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In sparse Bayesian learning (SBL), Gaussian scale mixtures (GSMs) have been used to
model sparsity-inducing priors that realize a class of concave penalty functions for the
regression task in real-valued signal models. Motivated by the relative scarcity of formal
tools for SBL in complex-valued models, this paper proposes a GSM model - the Bessel K
model - that induces concave penalty functions for the estimation of complex sparse
signals. The properties of the Bessel K model are analyzed when it is applied to Type I and
Type II estimation. This analysis reveals that, by tuning the parameters of the mixing pdf
different penalty functions are invoked depending on the estimation type used, the value
of the noise variance, and whether real or complex signals are estimated. Using the Bessel
K model, we derive sparse estimators based on a modification of the expectation–
maximization algorithm formulated for Type II estimation. The estimators include as
special instances the algorithms proposed by Tipping and Faul [1] and Babacan et al. [2].
Numerical results show the superiority of the proposed estimators over these state-of-
the-art algorithms in terms of convergence speed, sparseness, reconstruction error, and
robustness in low and medium signal-to-noise ratio regimes.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

Compressive sensing and sparse signal representation
have attracted the interest of an increasing number of
researchers over the recent years [3–6]. This is motivated
by the widespread applicability that such techniques have
found in a large variety of engineering disciplines. Generally
speaking, these disciplines consider the following signal
model:

y¼Φwþn: ð1Þ
au.dk (M.-A. Badiu),
. Fleury).
In this expression, y is an M � 1 vector of measurement
samples, Φ¼ ½ϕ1; …;ϕN� is an M�N dictionary matrix with
N4M. The additive term n is an M � 1 perturbation vector,
which is assumed to be Gaussian distributed with zero-
mean and covariance λ�1I, where λ40 denotes the noise
precision and I is the identity matrix. The objective is to
accurately estimate the N � 1 unknown weight vector
w¼ ½w1;…;wN�T, which is assumed K-sparse in the
canonical basis.

We coin the signal model (1) as either real, when Φ, w,
and n are all real, or as complex, when Φ, w, and n are all
complex.1 Historically, real signal models have dominated
1 Obviously, one could also consider a mixed model where, e.g., Φ
and n are complex but w is real. In this paper we focus on the two most
relevant cases of real and complex signal models as defined earlier.
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the research in sparse signal representation and compressive
sensing. However, applications seeking sparse estimation for
complex signal models are not uncommon. An example is the
estimation of multipath wireless channels [6–9]. The exten-
sion of sparse representation from real signal models to
complex models is not always straightforward, as we will
discuss in this paper.

Many convex [10,11], greedy [12,13], and Bayesian
methods have been proposed in the literature in recent
years to devise sparse estimators. In this paper, we focus
on Bayesian inference methods commonly referred to as
sparse Bayesian learning (SBL) [14,15]. In SBL, we design
priors for w that induce sparse representations of Φw.
Instead of working directly with the prior probability
density function (pdf) pðwÞ, SBL typically uses a two-
layer hierarchical prior model that involves a conditional
prior pdf pðwjγÞ and a hyperprior pdf pðγÞ. The goal is to
select these pdfs in such a way that we can construct
computationally tractable iterative algorithms that esti-
mate both the hyperparameter vector γ and the weight
vector w with the latter estimate being sparse. A widely
used two-layer prior model is the model where the entries
of w are independent and identically distributed according
to a Gaussian scale mixture (GSM) [16–20]. Specifically, wi

is modeled as wi ¼ ffiffiffiffi
γi

p ui, where ui is a standard Gaussian
random variable and γi is a non-negative random scaling
factor, also known as the mixing variable.2 The pdf pðγiÞ of
the latter variable is called the mixing pdf of the GSM.
Based on a careful selection of pðγiÞ; an inference algorithm
is then constructed. The sparsity-inducing property of the
resulting estimator does not only depend on pðγiÞ but also
on the type of inference method used, as discussed next.

In SBL two widespread inference approaches, referred
to as Type I and Type II estimation following [21], have
been used. In Type I estimation, the maximum-a-posteriori
(MAP) estimate of w is computed from the observation y:

ŵ IðyÞ ¼ argmax
w

pðwjyÞ

¼ argmax
w

log
Z

pðyjwÞpðwjγÞpðγÞ dγ: ð2Þ

Equivalently, the Type I estimator ŵ I is obtained as the
minimizer of the Type I cost function

LIðwÞ9ρ‖y�Φw‖22þλ�1qIðwÞ: ð3Þ

In the above expression, ‖ � ‖p, pZ1, is the ℓp�norm and
the parameter ρ takes values ρ¼ 1=2 when the signal
model (1) is real and ρ¼ 1 when it is complex. The pdf
pðγÞ is designed such that the penalization term qIðwÞpe

� logpðwÞ with pðwÞ ¼ R
pðwjγÞpðγÞ dγ enforces a sparse

estimate of the weight vector w.3

In Type II estimation [22,14,15], the MAP estimate of γ
is computed from the observation y:

γ̂ IIðyÞ ¼ argmax
γ

pðγjyÞ
2 In this configuration, γi can be seen as the variance of wi.
3 Here xpe y denotes expðxÞ ¼ expðυÞexpðyÞ, and thus x¼ υþy, for

some arbitrary constant υ. We will also make use of xpy, which denotes
x¼ υy for some positive constant υ.
¼ argmax
γ

log
Z

pðyjwÞpðwjγÞpðγÞ dw: ð4Þ

Thus, the estimator γ̂ II is the minimizer of

LIIðγÞ9ρyHC�1yþρlogjCj� logpðγÞ ð5Þ
with C9λ�1IþΦΓΦH and Γ¼ diagðγÞ. The Type II estima-
tor of w follows as

