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Abstract 

Medical images are often affected by random noise because of both image acquisition from the 

medical modalities and image transmission from modalities to workspace in the main computer. 

Medical image denoising removes noise from the CT or MR images and it is an essential step 

that makes diagnosing more efficient. Many denoising algorithms have been introduced such as 

Non-local Means, Fields of Experts, and BM3D. 

In this thesis, we implement the Bayesian ensemble learning for not only natural image 

denoising but also medical image denoising. The Bayesian ensemble models are Non-local 

Means and Fields of Experts, the very successful recent algorithms. The Non-local Means 

presumes that the image contains an extensive amount of self-similarity. The approach of the 

Fields of Experts model extends traditional Markov Random Field model by learning potential 

functions over extended pixel neighborhoods. The two models are implemented, and image 

denoising is performed on both natural images and MR images. For MR images, we used two 

noise distributions, Gaussian and Rician. The experimental results obtained are used to compare 

with the single algorithm, and discuss the ensemble learning and their approaches. 
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1 Introduction 

1.1 Medical images 

Medical images obtained from Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) are 

the most common medical images for diagnosis. There are other types of medical images such as 

ultrasound, angiography, and Positron Emission Tomography (PET). Medical images are often affected 

by noise because of both image acquisition from the medical modalities and image transmission from 

modalities to workspace in the main computer system. This noisy usually affects the visual quality of the 

original images so image denoising always has been issued in the medical image processing. 

   

Figure 1.1. Sample medical images  

(Left: Chest CT image from NBIA (National Biomedical Imaging Archive),  

Right: Brain MRI image from BrainWeb Database) 
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1.2 Motivation 

Medical image denoising removes noise from the CT, MRI, or ultrasound images and it is essential step 

that makes diagnosing more efficient for doctors. Several denoising algorithms have been introduced such 

as total variation minimization [1], Wiener filtering [2], Sparse coding [3], etc. Recently, Non-local 

means [4] , Fields of Experts [5] [6] and BM3D [7] have been proposed for promising denoising 

algorithm. One striking aspect of image denoising research is that a wide array of denoising strategies 

have remained popular, and in spite of vastly different approaches, many of these algorithms produce 

reasonably similar performance in terms of peak signal-to-noise ratio (PSNR). For example, Fields of 

Experts (FoE) pursues an entirely parametric approach, by training Markov random fields with large 5x5 

cliques to capture the statistics of small image patches. Over a set of six canonical images (Barbara, Lena, 

etc.), FoE attained a PSNR of 30.24dB for Gaussian noise with σ = 20. A Gaussian scale mixture also 

uses a parametric approach, and captures the joint statistics of neighboring Gabor filter coefficients. Over 

the same set of six images, mean PSNR was 30.78 for σ = 20. Another method that exploits patterns 

found within the noisy input image is Non-local Means (NLM). However, NLM uses a wholly non-

parametric approach, by identifying similar patches within the noisy input image and averaging these 

together, weighed according to similarity and proximity. NLM achieves a PSNR of 30.37dB for σ = 20 on 

the same set of images. BM3D is an algorithm with a similar strategy, but uses more sophisticated 

methods to combine similar image patches. 

This brief list of algorithms includes some that are parametric and other non-parametric, some that focus 

on matching natural scene statistics and others that focus on utilizing patterns from within the noisy input 

image, and some that use generatively trained probabilistic models, some discriminatively trained 

probabilistic models, and others that do not use probabilistic models at all. Arrays of additional 
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differences are evident between the implementation details of each approach. In spite of these significant 

differences in strategy, performance is reasonably similar between these varied algorithms. Continual 

improvements to denoising algorithms regularly change the dominant approach, and no category of 

denoising strategies has produced a clear enough victor to discourage further research in any other 

category. 

On the surface, this observation may suggest that image denoising algorithms are converging to some 

upper-bound on denoising performance. However, it is worth noting that each method is regarded as 

having different advantages and disadvantages. Strategies that perform best for low noise levels may not 

perform as well for high noise levels. Input images that contain many regular textures or patterns often 

benefit from NLM, while images with less internal regularity may benefit from algorithms trained from 

large suites of natural images. Additionally, one important quality of denoising methods is the ability to 

preserve sharp edges while removing noise. Methods that fail in this regard produce output that appear 

over-blurred. NLM often perform well at maintaining sharp edges, as demonstrated by their residual 

images (the denoised image minus the true image). These residual images show that methods like NLM 

perform similarly near edges as they do near smooth regions. Other methods such as FoE show higher 

residual error near edges. Since FoE achieves a similar overall PSNR, it suggests that performance within 

smooth regions is higher for FoE. 

When multiple regression algorithms produce similar performance using significantly different 

approaches, and with distinct advantages and disadvantages, those algorithms are highly suitable for 

combination using ensemble learning methods. Ensemble learning is a method of combining multiple 

(possibly weak) predictors to produce one unified predictor of greater accuracy. While ensemble learning 

is a common and successful technique in machine learning, it has not been applied to image denoising. 
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Ensemble learning methods benefit when the constituent algorithms are significantly different from one 

another. In this thesis, we apply Bayesian ensemble learning methods to combine two of the most distinct 

denoising methods: Fields of Experts and NL-means. 

We use 40 natural images from the Berkeley Segmentation Benchmark for training [8]. Another set of 80 

natural images from Berkeley database are used of testing along with 6 canonical images. For each level 

of input noise, the ensemble method achieved statistically significant improvement over both FoE and 

NLM. The application of FoE or NLM has been considered mostly with natural images. Because the 

noise on the medical images is different from the natural images (e.g. MRI has the Rician noise 

distribution), image denoising algorithm based on the Gaussian white noise should be reconsidered for 

medical image denoising. Only a few studies were done to medical image denoising [9] [10] [11]. NLM 

was adapted to denoised MR images but they considered not only the Gaussian white noise but also the 

Rician noise [12]. There are two kinds of images in the Computed Tomography (CT), low dose and high 

dose images. High dose images could provide better resolution than low dose images but low dose images 

are required in recent years due to patient safety [13]. Low dose images have more noise than high dose 

images so a denoising algorithm of CT images should be considered. The algorithms for image denoising 

should contain not only efficient peak signal-to-noise ratio (PSNR) or Structural Similarity Index (SSIM) 

[14] but also no limitations from natural images to medical images. Therefore, we also tested the 

ensemble learning on MR images from BrainWeb [15]. We used 30 MR images for training and tested on 

another 20 MR images. To make noisy MR images, we used both Gaussian and Rician noise distribution. 

