545 research outputs found

    Bayesian compressive sensing framework for spectrum reconstruction in Rayleigh fading channels

    Get PDF
    Compressive sensing (CS) is a novel digital signal processing technique that has found great interest in many applications including communication theory and wireless communications. In wireless communications, CS is particularly suitable for its application in the area of spectrum sensing for cognitive radios, where the complete spectrum under observation, with many spectral holes, can be modeled as a sparse wide-band signal in the frequency domain. Considering the initial works performed to exploit the benefits of Bayesian CS in spectrum sensing, the fading characteristic of wireless communications has not been considered yet to a great extent, although it is an inherent feature for all sorts of wireless communications and it must be considered for the design of any practically viable wireless system. In this paper, we extend the Bayesian CS framework for the recovery of a sparse signal, whose nonzero coefficients follow a Rayleigh distribution. It is then demonstrated via simulations that mean square error significantly improves when appropriate prior distribution is used for the faded signal coefficients and thus, in turns, the spectrum reconstruction improves. Different parameters of the system model, e.g., sparsity level and number of measurements, are then varied to show the consistency of the results for different cases

    A Noise-Robust Fast Sparse Bayesian Learning Model

    Full text link
    This paper utilizes the hierarchical model structure from the Bayesian Lasso in the Sparse Bayesian Learning process to develop a new type of probabilistic supervised learning approach. The hierarchical model structure in this Bayesian framework is designed such that the priors do not only penalize the unnecessary complexity of the model but will also be conditioned on the variance of the random noise in the data. The hyperparameters in the model are estimated by the Fast Marginal Likelihood Maximization algorithm which can achieve sparsity, low computational cost and faster learning process. We compare our methodology with two other popular learning models; the Relevance Vector Machine and the Bayesian Lasso. We test our model on examples involving both simulated and empirical data, and the results show that this approach has several performance advantages, such as being fast, sparse and also robust to the variance in random noise. In addition, our method can give out a more stable estimation of variance of random error, compared with the other methods in the study.Comment: 15 page

    Sparse Estimation using Bayesian Hierarchical Prior Modeling for Real and Complex Linear Models

    Get PDF
    In sparse Bayesian learning (SBL), Gaussian scale mixtures (GSMs) have been used to model sparsity-inducing priors that realize a class of concave penalty functions for the regression task in real-valued signal models. Motivated by the relative scarcity of formal tools for SBL in complex-valued models, this paper proposes a GSM model - the Bessel K model - that induces concave penalty functions for the estimation of complex sparse signals. The properties of the Bessel K model are analyzed when it is applied to Type I and Type II estimation. This analysis reveals that, by tuning the parameters of the mixing pdf different penalty functions are invoked depending on the estimation type used, the value of the noise variance, and whether real or complex signals are estimated. Using the Bessel K model, we derive a sparse estimator based on a modification of the expectation-maximization algorithm formulated for Type II estimation. The estimator includes as a special instance the algorithms proposed by Tipping and Faul [1] and by Babacan et al. [2]. Numerical results show the superiority of the proposed estimator over these state-of-the-art estimators in terms of convergence speed, sparseness, reconstruction error, and robustness in low and medium signal-to-noise ratio regimes.Comment: The paper provides a new comprehensive analysis of the theoretical foundations of the proposed estimators. Minor modification of the titl

    Structure Learning in Coupled Dynamical Systems and Dynamic Causal Modelling

    Get PDF
    Identifying a coupled dynamical system out of many plausible candidates, each of which could serve as the underlying generator of some observed measurements, is a profoundly ill posed problem that commonly arises when modelling real world phenomena. In this review, we detail a set of statistical procedures for inferring the structure of nonlinear coupled dynamical systems (structure learning), which has proved useful in neuroscience research. A key focus here is the comparison of competing models of (ie, hypotheses about) network architectures and implicit coupling functions in terms of their Bayesian model evidence. These methods are collectively referred to as dynamical casual modelling (DCM). We focus on a relatively new approach that is proving remarkably useful; namely, Bayesian model reduction (BMR), which enables rapid evaluation and comparison of models that differ in their network architecture. We illustrate the usefulness of these techniques through modelling neurovascular coupling (cellular pathways linking neuronal and vascular systems), whose function is an active focus of research in neurobiology and the imaging of coupled neuronal systems
    • …
    corecore