing the dPCC between the ranked variables. Hence, the pairwise distances 𝐷𝑖 

and 𝐸𝐷𝑖 are converted into ranked variables 𝐴𝑖 and 𝐵𝑖 respectively, 

where: 

• 𝐴𝑖 and 𝐵𝑖 are the ranks of two distances, 𝐷𝑖 and 𝐸𝐷𝑖 respectively.  

• �́� and �́� represent sample means of rank. �́� =
1

𝑛
∑ 𝐴𝑖

𝑛
𝑖=1  , �́�= 

1

𝑛
∑ 𝐵𝑖

𝑛
𝑖=1  . 

(3) The dRMSE is defined as:  

dRMSE =  √
1

𝑛
∑(𝐷𝑖𝑗 − 𝐸𝐷𝑖𝑗)

2
 

• where 𝐷𝑖𝑗 and 𝐸𝐷𝑖𝑗 represent the pairwise distance between loci i and j of the Hi-C IF data 

and 3-D structure Euclidean distance 

• 𝑛 is the number of loci pairwise distances. 
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1.7 Outline 
 

The content of each chapter in this dissertation is described as follow.  Chapter 1, the introduction, 

gives the general background about Hi-C experiment, the data obtained from this protocol, the 

classification of the methods for 3D structure reconstruction using this data, and the approach for 

evaluating these methods. The main content of this chapter is from the following publication: 

Oluwadare, O, Highsmith M, Cheng J. An Overview of Methods for Reconstructing 3-D 

Chromosome and Genome Structures from Hi-C Data. Biological Procedures Online. 2019 

Dec;21(1):7. [147] 

Chapter 2 describes a tool for chromosome and genome 3D structure prediction from Hi-C data 

using an optimization algorithm, 3DMax [70]. The main content of this chapter is from the 

following publication: 

Oluwadare O, Zhang Y, Cheng J. A maximum likelihood algorithm for reconstructing 3D 

structures of human chromosomes from chromosomal contact data. BMC genomics. 2018 

Dec;19(1):161. [70] 

Chapter 3 describes, GSDB, a comprehensive and common repository that contains 3D structures 

for Hi-C datasets from novel 3D structure reconstruction tools developed over the years. The main 

content of this chapter is from the unpublished manuscript: 

Oluwadare O, Max Highsmith, Cheng J. a database of 3D chromosome and genome structures 

reconstructed from Hi-C data. (To be submitted July/August 2019) 

Chapter 4 describes, ClusterTAD [177], a method for topological associated domains (TAD) 

extraction from Hi-C data using unsupervised learning algorithm. The main content of this chapter 

is from the following publication: 
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Oluwadare O, Cheng J. ClusterTAD: an unsupervised machine learning approach to detecting 

topologically associated domains of chromosomes from Hi-C data. BMC bioinformatics. 2017 

Dec;18(1):480. [177] 

Chapter 5 describes GenomeFlow [40], a comprehensive graphical tool to facilitate the entire 

process of modeling and analysis of 3D genome organization. This tool provides a graphical user 

interface to analyze and study Hi-C data in 2D and 3D format, it’s the first tool to provide this in 

the genome research field. The main content of this chapter is from the following publication: 

Trieu T*, Oluwadare, O*, Wopata J, Cheng J. GenomeFlow: a comprehensive graphical tool for 

modeling and analyzing 3D genome structure. Bioinformatics. 2018 Sep 12. (* co-first author) 

[40]. 

Chapter 6 describes the installation steps and the instructions for using the software tools 

developed for each of the methods above.  
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2 A maximum likelihood algorithm for reconstructing 3D structures of 

human chromosomes from chromosomal contact data 

 

2.1 Abstract  
The development of chromosomal conformation capture techniques, particularly, the Hi-C 

technique, has made the analysis and study of the spatial conformation of a genome an important 

topic in bioinformatics and computational biology. Aided by high-throughput next generation 

sequencing techniques, the Hi-C technique can generate genome-wide, large-scale intra- and inter-

chromosomal interaction data capable of describing in detail the spatial interactions within a 

genome. These data can be used to reconstruct 3D structures of chromosomes that can be used to 

study DNA replication, gene regulation, genome interaction, genome folding, and genome 

function.  

Here, we introduce a maximum likelihood algorithm called 3DMax to construct the 3D structure 

of a chromosome from Hi-C data. 3DMax employs a maximum likelihood approach to infer the 

3D structures of a chromosome, while automatically re-estimating the conversion factor (α) for 

converting Interaction Frequency (IF) to distance. Our results show that the models generated by 

3DMax from a simulated Hi-C dataset match the true models better than most of the existing 

methods. 3DMax is more robust to structural variability and noise. Compared on a real Hi-C 

dataset, 3DMax constructs chromosomal models that fit the data better than most methods, and it 

is faster than all other methods. The models reconstructed by 3DMax were consistent with 

fluorescent in situ hybridization (FISH) experiments and existing knowledge about the 

organization of human chromosomes, such as chromosome compartmentalization. 
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3DMax is an effective approach to reconstructing 3D chromosomal models. The results, and the 

models generated for the simulated and real Hi-C datasets are available here: 

http://sysbio.rnet.missouri.edu/bdm_download/3DMax/. The source code is available here: 

https://github.com/BDM-Lab/3DMax . A short video demonstrating how to use 3DMax can be 

found here: https://youtu.be/ehQUFWoHwfo .  

2.2 Background  
A set of all chromosomes within the nucleus of a eukaryotic cell constitutes its genome. Studies 

of the organization of chromosomes and genomes reveal that they are structurally organized within 

a cell [1-12]. Studies find that this organization influences many biological mechanisms such as 

DNA replication, DNA repair, DNA translocation, gene regulation, transcription efficiency, 

genome interpretation, epigenetic modification, and genome stability maintenance [1, 12]. The 

Fluorescent In situ Hybridization (FISH) [18.19] was often used in the investigation of the three-

dimensional (3D) organization of a genome, but it cannot produce the layout of the genome 

structure at a large scale. The chromosome conformation capturing techniques such as 3C [24], 4C 

[28], 5C [29], and Hi-C [30] were developed to analyze the spatial organization of chromatin in a 

cell at a larger scale. The Hi-C technique can use next generation DNA sequencing to determine 

genome-wide spatial chromosomal interactions.   

Much progress has been made in recent years on the study of chromosome and genome 3D 

structure modeling. Several methods have been proposed to construct the structure of an individual 

chromosome or an entire genome from chromosome conformation capturing data [66-70,72-

81,83-98,109-110]. Some of these methods perform chromosome/genome 3D structure modeling 

in a two-step process, which involves converting interaction frequencies (IF) between fragment 

pairs in Hi-C data to distances between them, and then inferring the 3D structures that best satisfies 

http://sysbio.rnet.missouri.edu/bdm_download/3DEM/
https://github.com/BDM-Lab/3DMax
https://youtu.be/ehQUFWoHwfo
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the distances. Methods that implement this two-step process are known as distance restraint-based 

methods. Several of such methods have been proposed, each of which varies in restraint 

representation and optimization methods adopted [83-98].  

In [66], Duan et al. considered the genome 3D structure prediction problem as a constrained non-

convex optimization problem, and hence used an optimization solver (open-source software) 

IPOPT [71] to solve it. Bau et al. [110] also treated the 3D modeling problem as an optimization 

problem, and used the Integrated Modeling Platform (IMP) [73] to construct 3D structure models. 

The MCMC5C [48] method designed a probabilistic model for the interaction frequency (contact) 

data, and thereafter used a Markov Chain Monte Carlo (MCMC) approach to generate a 

representative structure from the data. ChromSDE [76] formulated the 3D structure modeling 

problem as a non-convex non-linear optimization problem, but then relaxed it as a semi-definite 

programming (SDP) problem. Bayesian 3D constructor (BACH) [75] is another method that 

employs MCMC to infer the 3D structure by maximizing the likelihood of the observed Hi-C data 

following a Poisson regression approach. MOGEN [49,80] is a contact-based method that is 

different from the rest, because it does not require the conversion of interaction frequencies to 

distances before structure construction. ShRec3D [79] is a two-step algorithm that uses the shortest 

path algorithm to realize chromosome structure construction. LorDG [69] uses a Lorentzian 

objective function to construct the 3D model of a chromosome or genome. 

Despite the significant progress made over the years, some of the distance-based chromosome 

structure modeling methods have several limitations: they may simply assume that the parameters 

used for converting interaction frequencies to distances are independent of input data and therefore 

are fixed for different datasets [80, 131], they may converge slowly (common for Markov chain 
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Monte Carlo (MCMC) approach [132-133]), and they sometimes require to adjust quite a few 

parameters [49,80], making it difficult to use.   

In this paper, we introduce a new method called 3DMax that uses a maximum likelihood approach 

to infer the 3D structures of a chromosome from Hi-C data. In the 3DMax algorithm, the 

conversion factor (α) parameter to convert IF to its distance equivalent is determined automatically 

from the data. We show that 3DMax is relatively faster than most of the existing methods, and it 

only depends on optimizing the structural coordinate of predicted models through the least square 

residuals. 3DMax is capable of translating contact data of a chromosome, or genome into an 

ensemble of probable 3D conformations to approximate the dynamic 3D genome structures of a 

population of cells of the same type. Our experiment also demonstrates how parameters such as 

the learning rate and the convergence constant (epsilon) can impact the performance of a 

constructed model. We also demonstrate the effect of using different normalization method on the 

different chromosome 3D structure prediction algorithms. We benchmarked 3DMax with several 

popular methods [48, 75, 80, 110, 122], and the result showed that our method performed robustly 

in the presence of noise and structural variability. We applied our method to a synthetic 

chromosomal interaction dataset, and two experimentally generated Hi-C datasets: 

a karyotypically normal human lymphoblastic cell line (GM06990) and a malignant B-cell. We 

used the data from FISH experiments available for the cell lines as independent validations of the 

reconstructed 3D chromatin structures. We performed a comparative analysis of the performance 

of 3DMax and several existing 3D reconstruction methods on the Hi-C datasets normalized by 

three commonly used methods [9,104-105]. These experiments show that 3DMax is an effective 

method for reconstructing 3D chromosomal structures from Hi-C data.  
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2.3 Methods 
Generally, before Hi-C data [30] are used for model construction, they are converted to a matrix 

form known as a contact matrix or a contact map. 

2.3.1 Chromosome contact map 

A chromosome contact map is a N * N matrix, extracted from a Hi-C data, showing the number 

of interactions between chromosomal regions. The size of the matrix (N) is the number of equal-

size regions of a chromosome. The length of equal-size regions (e.g. 1Mb base pair) is called 

resolution. Each entry in the matrix contains a count of read pairs that connect two corresponding 

chromosome regions in a Hi-C experiment. Therefore, the chromosome contact matrix represents 

all the observed interactions between the regions (or bins) in a chromosome. The 3DMax algorithm 

takes as input a contact map to build the 3D structure of a chromosome. 

2.3.2 Structure initialization 

To structurally represent a chromosome, each of its regions (or bins) is represented by three 

coordinates (x, y, z) in 3D space. In 3DMax, the structure construction starts with a random 

initialization of the coordinates of all the regions such that they are in the range [-0.5, 0.5] as in 

[80].  

2.3.3 Maximum likelihood objective function of a chromosome structure 

We used a log likelihood function as an objective function to compute chromosome structures 

from a contact map. Let S stand for a 3D chromosome structure, and D represent the contact matrix 

data derived from a Hi-C dataset. The likelihood of S, P(D|S), can be expressed as the product of 

the probabilities of individual data points (interaction frequencies or distances) in D conditioned 

on the structure S, if the data points are conditionally independent of each other given a S. In 

3DMax structure modeling, the input contact matrix is converted to spatial distances based on the 



 

32 
 

assumption that the IF and the distance have an inverse relationship [48,75,76,78,122]. The 

conversion method is explained in the Subsection “conversion of interaction frequency to spatial 

distance” later. By assuming that data points 𝐷𝑖 in D are conditionally independent given a 

structure S, we defined the likelihood (L(S)) in Equation (1) as: 

L(S) = P(D|S) = ∏ 𝑃(𝐷𝑖|𝑆)𝑛
𝑖=1      (1) 

, where n represents the total number of data points to be considered, and Di represents the ith data 

point (i.e., the distance between a pair of chromosomal regions derived from the contact matrix). 

Assumed that each data point i obeys the normal distribution, the probability of data point Di can 

be described as: 

   P(Di|S) ~ 
1

𝜎√2π
. exp (−

1

2𝜎2
(𝐷𝑖

𝑠 − 𝐷𝑖)2)    (2) 

, where 𝐷𝑖
𝑠 which is the actual Euclidean distance of the pair of regions corresponding to Di, 

computed from (x,y,z) coordinates of the two regions in 3D structure S as in [34]. 𝜎2 is the variance 

of the distance. By combining Equations (1) and (2), we obtain the likelihood estimate of a 

structure S: 

𝐿 (𝑆) =  (
1

𝜎√2π
)𝑛 . exp (−

1

2𝜎2
∑ (𝐷𝑖

𝑠 − 𝐷𝑖)2𝑛
𝑖=1 )            (3) 

By taking the logarithm of both sides of the Equation (3), we obtain the log likelihood objective 

function in Equation (4) for 3DMax chromosome structure reconstruction. Our goal is to find a 

structure S* that maximizes the likelihood function: L(S|D).  
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𝐿 (𝑆) =  −
∑ (𝐷𝑖

𝑠−𝐷𝑖)
2𝑛

𝑖=1

2𝜎2 − 𝑛. 𝑙𝑜𝑔𝜎   (4) 

With the assumption that the data is normally distributed according to Equation (2), 𝜎 is calculated 

as in Equation (5): 

             𝜎 = √
∑ (𝐷𝑖𝑠−𝐷𝑖)2𝑛

𝑖=1

𝑛
          (5) 

We eliminated the dependence of the objective function on 𝜎 parameter by plugging Equation (5) 

into the log likelihood objective function in Equation (4). Hence, the resulting objective function 

L(S) can be represented as in Equation (6). The objective function in Equation (6) depends only 

on the (x,y,z) coordinates of regions in the structure.  

𝐿 (𝑆) =  =  −
𝑛

2
 − nlog√

∑ (𝐷𝑖𝑠−𝐷𝑖)2𝑛
𝑖=1

𝑛
    (6) 

 

2.3.4 Gradient ascent optimization Algorithm  

We used the gradient ascent method to optimize the objective function iteratively until the 3DMax 

algorithm converges. 3DMax algorithm is considered converged, if the difference between the 

newly calculated log likelihood L(S) function value obtained with updated (x, y, z) coordinates 

and old L(S) function value of the previous step is less than a small constant value (epsilon). The 

determination of the epsilon value is described in the Results section.  

Gradient ascent is an iterative optimization algorithm that moves in the direction of the function 

gradient. Using Equation (6) as the base equation, we calculated the partial derivative of the log 

likelihood function with respect to a region’s x, y, and z coordinates in a 3D structure. 
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Once the partial derivative for each coordinate was obtained, we used the gradient ascent 

optimization method to adjust each coordinate to get a new structure S* that increases the 

likelihood. Equation (7) shows how the update was done, where λ is the learning rate, and S is the 

(x, y, z) coordinate vector in 3D space. If the learning rate is too small, it can result in a slow 

convergence to an optimal solution. But, if a larger learning rate is defined, the algorithm might 

oscillate around an optimal solution. There is no standard approach to choose λ value, but it is 

common to set a larger learning rate at the beginning of the optimization, and reduce it as the 

optimization progresses. The result of using the different types of learning rate is described in the 

Subsection “choice of the learning rate” in the Result section. 

𝑆(𝑡+1) = 𝑆(𝑡)   +    λ(𝑡)∇𝐿(𝑆(𝑡))     (7) 

, where 𝑡 is an iteration index, 𝑆(𝑡) is the structure coordinate at an iteration index t, λ(𝑡) is a 

learning rate at t that may vary as the iteration proceeds, and ∇𝐿(𝑆(𝑡)) is the partial derivative of 

the log likelihood with respect to the coordinates in the structure. 

In this work, we also implemented a variant of the 3DMax algorithm above, called 3DMax1, which 

performs an extra pre-processing and filtering of the input contact matrix when the input is noisy 

(e.g. having low IFs). Moreover, 3DMax1 uses a stochastic gradient ascent algorithm with per-

parameter learning rate, which is called the adaptive Gradient algorithm (AdaGrad). The AdaGrad 

[113] is a gradient-based optimization that can adapt the learning rate to each parameter, it 

performs larger updates for infrequent or sparse parameters and smaller updates for frequent or 

less sparse parameters.  And it often improves convergence performance over standard stochastic 

gradient ascent when dealing with sparse parameters [134]. Different from 3DMax that updates 

the values of all the structure parameters in 𝑆 at once with the same learning rate λ, AdaGrad in 
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3DMax1 uses a different learning rate for every parameter in 𝑆 at every time 𝑡 . Let Equation (8) 

represent the gradient of the log likelihood for a parameter 𝑆𝑖 at a time step t. Hence, the stochastic 

Gradient ascent in Equation (7) can be written as in Equation (9) for a parameter 𝑆𝑖 in 𝑆. 