Because an assumption of FoE is based on natural images which use Gaussian distribution, the ensemble 

learning achieved outstanding improvement over both FoE and NLM with Gaussian noise. The ensemble 
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learning results did not perform well on Rician noise, but the results still showed that the ensemble 

learning outperformed NLM and FoE, or similar with NLM and FoE. 
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1.3 Thesis Statement 

The goal of this thesis is to introduce an alternative approach focusing on the implementation of high 

performance algorithm based on the two models, Non-local means and Fields of Experts, not only for 

natural image denoising but also for medical image denoising. One benefit of exploring ensemble 

learning for denoising is that it is more than just a single denoising algorithm – it is methodology that can 

continue to be helpful even after Non-local Means and Fields of Experts become obsolete, since other 

denoising methods can be used instead of Non-local Means. And any probabilistic method can be used in 

place of Fields of Experts. Combining two methods, Non-local Means and Fields of Experts, by using the 

ensemble learning would have both advantages from Non-local Means and Fields of Experts, and 

improve the disadvantages from each other’s. 
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1.4 Thesis Organization 

Chapter 1: Introduction - A brief introduction to the medical images and the motivation of current 

challenge to the medical image denoising 

Chapter 2: Background - A description of image denoising, different kinds of noise such as Gaussian and 

Rician noise, Non-local means, Fields of Experts, and how to calculate the PSNR with two different 

images  

Chapter 3: Application of the Ensemble Learning - A description of Bayesian ensemble learning model 

with Non-local means and Fields of Experts 

Chapter 4: Experimentation and Results - A description of the experimentations and results from our 

proposed denoising algorithm 

Chapter 5: Discussion and Conclusion - A summarization with a discussion of our proposed denoising 

algorithm and the future work. 
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2 Background 

2.1 Image denoising 

The goal of image denoising is to reconstruct the original image from the noisy image, 

 ( )   ( )   ( )                (2.1) 

where  ( ) is the observed image,  ( ) is the original image and  ( ) is the noise value at pixel  . Adding 

a Gaussian white noise is the simple way to make a model of natural noisy images, and adding a Rician 

noise distribution is added to make a model of medical noisy images. The ideal denoising algorithm is to 

remove the noise,  ( ), and recover the original image,  ( ).  

Previous methods such as Gaussian [16] or Wiener filtering [2] attempt to separate the image into the two 

parts which are the smooth and oscillatory part by removing the high frequency from the low frequency. 

This would result in a loss of fine edges in the denoised image. Low frequency noise will remain in the 

image even after denoising. Therefore, new algorithms have been introduced recently such as Non-local 

means [4], Fields of Experts [5], or BM3D [7]. 
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2.2 Gaussian and Rician Noise 

2.2.1 Gaussian Noise 

Gaussian white noise is widely used in natural images for image denoising. In (2.1),  ( ) is the Gaussian 

white noise values with known variance σ
2 
and zero mean. The Gaussian white noise models are made by 

adding random values to the original images. Modeling noisy model for the medical images should be 

reconsidered because the noise in MR images has a Rician distribution [17]. 

 

2.2.2 Rician Noise 

The signal of MR images is detected through a quadrature detector that has the real and the imaginary 

parts. The magnitude of MR image can be computed from the square root of the sum of the squares of the 

real and imaginary Gaussian distributions. The noise in the MR image follows a Rician distribution [17].  

The Rician distributed noisy MR image will be defined as follows, 

   √(    )
           (2.2) 

where   is the noisy MR image,   is the ground truth image,   is the Gaussian noise standard deviation 

[18]. The Rician noise damages a quality of the MR images so MRI denoising filter always has been an 

issue in medical imaging society [9] [10]. The following figure is a sample noisy MR image with the 

Gaussian and Rician distribution and sigma value is 10. 
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Figure 2.1. Sample noisy MR images with   = 10 

(Left: Original image, Top Right: Gaussian noisy image, Bottom Right: Rician noisy image) 
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2.3 Non-local means 

Non-local means (NLM) image denoising algorithm was suggested by Antoni Buades, Bartomeu Coll, 

and Jean-Michael Morel. NLM presumes that the image contains an extensive amount of self-similarity 

[4]. Efros and Leung originally developed the concept of self-similarity for texture synthesis [19]. 

 

Figure 2.2. Scheme of NLM strategy 

 

Figure 2.2 shows the scheme of NLM strategy. The figure shows four different pixels, p, q1, q2, and q3. 

Similar neighborhoods to p’s neighborhood could be found in most pixels in the same column of p. 

Similar pixel neighborhoods give a large weight, w(p, q1) and w(p, q2), while much different 

neighborhoods give a small weight w(p, q3). 
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To compute each pixel I of the NLM denoising image, the following formula was used [4]: 

  [ ]( )  ∑  (   ) ( )         (2.3) 

where   is the noisy image   { ( )    }, and weights  (   ), which rely on the similarity between 

pixel   and  , meet the following conditions    (   )    and ∑  (   )     . A neighborhood should 

be defined to compute the similarity. The weighted Euclidean distance is used to measure the similarity 

and the following formula is implemented to calculate the Euclidean distance of noisy neighborhoods: 

 ‖ (  )   (  )‖   
 
 ‖ (  )   (  )‖   

 
       (2.4) 

where  (  ) and  (  ) are the gray scale vectors,    and    are the square neighborhood of fixed size 

and centered around a pixel   and  , respectively, and   is the Gaussian kernel’s standard deviation. The 

weights  (   ) can be calculated with the following formula: 

 (   )  
 

 ( )
 
 
‖ (  )  (  )‖   

 

       (2.5) 

where  ( ) is the normalizing constant 

 ( )  ∑  
 
‖ (  )  (  )‖   

 

        (2.6) 

and the parameter   satisfies as a filtering degree. 

The original NLM applied to 2D natural images and also continued to 3D images especially MR images 

[11][20]. For a MR image case, the 3D neighborhoods of the two voxels are compared to calculate the 

similarity of two voxels. 