ŵ IIðyÞ ¼ 〈w〉pðwjy;γ̂ II ðyÞÞ ¼ ΦHΦþλ�1bΓ�1
II

� ��1
ΦHy; ð6Þ

where bΓII ¼ diagðγ̂ IIðyÞÞ and 〈 � 〉pðxÞ denotes expectation
over the pdf pðxÞ. The impact of pðγÞ on the estimator ŵ II

is not straightforward. This complicates the task of select-
ing pðγÞ inducing a sparse estimate of w. In [21], the
relationship between Type I and Type II estimation has
been identified. This result makes it possible to compare
the two estimation methods. Invoking [21, Theorem 2],
ŵ IIðyÞ is equivalently the minimizer of the Type II cost
function

LIIðwÞ9ρ‖y�Φw‖22þλ�1qIIðwÞ ð7Þ
with penalty

qIIðwÞ ¼min
γ

ρwHΓ�1wþρlogjCj� logpðγÞ� �
: ð8Þ

Specifically, ŵ IIðyÞ in (6) equals the global minimizer of
LIIðwÞ if and only if γ̂ IIðyÞ equals the global minimizer of
LIIðγÞ. Likewise, ŵ⋆ðyÞ ¼ 〈w〉pðwjy;γ̂⋆ðyÞÞ is a local minimizer
of LIIðwÞ if and only if γ̂⋆ðyÞ is a local minimizer of LIIðγÞ.

The MAP estimates in (2) and (4) cannot usually be
computed in closed-form and one must resort to iterative
inference methods to approximate them. One method is the
Relevance Vector Machine (RVM) [14,15]. In RVM the mixing
pdf pðγiÞ is equal to an improper constant prior. An instance of
the expectation–maximization (EM) algorithm is then formu-
lated to approximate the Type II estimator. Another method,
devised for real signal models in [23], uses the EM algorithm
to approximate two popular Type I estimators with respec-
tively ℓ1�norm and log-sum constrained penalization. These
penalization terms arise from selecting the mixing pdf equal
to an exponential pdf and the non-informative Jeffreys prior,
respectively. In the former case, the marginal prior pdf pðwÞ is
the product of Laplace pdfs and LIðwÞ equals the cost function
of Least Absolute Shrinkage and Selection Operator (LASSO)
[10] or Basis Pursuit Denoising [11].4

The sparse estimators in [14,15,23] inherit the limitation
of the instances of the EM algorithm that they embed: high
computational complexity and slow convergence [1]. To
circumvent this shortcoming, a fast inference framework is
proposed in [1] for RVM and later applied to derive the Fast
Laplace algorithm [2]. The latter algorithm is derived based
on an augmented probabilistic model obtained by adding a
third layer to the real GSMmodel of the Laplace pdf; the third
layer introduces a hyper-hyperprior for the rate parameter of
the exponential pdf, which coincides with the regularization
parameter of the ℓ1 penalization induced by the Laplace prior.
4 Let us point out that the hierarchical representation resulting in the
ℓ1�norm presented in [23] is only valid for real-valued variables. In this
paper, we extend this representation to cover complex-valued variables
as well.
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However, as Fast Laplace is based on Type II estimation, it
cannot be seen as the adaptive Bayesian version of the ℓ1 re-
weighted LASSO algorithm [24]. The Bayesian version of this
latter estimator is proposed in [25,26].

Even though the fast algorithms in [1] and [2] converge
faster than their EM counterparts, they still suffer from slow
convergence, especially in low and moderate signal-to-noise
ratio (SNR) regimes as we will demonstrate in this paper.
Furthermore, in these regimes, the algorithms significantly
overestimate the number of non-zero weights. We will show
that this behavior is, in fact, a consequence of the prior
models used to derive the algorithms.

Coming back to the original motivation of this work,
though complex GSM models have been proposed in the
literature [27,28], they have not been extensively applied
within the framework of SBL. An example illustrating this
fact is the hierarchical modeling of the ℓ1�norm in Type I
estimation. While this penalty results from selecting the
exponential mixing pdf for the entries in γ in real GSM
models, said pdf will not induce the ℓ1�norm penalty for
complex models. Yet to the best of our knowledge, the
complex GSM model realizing the ℓ1�norm penalty has not
been established in the literature. Moreover, it is not evident
what sparsity-inducing property the complex GSM model
exhibits when applied in Type II estimation. Motivated by the
relative scarcity of formal tools for sparse learning in complex
models and inspired by the recent analysis of sparse Bayesian
algorithms in [21], we propose and investigate an SBL
approach that applies to both real and complex signal models.

Starting in Section 2, we first present a GSM model for
both real and complex sparse signal representationwhere the
mixing pdf pðγiÞ is selected to be a gamma pdf. When w is
real, the marginal prior pdf pðwÞ equals the product of Bessel
K pdfs [17–19].5 We extend the Bessel K model to cover
complex weights and model for this extension several pen-
alty functions previously introduced for inferring real sparse
weights. One important example is the hierarchical prior
modeling inducing the ℓ1�norm penalty for complex
weights. We then analyze the Type I and Type II estimators
derived from the Bessel K model. We show that a sparsity-
inducing prior for Type I estimation does not necessarily have
this property for Type II estimation and, interestingly, a
sparsity-inducing prior for real weights is not necessarily
sparsity-inducing for complex weights. In the particular case,
where the dictionary matrix Φ is orthonormal, we demon-
strate, using the EM algorithm, that Type I and Type II
estimators derived using the Bessel K model are general-
izations of the soft-thresholding rule with degree of sparse-
ness depending on the selection of the shape parameter of
the gamma pdf pðγiÞ. Additionally, we show that this model
has a strong connection to the Bayesian formalism of the
group LASSO [26,29]. Note that the Bessel K model has been
previously introduced for sparse signal representation
[30,31]. However, these works were restricted to the infer-
ence of real weights and did not consider the relationship
between Type I and Type II estimation.
5 The Bessel K pdf is in turn a special case of even a larger class of
generalized hyperbolic distributions [17], obtained when the mixing pdf
is a Generalized Inverse Gaussian pdf.
In Section 3, we propose greedy, low-complexity estimators
using the Bessel K model. The estimators are based on a
modification of the EM algorithm for Type II estimation. As the
Bessel K model encompasses the prior models used in [1] and
[2], the iterative algorithms derived in these publications can
be seen as instances of our estimators for particular settings of
the associated parameters of the gamma mixing pdf.