𝑔𝑡,𝑖 = ∇𝐿(𝑆𝑖
(𝑡))         (8) 

𝑆𝑖
(𝑡+1) = 𝑆𝑖

(𝑡)   +    λ(𝑡) . 𝑔𝑡,𝑖        (9) 

In the update rule for AdaGrad, it modifies the learning rate  λ at each time step for every parameter 

𝑆𝑖 based on the previously computed gradient for the parameter 𝑆𝑖. according to Equation (10) 

𝑆𝑖
(𝑡+1) = 𝑆𝑖

(𝑡)   +   
λ

√𝐺𝑡,𝑖𝑖+ 𝜀
. 𝑔𝑡,𝑖                   (10) 

Here,  𝐺𝑡 is a diagonal matrix where each diagonal element 𝑖, 𝑖 is the sum of the squares of the 

gradients w.r.t. 𝑆𝑖 up to time step t according to Equation (11). While 𝜀 is a smoothing term that 

avoids division by zero (usually on the order of 1e−6).  

𝐺𝑡 = ∑ (𝑔𝑖𝑔𝑖) 
𝑡
𝑖=1         (11) 

 

In essence, 𝐺𝑡 contains the sum of the squares of the past gradients for all the parameters in 𝑆 along 

its diagonal. One of AdaGrad's main benefits is that it eliminates the need to manually tune the 

learning rate at each iteration. 

2.3.5 Normalization of Hi-C data 

Data normalization is necessary for Hi-C datasets, because there is a lot of noise in them. In this 

study, we used the Iterative Correction and Eigenvector decomposition (ICE) technique [105] as 
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the default technique to normalize the Hi-C data. The ICE technique was used to normalize the 

contact map derived from both the synthetic data and the experimental Hi-C data. The GM06990 

Hi-C data was also normalized using the Yaffe and Tanay normalization technique [104]. The 

Yaffe and Tanay normalization technique normalizes the observed read counts by the expected 

read counts between the regions in a contact matrix. The other technique used to normalize the 

GM06990 Hi-C data is the Sequential Component Normalization (SCN) technique [9]. The results 

obtained by the three methods above are presented in the Results Section. 

2.3.6 Conversion of interaction frequency to spatial distance  

An important aspect of most distance restraint-based modeling approaches including 3DMax is to 

convert the interaction frequency (IFij) between two regions (i, j) in a contact matrix to a 

hypothetical Euclidean distance. An inverse relationship is assumed to exist between them. The 

relationship is usually defined as 1/IFα, where IF is the interaction frequency, and α is called the 

conversion factor.  According to [76], α cannot be too small because the spatial distance becomes 

independent of the interaction frequency as α approaches zero. And α also cannot be too large 

because in this situation a small change in interaction frequency(IF)  could produce a significant 

difference in the spatial distances. Therefore, choosing a conversion factor that correctly represents 

the relationship between distance and interaction frequency is important. For 3DMax, we assume 

that the optimal α will be in the range [0.1, 2], which is consistent with the previous study [48] 

[76].  

2.3.7 Measurement of model similarity and accuracy  

We used the Pearson Correlation Coefficient (PCC), the Spearman’s Correlation Coefficient 

(SCC), and the Root Mean Square Error (RMSE) to measure the similarities between chromosomal 

structures, and assess the accuracy of the constructed structures as in the previous studies 
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[48,64,66,75,76,78,80,110,122]. When these assessment methods are applied on a distance 

representation of a model, or a distance representation of Hi-C data, they are sometimes called the 

distance Pearson Correlation Coefficient (dPCC), the distance Spearman Correlation Coefficient 

(dSCC), and the distance Root Mean Square error (dRMSE), respectively. For instance, if we have 

two pairwise distance dataset from two models, {di, …, dn} containing n values, and another 

pairwise distance dataset {Di, …, Dn} containing n values, the dPCC, the dSCC and the dRMSE 

can be computed using the formulas given below.  

(1) The distance Pearson Correlation Coefficient (dPCC) is defined as, 

dPCC = 
∑ (𝑑𝑖−�̅�)(𝐷𝑖−�̅�)𝑛

𝑖=1

√∑ (𝑑𝑖−�̅�)2 𝑛
𝑖=1 ∑ (𝐷𝑖−�̅�)2𝑛

𝑖=1

 

where: 

• 𝑑𝑖 and 𝐷𝑖 are single distance samples indexed with i, 

• 𝑛 is the number of pairwise distance. 

• �̅� and �̅� represent sample means. �̅�  
1

𝑛
∑ 𝑑𝑖

𝑛
𝑖=1  , �̅�= 

1

𝑛
∑ 𝐷𝑖

𝑛
𝑖=1  . 

(2) The distance Spearman’s Correlation Coefficient (dSCC) is defined as 

dSCC = 
∑ (𝑋𝑖−�̅�)(𝑌𝑖−�̅�)𝑛

𝑖=1

√∑ (𝑋𝑖−�̅�)2 𝑛
𝑖=1 ∑ (𝑌𝑖−�̅�)2𝑛

𝑖=1

 

dSCC is calculated by converting distance variable 𝑑𝑖 and 𝐷𝑖 into ranked variables 𝑋𝑖 and 𝑌𝑖, and 

then, computing the dPCC between the ranked variables. 

where: 



 

38 
 

• 𝑋𝑖 and 𝑌𝑖 is the rank of two distance  𝑑𝑖 and 𝐷𝑖 respectively. Hence, X and Y is a vector 

of distance rank of the distance vector d and D respectively. 

• �̅� and �̅� represent sample means of rank. �̅�  
1

𝑛
∑ 𝑋𝑖

𝑛
𝑖=1  , �̅�= 

1

𝑛
∑ 𝑌𝑖

𝑛
𝑖=1  . 

 

(3) The distance Root Mean Square Error (dRMSE) is defined as,  

dRMSE =  √
1

𝑛
∑(𝑑𝑖𝑗 − 𝐷𝑖𝑗)2 

• where 𝑑𝑖𝑗 and 𝐷𝑖𝑗 are the distance vector between regions i and j for the first model, and 

second model respectively. 

• 𝑛 is the number of pairwise distance. 

The dSCC measures the similarity of the distance profiles of two 3D structures. The dSCC value 

varies between -1.0 and 1.0; the higher the dSCC value is, the more similar the two structures are. 

It is worth noting that, to determine the dRMSE of two structures, the structures must be compared 

at the same scale. For instance, assuming two structures are represented with coordinates Sꞌ and S 

 R n x 3, where Sꞌ is the model constructed by 3DMax, S is the known model from a simulated 

data, and n is the number of regions representing a chromosome. To calculate the dRMSE value, 

we performed linear transformations that includes translation, orthogonal rotation, and rescaling of 

the points in the matrix R3 x n of structure Sꞌ in order to best match them with the points in matrix 

R3 x n of structure S. The Procrustes function library defined in MATLAB [135-138] is used to do 

the transformation of the dimensions. After the transformation, the dRMSE value between the 

scaled structure S’’ and the original structure S is calculated.  
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2.3.8 Datasets 

The synthetic dataset from Trussart et al., 2015 [122] is a series of simulated Hi-C contact matrices 

where the genomic architectures are pre-defined and the noise level and structural variability (SV) 

are both simulated. The contact maps, the original models and their reconstructed models used in 

this study were downloaded from http://sgt.cnag.cat/3dg/datasets/. 

The real Hi-C data used in this study is from a normal GM06990 cell line and a malignant B-cell 

line. The normal GM06990 dataset was downloaded from the Gene Expression Omnibus (GEO) 

repository under the accession number GSE18199. Its raw and normalized interaction frequency 

matrices at 1-MB resolution [30] were downloaded from [139]. We used the normalization 

pipeline described in [9] and [105] to obtain normalized contact matrices. The raw contact matrices 

of the malignant B-cell 1-MB resolution were obtained from [140]. We used the pipeline [105] to 

normalize them. The Fluorescence In-Situ Hybridization (FISH) data of the GM06990 cell line is 

from [30]. Its FISH distances and contact maps were obtained from [47]. 

2.4 Results 
We evaluated our method using a synthetic dataset (Trussart et al., 2015) [122] and two real Hi-C 

datasets of the two cell lines: a karyotypically normal human lymphoblastic cell line (GM06990) 

[30] and the malignant B-cell of an acute lymphoblastic leukemia patient [140]. 

2.4.1 Parameter estimation 

To use 3DMax, the conversion faction (α) needs to be defined. As the default, we set the α value 

to be in the range [0.1, 2] as explained in the Methods section. Another parameter we defined in 

3DMax is the convergence constant called epsilon. To estimate the best epsilon value to use, we 

experimented on the GM06990_HindIII cell line dataset using six epsilon values, i.e., 1, 0.5, 0.1, 

0.01, 0.0001, and 0.00001(Table 1.1). According to our experiment, although the different epsilons 

http://sgt.cnag.cat/3dg/datasets/
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produced comparable dSCC average, the epsilon = 0.0001 has the highest average dSCC score. 

Hence, we set it as the default epsilon value for 3DMax. The number of ensemble structures (N) 

to generate per conversion factor is another parameter to be tuned. Table 2.2 shows the 

performance changes by setting different numbers of ensemble structures (NUM_STR). It is 

observed that a higher N value does not guarantee a significant increase in the accuracy. We set 

the default N to 5 in our implementation.  

Table 2.1.  The determination of the convergence constant (epsilon) values for the 3DMax 

algorithm. The dSCC value between the input distance matrix and the representative model for 

chromosome 1 – 22 of the GM06990 cell line using convergence constant (epsilon): 1, 0.5, 0.1, 

0.01, 0.0001, and 0.00001 respectively.  The average dSCC values across the chromosomes show 

that the results are highly comparable.  The epsilon = 0.0001 has the highest average dSCC score, 

hence, we set it as the default epsilon value for 3DMax. The bold text represents the highest dSCC 

value. 
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Chrom

osome 

epsilon=1 epsilon=0.5 epsilon=0.1 epsilon=0.01 epsilon=0.0001 epsilon

=0.0000

1 

1 0.8087 0.8088 0.8087 0.8087 0.8088 0.8087 

2 0.8149 0.8149 0.8149 0.8149 0.8149 0.8149 

3 0.8306 0.8306 0.8306 0.8306 0.8306 0.8306 

4 0.8716 0.8716 0.8714 0.8663 0.8735 0.8714 

5 0.8645 0.8645 0.8645 0.8646 0.8654 0.8645 

6 0.8477 0.8479 0.848 0.8478 0.848 0.848 

7 0.8302 0.8302 0.83 0.8302 0.831 0.8301 

8 0.8701 0.8701 0.8701 0.8702 0.8701 0.8701 

9 0.853 0.853 0.8495 0.8521 0.8532 0.8508 

10 0.8538 0.8542 0.8541 0.8538 0.8538 0.8538 

11 0.8431 0.8431 0.8431 0.8431 0.8433 0.8432 

12 0.8576 0.8576 0.8578 0.8577 0.8578 0.8578 

13 0.8581 0.8553 0.8582 0.8582 0.8584 0.8582 

14 0.8785 0.8796 0.8797 0.8797 0.8797 0.8797 

15 0.8593 0.8563 0.8588 0.8595 0.8565 0.8592 

16 0.8441 0.8459 0.8458 0.8459 0.8458 0.8458 

17 0.8359 0.836 0.8362 0.8362 0.8362 0.8361 

18 0.8521 0.8537 0.8536 0.8535 0.8535 0.8534 

19 0.8629 0.8669 0.8663 0.8665 0.8665 0.8664 

20 0.8853 0.884 0.8842 0.8865 0.8867 0.8867 

21 0.9019 0.8995 0.9016 0.9016 0.9017 0.9018 

22 0.8657 0.8658 0.8672 0.8658 0.8659 0.8659 

Averag

e dSCC 

0.8541 0.8541 0.8543 0.8542 0.8546 0.8544 
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Table 2.2. The comparison of the performance when a constant learning rate and a decreasing 

learning rate are applied. The comparison of the computing time and the average dSCC value 

obtained by using a constant or a decreasing learning rate for different input parameters for the 

chromosome 1 – 22 of the GM06990 cell line.  We used the constant learning rate 0.0001, and we 

defined the initial_ λ  = 0.01 for the decreasing learning rate. CHR represents the chromosome 

number, and NUM_STR represents the number of ensemble structures generated per conversion 

factor(α), ALPHA represents the conversion factor. The decreasing learning rate achieved a better 

computing speed in all the cases.  

 Constant Learning Rate Decreasing Learning Rate 

Input Parameters Running 

 Time 

Accuracy 

(Average 

dSCC) 

Running 

Time 

Accuracy 

(Average dSCC) 

 CHR=1-22, 

NUM_STR = 1, 

ALPHA =  constant 

4 minutes 0.821 13 seconds 0.8493 

 CHR=1-22, 

NUM_STR = 1,  

ALPHA =  [0.1, 2] 

1 hour, 30 

minutes 

0.8456 3 minutes 0.8536 

 CHR= 1-22, 

NUM_STR = 5,  

ALPHA =  [0.1, 2] 

7 hours 0.8546 20 minutes 0.8546 
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 CHR = 1, 

NUM_STR = 1, 

ALPHA =  constant 

37 seconds 0.7556 2 seconds 0.8088 

 CHR = 1, 

NUM_STR = 5, 

ALPHA = [0.1, 2] 

1 hour 0.7841 3 minutes 0.8088 

 CHR = 21, 

NUM_STR = 1, 

ALPHA =  constant 

0.7 second 0.8969 0.2 second 0.8995 

 CHR = 21, 

NUM_STR = 5,  

ALPHA = [0.1, 2] 

36 seconds 0.9018 2 seconds 0.9018 

 CHR = 21, 

NUM_STR = 30,  

ALPHA = [0.1, 2] 

4 minutes 0.9018 12 seconds 0.9018 

 CHR = 21, 

NUM_STR = 50,  

ALPHA = [0.1, 2] 

6 minutes 0.9021 18 seconds 0.9018 

 CHR = 21, 

NUM_STR = 100,  

ALPHA = [0.1, 2] 

12 minutes 0.9020 37 seconds 0.9020 

 CHR = 21, 

NUM_STR = 200,  

ALPHA = [0.1, 2] 

24 minutes 0.9022 83 seconds 0.9020 

 CHR = 21, 

NUM_STR = 500,  

ALPHA = [0.1, 2] 

1 hour 0.9022 3 minutes 0.9021 
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We executed all the other methods following the directions for parameter settings by their authors. 

All the parameters used to produce all the results are made available in the “parameters” directory 

of each method in the 3DMax website (http://sysbio.rnet.missouri.edu/bdm_download/3DMax/). 

For instance, to evaluate the MOGEN program, we used the parameters that produced the best 

result after trying multiple settings for the parameters required by the algorithm. The different 

parameters used to generate the MOGEN models, the input data, and the outputs for the three 

normalization methods for the GM06990 cell line are all available at the 3DMax website. 

2.4.2 Choice of the learning rate 

As mentioned in the Methods section, the choice of the best learning rate can sometimes be a 

difficult task. However, it is common practice to use either a preferable constant learning rate, or 

a decreasing learning rate.  

The constant learning rate uses a constant λ value through all the epoch steps for an algorithm. 

By experimenting with a range of learning rates in our work, Figure 2.1 shows the model accuracy 

for different constant learning rates for GM06990_HindIII cell chromosome 1 to 22 datasets. The 

result shows the impact of using the different learning rates for structure modeling.   We observed 

that λ = 0.0001, 0.001, and 0.005 shows a consistent better performance than the other λ values 

across all the chromosomes. As observed in the Figure, the larger learning rate (λ =0.01) had the 

advantage of faster convergence in some chromosomes, but suffered fluctuations or even decreased 

performance at some point (Chromosome 5,11, and 20). The smaller learning rates resulted in slow 

convergence and sometimes does not converge with a good model accuracy as in the case of λ = 

0.00001 (Chromosome 3,11,13,15,16-18, and 21). 

http://sysbio.rnet.missouri.edu/bdm_download/3DMax/
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Figure 2.1. The comparison of the step by step model accuracy for different constant learning rate. 

The comparison of the dSCC model accuracy for five constant learning rates for GM06990_HindIII 

cell chromosome 1 to 22 dataset. We show the step by step dSCC till convergence for λ = 

0.00001,0.0001, 0.001, 0.005 and 0.01 respectively for all the GM06990_cell chromosomes. The 

result shows that λ = 0.0001,0.001, and 0.005 had less fluctuations, and achieved a higher or similar 

dSCC value in cell chromosomes. Overall, the performance of 3DMax is comparable for each of 

the λ values. A higher dSCC value means the better accuracy. 