 
 

13 
 

 

 

 

 

 

 

 

 

Figure 2.3. Left: Original image 

Top Right: Noisy image with   = 20, Bottom Right: Denoised image by using NLM 
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2.4 Fields of Experts 

Fields of Experts was proposed by Stefan Roth and Michael J. Black [21]. The goal of the Fields of 

Experts is to develop a framework for learning rich, generic prior models of natural images. To learn 

potential functions through extended neighboring pixels, Markov Random Field model was used in the 

Fields of Experts. The key in the Fields of Experts is to extend Markov Random Field by modeling the 

local field potentials with learned filters [21]. To do this, Products of Experts were used [5]. In 

comparison with prior Markov Random Field approaches, all parameters in the Fields of Experts model 

are learned from a set of training data [21]. Those models prior probability of images can be calculated 

with the following formula: 

 ( ⃗)  ∏ ∏ (  
 

 
(  ⃗⃗ ⃗    ⃗⃗ ⃗)

 
)
   

 
        (2.7) 

where    is 5x5 image patch and filter    represents especially unlikely image patches obtained by training 

the Fields of Experts model on an general image database. About 20,000 image patches are selected 

randomly from the Berkeley Segmentation database and the image patches are used for the training data 

[8]. Figure 2.4 shows a selection of the 24 filters learned from the training Fields of Experts model on 5x5 

pixels. 

  

 

 

Figure 2.4. Selection of the 5x5 filters learned from the training data 
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Inference: For the denoising problem, the goal is to infer the most likely correction for the image given 

the prior and the noisy image. Given a noisy image N, we can find the denoised image D that maximizes 

the prior probability: 

 (   )   (   ) ( )      (2.8) 

We can write the  (   ) as: 

 (   )  ∏    ( 
 

   
(     )

 
)      (2.9) 

where   is known standard deviation and    and    are the denoised and noisy image at pixel j, 

respectively.  (   ) is the Gaussian distribution and  ( ) is the Fields of Experts model which is in 

formula (2.7). In this study, we use the Fields of Experts algorithm MATLAB code provided by the 

authors and use the similar parameters to get the same results of the paper.  
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Figure 2.5. Left: Original image 

Top Right: Noisy image with   = 20, Bottom Right: Denoised image by using FoE 
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2.5 Peak Signal to Noise Ratio  

The peak signal-to-noise ratio is widely used for the ratio between two different images such as original 

and noisy image. The PSNR is usually measured in the logarithmic decibel scale and expressed in the 

Mean Square Error, MSE. The MSE which has x·y size of two different images, f and g (one of the 

images is noisy image) is defined as: 

     
 

  
∑ ∑ ( (   )   (   ))

    
   

   
       (2.10) 

The PSNR is expressed as: 

             (
    

 

   
)          (

    

   
)    (2.11) 

where      is the peak value of the image and this value is equal to 255 when the pixels have 8 bits 

sampling rate. When the two different images, f and g, do not have differences, the MSE will be almost 0 

so the PSNR will have an infinite value. 

 

Figure 2.6. Example PSNR values (Left: Original Image,  

Center: Noisy image with   = 20 (PSNR: 22.11dB),  

Right: Denoised image by using the Fields of Experts (PSNR: 29.63dB)) 
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3 Application of the Ensemble Learning 

3.1 The Ensemble Learning 

As discussed in the introduction, in spite of relatively comparable performance, image denoising 

techniques like FoE and NLM use very different methodologies and underlying philosophies for image 

denoising. This would seem to make these two algorithms strong candidates for ensemble learning 

methods which may be able to produce a single denoising algorithm that retains the advantages of both 

FoE and NLM. However, this problem differs from traditional ensemble learning problems in several 

important ways, which result in both advantages and disadvantages in comparison with standard ensemble 

learning scenarios. 

One significant difference is that ensemble learning is typically used to combine multiple models of the 

data or the predicted output, where each constituent algorithm was trained on labeled data to optimize the 

parameters of the algorithm. In contrast, many image denoising methods utilize no training at all. 

Methods like NLM are derived primarily from a theoretical analysis of the image denoising problem, 

rather than machine learning techniques. NLM does have some parameters, such as the size of the search 

window, but these parameters are not expected to affect the behavior of the algorithm significantly, and so 

training is not emphasized. 

The lack of training in the constituent algorithms makes image denoising ineligible for some of the most 

powerful aspects of ensemble learning. Many ensemble learning methods, such as boosting [22] or 
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bootstrap aggregation [23], achieve higher performance by training each constituent algorithm on 

different subsets of available training data. In that way, one algorithm becomes an “expert” on one type of 

input, while another algorithm specializes in another type of input. Because NLM does not rely on 

training or make use of labeled data, such techniques are not possible here. 

Another important difference is that the bulk of ensemble learning methods are designed for classification 

problems, where the predicted output is either binary, or at least discrete. For classification problems, the 

outputs of each constituent algorithm are typically combined using a voting scheme: whichever class 

receives the most votes (possibly weighted by the performance of the constituent algorithm) is the output 

of the ensemble learning algorithm. Ensemble learning for continuous-valued output (known as 

regression) is not entirely uncommon [24].  In these cases, outputs of the constituent algorithms are 

usually combined by averaging. Unfortunately, averaging multiple denoised images may lead to 

undesirable artifacts. Each denoising algorithm must hypothesize the most probable image structure that 

was obscured by noise in the input image. When these hypotheses disagree, averaging them together can 

result in two faint but duplicate differing image structures, rather than a single consistent denoised image. 

For example, consider the case where noise has obscured the precise location of an edge between two 

regions. If NLM hypothesizes an edge in one location, and FoE hypothesizes an edge in a different 

location, an averaging procedure will produce two faint edges, which is generally an unlikely result. We 

would prefer an ensemble technique that could select the single edge location that appears most likely. 

Ideally, an ensemble method should be capable of selecting a single coherent denoising hypothesis rather 

than combining multiple outputs naively. This advantage of traditional ensemble methods may provide 

one explanation as to why ensemble methods have not been applied to image denoising in the past. 
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If a large number of constituent algorithms are available, more sophisticated schemes for combining 

algorithm output might be possible, where outlier responses were given less weight. Such techniques 

might avoid the pitfalls of averaging methods listed above. Unfortunately, only a handful of competitive 

image denoising algorithms exist. 