Section 4 provides numerical results obtained via Monte
Carlo simulations that reveal the superior performance of the
proposed estimators in terms of convergence speed of the
algorithms, sparseness, and mean-squared error (MSE) of
the estimates. Furthermore, and of great importance in many
engineering areas, the estimators show a significant robust-
ness in low and moderate SNR regimes; a property not
exhibited by the traditional SBL estimators, such as [1] and
[2], and other state-of-the-art non-Bayesian sparse estimators.
This result opens for a potential application of our estimators
in systems operating in these SNR regimes, e.g., receivers in
wireless communications [7,8]. Furthermore, the proposed
estimators can inherently incorporate the estimation of the
noise variance. In the literature, this parameter is often lear-
ned from a training procedure or tuned for optimality. Since
the algorithms in [1] and [2] only differ from ours in the
choice of parameters of the mixing pdf, we can safely conc-
lude that the observed performance benefits are a direct
consequence of our proposed prior model.

Finally, we conclude the paper in Section 5.
2. The Bessel K model for real and complex signal
representation

In this section we present the Bessel K model for SBL. We
first state the probabilistic model of the signal model (1).
Based on this probabilistic model we analyze the Type I and
Type II cost functions. We then show how to obtain various
estimators with different sparsity-inducing properties by
appropriately setting the parameters of the Bessel K model.
2.1. Probabilistic model

We begin with the specification of the probabilistic
model for (1) augmented with the two-layer prior model
for w:

pðy;w; γÞ ¼ pðyjwÞpðwjγÞpðγÞ: ð9Þ
From (1), pðyjwÞ ¼Nðy;Φw; λ�1IÞ if the signal model is real
and pðyjwÞ ¼ CNðy;Φw; λ�1IÞ if the model is complex.6

The sparsity constraints on w are determined by the joint
prior pdf pðwjγÞpðγÞ. Motivated by previous works on GSM
modeling and SBL [14,15,23] we select the conditional prior
pdf pðwjγÞ to factorize in a product of zero-mean Gaussian
pdfs: pðwjγÞ ¼∏ipðwijγiÞ; where

p wijγi
� �¼ ρ

πγi

	 
ρ

exp �ρ
jwij2
γi

	 

: ð10Þ
6 Nð�;a;BÞ and CNð�;a;BÞ denote, respectively, a multivariate real and a
multivariate complex Gaussian pdf with mean vector a and covariance
matrix B. We shall also make use of the gamma pdf
Ga �; a;bð Þ ¼ ba

ΓðaÞx
a�1exp �bxð Þ with shape parameter a and rate parameter b.



Fig. 1. One contour line of the restriction to R2 of (a) qIðw1 ;w2; ϵ; η¼ 1Þ and (b) qIIðw1;w2; ϵ; η¼ 1Þ for selected values of ϵ. In (b) Φ is orthonormal and
λ�1 ¼ 1=4. The gray dashed lines depict the contour lines corresponding to the setting ϵ¼ η¼ 0, i.e., the mixing density equals the Jeffreys prior. (a) Type I
(b) Type II.
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In the above expression, ρ¼ 1=2 when w is real and ρ¼ 1
when w is complex. We choose the mixing pdf pðγÞ to be a
product of identical gamma pdfs, i.e., pðγÞ ¼∏ipðγi; ϵ; ηÞ with
pðγi; ϵ; ηÞ9Gaðγi; ϵ; ηÞ. The prior pdf for w is then given by
pðw; ϵ; ηÞ ¼ R

pðwjγÞpðγ; ϵ; ηÞ dγ¼∏ipðwi; ϵ; ηÞ with

p wi; ϵ; ηð Þ ¼ 2ðρηÞðϵþ ρÞ
2

πρΓðϵÞ wijϵ�ρKϵ�ρ 2
ffiffiffiffiffi
ρη

p
wijÞ:
����� ð11Þ

In this expression, Kνð�Þ is the modified Bessel function of the
second kind and order νAR. In case w is real ðρ¼ 1=2Þ, we
obtain the GSMmodel of the Bessel K pdf [17,18]. Wewill keep
the same terminology whenw is complex ðρ¼ 1Þ.7 The Bessel
K pdf (11) represents a family of prior pdfs forw parametrized
by ϵ and η. By selecting different values for ϵ and η, we realize
various penalty functions for Type I and Type II estimation as
shown in the following.

2.2. Type I cost function

The Type I cost function LIðwÞ induced by the Bessel K
model is given by (3) with penalty qIðwÞ ¼P

iqIðwi; ϵ; ηÞ where

qIðwi; ϵ; ηÞ9� log jwijϵ�ρKϵ�ρð2 ffiffiffiffiffi
ρη

p jwijÞ
� �

: ð12Þ
Special cases of Type I penalties resulting from the Bessel K pdf
have already been considered in the literature for sparse
regression when the weights are real [30,31]. We review them
together with introducing the corresponding extension to
complex weights.