Conversely, for the decreasing learning rate, a typical way to implement it is to choose a starting 

learning rate and drop the learning rate by half every 70 epochs (in our algorithm). This approach 

is termed the step-based learning rate decay schedule. It takes the mathematical form below: 

λ   = initial_ λ * 0.5
1+𝑒𝑝𝑜𝑐ℎ

70  

In this work, we compared the result obtained by using the constant learning rate (λ =0.0001), and 

the decreasing learning rate methods in Figure 2.2. Interestingly, the results show that both 

methods achieved a comparable accuracy for all the chromosomes. However, in terms of the 

computing speed, 3DMax is faster when the decreasing learning rate is used than when the constant 

learning rate is used. The running time and accuracy of the two methods of setting learning rates 

are reported in Table 2.2. In 3DMax, we made the decreasing learning rate approach the default 

because it converges faster. 
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Figure 2.2. The comparison of the performance of 3DMax for constant and decreasing learning 

rates. Comparison of the result obtained by using the constant learning rate, and the decreasing 

learning rate shows that both methods achieved a comparable accuracy for all the chromosomes. 

A higher dSCC value means the better accuracy. 

 

2.4.3 Assessment on simulated datasets 

The synthetic dataset includes a series of Hi-C matrices simulated from the pre-defined 

chromosome structures with different noise levels and structural variability (SV) level. Each worm 

like chain chromosome structure has ~1 Mb base pairs and is represented by 202 regions of 5 Kb 

base pairs each. The simulated data can be classified into two categories based on the different 

architectures of the chromosome structures:  Topological Associated Domains (TAD)-like 

architecture and Non-Topological Associated Domains (Non-TAD)-like architecture [141-143]. 

Each of these architectures has three structural density levels (40bp/nm, 75bp/nm and 150bp/nm), 
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resulting in six density-architecture combinations. The entire synthetic dataset contains 168 

simulated Hi-C matrices in total, i.e., six different combinations of density and architectures times 

seven levels of structural variability (SV) (denoted as 0, 1, 2, 3, 4, 5, 6) times four noise levels (i.e. 

50, 100, 150 and 200). There are 28 simulated Hi-C contact matrices for each of the six density-

architecture combinations. According to [48], the most difficult architecture to reconstruct is the 

150bp/nm density with no TAD-like features because of its higher resolution and lack of regular 

TAD sub-structures.  

We evaluated 3DMax on the 28 contact matrices (7 levels of structural variability with four noise 

levels each) of the synthetic dataset with resolution 150bp/nm for both TAD and non-TAD like 

feature architecture, respectively. The matrices were normalized with the ICE technique before 

they were used as input for 3DMax. To determine the best conversion factor (α) for model 

reconstruction, the dSCC value between the distance matrix generated from the input contact 

matrix and the Euclidean distance of the representative chromosomal model is computed.  To 

determine the representative structure for an input matrix, we generated an ensemble of 50 

structures and calculated the similarity between each structure in the ensemble with the input 

distance matrix. The structure with the highest dSCC value in the ensemble was chosen as the 

representative structure for the input contact matrix. We then computed the average dSCC value 

across the 28 contact matrices of the simulated data, with resolution 150bp/nm and TAD like 

feature architecture, for the conversion factor (α) in the range [0.1, 2] (Table 2.3). The result shows 

that α value 0.3 has the highest average dSCC value. We computed the average dSCC value 

between the models reconstructed by 3DMax and the true structures (i.e., a set of 100 true 

structures for each structural variability level in the simulated dataset) for the α values in the range 

[0.1, 2] for the simulated data with resolution 150bp/nm and TAD like feature architecture (Table 
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4). The result also shows that the structures generated at α = 0.3 have the higher similarity to the 

true structures from simulated dataset than other α values. To compute the accuracy of 3DMax, 

we compared each structure in the generated ensemble with the true structures (i.e., a set of 100 

true structures for each structural variability level) by using the spearman correlation coefficient. 

We thereafter selected the reconstructed structure closest to a true structure from the ensemble. 

The spearman correlation coefficient of the selected structure and the true structure was averaged 

and used as the dSCC accuracy for the ensemble of generated 3DMax structures. The 

reconstruction accuracy (dSCC) for 3DMax at different levels of noise and structural variability 

(SV) for α = 0.3 shows that the accuracy of reconstructed models decreased as the structural 

variability level increased for each noise level (Figure 2.3). The reconstruction accuracy of 

structures generated by 3DMax is relatively high for different noise levels when the structural 

variability (SV) is low, while the average accuracy of structures decreases noticeably as the level 

of SV increases.  

Table 2.3. The average dSCC value between the distance matrix and the representative model for 

28 contact matrices with different conversion factor (α) values. The average dSCC value between 

the input distance matrix and the representative model for 28 contact matrices (7 levels of structural 

variability with four noise levels each) for the conversion factor (α): 0.1, 0.3, 0.5, 1.0, 1.5 and 2.0 

respectively. The dataset has resolution 150bp/nm and TAD like feature architecture. The bold 

text represents the highest dSCC value. 

 

Conversion factor(α) 0.1 0.3 0.5 1.0 1.5  2.0 

dSCC 0.759 0.768 0.758 0.695 0.638 0.559 
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Table 2.4. The average dSCC value for the dataset with resolution 150bp/nm and TAD like feature 

architecture. The average dSCC value between 3DMax model and the known structure for 28 

contact matrices (7 levels of structural variability with four noise levels each) for the conversion 

factor (α): 0.1, 0.3, 0.5, 1.0, 1.5 and 2.0 respectively. The dataset has resolution 150bp/nm and 

TAD like feature architecture. The bold text represents the highest dSCC value. 

 

 

 

Figure 2.3. The dSCC accuracy of the structures generated by 3DMax for the synthetic data. The 

dSCC accuracy of the structures generated by 3DMax at different levels of noise and structural 

variability for conversion factor (α) = 0.3. The dataset has resolution 150bp/nm and TAD like 

feature architecture. Y-axis denotes the distance Spearman correlation coefficient (dSCC) score in 

the range [-1,1] and the X-axis denotes the noise level. Set 0-6 denotes seven different levels of 

structural variability in the increasing order. A higher dSCC value means the better accuracy. 

Conversion factor(α) 0.1 0.3 0.5 1.0 1.5  2.0 

dSCC 0.564 0.720 0.697 0.650 0.650 0.495 

  

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1 

50 100 150 200 

Noise level 

DMax structure reconstruction accuracy 3 

set0 set1 set2 set3 set4 set5 set6 



 

51 
 

 

Similarly, we evaluated 3DMax on 28 contact matrices of the synthetic dataset with resolution 

150bp/nm and non-TAD like feature architecture. Table 2.5 shows the performance of 3DMax for 

different α values. 

 

Table 2.5. The average dSCC value for the dataset with resolution 150bp/nm and non-TAD like 

feature architecture. The average dSCC value between 3DMax model and the known structure for 

28 contact matrices (7 levels of structural variability with four noise levels each) for the conversion 

factor (α): 0.1, 0.3, 0.5, 1.0, 1.5 and 2.0 respectively. The dataset has resolution 150bp/nm and 

non-TAD like feature architecture. The bold text represents the highest dSCC value. 

 

2.4.4 Assessment on real Hi-C data 

We applied 3DMax to a 1MB resolution Hi-C dataset of GM06990 cell line [144]. The Hi-C data 

for this cell line was generated with two different restriction enzymes: Ncol and HindIII. For 

comparison, we applied seven structure prediction methods 3DMax, 3DMax1 based on AdaGrad 

optimization algorithm, ShRec3D, ChromSDE, MCMC5C, MOGEN, and LorDG[69] to predict 

the 3D structure of chromosomes of this cell line. All the methods take as input an interaction 

frequency matrix normalized by using the normalization pipeline in [133]. We used the distance 

Spearman Correlation Coefficient (dSCC) and the distance Pearson Correlation Coefficient 

(dPCC) to assess the accuracy of these methods. The accuracy is determined by computing the 

Conversion factor(α) 0.1 0.3 0.5 1.0 1.5  2.0 

dSCC 0.583 0.658 0.634 0.566 0.518 0.429 
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dSCC value between the distance matrix of the normalized frequency input matrix and the 

Euclidean distance calculated from the predicted 3D structures. Figure 2.5(a) shows that 3DMax 

outperforms the other methods by at least 4% across 22 pairs of non-sex chromosomes of the cell 

line. 3DMax obtained an average spearman correlation coefficient of 0.85 across all the 

chromosomes while the second highest among the other methods has the coefficient of 0.82. Figure 

2.5(b) shows the Pearson correlation coefficient on the GM06990_HindIII cell. 3DMax obtained 

the highest average Pearson correlation coefficient of 0.795, which is better than the other methods.  

(a)    

 

   

(b)     
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Figure 2.4. A comparison of the accuracy of different methods on real Hi-C datasets. (a) The 

Spearman Correlation Coefficient of 3DMax, 3DMax1, MOGEN, ChromSDE, ShRec3D, 

MCMC5C, and LorDG on the normalized contact maps of GM06990_HindIII cell. (b) The Pearson 

Correlation Coefficient of 3DMax, 3DMax1, MOGEN, ChromSDE, ShRec3D, MCMC5C, and 

LorDG on the normalized contact maps of GM06990_HindIII cell. (c) The Comparison of 3DMax, 

3DMax1, ChromSDE and ShRec3D on the normalized contact maps of GM06990 HindIII and Ncol 
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cell. Y-axis denotes either the distance Spearman Correlation Coefficient (dSCC) score in the range 

[-1,1] or the distance Pearson Correlation Coefficient score (dPCC) in the range [-1,1]. X-axis 

denotes the Chromosome number. A higher dSCC value means the better accuracy. 

In Figure 2.5(c) we compared the spearman correlation values of ShRec3D, ChromSDE, 3DMax, 

and 3DMax1 for the contact maps of GM06990 cell line with NcoI and HindIII restriction 

enzymes. 3DMax has the highest average dSCC value of 0.88 across the chromosomes of the cell 

line. Table 2.7 shows a tabular representation of the model accuracy comparison visualized in 

Figure 2.5. 

Table 2.6. A comparison of the accuracy spread of the different methods on real Hi-C datasets. 

Top: The Spearman Correlation Coefficient of 3DMax, 3DMax1, MOGEN, ChromSDE, 

ShRec3D, MCMC5C, and LorDG on the normalized contact maps of GM06990_HindIII cell, and 

the Pearson Correlation Coefficient of 3DMax, 3DMax1, MOGEN, ChromSDE, ShRec3D, 

MCMC5C, and LorDG on the normalized contact maps of GM06990_HindIII cell. Bottom: The 

Comparison of dSCC values of 3DMax, 3DMax1, ChromSDE and ShRec3D on the normalized 

contact maps of GM06990 HindIII and Ncol cell. The values denote the distance Spearman 

Correlation Coefficient (dSCC) score in the range [-1,1] or the distance Pearson Correlation 

Coefficient score (dPCC) in the range [-1,1].  
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 SPEARMAN CORRELATION 

  

Chromosome 3DMax 3DMax1 MOGEN ChromSDE Shrec3D MCMC5C LorDG 

1 0.8088 0.8062 0.7662 0.7845 0.2951 0.463 0.7101 

2 0.8149 0.8126 0.7526 0.7245 0.4482 0.4143 0.7275 

3 0.8306 0.828 0.8044 0.814 0.4827 0.1564 0.7459 

4 0.8736 0.8715 0.8245 0.8636 0.8203 0.3595 0.8607 

5 0.8653 0.8631 0.8266 0.8551 0.7762 0.3813 0.8317 

6 0.848 0.845 0.8104 0.8303 0.7465 0.4078 0.8002 

7 0.831 0.8278 0.7925 0.8144 0.4087 0.5402 0.7536 

8 0.8701 0.8675 0.8236 0.857 0.8152 0.5584 0.8317 

9 0.851 0.846 0.7339 0.8184 0.421 0.5584 0.2972 

10 0.854 0.8505 0.8129 0.8392 0.6561 0.4967 0.7759 

11 0.8433 0.8398 0.8003 0.823 0.6936 0.5559 0.7896 

12 0.8558 0.8544 0.8259 0.8413 0.7332 0.3907 0.803 

13 0.8584 0.8537 0.8242 0.8381 0.6917 0.4437 0.8007 

14 0.8799 0.8754 0.8425 0.8605 0.7123 0.7065 0.7879 

15 0.8592 0.8488 0.8255 0.8346 0.6432 0.5246 0.7725 

16 0.8466 0.8397 0.7854 0.8188 0.6621 0.6208 0.7345 

17 0.837 0.8298 0.8127 0.8083 0.6732 0.557 0.719 

18 0.8537 0.8475 0.8139 0.8185 0.3717 0.6197 0.7492 

19 0.8668 0.8579 0.8077 0.8397 0.73 0.5362 0.8152 

20 0.8392 0.869 0.8146 0.8527 0.6291 0.6361 0.7779 

21 0.9017 0.8925 0.8421 0.8704 0.7831 0.841 0.8532 

22 0.866 0.8542 0.7977 0.8264 0.1065 0.6554 0.5639 
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 PEARSON CORRELATION 

Chromosome 3DMax 3DMax1 MOGEN ChromSDE Shrec3D MCMC5C LorDG 

1 0.7611 0.7491 0.7697 0.2352 0.2125 0.3497 0.2922 

2 0.7511 0.7401 0.7544 0.0042 0.3154 0.314 0.3187 

3 0.7603 0.7532 0.7938 0.7238 0.3539 0.1368 0.5597 

4 0.7813 0.7691 0.7739 0.8016 0.5922 0.2758 0.6675 

5 0.779 0.7661 0.8021 0.7215 0.5732 0.2673 0.6845 

6 0.7834 0.7709 0.7883 0.7422 0.5361 0.2705 0.5945 

7 0.7471 0.7334 0.7549 0.4693 0.2961 0.405 0.3044 

8 0.7994 0.794 0.7988 0.7533 0.5895 0.4138 0.6126 

9 0.8046 0.8063 0.6852 0.3711 0.3253 0.4446 0.017 

10 0.7836 0.7793 0.7965 0.6214 0.4614 0.3436 0.6428 

11 0.7628 0.7542 0.7852 0.7624 0.4761 0.39 0.6636 

12 0.8098 0.7856 0.813 0.7533 0.5106 0.2941 0.6727 

13 0.8037 0.7887 0.7989 0.7875 0.4544 0.2824 0.6483 

14 0.8411 0.8316 0.8357 0.7928 0.4855 0.518 0.6965 

15 0.8137 0.7892 0.8165 0.7948 0.4078 0.3745 0.179 

16 0.8075 0.804 0.7845 0.6925 0.4726 0.4489 0.6899 

17 0.8069 0.7981 0.8164 0.768 0.4662 0.3793 0.6879 

18 0.82 0.8079 0.7931 0.5246 0.2697 0.468 0.1519 

19 0.847 0.8356 0.8204 0.7674 0.5972 0.3881 0.7552 

20 0.7096 0.8347 0.8049 0.6113 0.3825 0.4039 0.731 

21 0.8892 0.8784 0.8561 0.802 0.5 0.5663 0.7509 

22 0.8396 0.8181 0.7486 0.7958 -0.067 0.5262 0.0737 
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 SPEARMAN CORRELATION OF GM06990 (HINDIII &NCOL) CELL 

 

  

Chro

moso

me 

3DMax_

HindIII 

3DMax_

Ncol 

3DMax1_

HindIII 

3DMax1_

Ncol 

Shrec3D_

HindIII 

Shrec3D

_Ncol 

ChromSD

E_HindIII 

ChromS

DE_Nco

l 

1 0.8088 0.8432 0.8062 0.8412 0.2951 0.3043 0.7845 0.1085 

2 0.8149 0.8387 0.8126 0.8367 0.4482 0.2797 0.7245 0.8228 

3 0.8306 0.8447 0.828 0.8425 0.4827 0.403 0.814 0.8271 

4 0.8736 0.874 0.8715 0.872 0.8203 0.796 0.8636 0.8624 

5 0.8653 0.8836 0.8631 0.8816 0.7762 0.8077 0.8551 0.872 

6 0.848 0.8701 0.845 0.8677 0.7465 0.556 0.8303 0.8539 

7 0.831 0.8509 0.8278 0.8483 0.4087 0.3147 0.8144 0.3709 

8 0.8701 0.8509 0.8675 0.8924 0.8152 0.8559 0.857 0.8832 

9 0.851 0.8732 0.846 0.8721 0.421 0.2899 0.8184 0.0239 

10 0.854 0.8753 0.8505 0.8723 0.6561 0.4865 0.8392 0.8603 

11 0.8433 0.876 0.8398 0.8731 0.6936 0.76 0.823 0.8603 

12 0.8558 0.873 0.8544 0.8698 0.7332 0.7819 0.8413 0.8531 

13 0.8584 0.8665 0.8537 0.8621 0.6917 0.8064 0.8381 0.8457 

14 0.8799 0.9 0.8754 0.8965 0.7123 0.6141 0.8605 0.887 

15 0.8592 0.8842 0.8488 0.879 0.6432 0.715 0.8346 0.8707 

16 0.8466 0.8975 0.8397 0.8921 0.6621 0.7156 0.8188 0.8856 

17 0.837 0.8858 0.8298 0.8473 0.6732 0.6988 0.8083 0.866 

18 0.8537 0.8701 0.8475 0.865 0.3717 0.7055 0.8185 0.8407 

19 0.8668 0.936 0.8579 0.9324 0.73 0.7613 0.8397 0.925 

20 0.8392 0.9133 0.869 0.9037 0.6291 0.7128 0.8527 0.8878 

21 0.9017 0.9382 0.8925 0.9274 0.7831 0.873 0.8704 0.8688 

22 0.866 0.9414 0.8542 0.9359 0.1065 0.7311 0.8264 0.922 
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On average, 3DMax’s accuracy is at least 3% higher than the other methods. In addition, since 

each Hi-C data obtained with a restriction enzyme is an independent observation of the GM06690 

cell, we checked the robustness of our method by comparing the predicted structure from Ncol 

with one from the HindIII enzyme. We compared the predicted structure of chromosome 19 of 

HindIII data and NcoI replicate data. The dSCC and dRMSE value of the comparison were 0.9 and 

0.0064 respectively, suggesting the two models are very similar. 