Finally, a third major difference is that some constituent denoising algorithms (in particular, FoE) provide 

not only a single hypothesis denoised image, but also provide a probability distribution over the space of 

all possible denoised images. Recall that FoE outputs not only a denoised image     , but also provides a 

probability distribution over denoised images     (   ) , where   is the input noisy image. This 

distribution allows us to quantify the uncertainty in the FoE solution, or potentially, to measure the 

likelihood of the outputs of other denoising algorithms within the FoE model. As we describe below, the 

availability of a probabilistic model of the output space is a great advantage for applying ensemble 

method to the image denoising problem, because it provides a possible solution to the disadvantages of 

averaging described above. 

If all constituent algorithms provide a distribution over the space of hypothesis, then Bayesian ensemble 

learning methods can be used to combine each distribution into a single distribution. In particular, the 

choice of which model is superior for a particular input can be treated as a latent variable. Specifically, 

suppose we wish to predict output   given input  , and we have a database of labeled training examples  . 

Also, suppose we have   different probabilistic predictors which each provide a distribution   (   ) 

over possible outputs. Then we can write the probability of possible outputs   as: 
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 (     )   ∑  (       ) 
       (3.1) 

 ∑  (       ) (     ) 
               (3.2) 

 ∑   (     ) (   )
 
               (3.3) 

 

Thus, the Bayesian ensemble distribution is simply the weighted sum of each constituent distribution, 

weighted by performance over the training data  . The downside of Bayesian ensemble methods is that 

the ensemble distribution ∑   (     ) (   )
 
    is often computationally demanding to optimize. 

However, the advantage is that outputs   that score highly in the ensemble distribution must be 

considered probable according to all of the constituent algorithms, especially those that were most 

successful on the training data. If Bayesian ensemble methods were applied to the image denoising 

problem, this would be eliminate the pitfall of averaging two denoising outputs together. The mean of two 

plausible solutions may not itself be plausible, but the optimum of a Bayesian ensemble distribution 

largely satisfied both models simultaneously. 

Unfortunately, Bayesian ensemble learning methods cannot be applied in the denoising problem, because 

not all of the constituent denoising algorithms provide a probability distribution over denoised images. 

Instead, we must combine a mixture of probabilistic and non-probabilistic models. To our knowledge, this 

circumstance has not been studied explicitly in past ensemble learning methods. Our goal is to retain the 

advantage of purely Bayesian ensemble approaches: the ensemble method should produce an output that 

internally consistent, considered highly plausible by the FoE probability distribution, while 

simultaneously resembles the NLM output. Additionally, we need to find a method that is efficient. 
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Bayesian ensembles are often computationally intensive to optimize, in part because, being summations, 

they do not factorize. 

Our approach is to treat the NLM output as a known, given quantity. Thus, we want to model 

 (       ), where   is the hypothetical original image,   is the noisy image, and     is the output of 

NLM. By applying Bayes rule, we can write 

 (       )    (       ) (     )  (     )   (3.4) 

  
 (   ) (     ) ( )

 (     ) (   )
          (3.5) 

           (   ) (     ) ( )         (3.6) 

where terms that do not depend on   can be ignored as constants. The term  (   ) is simply the noise 

model, which is a Gaussian of mean   and variance given by the strength of the image noise. The prior 

over noiseless images,  ( ), can be taken from the FoE model, given by equation (2.7). 

To complete the ensemble model, we must choose a model for  (     ). One known strength of the 

NLM method is that the image residual, defined as      , shows little image structure [4]. In other 

words, edges and features that are visible in the noisy image are faint or not visible in the residual. In 

comparison, other leading denoising images often produce residuals that retain structure from the noisy 

image. This advantage of NLM is believed to stem from the methodology used by NLM. Trained 

methods like FoE base their models for image structure such as edges entirely from databases of natural 

images. In contrast, NLM acquires statistics of image structure from the noisy input image itself. For 

example, FoE may misjudge the spatial scale, or sharpness, of edges if evidence of the edge is weak 

within the image, and other false spatial of edges solely by comparing against similar edges within the 
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noisy image, and the edges with less common scales are less likely to be biased. For these reasons, strong 

structure visible in the noisy input image is less likely to be visible in the residuals of NLM outputs. 

 

 

(a)     (b)        (c)           (d)  

 

 
 

(e)     (f)        (g)           (h)  

 

Figure 3.1. The image residuals (reproduced from [25]): σ = 20. (a) original image, (b) PDE-based [26]  

(c) Wavelet-based [27], (d) NLM, (e) noisy image, (f)-(g) the residual of each image (b)-(d) respectively 
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One consequence of this observation is that the residual of NLM can be approximated as white noise. In 

particular, the residual of NLM is known to closely resemble the statistical structure of the additive noise. 

This allows us to define  (     ) accordingly. In the case of input images with additive Gaussian noise, 

 (     ) is Gaussian centered at  , with some      : 

 (     )      ( 
∑ ( (   )    (   ))

 
   

    
 )    (3.7) 

Likewise, when the input image has additive Rician noise,  (     ) should be Rician. 

This completes the definition of our ensemble model. Note that this model completes our objective: 

images that optimize the ensemble distribution are simultaneously 

 plausible according to the Fields of Experts model 

 similar to the Non-local Means output 

 close to the noisy input image 

We also must ensure that our model can be optimized efficiently. Here, we observe that our model can be 

simplified into a form that is very similar to the FoE probabilistic model [5]. We can start with the 

formula (3.6). 

 (   ) (     )        (
(   ) 

   
  

(     )
 

    
 )        (

(         )
 

        
 )  (3.8) 

In formula (3.8), the left side shows a component of the ensemble learning model, and the right side 

shows the same model re-arranged to have the same structure as FoE [5]. This new form introduces new 
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variables such as         and        . We can get these parameters         and         by comparing 

the left and right side. In the left side, the parameters such as  ,  , and     are all functions. 