2.2.1. The ℓ1�norm penalty
This penalty is of particular importance in sparse signal

representation as the convex relaxation of the ℓ0�norm.8

When w is real, it is well-known that the Laplace prior
induces the ℓ1�norm penalty. The Bessel K pdf (11)
encompasses the Laplace pdf as a special case with the
7 To the authors' best knowledge, the GSM model of the Bessel K pdf
has only been presented for real variables.

8 The ℓ0�norm of the vector x is the number of non-zero entries in x.
Note that by abuse of terminology ‖ � ‖0 is coined a norm even though it
does not fulfill all properties of a norm.
selection ϵ¼ 1 and ρ¼ 1=2:9

p wi; ϵ¼ 1; ηð Þ ¼
ffiffiffi
η

2

r
exp �

ffiffiffiffiffiffi
2η

p
jwij

� �
; wiAR: ð13Þ

The Laplace pdf for real weights is thereby the pdf of a
GSM with an exponential mixing pdf [16].

The extension of (13) to w complex is not straightfor-
ward. One approach is to treat the real and imaginary
parts of each wi independently with both parts modeled
according to the real GSM representation of the Laplace
pdf. Doing so using (13) we obtain p wið Þ ¼ η

2expð�
ffiffiffiffiffiffi
2η

p
ð Refwig þ Imfwig ÞÞ

�������� . Obviously this approach does not
lead to the ℓ1�norm penalty for Type I estimation.10 The
complex GSM model with a gamma mixing pdf with shape
parameter ϵ¼ 3=2 does induce this penalty. Indeed, with
this setting, (11) becomes, for ρ¼ 1;

p wi; ϵ¼ 3=2; η
� �¼ 2η

π
exp �2

ffiffiffi
η

p
wijÞ; wiAC:
��� ð14Þ

Throughout the paper, we refer to the pdf in (14) as the
Laplace pdf for complex weights.

In summary, the Bessel K model induces the ℓ1�norm
penalty qIðwÞ ¼ 2

ffiffiffiffiffi
ρη

p P
ijwij with the selection ϵ¼ ρþ1=2.

The introduced GSM model of the Laplace pdf for both real
and complex variables is strongly connected with the
group LASSO and its Bayesian interpretation [26,29],
where sparsity is enforced simultaneously over groups of
k variables. In the Bayesian interpretation of the group
LASSO a gamma pdf with shape parameter ðkþ1Þ=2 is
employed to model the prior for each of the variables in a
group. This choice of shape parameter is consistent with
the choice of ϵ in the GSM model of the Laplace prior: in
the real case a group consists of k¼1 variable and, thus,
ðkþ1Þ=2¼ 1, whereas in the complex case, a group con-
sists of the real and imaginary parts of a complex variable,
hence, k¼2 and ðkþ1Þ=2¼ 3=2.
9 Here, we make use of the identity K1
2
zð Þ ¼ ffiffiffiffi

π
2z

p
exp �zð Þ [32].

10 The ℓ1�norm for the complex vector x is defined as

‖x‖1 ¼
P

ijxij ¼
P

i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re2fxigþ Im2fxig

q
[33,34].



Fig. 2. One contour line of the restriction to R2 of (a) qIIðw1;w2; ϵ¼ 1=2; η¼ 1Þ, (b) qIIðw1;w2; ϵ¼ 1; η¼ 1Þ, and (c) qIIðw1 ;w2; ϵ¼ 1; η¼ 0Þ with Φ orthonormal
and λ�1 as a parameter. Note that qIIðw1;w2; ϵ¼ 1; η¼ 0Þ in (c) coincides with the penalty used in RVM [14,15]. (a) Bessel K, ϵ¼ 1=2 (b) Bessel K, ϵ¼ 1 (c) RVM.
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2.2.2. The log-sum penalty
The selection ϵ¼ η¼ 0 in (11) entails the Jeffreys (impro-

per) prior density pðγiÞpγ�1
i and thereby the improper

marginal prior density pðwÞp∏ijwij�2ρ. Thus, when the
mixing density of the GSM is chosen to be non-informative,
the log-sum penalization qIðwÞ ¼ 2ρ

P
i logjwij is invoked in

(3). This penalty has gained much interest in the literature,
including [14,15,23,24,35], as it is known to strongly pro-
mote sparse estimates.

2.2.3. The Bessel K penalty
The Bessel K pdf can be used with arbitrary values of

ϵZ0 controlling its sparsity-inducing property. To illus-
trate this, Fig. 1(a) depicts one contour line of the restric-
tion11 to R2 of qIðw1;w2; ϵ; ηÞ in (12) for selected values of ϵ.
As ϵ approaches zero, more probability mass concentrates
along the w�axes. As a consequence, the mode of the
resulting posterior pdf pðwjy; ϵ; ηÞ is more likely to be close
to the axes, thus encouraging a sparse estimate. The
behavior of the ℓ1�norm penalty that results from the
selection ϵ¼ ρþ1=2¼ 3=2 is also clearly recognized.