2.4.5 Comparison with existing methods on the simulated data 

We compared 3DMax with three existing methods: MCMC5C [48], MOGEN [80], and ShRec3D 

[79]. We used each method to generate an ensemble of 50 structures for each input matrix.  We 

compared each structure in the ensemble with the true structures (i.e., a set of 100 true structures 

for each structural variability level) using Spearman correlation coefficient to select the 

reconstructed structure closest to a true structure from the ensemble. The Spearman correlation 

coefficient of the selected structure and the true structures is averaged and used as the dSCC 

accuracy for the method.  For clarity, the comparison is grouped based on the noise level of the 

simulated data from 50 to 200. For the different noise levels, 3DMax is comparable to the top 

method - MOGEN when structural variability (sets 0-1) is low. And as the variability increases 

(especially sets 3-6), it outperforms all the other methods (Figure 2.4) most time. Table 2.6 shows 

a tabular representation of the dSCC values visualized in  Figure 2.4, to show the dSCC values 

generated by all the algorithms. 
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Figure 2.5. A comparison of the reconstruction accuracy of different methods on the synthetic 

dataset. The reconstruction accuracy for 3DMax, MOGEN, ShRec3D, and MCMC5C at different 

levels of noise and structural variability. The dataset has resolution 150bp/nm and TAD like feature 

architecture. Top-Left: comparison at Noise Level 50, Top-Right: comparison at Noise Level 100, 

Bottom-Left: comparison at Noise Level 150, Bottom-Right: comparison at Noise Level 200. Y-

axis denotes the distance Spearman Correlation Coefficient (dSCC) score in the range [-1,1] and 

the X-axis denotes the structural variability level. Set 0-6 denotes seven different levels of 

structural variability in the increasing order. A higher dSCC value means the better accuracy.  
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Table 2.7. A comparison of the reconstruction accuracy spread of the different methods on the 

synthetic dataset. The reconstruction accuracy for 3DMax, MOGEN, ShRec3D, and MCMC5C at 

different levels of noise and structural variability. The dataset has resolution 150bp/nm and TAD 

like feature architecture. Noise Level 50: comparison of dSCC value at Noise Level 50, Noise 

Level 100: comparison of dSCC value at Noise Level 100, Noise Level 150: comparison of dSCC 

value at Noise Level 150, Noise Level 200: comparison of dSCC value at Noise Level 200. The 

table values denote the distance Spearman Correlation Coefficient (dSCC) score in the range [-

1,1] and the SV denotes the structural variability level. Set 0-6 denotes seven different levels of 

structural variability in the increasing order. A higher dSCC value means the better accuracy.  

SV Noise Level 50 

 
3DMax MOGEN ShRec3D MCMC5C 

set0 0.9708 0.9755 0.7928 0.0481 

set1 0.9552 0.9648 0.8188 0.0779 

set2 0.8405 0.8625 0.7175 0.1477 

set3 0.6505 0.6406 0.5722 0.1201 

set4 0.5302 0.5135 0.502 0.1916 

set5 0.5211 0.4945 0.4938 0.1614 

set6 0.5303 0.5211 0.4767 0.1938 

SV Noise Level 100 

 
3DMax MOGEN ShRec3D MCMC5C 

set0 0.9753 0.9835 0.9239 0.3514 

set1 0.963 0.968 0.9133 0.2642 

set2 0.8578 0.8527 0.8072 0.3792 
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set3 0.6555 0.6039 0.6338 0.2068 

set4 0.5703 0.4991 0.532 0.2456 

set5 0.5342 0.4728 0.5183 0.1299 

set6 0.5535 0.47 0.5026 0.1578 

SV Noise Level 150 

 
3DMax MOGEN ShRec3D MCMC5C 

set0 0.976 0.9734 0.876 0.1933 

set1 0.959 0.96 0.8613 0.2275 

set2 0.8612 0.8485 0.7572 0.1016 

set3 0.6821 0.6362 0.6546 0.0791 

set4 0.5713 0.4915 0.5475 0.1146 

set5 0.5285 0.4835 0.5268 0.0858 

set6 0.5601 0.4318 0.5009 0.1106 

SV Noise Level 200 

 
3DMax MOGEN ShRec3D MCMC5C 

set0 0.9771 0.9655 0.8499 0.0481 

set1 0.9627 0.9533 0.8481 0.0779 

set2 0.8634 0.8514 0.7743 0.1477 

set3 0.6724 0.6606 0.6726 0.1201 

set4 0.5679 0.5131 0.5559 0.1916 

set5 0.5435 0.4886 0.5292 0.1614 

set6 0.5487 0.4554 0.4992 0.1938 
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2.4.6 Consistency checking of models in ensembles 

To assess the consistency of the structures generated by 3DMax, we compared 50 structures 

generated at the optimal α value for each chromosome for the GM06990_HindIII cell and the 

malignant B-cell, respectively. We used the dSCC value to measure the similarity between these 

structures. Figure 2.6 shows the average dSCC for each chromosome for Hi-C data of the 

GM06990_HindIII cell and the malignant B-cell respectively. The average dSCC between the 

models is > 0.9 for all the chromosomes, indicating chromosomal models generated by 3DMax 

are quite similar to each other. 

 

Figure 2.6. The similarity between structures generated by 3DMax. The average similarity for an 

ensemble of structures generated for the GM06990_HindIII cell and the malignant B-cell 

chromosomes using the optimal α value for each chromosome. 
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2.4.7 Comparative analysis of the performance of 3DMax, 3DMax1, MOGEN, 

ChromSDE, ShRec3D, MCMC5C, and LorDG on Hi-C data normalized with three 

popular normalization methods. 

Due to biases in Hi-C experiments, Hi-C data is generally noisy. Some of these biases are 

associated with cutting frequencies of restriction enzymes, GC content and sequence uniqueness 

[104-105]. In order reduce the effects of these biases, the Hi-C data contact matrix is normalized 

to reflect the strength of the underlying chromosomal interactions more accurately.  

We performed a comparative study of the performance of different 3D modeling methods when 

each of the three commonly used normalization techniques: Yaffe and Tanay [104] normalization 

technique, ICE (Iterative Correction and Eigenvector decomposition) technique [105], and 

Sequential Component Normalization (SCN) technique [9] is applied. Figure 2.5(a) shows the 

result obtained by using the Yaffe and Tanay normalization technique, where 3DMax 

outperformed the other methods. Table 2.8 shows the average dSCC value for different 

chromosomes for each of the normalization technique. 3DMax and 3DMax1 produces the best 

performance when the Yaffe and Tanay normalization technique is used, and the 3DMax1 

produces the best performances when the ICE and SCN normalization method are used 

respectively. It is evident from the results that the normalization techniques have a significant 

impact on the performance of some 3D modeling methods.  

Table 2.8. The average dSCC score of the chromosomal models of the GM06990 cell line 

reconstructed with three normalization techniques. The average dSCC scores of chromosomal 

models of the GM06990 cell line reconstructed by 3DMax, 3DMax1, MOGEN, ChromSDE, 

ShRec3D, MCMC5C, and LorDG with the three normalization methods. The top 2 scores for each 

normalization technique are highlighted in bold text. 
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2.5 Discussion  

 

2.5.1 Comparison of the computing performance of the different methods 

To improve the computing performance and the usability of our algorithm, we also implemented 

the 3DMax algorithm in the Java programming language (available via 

http://sysbio.rnet.missouri.edu/bdm_download/3DMax). The performance comparison of the 

MATLAB and the Java programming versions for a GM06990_HindIII cell line dataset is shown 

in Figure 2.7. As shown in the Figure, the result produced by two separate Java implementation 

runs is consistent with those of the MATLAB implementation. We tested 3DMax and all other 

methods on an Intel Core i5-2400 3.10GHz computer with 8GB RAM.  

 

 3DMax 3DMax1 MOGEN ChromSDE Shrec3D MCMC5C LorDG 

Yaffe 

&Tanay 

0.85 0.85 0.81 0.82 0.60 0.52 0.75 

ICE 0.75 0.85 0.61 0.83 0.60 0.032 0.78 

SCN 0.72 0.85 0.58 0.83 0.71 0.028 0.79 
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Figure 2.7.  A comparison of the performance of 3DMax algorithm MATLAB and Java 

programing language implementation. The performance comparison of the MATLAB and the Java 

3DMax implementation for a GM06990_HindIII cell line dataset. The Figure shows two different 

runs of the Java implementation compared against the MATLAB implementation.  Models 

produced by both implementations are comparable with a similar accuracy. Y-axis denotes either 

the distance Spearman correlation coefficient (dSCC) score in the range [-1,1]. X-axis denotes the 

Chromosome number. A higher dSCC value means the better accuracy.  

We compared 3DMax algorithm with the other algorithms mentioned above in terms of 

computation speed, and the memory cost. To do this, we benchmarked them against the 

chromosomes of GM06990_HindIII cell data.  It takes 3DMax java implementation about 13 

seconds to predict the structure for all the chromosomes of the entire genome when it uses a single 

conversion factor (α), while it generates a single structure for each chromosome.  3DMax uses 

about 20 minutes to generate the representative structures for the entire cell when it estimates the 

optimal conversion factor (α) in the range [0.1, 2].  

Though ChromSDE produced one of the best results, it was memory intensive and slow to generate 

large structures. ChromSDE could not handle efficiently input data with > 400 bins on our machine 

with 8 GB RAM. We were only able to use ChromSDE to create structure on our server machine 

with 65GB RAM. It takes ChromSDE 20-25 hours to generate structure for the entire 

GM06990_HindIII cell data. MOGEN uses over 2 hours to generate the models for the cell line. 

It takes LorDG about 1 hour and 7 minutes to process the whole cell line. MCMC5C with the 

default parameters uses 1 hour and 19 minutes to generate the models. But to obtain better accuracy 

by increasing the number of iterations and the number of structures generated, the MCMC5C 

algorithm could run for > 18 hours before it converges. 
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2.5.2 Validation using FISH data 

We validated the model of Chromosome 22 reconstructed by 3DMax with an independent FISH 

data for GM06990_HindIII cell. Four 3D FISH probes for four loci (L5, L6, L7, L8) of the 

consecutive positions alternate between two chromosome compartments (A and B) [30]. That is, 

locus L5 and locus L7 are in Compartment A, and locus L6 and locus L8 are in Compartment B. 

According to the FISH data, L7 is spatially closer to L5 than to L6, though L6 lies between L5 and 

L7 on the chromosome sequence. Likewise, L6 is spatially closer to L8 than to L7. To check if 

this holds in the reconstructed 3D model, we measured the distance between these loci on the 

predicted structure. Figure 2.8 shows a model constructed by 3DMax with the four probes L5, L6 

L7, L8 colored green, blue, yellow, magenta respectively. The distances between these loci: L5 – 

L6, L5 – L7, L6 – L7, L6-L8 are reported. Indeed, the distance L5 – L7 was shorter than L5 – L6 

and the distance L6 - L8 was shorter than L6 – L7. The 3D structure was visualized with Pymol 

[45]. 

 

  V 
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Figure 2.8. Validation with FISH data. Distances between four fluorescence in situ hybridization 

(FISH) probes in the model of Chromosome 22 reconstructed by 3DMax. L5, L6, L7 and L8 denote 

four probes. The distances between the probes are labelled along the virtual line segments 

connecting the probes. 

 

2.6 Conclusions  

We developed a new method (3DMax) based on the maximum likelihood inference to reconstruct 

the 3D structure of chromosomes from Hi-C data. 3DMax combines a maximum likelihood 

algorithm and a gradient ascent method to generate optimized structures for chromosomes. The 

results on synthetic datasets show that the method performs robustly in the presence of noise and 

structural variability. This method provides a way to automatically determine the best conversion 

factor (α) for any Hi-C contact data. The results on the real Hi-C datasets reveals that 3DMax can 

effectively reconstruct chromosomal models from Hi-C contact matrices normalized by different 

methods. We also show that a major strength of the 3DMax algorithm is that it is faster and has a 

low memory requirement compared to some other methods. 
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3 GSDB: a database of 3D chromosome and genome structures 

reconstructed from Hi-C data 

3.1 Abstract 
Advances in the study of Chromosome conformation capture(3C) technologies, such as Hi-C 

technique - capable of capturing chromosomal interactions in a genome-wide scale - have led to 

the development of several three-dimensional(3D) chromosome structure reconstruction methods 

from Hi-C data. The chromosome 3D structure is important because it has been shown to play a 

role in a variety of important biological activities occurring within the cell such as DNA 

replication, gene regulation, genome interaction, and gene expression. In recent years, numerous 

Hi-C datasets have been generated, and likewise, a number of genome structure construction 

algorithms have been developed. However, until now, there has been no freely available repository 

for 3D chromosome structures generated from Hi-C data.  In this work, we outline the construction 

of such a database called the Genome Structure Database (GSDB) to create a comprehensive 

repository that contains 3D structures for Hi-C datasets from a variety of 3D 

structure reconstruction tools developed over the years.  The Genome Structure Database is the 

first database to provide a repository for 3D chromosome and genome structures constructed from 

different Hi-C data reconstruction methods. Our database contains over 50,000 structures 

constructed by 12 start-of-the-art Hi-C data structure prediction methods for publicly used Hi-C 

datasets with varying resolution. The database is useful for the community to study the function 

of genome from a 3D perspective. GSDB is accessible at 

http://sysbio.rnet.missouri.edu/3dgenome/GSDB 

3.2 Introduction 
The three-dimensional (3D) organization of the genome plays a significant role in many diverse 

biological functions and processes including gene expression [14], regulation [12,13] and 

http://sysbio.rnet.missouri.edu/3dgenome/GSDB/
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transcriptional regulation [129]. Several studies of the architecture of the genome in the cell have 

linked genome structure to the mechanism of these functions; hence, it is essential to understand 

the spatial arrangement within the cell nucleus in order to fully elucidate this relation [25,47,87]. 

Early studies of the structure of the genome have relied on the use of microscopy techniques such 

as fluorescence in situ hybridization (FISH), a technique that employs fluorescence probes to 

detect the presence of a specific chromosome region and the proximity between two regions in a 

genome sequence [2,18-19]. Other microscopy methods developed to study the genome 

organization include stimulated emission depletion (STED) [20], stochastic optical reconstruction 

microscopy (STORM), and Photo-activated localization 

microscopy (PALM or FPALM) [22,23,145].  While these techniques have proven useful in 

providing insights into the organization of the genome for DNA fragments or chromatin regions, 

they are limited and unsuitable for an overall view of the genome-wide inter-and intra- 

chromosomal relationship study of the genome within the cell nucleus [145].  

In order to capture these inter- and intra- chromosomal interactions, a variety of next-generation, 

high-throughput sequencing technologies have emerged including: 3C [24], 4C [28], 5C [29],  Hi-

C [30], TCC [31] and ChIA-PET [32,33].  Out of all these techniques, the Hi-C technique has seen 

a particularly high usage because of its ability to comprehensively map the chromatin interactions 

at a genome wide scale. 