 
(           )

   
  

(   
           

 )

    
  

(       
               

 )

        
    (3.9) 

We can combine    and   part of left and right side to get the parameters         and        . The 

coefficient for the term    must be same for the right and left side of the formula (3.9). The formula (3.10) 

shows the    part of left and right side. The formula (3.11) shows the   part.: 

   (
 

   
  

 

    
 )    

  (
 

        
 )    (3.10) 

  (    
 

   
       

 

    
 )    (          

 

        
 )         (3.11) 

 

From the formula (3.10), we can get the parameter        . We can get the parameter,        , from the 

formula (3.11). Therefore, the parameters         and         are 

       
    {(    

 )  (     
 )}        

                                      (3.12) 

where 

  (    
 ) {(    

 )  (     
 )}      

  (     
 ) {(    

 )  (     
 )}       (3.13) 
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Because the ensemble learning is usually computationally intensive, choosing the method of combining 

two algorithms, such an NLM and FoE in this case, allows us to do with extra computational effort and 

extra coding to build the ensemble learning. 

In theory,     could be estimated empirically by finding the standard deviation of the residuals of NLM 

outputs on natural images for each noise level  . In practice, we found that superior performance was 

attained by learning     from a set of training images. 
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3.2 The process of the Ensemble Learning 

 

 

Figure 3.2. Block diagram of the ensemble learning  
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Figure 3.2 shows the block diagram of the ensemble learning. First, a noisy image could be made with the 

original image by using the Gaussian or Rician distribution. The same noisy images were used for NLM 

and FoE in this model.  

The first denoising progress was performed by using the Non-local means. The parameters         and 

        were calculated with the denoised image,    , which was done by the NLM,    , the original 

input Gaussian or Rician sigma value and     ,another sigma value from the NLM denoised image. The 

second denoising progress with FoE algorithm was adapted to the NLM denoised image,    , with the 

learned parameters,         and        . The PSNR could be computed by using the original images and 

denoised images after performing the FoE algorithm. Same process was executed with different number 

of the input Gaussian or Rician noise values,   . The maximum PSNR of the ensemble learning could be 

accomplished by comparing all the PSNR values. 

For natural image denoising, 40 images from Berkeley Segmentation Benchmark were used for training 

       . The selection of         is very important in our prosed ensemble learning. Based on the best 

selection of        , we used 80 natural images from Berkeley database and 6 canonical images for 

testing. For medical image denoising, we separate to two parts, noisy image with Gaussian and Rician. 20 

MR images from BrainWeb were used for training         and we tested on other 30 MR images. This 

process had done to both Gaussian and Rician noise. 
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4 Experimentation and Results 

4.1 Experimentation and Results of the natural images 

4.1.1 Training dataset 

First, we performed the ensemble learning on the 40 natural images randomly selected from the Berkeley 

Segmentation Benchmark to get the proper         for the best performance [8]. Different numbers of 

input Gaussian noise, σ, were added to the each original image. We used the provided MATLAB code of 

NLM and FoE algorithm from the author’s website and built the ensemble learning code with several 

lines of MATLAB codes. All the codes were run through the Bioinformatics Cluster (Linux cluster with 

64 dual processor 3.2Ghz Xeon processors and 64 dual core 2.8Ghz Xeon processors for a total of 384 

processors 37 TB of on-line storage Reconfigurable floating-point gate arrays) at the Information and 

Telecommunication Technology Center at the University of Kansas [28]. 80 other image sets from the 

Berkeley Segmentation Benchmark and the six natural images (barbra, boat, fingerprint, house, lena, and 

peppers) were evaluated with single NLM, FoE and the ensemble learning to verify the performance of 

the ensemble learning. The ensemble learning denoising performance was evaluated by the Peak Signal-

to-noise ratio (PSNR). 

The noisy image was obtained from the original image by adding with different numbers of input noise 

value, σ = 10, 15, 20, 30, 40, 50, 75 and 100. The NLM algorithm was used to get the    and several 
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numbers of sigma values from the NLM denoised image were used,     = 1, 2, 3, 5, 10, 20, 30, 40, 50, 

100, 250, and 500. We used all these sigma values, NLM denoised images and FoE algorithm to get the 

ensemble learning denoised images. The 5x5 filter of Fields of Experts was used to obtain the denoised 

images. We used 5,000 iteration numbers to implement for FoE [5]. 

All of these processes were applied to different noisy images with different numbers of input noise values. 

PSNR was calculated with the original images and denoised images which were acquired from the 

ensemble learning. And then the average of their PSNR values with different input sigma values and other 

sigma values,    , from the NLM denoised images were calculated. 

 

  

  

Figure 4.1. Subset of the training images for the proper selection of     
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Figure 4.1 shows a subset of the 40 training images for the proper selection of    . The training images 

contain images of architecture, landscape, people, flowers, etc. The proper selection of     for the best 

performance could be learned from these image dataset.  The parameters,        , could be learned from 

the selected     and the given input sigma value, σ , by using the formula (3.12). 

 

 

 

Table 4.1: The average PSNR (dB) results from the 40 natural images for training         

 

sigma 10 15 20 30 40 50 75 100 

NLM 31.85 30.20 28.88 26.95 25.66 24.69 23.04 21.82 

0001 31.85 30.21 28.91 26.99 25.69 24.72 23.06 21.84 

0002 31.97 30.26 28.95 27.06 25.85 24.92 23.22 21.95 

0003 32.09 30.28 28.95 27.07 25.85 24.92 23.22 21.95 

0005 32.40 30.34 28.94 27.04 25.84 24.96 23.48 22.20 

0010 33.04 30.53 28.93 26.90 25.70 24.85 23.54 22.61 

0020 33.47 30.96 29.26 26.99 25.67 24.79 23.50 22.65 

0030 33.50 31.14 29.51 27.16 25.74 24.79 23.49 22.68 

0040 33.50 31.18 29.60 27.29 25.74 24.75 23.46 22.71 

0050 33.49 31.17 29.61 27.34 25.93 24.72 23.42 22.71 

0100 33.48 31.13 29.57 27.38 25.73 24.64 23.23 22.50 

0250 33.47 31.11 29.54 27.36 25.73 24.61 23.06 22.25 

0500 33.47 31.11 29.53 27.35 25.74 24.61 23.03 21.15 

FoE 33.36 31.07 29.53 27.35 25.74 24.61 23.02 19.37 
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Table 4.1 shows the average PSNR results of the NLM, FoE and the ensemble learning for training 

        with different number of input sigma and other     values from the NLM denoised images. From 

the table 4.1, the ensemble learning showed the better result comparing to the single NLM and FoE. 