2.3. Type II cost function

We invoke Theorem 2 in [21] to obtain the Type II cost
function induced by the Bessel K model (see (7) and (8)):

LIIðwÞ9ρ‖y�Φw‖22þλ�1qIIðwÞ ð15Þ
with

qIIðw; ϵ; ηÞ ¼min
γ

ρwHΓ�1wþρlogjCjþð1�ϵÞ
X
i

log γiþη
X
i

γi

( )
:

ð16Þ
In contrast to qIðwÞ, qIIðwÞ is non-separable. This makes

an interpretation of qIIðwÞ as done for qIðwÞ in Fig. 1(a)
rather difficult. However, this interpretation becomes
straightforward if Φ is orthonormal, i.e., ΦHΦ¼ I. In this
11 Let f denote a function defined on a set A. The restriction of f to a
subset B� A is the function defined on B that coincides with f on this
subset.
case qIIðwÞ is separable, i.e., qIIðwÞ ¼P
iqIIðwiÞ with

qII wi; ϵ; ηð Þ ¼min
γi

ρ
jwij2
γi

þρlog λ�1þγi
� �þ 1�ϵð Þlog γiþηγi

� 
:

ð17Þ
Fig. 1(b) shows the contours of the restriction to R2 of
qIIðw1;w2; ϵ; ηÞ in (17) for different values of ϵ. Again, we
observe the same increased concentration of mass around
the w�axes for decreasing values of ϵ. Interestingly,
qIIðw1;w2; ϵ¼ 3=2; ηÞ is no longer sparsity-inducing as com-
pared to qIðw1;w2; ϵ¼ 3=2; ηÞ. Thus, a sparsity-inducing prior
model for Type I estimation is not necessarily sparsity-
inducing for Type II estimation. We further investigate this
important result in Section 2.4.

Another important property of the Type II penalty is its
dependency on the noise variance λ�1. Figs. 2(a) and (b)
depict a single contour line of (17) for two values of ϵ and two
values of λ�1. Notice that qIIðw; ϵ¼ 1=2; η¼ 1Þ resembles the
log-sum penalty even in noisy conditions. For comparison
purposes, we show in Fig. 2(c) the Type II penalty computed
with the prior model in RVM [14,15] which utilizes a constant
prior pdf pðγiÞp1 (corresponding to setting ϵ¼ 1 and η¼ 0 in
(16)). When λ�1 ¼ 0 the RVM penalty equals the log-sum
penalty. However, in noisy conditions, the RVM penalty
resembles the ℓ1�norm penalty. Note that we cannot simply
set λ�1 to some small value in order to obtain a strong
sparsity-inducing penalty in RVM as λ�1 acts as a regulariza-
tion of qIIðwÞ in (15). Based on this observation, we expect
that the Type II estimator derived from the Bessel K model
achieves improved sparsity performance as compared to RVM
in noisy scenarios. The numerical results conducted in Section
4 demonstrate that this is indeed the case.
2.4. Type I and Type II estimation

Having evaluated the impact of ϵ on qIðwÞ and qIIðwÞ,
we now investigate its effect of this parameter on the
corresponding Type I and Type II estimators. We demon-
strated that as ϵ decreases, qIðwÞ and qIIðwÞ become more
and more sparsity-inducing which motivates the selection
of a small ϵ for sparse estimation. On the other hand the



Fig. 3. Restriction to ImfϕH
i yg ¼ 0 of the EM-based Type I and Type II estimators of the complex weight wi when Φ is orthonormal. The gray dashed lines

depict the estimator corresponding to the setting ϵ¼ η¼ 0, i.e., when pðγiÞ equals the Jeffreys prior. The black dashed lines represent the hard-threshold
rule. All results were generated using λ�1 ¼ 1=4 and η set such that λ�1

ffiffiffiffiffiffiffiffi
η=ρ

p
¼ 1. (a) Type I (b) Type II.
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Bessel K model for Type I and Type II estimation domin-
ates the information contained in the observation y for
decreasing values of ϵ. Specifically, in case of Type I , when
ϵrρ then limwi-0qIðwiÞ ¼ �1, hence, the Type I estimator
does not exist as LIðwÞ has singularities. Likewise, this is
the case for the Type II estimator when ϵo1. The
unbounded behavior of these penalties naturally questions
the practicability of the Bessel K model in SBL. At least one
would expect that we should refrain from selecting ϵrρ in
case of Type I estimation and ϵo1 for Type II estimation.
Note, however, that utilizing unbounded penalties in SBL is
not uncommon. Examples include [30,31] as well as the
popular GSM model realizing the log-sum penalty in, e.g.,
[23]. Furthermore, the sparsity-inducing behavior of the
penalty curves in Figs. 1 and 2 provides a strong motiva-
tion for using the Bessel K model in SBL. The approach is to
formulate approximate inference algorithms, such as EM,
for Type I and Type II estimation that overcome the
difficulty of the singularities in the objective functions.
2.4.1. Approximate Type I estimation
The EM algorithm approximating the Type I estimator

makes use of the complete data fγ; yg for w.12 The M-step
computes an estimate of w as the maximizer of

〈logðpðyjwÞpðwjγÞpðγÞÞ〉pðγ;ŵ Þ; ð18Þ

where pðγ; ŵÞ is computed in the E-step. Notice that as
pðwjy; γÞppðyjwÞpðwjγÞ is proportional to a Gaussian pdf
for w, (18) does not have any singularity in contrast to
LIðwÞ.

In order to get further insight into the impact of ϵ on the
EM algorithm, we follow [23] and letΦ be orthonormal such
that the EM update of the estimate of w decouples into N
independent scalar optimization problems. Fig. 3(a) visua-
lizes the EM estimator for different values of ϵ. Clearly, the
EM estimator approximates the soft-thresholding rule for
large values of RefϕH

i yg and as ϵ decreases the threshold
value increases, thus, encouraging sparsity.
12 This EM algorithm is derived in Appendix A.
When the Bessel K pdf equals the Laplace pdf (i.e.,
ϵ¼ ρþ1=2), ŵ I coincides with the soft-thresholding rule,
which can be computed in closed form:

ŵI;i yð Þ ¼ sign ϕH
i y

� �
max 0; ϕH

i y �λ�1
ffiffiffi
η

ρ

r���� 
; i¼ 1;…;N:

�����
ð19Þ

Here, signðxÞ ¼ x=jxj is the sign function. Notice that the EM
estimator with ϵ¼ ρþ1=2 approximates (19) as depicted
in Fig. 3(a).