 

A Hi-C experiment results in the generation of an interaction frequency (IF) matrix for 

chromosomal regions (loci) within a chromosome or between any two chromosomes in a 

population of cells [30,40,69,78]. With the advancement of the Hi-C research, sophisticated tools 

such as GenomeFlow [40], Juicer [41], and HiC-Pro[42] have been developed to generate IF 
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matrices from raw sequence pair reads data[28].  Some methods represent the contact matrix as a 

sparse 3-column matrix where columns 1-2 denote the interacting loci and column 3 denotes the 

number of interactions (or contacts) between the corresponding loci in a Hi-C dataset [69,70,80].  

Many methods have been developed for chromosome 3D structure reconstruction from 

chromosome conformation capture (3C) such as the Hi-C data.  Generally, these data-driven 

methods can be grouped into three classes [147] based on how the IF is used for 3D structure 

construction: distance-based, contact-based and probability-based. First, distance-based methods 

implement the 3D structure construction through a two-step process. These methods convert the 

IF matrix to a distance matrix between loci based on an inverse relation observed from FISH 3D 

distance data [31]. An optimization function is thereafter used to infer a 3D structure from an initial 

random structure with the objective of satisfying the distances in the distance matrix as much as 

possible [45-47,69,70,76, 79,88,92,97]. Second, contact-based methods consider each 

chromosomal contact as a restraint and apply an optimization algorithm to ensure that the number 

of contacts in the input contact matrix is satisfied in the 3D structure [80,83,91,93]. Third, 

probability-based methods define a probability measure over the IF, by constructing the structure 

inference problem as a maximum likelihood problem and thereafter using a sampling e.g. Markov 

chain Monte Carlo (MCMC) or optimization algorithm to solve the prediction problem [75, 78, 

86, 95]. 

Here, we present Genome Structure Database (GSDB), a novel database that contains the 

chromosome 3D structural models of publicly and commonly used Hi-C datasets reconstructed by 

twelve state-of-the-art 3D structure reconstruction algorithms at various Hi-C data resolution 

ranging from 25KB – 10MB. The database is organized such that users can view the structures 

online and download the 3D structures constructed for each dataset by all the reconstruction 
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methods. Our database is the first of its kind to provide a repository of 3D structures and the 

evaluation results for 3D structures constructed from different Hi-C data reconstruction methods 

all in one place. 

3.3 Materials and Methods  

3.3.1 Datasets 

Our Hi-C data is pulled from a variety of sources which we list here.  Some datasets were 

downloaded from the Gene Expression Omnibus (GEO) database, including the Hi-C contact 

matrices datasets (GEO accession Number: GSE63525) of cell line GM12878 Hi-C count 

matrices (MAPQ ≥30) from Rao et al. [144], normalized interaction matrices for each of the four 

cell types analysis -mouse ES cell, mouse cortex, human ES cell (H1), and IMR90 fibroblasts – 

(GEO accession Number: GSE35156) [141,148], and the Hi-C contact matrices datasets (GEO 

Accession Number: GSE18199) of karyotypically normal human lymphoblastic cell 

line(GM06990, K562)[30]. All other Hi-C datasets were obtained from the ENCODE project 

repository [149], and the GEO accession Number and the ENCODE ID for each dataset are 

available on the Genome Structure Database website. 

3.3.2 Normalization 

Hi-C data normalization is an important process in 3D structure reconstruction from Hi-C data, 

because the raw contact count matrix obtained from 3C experiments may contain numerous 

systematic biases, such as GC content, length of restriction fragments, and other technical biases 

that could influence the 3D structure reconstruction [9,104-106,150].  Consequently, all the contact 

matrices were normalized prior to applying the 3D structure reconstruction algorithms. GM12878 

cell line datasets was normalized using the Knight–Ruiz normalization (KR) method [106] 

[144], and the normalized interaction matrices downloaded from Dixon et al. [141] were 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE63525
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE35156
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE18199
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normalized using Yaffe and Tanay normalization method [104.] The Vanilla Coverage (VC) 

technique [144] was used as the default technique to normalize all the other Hi-C datasets. 

3.3.3 Database Implementation 

The GSDB website interface was implemented using HTML, PHP and JavaScript, and the 

database was implemented in MySQL (https://www.mysql.com/). The online 3D structure 

visualization was done through 3Dmol viewer, a molecular visualization JavaScript library [151]. 

3.3.4 3D Modeling Algorithms Included 

We used twelve existing algorithms for the 3D structure construction. We selected a mixture of 

distance-based, contact-based, and probability-based algorithms [147]. We first describe the 

distance-based algorithms.  LorDG [69] uses a nonlinear Lorentzian function as the objective 

function with the main objective of maximizing the satisfaction of realistic restraints rather than 

outliers. LorDG uses a gradient ascent algorithm to optimize the objective function. 3DMax [70] 

used a maximum likelihood approach to infer the 3D structures of a chromosome from Hi-C data. 

A log-likelihood was defined over the objective function which was maximized through 

a stochastic gradient ascent algorithm with per-parameter learning rate [113]. Chromosome3D 

[46] uses Distance Geometry Simulated Annealing (DGSA) to construct chromosome 3D structure 

by translating the distance to positions of the points representing loci. Chromosome3D adopts the 

Crystallography & NMR System (CNS) suite [111] which has been rigorously tested for protein 

structure construction for the 3D genome structure prediction from Hi-C data.  HSA [47] 

introduced an algorithm capable of taking multiple contact matrices as input to improve 

performance.  HSA can generate same structure irrespective of the restriction enzyme used in the 

Hi-C experiment. miniMDS [92] proposed an algorithm to model Hi-C data by partitioning the 

contact matrix first into segments and building the 3D structure bottom-up from each segment 

https://www.mysql.com/
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which are eventually aggregated to form a final 3D structure. ChromSDE [76] (Chromosome 

Semi-Definite Embedding) framed the 3D structure reconstruction problem as a semi-definite 

programming problem. Shrec3D [79] formulated the 3D structure reconstruction problem as a 

graph problem and attempts to find the shortest-path distance between two nodes on the graph. 

The length of a link is determined as the inverse contact frequency between its end nodes. Each 

fragment is regarded as the nodes connected by a link. The represented 3D structure for a Hi-C 

data is one in which distance between the nodes is the shortest. InfoMod3DGen [64] converts the 

IF to a distance matrix and used an expectation-maximization (EM) based algorithm to infer the 

3D structure.  

In the contact-based category, we used MOGEN [80] and GEM [93] for the 3D structure 

reconstruction. MOGEN [80] does not require the conversion of IF to distances and is suitable for 

large-scale genome structure modeling. GEM [93] considers both Hi-C data and conformational 

energy derived from knowledge about biophysical models for 3D structure modeling. It used 

manifold learning framework, which is aimed at extracting information embedded within a high-

dimensional space, in this case the Hi-C data. 

Lastly, in the probability-based category, Pastis [78] defined a probabilistic model of IF and casted 

the 3D inference problem as a maximum likelihood problem. It defined a Poisson model to fit 

contact data and used an optimization algorithm to solve it. SIMDA3D[95] used a Bayesian 

approach to infer 3D structures of chromosomes from single cell Hi-C. 

3.3.5 Computational Model Reconstruction  

The GSDB chromosome structure generation was done on three server machines: a x86_64 bit 

Redhat-Linux server consisting of multi-core Intel(R) Xeon(R) CPU E7-L8867 @ 2.13GHz with 

120 GB RAM,  x86_64 bit Redhat-Linux server consisting of multi-core Intel(R) Xeon(R) CPU 
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E5649  @ 2.53GHz  with 11GB RAM, x86_64 bit Redhat-Linux server consisting of multi-core 

AMD Opteron(tm) Processor 4284 @ 3.0GHz  with 62GB RAM, and a high-performance 

computing cluster (Lewis) with Linux. Using a high-performance computing (HPC) cluster 

machine, we allocated 10 cores, 80G of memory, with a time limit of 2 days for each chromosome 

structure reconstruction task per algorithm. Structures not constructed within 48 hours were 

terminated. 

 

Figure 3.1. Highlights the two ways to access the database from the homepage. Clicking on the 

“Browse” menu in the Navigation tab or on the “Get started” button on the home page will load 

the Database search window. 

 

3.4 Database Content and Usage 
All the 3D structures in the GSDB have been pre-generated, so that the 3D structure visualization 

is faster and can be easily downloaded. The steps to navigating the database have been separated 

into five sections as follows: 
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i. Browse the database (Figure 3.1) ─ Click on “Browse” menu in the navigation bar to load 

the full list of the Hi-C datasets Alternatively, users can click on the “Get Started” button on 

the homepage.  

ii. Search the database ─ The GSDB provides two ways to search for a Hi-C data and its 

corresponding 3D models: 

a. GSDB provides a summary of the information provided in the database through 

a Summary Pane. By clicking on a property/item in the summary, the user can 

search the database for all the Hi-C data containing this property and their 

corresponding 3D structural models. (Figure 3.2) 

b. Users can search the database by typing the keywords about the filename, title of 

Hi-C data, Hi-C data resolution, project that Hi-C data was generated from (e.g. 

ENCODE), project ID, and the GEO accession No in the “Search Pane” (Figure 

3.2). 
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Figure 3.2. Data search and display. An example of data search using the two approaches for 

searching. First, search by clicking on an item on the “Summary Pane” highlighted in green. The 

figure shows when the user clicks on Resolution 100kb, all the datasets with 100kb resolutions are 

listed. Second, user can search by typing the key word in the “Search Pane” highlighted in red. 

 

iii. 3D structure visualization and download ─ To view the details and structures for a Hi-C data, 

click on the “View” link in the “3D Structure Column” (Figure 3). The data information and 

visualization tab will be displayed (Figure 3.4). To show the 3D structure, select 

the algorithm, dataset, chromosome, and press Display. The structure will be displayed on 

the viewer. Users can download the 3D structures by clicking on the “Download” link in the 

“3D Structure Column” (Figure3). The normalized Hi-C datasets used for the 3D structure 

generation for all the algorithms can also be downloaded by clicking on the “Download” link 

in the “Normalized Hi-C Data” column (Figure 3).   

 

Figure 3.3. Displaying the database search window. In the “3D Structure” column, highlighted in 

red is the “View” link to display the 3D structure for a Hi-C data, highlighted in green is the 
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“Download” link to download the 3D structures constructed by the different algorithms for the Hi-

C data. Pressing on the “Download” link will download the 3D structures for all the algorithms for 

a Hi-C data. In the “Normalized Hi-C Data” column, the “Download” link is highlighted in blue 

Pressing on the “Download” link will download the Normalized Hi-C data used for 3D structure 

construction. 

 

 

 

Figure 3.4. Data visualization. The figure shows the output when user click on the “View link” 

for the GM12878 dataset. The red highlight section shows the information about the 

Resolution(s) available for the Hi-C data. The blue highlight section Display 

the structure available for the Hi-C data.  The green highlight section shows the evaluation 

result available for the Hi-C data. It displays the spearman correlation between the output structure 

and the input Hi-C data, and other evaluation result obtained.  To evaluate each 3D structure, we 

computed the distance Spearman's Correlation Coefficient(dSCC) between reconstructed 

distances and distances obtained from the Hi-C datasets. The value of dSCC is in the range of -1 
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to +1, where higher value is better. For distance-based methods, we reported the conversion 

factor(α) used for the IF to distance conversion. For LorDG and 3DMax, that used gradient ascent 

optimization algorithm, we reported the learning rate used for the optimization process. The 

parameters used by each method to generate 3D structures are available on GSDB GitHub page. 

 

3.5 Discussion and Future Development 
The GSDB contains 3D structures generated from different Hi-C structure reconstruction 

algorithms for Hi-C data collected from multiple sources. To the best of our knowledge, it is the 

first repository for 3D structures generated from multiple Hi-C reconstruction algorithms. 

Currently, our database contains over 50,000 structures reconstructed for 32 Hi-C datasets by 12 

modeling algorithms. The normalized Hi-C dataset used and 3D structures generated from all the 

algorithms are available to be downloaded. This database will enable the fast and easy exploration 

of the dynamic architecture of the different Hi-C 3D structure in a variety of cells to improve our 

understanding of the structural organization of various organism’s chromosome and genome 3D 

structure. In addition, we envision that it will be helpful to researchers and scientist to keep track 

of the performance of the existing approaches for 3D structure construction, and also lead to the 

development of novel methods that outperform existing approaches. Future directions of the 

GSDB will include the integration of more algorithms and latest Hi-C datasets generated as the 

research in 3D structure construction expands.  
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4 ClusterTAD: an unsupervised machine learning approach to detecting 

topologically associated domains of chromosomes from Hi-C data 

4.1 Abstract  
With the development of chromosomal conformation capturing techniques, particularly, the Hi-C 

technique, the study of the spatial conformation of a genome is becoming an important topic in 

bioinformatics and computational biology. The Hi-C technique can generate genome-wide chromosomal 

interaction (contact) data, which can be used to investigate the higher-level organization of chromosomes, 

such as Topologically Associated Domains (TAD), i.e., locally packed chromosome regions bounded 

together by intra chromosomal contacts. The identification of the TADs for a genome is useful for studying 

gene regulation, genomic interaction, and genome function.  

Here, we formulate the TAD identification problem as an unsupervised machine learning (clustering) 

problem and develop a new TAD identification method called ClusterTAD. We introduce a novel method 

to represent chromosomal contacts as features to be used by the clustering algorithm. Our results show that 

ClusterTAD can accurately predict the TADs on a simulated Hi-C data. Our method is also largely 

complementary and consistent with existing methods on the real Hi-C datasets of two mouse cells.  The 

validation with the Chromatin ImmunoPrecipitation (ChIP) Sequencing (ChIP-Seq) data shows that the 

domain boundaries identified by ClusterTAD have a high enrichment of CTCF binding sites, promoter-

related marks, and enhancer-related histone modifications. 

As ClusterTAD is based on a proven clustering approach, it opens a new avenue to apply a large array of 

clustering methods developed in the machine learning field to the TAD identification problem. The source 

code, the results, and the TADs generated for the simulated and real Hi-C datasets are available here: 

http://sysbio.rnet.missouri.edu/bdm_download/ClusterTAD/. 

4.2 Background  
A chromosome is known to occupy its own territory, and fold into a high-order, non-random 

structure in a nucleus [2]. The knowledge of the high-order organization of chromosomes is useful 

http://sysbio.rnet.missouri.edu/bdm_download/ClusterTAD/
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for the understanding of genome folding, long-range gene interactions and regulations [152], DNA 

replication [153], and cellular functions [140,154]. To gain better insights into the organization of 

the chromosomes in a cell, a technology called the Chromosome Conformation Capture technique, 

such as 3C [24], 4C [28,131], 5C [29],  Hi-C [30], has been developed to determine spatial 

chromosomal interaction within a chromosome region, a chromosome, or an entire genome. 

Particularly, the Hi-C technique [30] is capable of capturing genome-wide chromosomal 

interactions (or contacts) by cross linking interacting DNA fragments, excising them out, 

sequencing them, and mapping them to a reference genome. The sequence reads obtained by the 

Hi-C technique are read pairs that reveal the chromosomal locations, or regions within spatial 

proximity to each other. By taking advantage of the high-throughput next generation sequencing 

techniques, the Hi-C technique can generate genome-wide, large-scale intra- and inter-

chromosome contact data that can describe the spatial interactions within a genome. This genome 

description can be made at a detailed level, if a sufficiently deep sequencing of interacting DNA 

fragments is carried out.  The recent study of the Hi-C data revealed that the local regions in a 

chromosome tend to have a lot more contacts within them than between them. These regions with 

more within-interaction are called Topologically Associated Domains (TAD). TADs are 

considered to be the structural and functional unit (or module) of a chromosome. According to 

[11], these TADs are unchanged irrespective of cell differentiation, and they also contain gene 

clusters that are co-regulated.  In recent years, the detection of topological domain has become an 

important problem in bioinformatics, and computational biology, and as a result, several methods 

for TAD identification have been developed [142,143,155-158]. 

In this work, we formulate the TAD detection problem as grouping or clustering spatially 

interacting chromosomal regions into clusters. With this formulation, the TAD detection problem 
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is tackled by unsupervised machine learning (clustering) methods. The rationale is that the 

chromosomal fragments within the same topological domain have many more interactions between 

them than those between different topological domains. Therefore, the fragments within the same 

topological domain tend to have similar interaction profiles than those from different topological domains. 

Based on this insight, we developed an algorithm to group chromosomal fragments (or regions) that have 

similar interaction profiles into clusters, which are used for detecting TADs. To prepare a Hi-C contact 

matrix data as input to a clustering algorithm, we introduce a new feature representation describing the 

interaction profiles of a chromosomal region, which is suitable for clustering. Our method - ClusterTAD 

can produce fine-scale TADs that are complementary and consistent with existing methods. Moreover, this 

approach opens a new avenue to apply many other well-studied clustering methods developed in the 

machine learning, and data mining community to the relatively new TAD detection problem.  