When the input sigma is 20, the average PSNR of NLM is 28.88dB and FoE is 29.53dB. The ensemble 

learning is 29.61dB at that point with    =50. The average PSNR of ensemble learning with small     

value such as 1 showed a similar result with the NLM algorithm because of         from the formula 

(3.12) and (3.13). When the     is close to very small number, the   component in the         is much 

bigger than the   component so the         is most likely to the    , which is the denoised image from 

the NLM algorithm. On the contrary to this, when the      has a large value such as 500, the         is 

very similar to the  , which is the original noisy image, and the denoised result of this         is almost 

same as the FoE algorithm.  

We could find that the denoising performance of ensemble learning showed a better result when the 

average PSNR of NLM and FoE is similar. For example, when the input sigma is 50, the PSNR of the 

NLM is 24.69dB and the FoE is 24.61dB. In this case, the PSNR of the ensemble learning is 24.96dB, 

and most PSNR values of the ensemble learning are better than the NLM and FoE algorithm except when 

the     are 100, 250 and 500. Based on our result, the ensemble learning algorithm showed an 

improvement performance with the high input sigma value such as 50 and 75, which have a similar PSNR 

value between the NLM and FoE. The ensemble learning outperforms with the     = 30, 40, 50, 100, 50, 

5, 10, 40 when the σ = 10, 15, 20, 30, 40, 50, 75, 100, respectively.         and         could be 

calculated with the selected     and σ by using the formula (3.12) and (3.13). For example, when the σ is 

20, the best selection of     is 50. Therefore,        ,  , and   have 18.57, 0.86, and 0.14, respectively. 

        could be obtained with the calculated   and  . 
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4.1.2 Results of the natural images 

Results of the natural images were attained from two image datasets. The first result was done with the 6 

canonical images (Barbara, Boat, etc). Table 4.2 shows the PSNR results for 6 natural images denoised by 

using the ensemble learning with different number of input noise sigma and the selected    . Bold and 

underlining numbers in the Table 4.2 indicate the maximum PSNR results among the three denoising 

algorithms. There are three results, NLM, FoE and Ensemble learning (from the left) for each image. The 

most of the results of the ensemble learning showed an improvement in image denoising comparing to the 

NLM and FoE. Especially, the ensemble learning showed a significant improvement when the input noise 

value increased. For example, when the input sigma is 75, the ensemble learning outperformed NLM and 

FoE in all cases. When the input sigma of the Barbara is 50, the PSNR result of the ensemble learning, 

NLM, and FoE are 24.78dB, 24.70dB, and 23.13dB, respectively. Figure 4.2 shows the results of 

denoising images by using the NLM, FoE and ensemble learning. Comparing to these results, the 

ensemble learning outperformed both NLM and FoE quantitatively. With selected    , the PSNR result 

of the ensemble learning was 27.62dB. The PSNR results of NLM and FoE were 27.14dB and 26.92dB, 

respectively.  

The denoising results of NLM usually have an advantage on some edges comparing with the FoE. 

However, cyclic borders could be found on the denoising results of NLM. The denoising results of FoE 

sometimes have a disadvantage on some edges, especially when the input noisy sigma value is high. The 

ensemble learning is available to keep some edges, which is an advantage from NLM and a disadvantage 

from FoE, and remove the cyclic borders. Therefore, some disadvantages from NLM and FoE could be 

overwhelmed by the ensemble learning.  
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Table 4.2: The PSNR (dB) results for natural images denoised with the Ensemble learning 

   (From the left: Non-local Means, Fields of Experts and Ensemble learning) 

 

σ Barbara Boat Fingerprint 

10 33.72 32.93 33.19 32.78 33.27 33.27 31.03 32.11 32.17 

15 31.80 30.25 30.6 30.97 31.40 31.42 29.08 29.64 29.78 

20 30.19 28.41 28.77 29.54 30.05 30.04 27.44 28.03 28.16 

30 27.72 25.88 26.03 27.56 27.96 27.95 25.09 25.77 25.79 

40 25.96 24.17 26.04 26.11 26.18 26.27 23.22 23.58 23.28 

50 24.70 23.13 24.78 25.04 24.93 25.28 21.80 21.47 21.88 

75 22.91 22.00 22.92 23.27 23.13 23.73 19.49 18.23 19.54 

100 21.70 18.97 21.86 22.04 20.44 22.76 18.20 17.63 17.57 

 

σ House Lena Peppers 

10 35.47 35.22 35.27 35.17 35.11 35.16 33.38 34.16 34.21 

15 33.92 33.62 33.74 33.36 33.32 33.41 31.74 32.05 32.2 

20 32.61 32.34 32.50 31.97 32.03 32.11 30.49 30.57 30.76 

30 30.05 30.34 30.40 29.84 29.88 29.95 28.11 28.10 28.2 

40 28.23 28.74 28.57 28.26 28.13 28.58 26.64 26.47 26.83 

50 26.71 27.28 27.17 27.14 26.92 27.62 25.16 24.95 25.43 

75 24.34 24.68 25.15 25.03 24.94 25.88 22.91 22.55 23.35 

100 22.85 19.75 24.03 23.46 21.05 24.8 21.5 18.84 22.04 
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        (1)           (2) 

  

        (3)           (4) 

Figure 4.2. Denoising results. (1) Image with Gaussian noise, σ = 50 (PSNR = 14.18dB), (2) Denoised 

image using the NLM (PSNR =27.14dB), (3) Denoised image using the FoE (PSNR = 26.92dB), (4) 

Denoised image using the ensemble learning (PSNR = 27.62dB) with     = 5 
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Figure 4.3. Close-up denoising results. From the left, NLM, FoE, and ensemble learning 

 

Figure 4.3 shows the close-up denoising results. From the Figure 4.3, we could find the advantages and 

disadvantages of NLM and FoE. Some edges could be found in the result of NLM, but not in the result of 

FoE. Cyclic borders could be detected in the result of NLM. Our ensemble learning model could not only 

have some good edges but also have less cyclic borders. In other words, the ensemble learning could be 

overcome some disadvantages from NLM and FoE.  

The second result was done with a subset of 80 images from Berkeley database [8]. Figure 4.4 shows the 

subset of 80 tested images. A dataset of 80 tested images contains images of people, landscape, 

architecture, etc. This dataset was selected randomly from Berkeley database. Figure 4.5 shows noisy 

images and results of ensemble learning with σ =30. 