2.4.2. Approximate Type II estimation
The EM algorithm approximating Type II estimation is

devised using fw; yg as the complete data for γ.13 The M-step
computes an estimate of γ as the maximizer of

〈logðpðyjwÞpðwjγÞpðγÞÞ〉pðw;γ̂ Þ; ð20Þ
with pðwjγ̂Þ computed in the E-step. As pðγjwÞppðwjγÞpðγÞ
is a Generalized Inverse Gaussian (GIG) pdf for γ, (20) does
not exhibit any singularity as opposed to LIIðγÞ.

In Fig. 3(b), we show the EM estimate of wi for different
settings of ϵ. Similar to Type I , the Type II estimate approaches
the soft-thresholding rule as RefϕH

i yg becomes larger and as ϵ
decreases a sparser estimate is obtained. However, when
ϵ¼ 3=2, i.e., utilizing the Laplace GSM model for the complex
weights, the Type I estimator coincides with the soft-threshold
rule while the Type II estimator does not have this threshold-
like behavior and is not sparse. This was already indicated by
the behavior of qIIðw; ϵ¼ 3=2; ηÞ in Fig. 1(b).

From Fig. 3 we conclude that the EM-based Type I
estimator is a sparse estimator for ϵrρþ1=2, whereas the
EM-based Type II estimator only exhibits this property for
ϵr1. In Fig. 4, we illustrate this important difference in the
behavior of these estimators for real and complex signal
representation when utilizing the GSM model of the Laplace
prior: the EM-based Type I estimator achieves a sparse
solution for both real and complex weights, whereas for the
EM-based Type II estimator this is only the case for real
weights.
13 This EM algorithm is derived in Section 3.1.



Fig. 4. EM-based Type I and Type II estimates using the Laplace GSM model for (a)-(b) real and (c)-(d) complex weights. For these simulations, ΦAC50�128

with its entries drawn independently according to ϕmi � CNð0;1=MÞ. The K¼12 non-zero entries inw are of the formwk ¼ expðjθkÞwith θk, k¼ 1;…;K , drawn
independently according to a uniform distribution on ½0;2πÞ. The SNR is fixed at 60 dB. (a) ρ¼ 1=2, ϵ¼ 1 (b) ρ¼ 1=2, ϵ¼ 1 (c) ρ¼ 1, ϵ¼ 3=2 (d) ρ¼ 1, ϵ¼ 3=2.

14 The selected mixing pdf also has a significant impact on the
convergence speed as shown in Section 4.
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3. Sparse Bayesian inference

In this section we derive a Bayesian inference scheme that
relies on the Bessel K model presented in Section 2. First, we
obtain an EM algorithm that approximates the Type II esti-
mator of the weight vector w in (6). Inspired by [1] and [36]
we then derive a fast algorithm based on a modification of the
EM algorithm. We show that this algorithm actually encom-
passes the fast algorithms in [1] and [2] as special instances.

Naturally, the approach presented here can also be applied
to derive algorithms approximating the Type I estimator.
However, numerical investigations not reported here indicate
that these algorithms often fail to produce sparse estimates of
w when small values of the parameter ϵ are selected. Hence,
we restrict the discussion in this section to algorithms
approximating the Type II estimator.

3.1. Sparse Bayesian inference using EM

We adapt the EM algorithm approximating the Type II
estimator previously used for SBL [14,1,15,37,2] to the
Bessel K model. As the value of λ is in general unknown
and has a significant impact on the sparsity-inducing
property on qIIðwÞ (see Section 2), we include the estima-
tion of this parameter in the inference framework. We
seek the MAP estimate of fγ; λg, i.e., the maximizer of

Lðγ; λÞ ¼ logpðy; γ; λÞ ¼ logðpðyjγ; λÞpðγÞpðλÞÞ: ð21Þ
We use the EM algorithm to approximate the MAP
estimator. We specify fw; yg to be the complete data for
fγ; λg. With this choice the E-step of the EM algorithm
computes the conditional expectation

〈logpðy;w; γ; λÞ〉pðwjy;γ½t� ;λ½t� Þ ð22Þ

with pðwjy; γ½t�; λ½t�Þ ¼Nðw; μ½t�;Σ½t�Þ or pðwjy; γ½t�; λ½t�Þ ¼ CN
ðw; μ½t�;Σ½t�Þ depending on whether the underlying signal
model is real or complex. Here, ð�Þ½t� denotes the estimate
of the parameter given as an argument at iteration t. In
either case, the parameters of the conditional pdf of w
read

Σ½t� ¼ λ½t�ΦHΦþðΓ½t�Þ�1
� ��1

; ð23Þ

μ½t� ¼ λ½t�Σ½t�ΦHy: ð24Þ
The M-step of the EM algorithm updates the estimate of
fγ; λg as the maximizer of (22):
γ½tþ1�
i ¼

ϵ�ρ�1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðϵ�ρ�1Þ2þ4ρη〈jwij2〉½t�

q
2η

; i¼ 1;…;N;

ð25Þ

λ½tþ1� ¼ M
‖y�Φμ½t�‖22þtrðΦHΦΣ½t�Þ: ð26Þ

Here, 〈jwij2〉½t� is the ith diagonal element of Σ½t� þμ½t�ðμ½t�ÞH
computed in the E-step and trð�Þ is the trace operator.