4.3 Methods 
The input to our clustering-based TAD detection method (ClusterTAD) is a N by N intra-chromosomal 

contact matrix, M [30, 141], derived from Hi-C data, where N is the number of equal-sized regions of a 

chromosome. A chromosomal region is also referred to as a chromosomal bin or unit in some previous 

works [141,142].  The contact matrix, M, is a square matrix that represents all the observed interactions 

between the regions (or bins) in a chromosome. Therefore, the value of an element in the contact matrix, 

represented as M[i, j], records the interaction frequency between  two regions (i and j) of a chromosome. 

As an example, Figure 4.1(a) shows the contact matrix of Chromosome 20 derived from the Hi-C data of 

the human embryonic stem cell (hESC) [148]. 
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(a)  

 

 

(b)  

 

(c)  
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Figure 4.1. Chromosome contact matrix, TADs, and the workflow of ClusterTAD. (a) The contact 

matrix of Chromosome 20 of the human embryonic stem cell (hESC). The x and y-axes represent 

the regions of the chromosome. (b) Representation of TADs along the main diagonal of a heat map 

visualizing a 100 x 100 chromosomal contact matrix at 40 KB resolution. The intensity of colors 

represents the value of interaction frequency in the matrix. The blue squares along the main 

diagonal denote the identified TADs in the contact matrix. (c) The workflow of ClusterTAD. 

 

Generally speaking, ClusterTAD takes a Hi-C data contact matrix as input, reformats the input 

data, and groups the contact pairs that are spatially close to each other into the same cluster. These 

groups are thereafter used to identify TADs. To provide a detailed clarification of the TAD 

detection problem, a visual representation of the TADs in a contact matrix is shown in Figure 

4.1(b). The squares along the main diagonal of the contact matrix are the TAD identified for this 
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contact matrix. Figure 4.1(c) shows the workflow for ClusterTAD step by step.  The specific steps 

of this workflow are described in detail below. 

4.3.1 Step 1: Prepare Normalized Contact Matrices for Chromosomes 

Given a Hi-C data and a specific resolution, we generate a contact matrix for each chromosome.  

To reduce noise and biases, a normalization method can be used to normalize the original contact 

counts to create a normalized contact matrix. In this work, we used the Hi-C datasets from Dixon 

et al [141], which had been binned at 40kb resolution, and normalized for sequencing bias using 

the method from Yaffe and Tanay [104].  

4.3.2 Step 2: Create features for contacts in contact matrix 

A key issue regarding clustering contacts into groups is determining the best way to define the 

informative features to represent each contact (i, j) involving two regions i, and j. In this work, we 

consider two pieces of information relevant to each contact (i ,j) as its features. Firstly, all the 

contact data on the ith row in the contact matrix, M, to represent the contact profile of region i. 

Secondly, all the contact data on the jth column of the contact matrix, M, to represent the contact 

profile of region j.  Therefore, the feature vector for contact M [i, j] consists of 2N numbers, where 

N is the number of rows (or column) of the contact matrix. We used this feature representation 

because it includes all the contact profiles of the regions in contact; hence, making our feature 

informative and discriminative. Because a contact matrix is symmetric, only the contacts in the 

upper triangle of the contact matrix need to be considered. Since we only needed to group the 

regions along the main diagonal into clusters for TAD detection, we generated the features for 

only the contacts on the main diagonal to speed up clustering. 
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4.3.3 Step 3: Clustering 

Once the feature generation for the contacts along the diagonal of the contact matrix is completed, 

a clustering method [172-174] is needed to cluster them into groups. Different types of clustering 

algorithms have been developed, which can be classified into the following categories: partitioning 

methods, hierarchical methods, model based methods, density-based methods, and grid-based 

methods [159]. In this work, we applied the hierarchical clustering method, Expectation-

Maximization, and K-means clustering method combined with various distance metrics on a 

simulated Hi-C dataset. Our results in the Result Section shows that all the methods generate 

comparable results. To use ClusterTAD, the number of clusters, K, is the only parameter that needs 

to be defined. And the presumably best K value for a dataset can be estimated automatically by 

ClusterTAD for user’s convenience (see the Results Section).  

4.3.4 Step 4: Extract TAD from Contact Clusters 

As shown in Figure 4.1(b), each square (TAD) highlighted on the contact matrix contains dense 

contacts within them, and sparse contacts between them. Therefore, a square can be considered as 

the cluster of contacts that have similar contact profiles. Hence, the contact clusters identified by 

ClusterTAD in Step 3 can be used to identify TADs.  

Once the contacts on the main diagonal are assigned into clusters, we join the consecutive contacts 

on the main diagonal belonging to the same cluster into segments. Based on previously reported 

works and experimental findings [141-143,155], the minimum TD size is about 180 kb. We 

categorized the joined segments into three groups. The segments on the main diagonal that have 

zero contacts are labeled as “Gap regions”. The segments greater than the minimum length are 

labeled as “TAD regions”. The segments that have fewer than the minimum length of a TAD are 
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filtered out, and labelled as “Boundary regions”. Figure 4.2(a) visually explains the different types 

of segments defined for a dataset by ClusterTAD. 

(a)  

   

(b)  

  

Figure 4.2. Illustration of the topologically associated domains. (a) Illustration of the basic 

elements related to TAD: domain, border, boundary, and gap. A domain is a TAD. A boundary is 

the chromosomal region between two consecutive TADs. The border marks the start/end of a 

domain. A gap is a point with no interaction in the contact matrix. (b) The calculation of TAD 

quality score. Two adjacent TADs are denoted as i and j. The area between TADs i and j that has 

few interactions is labeled as E. The intra(i) is the average contact frequency within a TAD (e.g. 

the area marked i). The inter(i, j) is the average contact frequency of the area marked as E. The 

difference of the two is the quality of TAD i.  
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4.3.5 Step 5: Evaluation of predicted TADs 

An important characteristic of TADs is that, bins (regions) within a given TAD have similar 

contact frequency profiles, which are different from those of bins outside the TAD. Intuitively, 

maximizing the within-TAD similarity and minimizing the between-TAD similarity is important 

for evaluating the quality of TADs. Based on this property, we used the difference between the 

average of contact frequency of the bins in a TAD i, denoted as intra(i), and the average of contact 

frequency of the bins between TAD i and adjacent TAD j, denoted as inter (i, j) where |i-j| = 1 

[14], to assess the quality of TAD assignments. This TAD quality score is represented in Equation 

(1) and visually represented in Figure 4.2(b). 

TADi Quality =  𝑖𝑛𝑡𝑟𝑎(𝑖) −  𝑖𝑛𝑡𝑒𝑟(𝑖, 𝑗)    (1) 

Equation 1 is used to compute the quality of each TAD defined for a dataset. The overall quality 

score for a set of TADs defined for a contact matrix is their average quality score.   Consequently, 

the set of TADs with the highest quality score is chosen as the representative domain set for a 

chromosome. 

4.3.6 Datasets 

The simulated dataset from Wang et al., 2015 [143] is a 30-bin Hi-C contact matrix, in which the 

contacts were simulated from a chromosome structure with predefined topological domains. The 

contact matrix and the predefined domains of the simulated dataset were downloaded from [143]. 

The real Hi-C dataset used in this study is the Hi-C data of two mouse cells: the mouse embryonic 

stem cell and the cortex cell at a bin resolution of 40kb. The normalized contact matrices for these 

cells are available at [148]. 
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The ChipSeq data used to analyze the enrichment of CTCF and other histone modifications is from 

Shen et al [160]. The raw data is available in the Gene Expression Omnibus (GEO) database with 

the GEO accession ID GSE29184. The extracted peaks for this ChipSeq data can be downloaded 

from [161]. 

4.4 Results and discussion  

4.4.1 Determination of the parameter of ClusterTAD  

ClusterTAD needs a single parameter, K (the number of clusters), to compute the set of TADs for 

a chromosome contact matrix. For most clustering algorithms, it is always important to find the 

“best” K parameter for a particular dataset, because this parameter influences the quality of the 

cluster analysis. However, it is worth mentioning that the definition of the “best” K parameter is 

usually subjective because the “right” number is often ambiguous [159]. Here, we use two well-

known approaches to estimate the “best” possible value of K parameter as follows.  

1) A method proposed by Han et al [159] assumes that each cluster for a dataset has about 

√2𝑛 points for a dataset of n points, and the number of clusters can be estimated using 

Equation (2).  

 K = √
𝑛

2
      (2) 

To allow some flexibility, we created a window around this estimated K value. We set the 

lower limit of the estimated number of clusters equal to K – 10, and upper limit equal to K 

+ 10. We used this method as the default one for ClusterTAD for the real Hi-C data. 

 

2) The elbow method [162, 163] is one of the oldest methods to determine the number of 

clusters. It chooses the number of clusters, K, such that increasing the number of clusters 

(K+1, K+2, …) results in no significant change in the within-cluster variance. Usually, it 
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starts at K = 2 and increases K with an increment of 1 to an upper limit, which is usually 

the number of instances in the dataset. The elbow is regarded as the point where adding 

another cluster does not improve the quality of clustering much. The elbow method can be 

computationally costly for large datasets, but extremely useful and efficient for small 

datasets.  

 

4.4.2 Evaluation of the Clustering Quality 

We used two different statistical evaluation measures to assess the quality of the clusters of 

chromosomal contacts.  

(1) The Davies-Bouldin index [175] (DBI). DBI is defined as 

DBI = 
1

𝑁
 ∑ 𝐷𝑖

𝑁
𝑖=1       (3) 

where    Di = 𝑚𝑎𝑥𝑗≠𝑖𝑅𝑖,𝑗 ,     Ri,j =
𝑑𝑖+ 𝑑𝑗

𝑑𝑖,𝑗
      (4) 

Where di is the distance of elements in cluster i to its centroid. di,j is the measure of the separation 

of clusters i, and j, equal to the distance between the centers of clusters i and j. A lower DBI score 

is preferred. 

(2) The Silhouette Index [176] (SI). SI is defined as  

SI = 
𝟏

𝑵
∑

𝟏

|𝑪𝒊 |

𝑵
𝒊=𝟏 ∑ 𝒔𝒋𝒋∈𝑪𝒊

     (5) 
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where       sj    =  
𝑏𝑗− 𝑎𝑗

𝑚𝑎𝑥{𝑎𝑗 ,𝑏𝑗 }
   (6) 

Where aj is the average distance of data point j to all other data points within the same cluster (Ci). 

A smaller aj value implies a better cluster assignment. bj is the average distance of data point j to 

the data in the next best fit cluster for it or to another cluster with lowest average distance to j. The 

Silhouette coefficient value ranges between −1 and 1. A higher SI score is considered better. 

4.4.3 Assessment on the simulated dataset 

We first evaluated our method on a simulated Hi-C contact matrix dataset [143]. We applied 

ClusterTAD on this dataset and compare its results with the known true results. We used three 

clustering algorithms with ClusterTAD to the dataset, including the k-means (KM) method, the 

hierarchical clustering (HC), and the Expectation Maximization (EM) algorithm. For the KM, and 

HC algorithms, we applied three distance metrics: the Euclidean-distance, the Pearson correlation 

distance, and the city-block distance. These algorithms require the number of cluster to be specified 

for them to be used. Firstly, using the Han et al. method, the number of clusters, K, can be estimated 

from the number of data points (n) in the dataset. Using Equation (2), we estimated the initial 

number of Cluster (K) to be 4. A window around the estimated K value specifies the range of the 

potential numbers of clusters to be tested in our clustering analysis. Secondly, using the elbow 

method, we plot the percentage of variance against the number of clusters for the dataset (Figure 

4.3(a)). From the plot, we can infer that the elbow point is at 5.   

(a)  
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(b)  

 

(c)  
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(d)  

 

Figure 4.3. The results on the simulated dataset. (a) An elbow plot for the clustering results of 

ClusterTAD on the simulated dataset. The percentage of within-cluster variance is plotted against 

the number of clusters. The elbow point is at K = 5. (b) The Davies-Bouldin index (DBI) for the 

different clustering algorithms.  (c) The Silhouette Index (SI) for the different clustering 

algorithms. (d) The average Intra-Inter difference scores for the TADs extracted by ClusterTAD 

with different combinations of clustering algorithms and distance metrics: HC-eulcidean, KM-

eulidean, HC-pearson, KM-pearson, HC-cityblock, KM-cityblock, and the EM. HC denotes the 

hierarchical clustering algorithm, KM the K-means algorithm, and EM the expectation 

maximization algorithm. HC-euclidean represents the combination of the hierarchical clustering 

algorithm with Euclidean distance metric.  

Once the number of clusters is defined, we performed the clustering on the simulated dataset using 

the three clustering algorithms above. We evaluated the quality of the clustering results using the 

Davies-Bouldin index (DBI) and Silhouette Index (SI). The results are shown in Figure 4.3(b, c). 

The best clustering quality is achieved at K = 5 for both DBI (Figure 4.3(b) and SI (Figure 4.3(c)) 

measures for most combinations of the algorithms and distance metrics.  
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Once the clustering was done, we applied ClusterTAD to extract the TADs from the clustering 

results of all the algorithms, respectively. As described earlier, once the TAD is extracted, 

Equation (1) is used to evaluate the quality of the TADs. Figure 4.3(d) shows the Intra-Inter 

difference quality scores of TADs. The highest intra-inter difference was achieved with the 

different clustering algorithms at K = 5 regardless distance metrics used, showing the quality of 

TADs is consistent with that of the clustering results.   

Figure 4.4(a-g) visualizes the TADs identified at K= 4 (left), K = 5 (middle) and K = 6 (right) by 

HC-euclidean, KM-eulidean, HC-pearson, KM-pearson, the HC-cityblock, KM-cityblock, and 

EM algorithm, respectively. The TADs are represented as blue squares on the contact heat maps. 

A TAD identified on each of the contact matrix is the blue region within the blue dots along the 

diagonal of the contact matrix heat map. These dots represent the boundary of the TAD, which 

forms squares on each of the contact matrix. Within this boundary are regions with more 

interactions to each other than to other areas on a contact matrix. Table 2.4.1 lists the TADs 

identified by each of the seven different algorithms visualized in the Figure 4.4. With this 

visualization, we were able to observe the consistency between the quality scores of TADs in 

Figure 4.3, and the true accuracy of TADs shown in Figure 4.4. The quality score is higher when 

the TAD result is more accurate. For instance, HC-euclidean at K = 4 and 5 in Figure 4.3(d) have 

the highest quality score, and their corresponding TADs are the same as the true TADs (Figure 

4.4(a) left and middle). It is observed from Figure 4.4 that the seven different algorithms identify 

the same set of TADs when the number of clusters (K) equals to 5, which is consistent with the 

results in Figure 4.3 where the TADs produced by the seven algorithms have similar quality scores 

when K equals to 5. 
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(a) K = 4              K = 5          K = 6      

 

(b) K = 4               K = 5          K = 6  

 

(c) K = 4               K = 5          K = 6  

 

(d) K = 4              K = 5          K = 6  

 

(e) K = 4              K = 5          K = 6  

 

(f) K = 4              K = 5          K = 6  
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(g) K = 4              K = 5          K = 6  

 

Figure 4.4. The visualization of the TADs extracted for one chromosome contact map in the 

simulated dataset. Rows a to g represents the TADs extracted for K= 4, K = 5 and K = 6 (from left, 

middle to right) for the following combinations of clustering algorithms and distance metrics: (a) 

HC-eulcidean, (b) KM- eulidean, (c) HC-pearson, (d) KM-pearson, (e) HC-cityblock, (f) KM-

cityblock, and (g) EM. HC denotes the hierarchical clustering algorithm, KM the K-means 

algorithm, and EM the expectation maximization algorithm. HC-euclidean denotes the 

combination of the hierarchical clustering algorithm with the Euclidean distance metric. The left 

column visualizes the TADs extracted by the seven algorithms when K=4, the middle columns the 

TADs extracted when K=5, and the right column the TADs extracted when K=6.  A TAD region 

identified on each contact heatmap is denoted by a blue square within the blue dots along its 

diagonal. The blue dots represent the boundary of a TAD region. The white squares along the 

diagonals are unrecognized TADs. 

Table 4.1. The lists of TADs identified by the seven different algorithms in Figure 4.4. The table 

contains the lists of TADs extracted for K= 4, K = 5 and K = 6 (from left, middle to right) by the 

seven algorithms: (a) HC-eulcidean, (b) KM-eulidean, (c) HC-pearson, (d) KM-pearson, (e) HC-
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cityblock, (f) KM-cityblock, and (g) EM. HC denotes the hierarchical clustering algorithm, KM 

the K-means algorithm, and EM the expectation maximization algorithm. HC-euclidean denotes 

the combination of the hierarchical clustering algorithm and the Euclidean distance metric. A TAD 

is represented as {start, end}, where “start” is the TAD start region, and “end” is the TAD end 

region. The best TAD set for the synthetic data is {(1,8), (9,14), (15,20), (21,25), and (26,30)}. 