 

Figure 4.4. A subset of tested 80 images from Berkeley database 
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Figure 4.5. Ensemble learning results with σ = 30 (Left: Noisy image, Right: Denoised image) 
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Figure 4.6. Average denoising PSNR results of 80 natural images.  

(From left to right, Non-local means, Fields of Experts, and Ensemble learning) 

 

The result of average PSNR values at different input noise level is displayed in Figure 4.6. The standard 

error is shown as the error bar. The ensemble learning outperformed the NLM and FoE in most cases. The 

ensemble learning showed a better improvement, especially at the high levels of the input noise. When the 

input noise is 100, the average PSNR results of ensemble learning, NLM, and FoE are 22.75dB, 21.83dB, 

and 19.47dB, respectively. All the     numbers which are needed to calculate         are selected from 

the results of the training dataset. Figure 4.7 shows an improvement of the ensemble learning comparing 

with the best performance of FoE and NLM. The improvement of the ensemble learning is increasing 

gradually while the input noise level goes high. 
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Figure 4.7. Improvement of the ensemble learning of the natural images  

comparing with the best result of FoE and NLM 
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4.2 Experimentation and Results of the medical images 

4.2.1 Medical images with Gaussian noise 

The ensemble learning was evaluated on medical images from the BrainWeb [15]. The dataset of MR 

images consists of 50 MR images and was randomly obtained from the BrainWeb. First, different 

numbers of input Gaussian noise, σ, were added to the original images.         was calculated with the 

selected     which is learned from the training dataset.         was computed with the selected     and 

σ by using the formula (3.12) and (3.13). All the processes were the same as what we did on the natural 

images. 30 MR images were used for training        , and 20 MR images were used for testing. From the 

training result, we could get the best selection of        . The ensemble learning outperforms with the 

    = 10, 20, 30, 40, 50, 100, 100, 100 when the σ = 10, 15, 20, 30, 40, 50, 75, 100, respectively. Table 

4.3 shows the average PSNR result of the 20 MR images denoised by using the ensemble learning with 

the selected    . Bold numbers were used to demonstrate the maximum PSNR results. 

 

Table 4.3. The average PSNR (dB) result of the 20 MR images with Gaussian noise 

σ NLM FoE Ensemble learning 

10 38.80 38.19 39.23 

15 36.05 35.85 36.52 

20 33.98 34.03 34.52 

30 31.12 31.56 31.83 

40 29.15 29.72 29.99 

50 27.61 28.13 28.52 

75 24.96 24.9 25.95 

100 23.21 19.92 24.42 
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Figure 4.8. Average denoising PSNR results of 20 MR images with Gaussian noise. 

(From left to right, Non-local means, Fields of Experts, and Ensemble learning) 

 

Figure 4.9. Improvement of the ensemble learning of the MR images with Gaussian noise  

comparing with the best result of FoE and NLM 
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Figure 4.8 shows the average denoising PSNR results of 20 MR images with the standard error. From the 

Table 4.3 and Figure 4.8, we could confirm that the ensemble learning outperformed the NLM and FoE in 

all the cases. Like the result of natural images, the ensemble learning showed a better improvement when 

the input noise increased. Also, the ensemble learning showed a better performance when the result of the 

NLM and FoE were similar. For example, when the input sigma is 75, the PSNR result of the NLM and 

FoE are 24.96dB and 24.90dB, respectively. The PSNR result of the ensemble learning is 25.95dB. 

Figure 4.9 shows an improvement of the ensemble learning of the MR images with Gaussian noise 

comparing with the best result of FoE and NLM. Figure 4.10 shows noisy images with Gaussian noise 

and results of ensemble learning with σ =30. 
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   (1)            (2) 

 

   (3)            (4) 

Figure 4.10. Denoising results. (1) Image with Gaussian noise, σ = 30 (PSNR = 18.61dB), (2) Denoised 

image using the NLM (PSNR = 31.27dB), (3) Denoised image using the FoE (PSNR = 31.93dB), (4) 

Denoised image using the ensemble learning (PSNR = 32.07dB) with     = 40 
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4.2.2 Medical images with Rician noise 

Most denoising algorithms for medical images are built based on Rician noise distribution [10][29]. 

Unlike natural images, MR images can be obtained through a quadrature detector which that has the real 

and the imaginary parts. Therefore, Rician noise distribution is used for MR images. The ensemble 

learning for the medical image with Rician noise was evaluated on the same MR image dataset from the 

BrainWeb [15]. First, different numbers of input Rician noise were added to the original images instead of 

Gaussian noise. Rician noisy images can be made by using the formula (2.2). All the processes were the 

same as what we did on the natural images. Selecting the size of training and testing dataset was the same 

as what we did on the medical images with Gaussian noise. The dataset for training         consists of 30 

MR images, and the dataset for testing is equivalent to 20 MR images. The ensemble learning 

outperformed with the     = 5, 20, 250, 500, 500, 500, 10, 10 when the σ = 10, 15, 20, 30, 40, 50, 75, 100, 

respectively. Table 4.4 shows the average PSNR result of the 20 MR images denoised by using the 

ensemble learning with the selected    . Bold numbers display the maximum PSNR results. 

 

Table 4.4. The average PSNR (dB) result of the 20 MR images with Rician noise 

σ NLM FoE Ensemble learning 

10 34.28 34.04 34.35 

15 31.15 31.04 31.15 

20 28.84 28.88 28.87 

30 25.41 25.66 25.66 

40 23.00 23.29 23.29 

50 21.27 21.42 21.42 

75 18.67 18.17 18.71 

100 17.34 16.77 17.38 
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Figure 4.11. Average denoising PSNR results of 20 MR images with Rician noise. 

(From left to right, Non-local means, Fields of Experts, and Ensemble learning) 

 

 

Figure 4.12. Improvement of the ensemble learning of the MR images with Rician noise  

comparing with the best result of FoE and NLM 
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Figure 4.11 shows the average denoising PSNR results of 20 MR images with the standard error. Unlike 

the PSNR results of 20 MR images with Gaussian noise, the PSNR results of 20 MR images with Rician 

noise did not show an outstanding improvement. The ensemble learning shows an improvement against 

the NLM in most cases except when the input sigma is 15. The results of ensemble learning have similar 

with FoE when the input sigma is 20, 30, 40, and 50, because of the selection of    . When the     

increases like 250 or 500, the         becomes similar to the  , which is the original noisy image. 