3.2. Modified update of γ½tþ1�
i

One of the major drawbacks of the EM algorithm approx-
imating the Type II estimator is its slow convergence, as
observed in [1].14 In this section, we discuss a modification
of the EM algorithm that improves the convergence speed. The
proposed algorithm is inspired by [1] and [36]. To this end, we
focus on the update of a single estimate of γi and express this
update as a (non-linear recurrent) function of the previous
update. Then, we analyze the fixed points of this function for
different settings of the hyperparameters ϵ and η and formu-
late a new update rule for the estimate of γi at iteration tþ1
based on these fixed points. From this point on, we restrict our
analysis to the Bessel K model with ϵr1 since, as discussed in
Section 2, the setting ϵ41 does not yield a sparse Type II
estimator.

To begin, we consider the update in (25) for a single
parameter γi while considering the estimates γ½t�k , ka i, and
λ½t� as fixed quantities. In Appendix B.1, we show that the
dependency of 〈jwij2〉½t� on γ½t�i is expressed as

〈jwij2〉½t� ¼
ðγ½t�i Þ2ðs

½t�
i þjq½t�i j2Þþγ½t�i ðs

½t�
i Þ2

ðγ½t�i þs½t�i Þ2
ð27Þ

with s½t�i 9eTi Σ
½t�
� iei, q½t�i 9λ½t�eTi Σ

½t�
� iΦ

Hy, Σ½t�
� i9 ðλ½t�ΦHΦþP

ka iðγ½t�k Þ�1ekeTkÞ�1 and ei denoting an N � 1 vector of all
zeros but 1 at the ith position. By inserting (27) into (25),
we obtain an update expression of the form

γnewi ¼ φ½t�
i ðγoldi Þ ð28Þ

where the function φ½t�
i is parametrized by ϵ, η, s½t�i , and q½t�i .

Next, we explore the hypothetical behavior of the estimates of
γi that we would obtain by recursively applying φ½t�

i ad
infinitum. We do so by analyzing the existence of fixed points
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of the function φ½t�
i . A fixed point ~γ i of φ

½t�
i must fulfill

~γ i ¼ φ½t�
i ~γ i
� �¼ ϵ�ρ�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðϵ�ρ�1Þ2þ4ρη

~γ2i ðsiþjqij2Þþ ~γ is2i
ð~γ iþsiÞ2

s
2η

ð29Þ

where, for notational simplicity, we have dropped the itera-
tion index for si and qi. By inspection of (29), it is clear that
~γ i ¼ 0 is always a fixed point of φ½t�

i when ϵr1. We look for
other positive fixed points by solving (29). These fixed points
are solutions of the fourth order equation

0¼ γi ηγ
3
i þγ2i ½2ηsi�ðϵ�ρ�1Þ��

þγi½ηs2i �2ðϵ�ρ�1Þsi�ρðsiþjqij2Þ��ðϵ�1Þs2i
�
: ð30Þ

Hence, if any strictly positive fixed point ~γ i of φ
½t�
i exists, it

must be a solution of the cubic equation

0¼ ηγ3i þγ2i ½2ηsi�ðϵ�ρ�1Þ�
þγi½ηs2i �2ðϵ�ρ�1Þsi�ρðsiþjqij2Þ��ðϵ�1Þs2i : ð31Þ

As we show in Appendix B.2, the positive solutions of (31) cor-
respond, in fact, to the stationary points of (21) when all var-
iables except γi are kept fixed at their current estimates, i.e., of

ℓ½t�
i ðγiÞpe logðpðyjγi; γ½t�� i; λ

½t�ÞpðγiÞÞ: ð32Þ
Based on the above analysis, we formulate a new

update rule for γi at iteration tþ1. Given the values of all
estimates at iteration t, we calculate the fixed points of the
corresponding function φ½t�

i by solving (30). Then
�
 if no strictly-positive fixed points of φ½t�
i exist, we set

γ½tþ1�
i ¼ 0, which, remember, is also a fixed point of φ½t�

i ;
�
 if strictly-positive fixed points of φ½t�
i exist, we select the

fixed point ~γ i which yields the largest value ‘½t�i ð~γ iÞ
among all strictly positive fixed points. We then set
γ½tþ1�
i ¼ ~γ i.

Note that the above selection criterion for γ½tþ1�
i is a

heuristic choice. In fact, we have no guarantee that, by
iteratively applying the recurrent function φ½t�

i , conver-
gence to the selected fixed point will occur. This depends
on the initialization γ½t�i . Moreover, when ϵo1, selecting a
strictly-positive fixed point instead of zero does not
guarantee that the objective function (21) is increased, as
(32) diverges to infinity when γi tends to zero.15 With this
selection, however, we hope to obtain an improved con-
vergence speed at the expense of sacrificing the mono-
tonicity property of the EM algorithm. The numerical
results obtained with this heuristic choice, shown in
Section 4, confirm the effectiveness of the approach.

Next we investigate the solutions of (30) for different
selections of ϵ and η. We show that for some particular
selections of these parameters, the modified update of
γ½tþ1�
i coincides with the updates in the algorithms pre-
sented in [1] and [2]. For brevity, we omit the algorithmic
iteration index t throughout the rest of the section.

3.2.1. Fixed points for 0rϵo1 and ηZ0
We consider an arbitrary value of ϵ in the range

0rϵo1. First, as �ðϵ�1Þs2i Z0 for ϵo1, (31) has at least
15 See the discussion in Section 2.4.
one negative solution. If no positive solution exists we set
γ̂ i ¼ 0. If (31) has at least one positive solution, it is easily
shown that it has exactly two, denoted by γð1Þi and γð2Þi . If
γð1Þi ¼ γð2Þi then this point is a saddle point of ℓi and therefore
we set γ̂ i ¼ 0. If γð2Þi 4γð1Þi then γ̂ i ¼ γð2Þi or if γð1Þi 4γð2Þi then
γ̂ i ¼ γð1Þi (the proof is straightforward and is omitted). Thus,
we always select the right-most positive solution.

