104 research outputs found

    Bayesian Ensemble Learning

    Get PDF
    We develop a Bayesian “sum-of-trees” model, named BART, where each tree is constrained by a prior to be a weak learner. Fitting and inference are accomplished via an iterative backfitting MCMC algorithm. This model is motivated by ensemble methods in general, and boosting algorithms in particular. Like boosting, each weak learner (i.e., each weak tree) contributes a small amount to the overall model. However, our procedure is defined by a statistical model: a prior and a likelihood, while boosting is defined by an algorithm. This model-based approach enables a full and accurate assessment of uncertainty in model predictions, while remaining highly competitive in terms of predictive accuracy

    BAYESIAN ENSEMBLE LEARNING FOR MEDICAL IMAGE DENOISING

    Get PDF
    Medical images are often affected by random noise because of both image acquisition from the medical modalities and image transmission from modalities to workspace in the main computer. Medical image denoising removes noise from the CT or MR images and it is an essential step that makes diagnosing more efficient. Many denoising algorithms have been introduced such as Non-local Means, Fields of Experts, and BM3D. In this thesis, we implement the Bayesian ensemble learning for not only natural image denoising but also medical image denoising. The Bayesian ensemble models are Non-local Means and Fields of Experts, the very successful recent algorithms. The Non-local Means presumes that the image contains an extensive amount of self-similarity. The approach of the Fields of Experts model extends traditional Markov Random Field model by learning potential functions over extended pixel neighborhoods. The two models are implemented, and image denoising is performed on both natural images and MR images. For MR images, we used two noise distributions, Gaussian and Rician. The experimental results obtained are used to compare with the single algorithm, and discuss the ensemble learning and their approaches

    Technical report on Separation methods for nonlinear mixtures

    Get PDF

    Sinbad Automation Of Scientific Process: From Hidden Factor Analysis To Theory Synthesis

    Get PDF
    Modern science is turning to progressively more complex and data-rich subjects, which challenges the existing methods of data analysis and interpretation. Consequently, there is a pressing need for development of ever more powerful methods of extracting order from complex data and for automation of all steps of the scientific process. Virtual Scientist is a set of computational procedures that automate the method of inductive inference to derive a theory from observational data dominated by nonlinear regularities. The procedures utilize SINBAD – a novel computational method of nonlinear factor analysis that is based on the principle of maximization of mutual information among non-overlapping sources (Imax), yielding higherorder features of the data that reveal hidden causal factors controlling the observed phenomena. One major advantage of this approach is that it is not dependent on a particular choice of learning algorithm to use for the computations. The procedures build a theory of the studied subject by finding inferentially useful hidden factors, learning interdependencies among its variables, reconstructing its functional organization, and describing it by a concise graph of inferential relations among its variables. The graph is a quantitative model of the studied subject, capable of performing elaborate deductive inferences and explaining behaviors of the observed variables by behaviors of other such variables and discovered hidden factors. The set of Virtual Scientist procedures is a powerful analytical and theory-building tool designed to be used in research of complex scientific problems characterized by multivariate and nonlinear relations

    An Ensemble Model of QSAR Tools for Regulatory Risk Assessment

    Get PDF
    Quantitative structure activity relationships (QSARs) are theoretical models that relate a quantitative measure of chemical structure to a physical property or a biological effect. QSAR predictions can be used for chemical risk assessment for protection of human and environmental health, which makes them interesting to regulators, especially in the absence of experimental data. For compatibility with regulatory use, QSAR models should be transparent, reproducible and optimized to minimize the number of false negatives. In silico QSAR tools are gaining wide acceptance as a faster alternative to otherwise time-consuming clinical and animal testing methods. However, different QSAR tools often make conflicting predictions for a given chemical and may also vary in their predictive performance across different chemical datasets. In a regulatory context, conflicting predictions raise interpretation, validation and adequacy concerns. To address these concerns, ensemble learning techniques in the machine learning paradigm can be used to integrate predictions from multiple tools. By leveraging various underlying QSAR algorithms and training datasets, the resulting consensus prediction should yield better overall predictive ability. We present a novel ensemble QSAR model using Bayesian classification. The model allows for varying a cut-off parameter that allows for a selection in the desirable trade-off between model sensitivity and specificity. The predictive performance of the ensemble model is compared with four in silico tools (Toxtree, Lazar, OECD Toolbox, and Danish QSAR) to predict carcinogenicity for a dataset of air toxins (332 chemicals) and a subset of the gold carcinogenic potency database (480 chemicals). Leave-one-out cross validation results show that the ensemble model achieves the best trade-off between sensitivity and specificity (accuracy: 83.8 % and 80.4 %, and balanced accuracy: 80.6 % and 80.8 %) and highest inter-rater agreement [kappa (Îş): 0.63 and 0.62] for both the datasets. The ROC curves demonstrate the utility of the cut-off feature in the predictive ability of the ensemble model. This feature provides an additional control to the regulators in grading a chemical based on the severity of the toxic endpoint under study

    A very simple safe-Bayesian random forest

    Get PDF
    Random forests works by averaging several predictions of de-correlated trees. We show a conceptually radical approach to generate a random forest: random sampling of many trees from a prior distribution, and subsequently performing a weighted ensemble of predictive probabilities. Our approach uses priors that allow sampling of decision trees even before looking at the data, and a power likelihood that explores the space spanned by combination of decision trees. While each tree performs Bayesian inference to compute its predictions, our aggregation procedure uses the power likelihood rather than the likelihood and is therefore strictly speaking not Bayesian. Nonetheless, we refer to it as a Bayesian random forest but with a built-in safety. The safeness comes as it has good predictive performance even if the underlying probabilistic model is wrong. We demonstrate empirically that our Safe-Bayesian random forest outperforms MCMC or SMC based Bayesian decision trees in term of speed and accuracy, and achieves competitive performance to entropy or Gini optimised random forest, yet is very simple to construct
    • …
    corecore