Therefore, the denoised results with this          have almost same results like FoE. Figure 4.12 shows 

an improvement of the ensemble learning of the MR images with Rician noise comparing with the best 

results of FoE and NLM. Figure 4.13 shows the results of denoising images by using the NLM, FoE and 

ensemble learning. Because the assumption of FoE algorithm is based on Gaussian distribution, the 

ensemble learning with FoE did not perform well on Rician noise. However, FoE could be adapted to 

handle Rician noise, or alternate denoising methods could be selected for the ensemble learning. 
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   (1)            (2) 

 

   (3)            (4) 

Figure 4.13. Denoising results. (1) Image with Rician noise, σ = 30 (PSNR = 20.09dB), (2) Denoised 

image using the NLM (PSNR = 25.30dB), (3) Denoised image using the FoE (PSNR = 25.60dB), (4) 

Denoised image using the ensemble learning (PSNR = 25.60dB) with     = 500 
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5 Discussion and Conclusion 

In this study, the ensemble learning based on the Bayesian model was built using the Non-local Means 

and Fields of Experts. The ensemble learning was used for image denoising of natural images and 

medical images with Gaussian and Rician noise. Provided algorithm codes of NLM and FoE were used, 

and the ensemble learning code was written with several lines of MATLAB codes. The Berkeley 

Segmentation database was used for natural images, and BrainWeb dataset was used for medical images. 

The training dataset of natural images consists of 40 images which were randomly selected from the 

Berkeley database. The     numbers, which were used to calculate        , were selected from the 

training dataset. Another set of 80 natural images from the Berkeley database were used for testing, along 

with 6 canonical images such as Barbara and Lena. The training dataset of MR images consists of 30 

images which were chosen randomly from the BrainWeb database. Another set of 20 MR images were 

used for testing medical image denoising. Both Gaussian and Rician distribution were applied to build 

medical noisy images. PSNR was used to perform the quantitative comparisons with the original images 

and denoised images which were done by the NLM, FoE, and ensemble learning. 

For natural images, the ensemble learning was able to acquire the denoised images from the noisy images. 

The results showed that the ensemble learning quantitatively had outperformed the NLM and FoE. The 

most PSNR results of the ensemble learning showed an advanced output, and its denoising performance 

augmented the quality of the denoised images when the input noise increased. Despite the PSNR of FoE 
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dropped rapidly when the input sigma went high such as from 75 to 100, the PSNR of ensemble learning 

slightly dropped similar to NLM. For example, when the input sigma dropped from 75 to 100, the PSNRs 

of FoE were 23.19dB and 19.47dB, respectively. However, the PSNRs of ensemble learning were 

23.62dB and 22.75dB, respectively. When the PSNR of FoE was higher or similar to NLM, the PSNR of 

ensemble learning still outperformed both NLM and FoE. The ensemble learning could recover a 

disadvantage of NLM and FoE visually. The denoising results of FoE sometimes could lead to blur at 

some edges when the input sigma is high. Cyclic borders sometimes are shown on the denoising images 

of NLM. However, the ensemble learning is available to remove the cyclic borders from NLM and get 

better sharpened images at the edges. Therefore, the ensemble learning may have advantages over NLM 

and FoE. 

For medical images, the ensemble learning outperformed the NLM and FoE with Gaussian noise and 

slightly exceeded the NLM and FoE with Rician noise. The ensemble learning for medical image with 

Gaussian noise denoising outperformed the NLM and FoE, like what we did on natural images. The 

PSNR results of the most cases showed improvements over NLM and FoE. For example, the average 

PSNR of NLM and FoE, when the input sigma was 50, were 27.61dB and 28.13dB, respectively. In this 

case, the average PSNR of the ensemble learning was 28.52dB.  

The ensemble learning did not perform well on Rician noise because an assumption of FoE is based on 

Gaussian noise. However, the results still showed that the ensemble learning outperformed NLM and FoE, 

or similar with NLM and FoE. For example, the average PSNR of NLM and FoE, when the input sigma 

was 30, were 25.41dB and 25.66dB, respectively. The average PSNR of the ensemble learning was same 

as FoE, 25.66dB. In another case, the average PSNR of NLM and FoE, when the input sigma was 75, 
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were 18.67dB and 18.17dB, respectively. The average PSNR of the ensemble learning outperformed 

NLM and FoE, and the PSNR was 18.71dB. 

 

There remain some features that could be improved to the ensemble learning for our future work. The 

calculation to get         and         is based on the proportional value. In other words, we may need to 

consider the detailed calculation procedure to get the exact value of the         and        . Our model 

for  (     ) is simple, so this could be improved by learning it from natural images. Since the training 

dataset of the selection of proper         consists of 40 image patches from the Berkeley Segmentation 

Benchmark, we might need to consider more training datasets for accurate selection of        .  

We also need to consider medical image denoising with Rician noise distribution. Because 20,000 image 

patches are selected randomly from the Berkeley Segmentation database, which is consisted of only 

natural images, to build unlikely 5x5 filters of FoE algorithm, it is required to build the filters by using a 

great diversity of medical images. FoE could be adapted to handle Rician noise with learned filters, or an 

alternative denoising method should be selected to build the ensemble learning. The idea of identifying 

features within the noisy images, such as edges, that predict whether NLM or FoE will be superior for that 

image region.  

We can include additional non-probabilistic denoising methods (such as Gaussian Mixture [27] or Sparse 

coding [3]) into  our algorithm. If we add more denoising method like Gaussian Mixture, the formula (3.6) 

will be written as follow: 

 (            )   (            )
 (          )

 (          )
   (5.1) 
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The formula (5.1) can be written as follow: 

 (            )     (   ) (          )
 ( )

 (        )
   (5.2) 

   (   ) (      ) (     ) ( )           (5.3) 

 (   )  (      ) (     )  are all Gaussian distribution and  ( )  is the Fields of Experts model. 

Therefore, we would be available to calculate         and         again by using formula (3.8) – (3.12). 

Future work will include further improvements by enhancing these features of the ensemble learning. 
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