 

Algorithm K  = 4  K = 5 K = 6 

a {(1,8), (9,14), (15,20), 

(21,25), and (26,30)}. 

{(1,8), (9,14), (15,20), (21,25), 

and (26,30)}. 

{(1,8), (9,14), 

(15,20), (21,25), and 

(27,30)}. 

b {(1,8), (9,14), (15,20), 

(21,25), and (26,30)}. 

{(1,8), (9,14), (15,20), (21,25), 

and (26,30)}. 

{(1,8), (9,14), 

(15,20), (21,25), and 

(27,30)}. 

c {(1,8), (9,14), (15,20), and 

(21,30)}. 

{(1,8), (9,14), (15,20), (21,25), 

and (26,30)}. 

{(1,8), (15,20), 

(21,25), and (26,30)}. 

d {(1,8), (9,14), (15,20), and 

(21,30)}. 

{(1,8), (9,14), (15,20), (21,25), 

and (26,30)}. 

{(1,8), (15,20), 

(21,25), and (26,30)}. 

e {{(1,8), (9,14), (15,20), 

(21,25), and (26,30)}. 

{(1,8), (9,14), (15,20), (21,25), 

and (26,30)}. 

{(1,8), (15,20), 

(21,25), and (26,30)}. 

f {(1,8), (9,14), (15,20), 

(21,25), and (26,30)}. 

{(1,8), (9,14), (15,20), (21,25), 

and (26,30)}. 

{(1,8), (15,20), 

(21,25), and (26,30)}. 

g {(1,8), (9,14), (15,20), 

(21,25), and (26,30)}. 

{(1,8), (9,14), (15,20), (21,25), 

and (26,30)}. 

{(1,8), (9,14), 

(15,20), (21,25), and 

(27,30)}. 
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4.4.4 Assessment of ClusterTAD on real Hi-C datasets 

We tested ClusterTAD on the Hi-C data of two mouse cells: the mouse embryonic stem cell and 

the mouse cortex cell at a bin resolution of 40kb. We used the K-means algorithm with Euclidean 

distance metric for the clustering performed on the real Hi-C datasets. The first round of the 

application of ClusterTAD resulted in large, coarse clusters, and consequently large TADs. As 

illustrated in [142-143,155] that large TADs often have lower average interactions within TADs, 

in order to improve cohesiveness of TADs, we applied another round of clustering to large clusters 

generated in the first round. Figure 4.5(a) shows the workflow of multiple steps of clustering with 

ClusterTAD. Re-clustering of the existing clusters generates sub-clusters. To identify the set of 

clusters to be re-clustered from the results of the first round of clustering (ClusterTAD_1), we 

ranked the clusters generated from ClusterTAD_1 based on the number of points (regions) in each 

cluster. Then we selected the top 30% or 50% largest clusters for re-clustering with the same 

algorithm of ClusterTAD, such that at least 50% of clusters in the current round will be kept. The 

second round of clustering is denoted as ClusterTAD_2. The third and also last round of clustering 

operation is called ClusterTAD_3.  

      (a)  
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Figure 4.5. Evaluation on a real Hi-C dataset. (a) The workflow of the iterative application of 

ClusterTAD. (b) The average size of TADs identified for the mouse embryonic stem cell by three 

rounds of clustering of ClusterTAD (ClusterTAD_1, ClusterTAD_2, and ClusterTAD_3). (b) The 

average size of TADs identified for the mouse cortex cell by three rounds of clustering of 

ClusterTAD. (d) The box plot of the quality scores of TADs extracted for the mouse embryonic 

stem cell by the three rounds of clustering of ClusterTAD. (e) The box plot of the quality scores 

of TADs extracted for the mouse Cortex cell for the different clustering operations performed by 

ClusterTAD. 
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Figure 4.5(b, c) shows the average size of TADs generated in the three rounds of clustering. The 

average size of TADs decreases from one round to next round as expected.  Figure 4.5(d, e) reports 

the inter-intra interaction frequency scores of TADs of the three rounds. ClusterTAD_2 

consistently achieved the highest average score. Though ClusterTAD_3 has smaller TADs than 

ClusterTAD_2, its quality score is lower than ClusterTAD_2.  

We compared ClusterTAD with the two other widely used methods: the directionality index (DI) 

method [141] and the TopDom [155] methods on the mouse Hi-C datasets. The results of DI and 

TopDom were obtained from their published data. Figure 4.6 shows the quality scores of TADs, 

the number of TADs, and the average size of TADs of the three methods. Generally speaking, DI 

detects TADs of larger sizes, TopDom identifies TADs of smaller size, and ClusterTAD produces 

the results in the middle. Figure 4.6(e) and 4.6(f) shows the average size of TADs identified by 

TopDom, DI, and ClusterTAD for the mESC, and mCortex cells respectively. The average size of 

the TADs produced by ClusterTAD is significantly smaller than DI, but somewhat larger than 

TopDom (Figure 4.6(e)) or comparable to it (Figure 4.6(f)). This is consistent with the observation 

that DI tends to detect TAD with large sizes, while TopDom tends to identify smaller TADs called 

sub-TADs. Since ClusterTAD tends to break larger TADs into smaller TADs to improve their 

cohesiveness, the average size of TADs identified by ClusterTAD is between DI and TopDom, 

while leaning more toward TopDom. Since the TADs identified by ClusterTAD and TopDom have 

a smaller size, they tend to have higher inter-intra interaction frequency scores.  
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Figure 4.6. Comparison of the quality scores, numbers and average sizes of TADs identified by 

TopDom, DI, and ClusterTAD on two mouse cell lines. (a, b): The comparison of the intra-inter 

difference scores; (c, d): the number of TADs, and (e, f) the average size of TADs for the mESC 

and mCortex cells respectively. 

 

We assessed how consistent the TADs detected by ClusterTAD are with those by DI and TopDom. 

The consistency check was carried out according to the method described in Figure 4.7(a). A TAD 

detected by method A is considered also detected by method B if the similarity between the TADs 

by method A and the TADs by method B falls in Case A or Case B in Figure 4.7(a). Figure 4.7(b, 

c) shows the percentage of TADs detected by ClusterTAD that were also detected by the other 

methods. A higher percentage of TADs identified by ClusterTAD was found by DI than by 

TopDom probably because the TADs predicted by TopDom were generally smaller. Overall, the 

three methods appear to produce the complementary results on the dataset.  

 

(a)  



 

102 
 

 

 

  

  



 

103 
 

 

Figure 4.7. The analysis of the consistency between TADs identified by ClusterTAD and other 

methods on the two mouse cell lines. (a) Four different cases in which TADs detected by two 

different methods are compared with each other. Case A: This refers to the case in which the TAD 

identified in method B exactly matches those from another method A. The TADs detected by the 

two methods have the same boundaries. Case B: This refers to the case in which a TAD detected 

by method A contains two or more domains detected by method B. The smaller TADs detected by 

method B are called sub-TAD of the TAD detected by method A. Case C: This represents the 

conflicting case in which the domain detected by method A does not match or contain the domains 

detected by method B even though there is some overlap between them. Case D: This refers to the 

rare case in which the region is not assigned to a TAD by method A, but is assigned by a TAD by 

method B. (b) The percentage of TADs detected by ClusterTAD for the mESC cell line that were 

also detected by TopDom and DI. (c) The percentage of TADs detected by ClusterTAD for the 

mCortex cell line that were also detected by TopDom and DI.  
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4.4.5 Validation of ClusterTAD by the enrichment analysis of CTCF binding sites and 

histone modification marks in domain boundaries 

Topologically Associated Domains (TADs) are known to have a high level of interactions within 

them, compared to those between them. Each domain is separated from each other by domain 

boundaries.  Therefore, TAD boundaries can be regarded as an insulator that restricts interaction 

between a TAD and its adjacent TADs [141, 164]. And TAD boundaries are also known to have 

an enrichment of binding sites of CTCF – a genome architectural protein [156-158, 164, 165-168]. 

The binding sites of CTCF can be determined by a chromatin immunoprecipitation (ChIP) 

sequencing (ChIP-Seq) technique. We validated the result obtained from ClusterTAD by checking 

the enrichment of CTCF at the boundary between TADs for each of the mouse cells. 

We used the dataset of the predicted cis-regulatory elements extracted from Chip-Seq data by Shen 

et al [160] to assess the abundance of CTCF binding sites at the domain boundaries of TADs. 

Though CTCF binding sites are largely found at domain boundaries, CTCF are also associated 

with some active histone modification to form the insulation in the domain boundaries. Hence, in 

addition to studying the CTCF enrichment in the boundaries, we also investigated the enrichment 

of promoter marks: RNA Polymerase II and H3K4me3, and enhancer-marks (H3K4me1 and 

H3K27ac). Using the Chip-Seq data, the peaks for the CTCF and histone modification marks were 

identified using MACS [169] with the default parameters and filtered by a p-value of 0.00001. 

Figure 2.8 shows the occurrence of high number of peaks (enrichment) for CTCF binding sites, 

and the histone modification marks at the boundaries of TADs identified for the two mouse cells 

by ClusterTAD, DI and TopDom, validating that the domain boundaries recognized by 

ClusterTAD are biologically relevant. According to the enrichment analysis in Figure 2.8, there 

was a reduction in the average number of peaks for the enhancer mark H3K27ac in the mouse 
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cortex cells than in the mESC cells, which is consistent with the previous discovery in [155]. In 

addition, the H3K4me1 peak enrichment in the mCortex cells was slightly higher than in the mESC 

cells. The enrichment of CTCF, H3K27ac, and H3K4me1 in the predicted TAD boundaries 

suggests that they may act as an insulator to separate TADs [141, 164]. The previous studies show 

that enhancers could activate transcription by bringing accessory transcription-related factors to 

gene promoters within their spatial proximity [170], even though the promoters may be 

sequentially far away from the enhancers in the linear genome sequence [171]. Hence, the high 

enrichment of the enhancer and promoter marks in the boundary regions suggests that some TAD 

boundary regions can be transcription activation sites.  
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Figure 4.8. The enrichment analysis of active histone modification marks and CTCF binding sites 

at the domain boundary. 

The average peak number of active histone modification marks (promoter marks (Polymerase II 

and H3K4me3) and enhancer marks (H3K4me1 and H3K27ac) and CTCF binding sites at the 

boundary regions identified by TopDom, DI and ClusterTAD for mouse Embryonic Stem Cell line 

(mESC) (a-e) and the mouse cortex cell line (mCortex) (f-j).  
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4.5 Conclusions  

We introduce ClusterTAD, a new clustering-based method, to detect TADs from Hi-C data. 

ClusterTAD employs standard clustering algorithms to extract topological domains from Hi-C 

contact data. We show that ClusterTAD is consistent and complementary with existing methods. 

The TAD boundaries identified by ClusterTAD are validated by the enrichment analysis of CTCF 

binding sites and histone modification marks. It is easy to use ClusterTAD since it only requires 

one parameter – the number of cluster, and the parameter can be estimated automatically from the 

data. Moreover, ClusterTAD can be iteratively applied to divide larger clusters into small ones, 

which can be used to identify both large TADs and smaller sub-TADs. Finally, by formulating the 

TAD detection problem as a classic clustering problem through a novel representation of 

chromosomal contacts, an array of clustering methods in the field of machine learning can be 

applied to address the problem. We expect more sophisticated clustering algorithms will be used 

to improve TAD detection in the future.  
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5 GenomeFlow: A Comprehensive Graphical Tool for Modeling and 

Analyzing 3D Genome Structure 

 

5.1 Abstract 
 Three-dimensional (3D) genome organization plays important functional roles in cells. User-

friendly tools for reconstructing 3D genome models from chromosomal conformation capturing 

data and analyzing them are needed for the study of 3D genome organization. We built a 

comprehensive graphical tool (GenomeFlow) to facilitate the entire process of modeling and 

analysis of 3D genome organization. This process includes the mapping of Hi-C data to one-

dimensional (1D) reference genomes, the generation, normalization and visualization of two-

dimensional (2D) chromosomal contact maps, the reconstruction and the visualization of the 3D 

models of chromosome and genome, the analysis of 3D models, and the integration of these models 

with functional genomics data. This graphical tool is the first of its kind in reconstructing, storing, 

analyzing and annotating 3D genome models. It can reconstruct 3D genome models from Hi-C 

data and visualize them in real-time. This tool also allows users to overlay gene annotation, gene 

expression data and genome methylation data on top of 3D genome models. The source code and 

user manual: https://github.com/jianlin-cheng/GenomeFlow 

 

5.2 Introduction  
The three-dimensional genome organization is important for cellular function [30,144]. 

Chromosome Conformation Capture techniques like Hi-C [30] have enabled the study of 3D 

genome organization in high resolution and with high throughput. Graphical tools such as [41] 

have been developed to process and analyze Hi-C data. Several algorithms have been proposed to 

reconstruct 3D genome models from Hi-C data[76-79]. But there is no graphical tool with an easy 

user interface to build, analyze 3D genome models and integrate modeling with functional 

https://github.com/jianlin-cheng/GenomeFlow
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genomics data. To fill the gap, we built a comprehensive tool, GenomeFlow, for processing Hi-C 

data, reconstructing and analyzing 3D genome models, and integrating 3D models with functional 

genomics data.  

5.3 Function 
The function of GenomeFlow is organized in three categories: 1D function, 2D function, and 3D 

function.  1D function allows users to map raw Hi-C pair-end reads to a reference genome to 

identify chromosomal contacts. 2D function is used to create, normalize and visualize contact 

matrices. 3D function is for reconstructing and analyzing 3D models. Figure 5.1-5.3 shows four 

typical 2D and 3D functional features: visualization of contact matrix and topologically associating 

domains (TADs), 3D model reconstruction, chromatin loop identification, and model annotation. 

The most important function features of GenomeFlow are described below. 

5.3.1 1D Functions 

5.3.1.1 Index reference genome and Map Hi-C reads to 1D genome sequence 

GenomeFlow has a function to create an index for a specific specie reference genome.  In addition, 

GenomeFlow allows users to map raw pair-end Hi-C reads to a reference genome to generate 

chromosomal contacts. It also allows users to filter, and convert mapped single, or pair-end reads 

to an easy to read text format. GenomeFlow calls an external genome mapping tool such as 

Bowtie2 [178] or Bwa [179] to perform the indexing and mapping operations. Thereafter, it stores 

the mapped data file in a text file format, which can be used by the 2D function to generate contact 

matrices. GenomeFlow allows the user to perform these tasks step by step or in one go with our 

1D function, HiC-Express. It is worth noting that this 1D function is optional since users can load 

their already mapped files into GenomeFlow to use its 2D and 3D function below.   
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5.3.2 2D Functions 

5.3.2.1 Conversion of mapped reads to 2D contact matrices 

GenomeFlow provides a function to convert a mapped Hi-C reads from the text format into a 

compressed file containing chromosomal contact matrices in the binary hic format [41]. The 

function normalizes chromosomal contacts with Knight-Ruiz matrix balancing normalization 

[144] and Vanilla-Coverage normalization [30]. It also provides options to create contact matrices 

at specific resolutions and for specific chromosomes. Users can specify a contact threshold or a 

mapping quality (MAPQ) score threshold. The function is an extension of the Pre function of 

Juicer [41]. Moreover, GenomeFlow provides a graphical user interface (GUI) to validate input 

and makes it easy for users to use the function. 

5.3.2.2 Extracting 2D contact matrices from a compressed contact file  

A binary contact file in hic format can contain several contact matrices at different resolutions, 

each of which are normalized by different normalization methods. It is often large and not human 

readable. GenomeFlow can read the header of the file first to display information about the genome 

version, chromosomes, resolutions and normalization methods. Users can then choose the contact 

matrix of a chromosome at a resolution and normalization method of choice to be exported to a 

text file in the sparse matrix format. Users can also choose to export a contact matrix of a fragment 

of a chromosome.  

5.3.2.3 Normalization, visualization and analysis of 2D contacts  

GenomeFlow provides a function to normalize contact matrices in sparse matrix format using the 

ICE normalization [101]. GenomeFlow can visualize a contact matrix as a heat map, where 

numeric values in the input contact matrix are represented as colors according to a selected color 

gradient (Figure 5.1).  
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Figure 5.1. Visualization of Hi-C dataset in 2D Format 

5.3.2.4 Identification of topological association domains from 2D contact matrices 

GenomeFlow uses the ClusterTAD [177] algorithm to identify topological associated domains 

(TADs) from chromosomal contact matrices. Once the TADs of a contact matrix have been 

identified, they can be visualized on the heatmap of the contact matrix (Figure 5.2).  
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Figure 5.2. Demonstration of TAD Annotation on a 2D Heatmap. The yellow and white squares 

show the annotation of TADs identified by two different methods on a heatmap. 

5.3.3 3D Functions 

 

5.3.3.1 Reconstruction of 3D genome model in real time 

GenomeFlow implements two 3D genome reconstruction algorithms (LorDG [69] and 3DMax 

[70]) to reconstruct 3D genome models from contact matrices. Both functions have user-friendly 

GUI and visualize how models are being reconstructed in real time. The input of the function is a 

contact matrix in sparse matrix format, such as one extracted from a the hic format file. Figure 5.3 

shows the GUI of reconstructing 3D models. The output 3D models are stored in the GSS format 

files [180] that contain both x, y, z coordinates and genomic locations of loci, chromosome number, 

and genome version. There is currently no file format specially designed for 3D genome models 

other than the Genome Scale System (GSS) format. Compared to the PDB format for storing 
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protein structures, the GSS format can store much larger structures of a chromosome or genome 

in high resolution and can include extra genomic information needed for function analysis. 

GenomeFlow can visualize and analyze 3D genome models in GSS format and integrate them 

with other genomics data such as gene expression and methylation data. 

 

Figure 5.3. 3D model Structure reconstruction in real time  

 

5.4 Conclusion 
We introduced a comprehensive software tool for processing Hi-C data and reconstructing and 

analyzing 3D genome models. It provides a user-friendly GUI to carry out many steps of analysis 

and modeling of 3D genome conformation. Users without prior knowledge of the 3D genome can 

use the tool to build and analyze a 3D genome in their research and work.  

 

5.5 An example user case, using GenomeFlow for TAD Annotation 
 

First, a user needs to identify the Topological Associated domains (TAD) in their contact matrix. 
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A user can do this through the function “Identify TAD” provided in the 2D Functions menu in 

GenomeFlow. Once the user clicks on the “Identify TAD” function, the Figure 5.4 is displayed. 

The necessary information for each of the fields in Figure 5.4 is highlighted in Table 5.1. The 

algorithm used for the TAD identification is ClusterTAD [177]. 

 

Figure 5.4. Identifying TADs on a contact matrix 

 

Table 5.1. Description of the required information for TAD identification window in GenomeFlow 

Field Description 

Input contact file  An input file in any of the format described 

above 

Output folder Directory to output the comparison report 

Is SquareMatrix?(Input contact file) Allows the user to specify if the input is a 

Square matrix (a full matrix) or a sparse 

matrix. If checked, it displays a textbox for 

the user to specify the matrix resolution. 

Data Resolution It is visible only if Is SquareMatrix? is 

checked. It allows user specify resolution for 

the input matrix. 
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Chromosome (optional) Allows user to specify the chromosome data 

Run ClusterTAD Algorithm The default algorithm used for TAD 

identification from the input contact Matrix 

Run To start the identification process. A 

progress bar is displayed to show the steps 

taken by the TAD identification algorithm. 

Stop During the identification, if this button is 

pressed, the program will stop. 

 

Once the TADs in the contact matrix have been identified, the user can move to the next step of 

annotating the TADs on the contact matrix. Launch the GenomeFlow 2D visualization window, 

by clicking on GenomeFlow function, “Visualize Dataset” (Figure 5.5). If the input matrix is a N 

x N square matrix, the user needs to specify the Hi-C contact matrix resolution and load the contact 

matrix by clicking on the “Browse File & Load” button on the Display Control window on the 

right (Figure 5.6). 

 

 

Figure 5.5.  Demonstrating how to display the GenomeFlow 2D visualization window. 
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Figure 5.6. A contact matrix represented as a heatmap on the GenomeFlow 2D display window. 

User clicks on the highlighted button, Browse File & Load, to select the contact matrix file and 

display it on the heatmap display window. 

 

Next, to annotate the contact matrix with identified TADs, the following steps will be performed. 

In the “Display Control” on the right, the user needs to load the TADs by clicking on the “Browse 

File & Load”, in the TAD Annotation section in the Display control (Figure 5.7). Once the TADs 

have been loaded, click on the show TAD on heatmap to annotate the contact matrix with the 

identified TADs (Figure 5.8). The squares highlighted with white boundaries are the domains 

identifies for the contact matrix. 
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Figure 5.7. Loading the identified TAD into 2D visualization window  

 

 

Figure 5.8. Demonstration of TAD Annotation on 2D Heatmap 
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Next, if the user has TADs identified by another methods, for example Dixon et al method, DI 

[141]. The user can display both TADs from different methods on the same 2D Heatmap by 

clicking on the “Display Multiple TADs” check box and choosing a different color to annotate it. 

In Figure 5.9, the TADs by ClusterTAD are in white, Color 1, and DI is highlighted in yellow, 

Color 2. 

 

Figure 5.9. TAD Annotation on 2D Heatmap using TADs identified by ClusterTAD [177], in 

white and the DI [141] in yellow. 
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6 Tools for 3D structure reconstruction and feature extraction 

 

6.1 Basic dependencies 
 

All the methods were developed in Java.  Users need to have a Java Development Kit (JDK) installed before  

the executables for the program can  be used.  Download JDK from here: Java 1.7 or 1.8 JDK. 

(Alternative link for Ubuntu/LinuxMint). Minimum system requirements for running Java can be 

found at http://java.com/en/download/help/sysreq.xml. 

6.2 3DMax 

6.2.1 Installation 

The Java source codes for 3DMax is available at https://github.com/BDM-Lab/3DMax.  

Download the latest version of the 3DMax executable file from https://github.com/BDM-

Lab/3DMax/releases.   

6.2.2 Usage 

To run the tool, open a command line interface and type:  

 java -jar 3DMax.jar parameters.txt  

, where the “paramaters.txt” contains parameters required to run to program. 

The Parameters that are configured in the 'parameters.txt' file are  

• NUM: Number of models to be generated 

• OUTPUT_FOLDER: Output folder to store generated 3D structure 

• INPUT_FILE: A normalized A 3-column Hi-C contact file (position_1 position_2 

interaction frequency) or a N x N square matrix. N is the number of equal-sized 

fragments in the chromosome. 

• CONVERT_FACTOR: the factor used to convert IF to distance, distance = 1/(IF^factor), 

when not specified, the program will search for it in range [0.1, 2.0], step = 0.1 

• CHROMOSOME_LENGTH: If there is only one chromosome in the data, this  

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://tecadmin.net/install-oracle-java-8-jdk-8-ubuntu-via-ppa/
http://java.com/en/download/help/sysreq.xml
https://github.com/BDM-Lab/3DMax
https://github.com/BDM-Lab/3DMax/releases
https://github.com/BDM-Lab/3DMax/releases
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parameter should be omitted. It is required if the contact matrix contains data of 

several chromosomes. This parameter specifies a sequence of numbers, each 

representing the length of a chromosome in the input data. Numbers are separated by 

commas. The length of a chromosomes is the number of points required to represent 

the chromosome and therefore, the regions without contacts with other regions (such 

as centromeres) are not considered when calculating the length.  

• VERBOSE: A true or false value to indicate if gradient lengths are displayed during the 

optimization.  

• LEARNING_RATE: The initial learning rate for the optimization, if the optimization 

fails, reducing this value may help.   

• MAX_ITERATION: Maximum number of iterations, the optimization may converge 

with a smaller number of iterations than this number.  

6.2.3 Input Matrix File Format 

3DMax allows two formats: 

• Tuple Input format(preferred) : A hi-C contact file, each line containing 3 numbers 

(separated by a space) of a contact, position_1  position_2  interaction-frequency 

• Square Matrix Input format: The square matrix is a comma separated N by N intra-

chromosomal contact matrix derived from Hi-C data, where N is the number of equal-

sized regions of a chromosome. 

6.2.4 Example Input Hi-C data  

 Hi-C datasets we used in out study  can be downloaded from 

here  http://sysbio.rnet.missouri.edu/bdm_download/3DMax/ 

http://sysbio.rnet.missouri.edu/bdm_download/3DMax/
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6.2.5 Output  

3DMax produces 4 files" 

• *.pdb: contains the model and can be visualized by pyMol, Chimera or GenomeFlow 

• *_log_a_number.txt: contains the settings used to build the model and Spearman's 

correlation of reconstructed distances and input IFs 

• *_log.txt: NUM > 1, the files contain settings and average root means square error 

(RMSE) and average correlation of Spearman's and Pearson's correlations of separate 

models 

• *_coordinate_mapping.txt: contains the mapping of genomic positions to indices in the 

model. Notice that indices start from 0, while in pyMol or Chimera, id starts from 1 

6.3 ClusterTAD 

 

6.3.1 Installation 

The Java source codes for ClusterTAD is available at https://github.com/BDM-Lab/ClusterTAD.  

Download the latest version of the 3DMax executable file from https://github.com/BDM-

Lab/ClusterTAD/releases.   

6.3.2 Usage 

To run the tool, open a command line interface and type:  

java -jar ClusterTAD.jar Input-Matrix-file Matrix-Resolution 

The Parameters are as follow: 

• Input-Matrix-file: A tab separated N by N intra-chromosomal Hi-C contact matrix. 

• Matrix-Resolution: The contact Matrix Resolution. 

https://github.com/BDM-Lab/ClusterTAD
https://github.com/BDM-Lab/ClusterTAD/releases
https://github.com/BDM-Lab/ClusterTAD/releases
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6.3.3 Input Matrix File Format 

The input to ClusterTAD is a tab separated N by N intra-chromosomal contact matrix derived 

from Hi-C data, where N is the number of equal-sized regions of a chromosome 

6.3.4 Example Input Hi-C data  

In our study, we used the normalized Hi-C here : http://chromosome.sdsc.edu/mouse/hi-

c/download.html 

6.3.5 Output  

ClusterTAD generates 2 folders in the Output directory. They are : 

6.3.5.1 Clusters 

• It contains a .txt file that contains the cluster assignment for the diagonal for all the K 

values considered for the clustering operation 

6.3.5.2 TADs  

• It contains the .txt files listing the TADs extracted from each clustering and re-clustering 

done. 

• It contains the Best TAD identified based on the Quality score, labeled as 

"BestTAD_[name-of-input-file]_K=.txt". 

• It contains a .txt file which contains a list of the extracted TAD Quality scores, file name 

= [name-of-input-file]_TAD_QualityScore_List. 

 

6.4 GenomeFlow 

6.4.1 Quick Start 

1. Verify that you have installed the basic dependencies above. 

2. To use the 1D-Function that provides reference genome indexing, alignment of fastq files 

and filtering of alignment files, follow the instructions here for the dependencies 

download and installation.  This step is required only for the 1D-Function tools 

3. Download the latest GenomeFlow Tools jar 

http://chromosome.sdsc.edu/mouse/hi-c/download.html
http://chromosome.sdsc.edu/mouse/hi-c/download.html
https://github.com/jianlin-cheng/GenomeFlow/releases
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4. Run GenomeFlow: 

o Windows OS:  double-click the genomeflow.bat script 

o  Linux/UNIX based OS:  execute the script, genomeflow.sh 

 

6.4.2 Dependencies and Installation 

6.4.2.1 Operating System (OS) 

A Linux, UNIX, or Mac OS X environment is required to use the 1D-Functions. 

It is strongly recommended to work under a Mac OS X or a Linux/UNIX-based operating 

system, such as Ubuntu, Centos/Red Hat, Solaris.  

If you are using a Windows operating system, install Cygwin first. Cygwin is a free 

software that provides a UNIX-like environment on Windows. The Cygwin install 

package can be found at http://www.cygwin.com/. Once Cygwin is installed, place your 

work in the Cygwin directory. 

6.4.2.2 Download External Tools 

• Download BWA (http://bio-bwa.sourceforge.net/ ) OR  Bowtie2 (http://bowtie-

bio.sourceforge.net/index.shtml) for indexing and  alignment creation.  

• Bowtie2 supports multiple OS, download the version for your OS. That is: 

o Download bowtie2- version number-macos-x86_64 for MacOS 

o Download bowtie2- version number- linux-x86_64 for Linux 

o Download bowtie2- version number- mingw-x86_64 for Mingw/Cygwin 

• Download Samtools (http://samtools.sourceforge.net/) 

• We tested on the following versions for each one of the tools: bwa-0.7.17, bowtie2-

2.3.4-*, and samtools-1.6. 

• You can also download the installation files for these tools from here: 

http://sysbio.rnet.missouri.edu/bdm_download/GenomeFlow/External_Tools/ 

http://www.cygwin.com/
http://bio-bwa.sourceforge.net/
http://bowtie-bio.sourceforge.net/index.shtml
http://bowtie-bio.sourceforge.net/index.shtml
http://samtools.sourceforge.net/
http://sysbio.rnet.missouri.edu/bdm_download/GenomeFlow/External_Tools/
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6.4.2.3 Installing External Tools 

6.4.2.3.1 BWA 

• Open a Unix Terminal 

• Change directory to the downloaded bwa-* directory. For example: 

o cd bwa-0.7.17 

• Type make once you are inside the bwa directory. For example: 

o make 

• This operation produces a binary file: bwa  

o In Unix based Operating system: bwa 

o In Cygwin/Mingw: bwa.exe 

• Give executable permission to the binary file. For example: 

o In Unix based Operating system: chmod +x bwa 

o In Cygwin/Mingw: chmod +x bwa.exe 

6.4.2.3.2 Bowtie2 

• Open a Unix Terminal 

• Change directory to the downloaded Bowtie2-* directory. For example: 

o cd bowtie2-2.3.4-linux-x86_64 

• Give executable permission to the binary file. For example: 

o In Unix based Operating system/ Cygwin/Mingw: chmod +x bowtie2* 

6.4.2.3.3 Samtools 

• Open a Unix Terminal 

• Change directory to the downloaded samtools-* directory. For example: 

o cd samtools-1.7 

• Type ./configure once you are inside the samtools directory. For example: 

o ./configure 

• After configuration is completed, type make. For example: 

o make 

• This operation produces a binary file: samtools 

o In Unix based Operating system: samtools 

o In Cygwin/Mingw: samtools.exe 
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• Give executable permission to the binary file. For example: 

o In Unix based Operating system: chmod +x samtools 

o In Cygwin/Mingw: chmod +x samtools.exe 

6.4.2.3.4 Gawk 

• Open a Unix Terminal 

• Install gawk 

• For Linux Users: 

o Type sudo apt-get install gawk 

• For Max OSX Users: 

o Follow the instructions here: http://macappstore.org/gawk/ 

• For Cygwin/Mingw Users: 

o Open a Unix terminal 

o Download gawk-4.2.1.tar.gz 

▪  wget  https://ftp.gnu.org/gnu/gawk/gawk-4.2.1.tar.gz 

o Unzip the gawk-4.2.1.tar.gz 

▪ tar -xvpzf gawk-4.2.1.tar.gz 

o Change directory to the gawk-4.2.1 directory 

▪ cd gawk-4.2.1 

o Type ./configure once you are inside the gawk-4.2.1 directory.  

▪ ./configure 

o After configuration is completed, type make. For example: 

▪ make && make check 

 

 

6.4.3 Usage 

A comprehensive documentation of the various functions provided in GenomeFlow is 

available here https://github.com/jianlin-cheng/GenomeFlow/wiki 

 

 

 

http://macappstore.org/gawk/
https://ftp.gnu.org/gnu/gawk/gawk-4.2.1.tar.gz
https://github.com/jianlin-cheng/GenomeFlow/wiki
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6.5 Conclusion and Future insights 
 

Despite the improvement in 3-D structure modeling approaches, the lack of a real structure with 

which to contrast these models remains a challenge. In particular, it is currently difficult to confirm 

the true modeling capability of 3-D genome methods. Although the introduction of 3-D-FISH data 

and Hi-C data for joint modeling has received some attention recently [94], there is no sufficient 

3-D-FISH data to guide most modeling on Hi-C data and to thoroughly validate the quality of 

computational models. The development of more advanced genome/chromosome imaging 

techniques will further improve the validation of 3-D genome models. In addition, other high-

throughput sequencing data such as functional genomics and epigenomics data can be used to 

validate the biological validity of 3-D genome/ chromosome models by exploring their correlation 

with 3-D genomes. 

Another challenge is to reconstruct high-resolution 3-D models of large genomes from Hi-C data, 

which are needed for studying detailed interactions between genes and regulatory elements, due 

to enormous time complexity and data sparsity associated with high-resolution modeling. Only a 

few methods [98] was designed to build high-resolution (e.g. 5 KB) models. 

Finally, it is important to make 3-D genome modeling methods easy for biomedical scientists to 

use in their research. To this end, a few tools have been designed to visualize 3-D genome models 

[88, 89, 170–174]. Recently, GenomeFlow [40] provides a comprehensive graphical environment 

for users to process Hi-C data, generate chromosomal contact maps, build 3-D models, and apply 

3-D models to integrate various omics data. More efforts of making 3-D genome modeling 

accessible to general users are still needed. 
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