For the special case ϵ¼ η¼ 0, i.e., when the mixing
density coincides with the Jeffreys prior, (31) reduces to a
quadratic equation. It is easy to show that, in this case
either two positive solutions exist or none exists.

3.2.2. Fixed points for ϵ¼ 1 and η¼ 0
In this case the mixing density coincides with a constant

improper prior, which leads to the same GSM model as used
in RVM [14,1,15]. With this setting (31) simplifies to

γ̂ i ¼ jqij2�si: ð33Þ
From (33), a positive solution of (31) exists if and only if
jqij24si. If this condition is not satisfied we set γ̂ i ¼ 0. It is
interesting to note that (33) is independent of ρ and thus is
the same regardless of whether the signal model (1) is real or
complex.

Next, we show the equivalence between (33) and the
corresponding update in Fast RVM [1]. In [1], the estimate of
γi is computed as the maximizer of the marginal
log-likelihood function ‘iðγi; ϵ¼ 1; η¼ 0Þ in (32). Hence, the
estimate of γi in [1] equals that in (33), because (33) maximizes
ℓiðγi; ϵ¼ 1; η¼ 0Þ. As the updates of μ, Σ, and λ̂ are identical to
those in Fast RVM, the two algorithms coincide when ϵ¼ 1
and η¼ 0.

3.2.3. Fixed points for ϵ¼ 1 and η40
In this case the mixing pdf coincides with an exponen-

tial pdf, so the GSM model is the same as that used in Fast
Laplace [2]. The solution

γ̂ i ¼
�ð2ηsiþρÞþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2þ4ρηjqij2

q
2η

ð34Þ

is positive if and only if jqij2�si4ηs2i =ρ otherwise we set
γ̂ i ¼ 0. The case ϵ¼ 1 and ρ¼ 1=2 corresponds to the GSM
model of the Laplace prior for real weights. Obviously, (34)
can also be used for complex weights, with ρ¼ 1. Yet in
this case the marginal prior for w is no longer Laplacian, as
showed in Section 2, but some other sparsity-inducing
member of the Bessel K density family. The estimate of γi
in Fast Laplace [2] is the maximizer of ℓiðγi; ϵ¼ 1; ηÞ and,
hence, is identical to the estimate in (34).

3.3. Fast sequential inference scheme

The modified update of γ½tþ1�
i , i¼ 1;…;N, described in

Section 3.2 can be directly used to speed up the EM algorithm
presented in Section 3.1. With this modification, every time an
estimate of a given γi is set to zero, we remove the corre-
sponding column vector ϕi from the dictionary matrixΦ. This
effectively reduces the model complexity “on the fly.” How-
ever, the first iterations still suffer from a high computational
complexity due to the update (23). To avoid this, we follow
the approach outlined in [1, Section 4], which consists of
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starting with an “empty” dictionary Φ and incrementally
filling the dictionary by possibly adding one column vector
at each iteration of the algorithm. Specifically, at a given
iteration of the algorithm, each γ̂ i, i¼ 1;…;N, is computed
from (30) and the one, say γ̂ i0 , that gives rise to the greatest
increase in expðℓð�ÞÞ between two consecutive algorithmic
iterations, is selected. Depending on the value of this γ̂ i0 , the
corresponding vector ϕi0 is then added, deleted, or kept. The
quantities Σ, μ, and λ̂ are updated using (23), (24), and (26)
together with si and qi, i¼ 1;…;N. If the estimate of λ is not
updated between two consecutive iterations, Σ, μ, si, and qi
can be updated efficiently using the update procedures
proposed in [1,36].

We refer to the above sequential algorithm as Fast-
BesselK.

4. Numerical results

In this section we analyze the performance of the Fast-
BesselK algorithm proposed in Section 3.

The purpose is to characterize the impact of the prior model
on the performance of the iterative algorithm in terms of MSE,
sparseness of ŵ , and convergence speed. Section 3 shows that
Fast-RVM [1], Fast-Laplace [2], and Fast-BesselK are all instances
of the same greedy inference scheme each algorithm resulting
from a particular selection of the parameters of the mixing
(gamma) pdf. Hence, by comparing the performances of these
algorithms, we can draw conclusions on the sparsity-inducing
property of their respective prior models.16

4.1. Simulation scenarios and performance metrics

The performance of the considered sparse algorithms (see
Section 4.2) is evaluated by means of Monte Carlo simulations.
In order to test the algorithms on a realistic benchmark, we
use a random M�N dictionary matrix Φ, with M¼100 and
N¼256, whose entries are iid zero-mean complex symmetric
Gaussian random variables with variance M�1. The weight
vector w has K non-zero entries with associated indices
uniformly drawn without repetition from the set f1;2;…;

Ng. The set of these indices together with its cardinality K are
unknown to the algorithms. The non-zero entries in w are
independent and drawn from a zero-mean circular-symmetric
complex Gaussian distribution with unit variance. Other dis-
tributions for the entries inw are considered at the end of this
section. All reported performance curves are computed based
on a total of 1000 Monte Carlo trials. For each trial, new
realizations of the dictionary matrix Φ, the vector w, and the
random perturbation vector n are drawn independently.17

All numerical investigations were replicated for an
equivalent real-valued signal model. Due to space limita-
tions, we do not include the results of these studies in this
16 Naturally, the practical implementation of the inference schemes
also impacts the performance. For the subsequent analysis, Fast-RVM,
Fast-Laplace, and Fast-BesselK are all implemented based on the Matlab-
code for Fast-RVM located at http://people.ee.duke.edu/lcarin/BCS.html.

17 In this paper we have not included an investigation on a specific
application. We refer to the work [8] where such a performance
assessment is made.
contribution, as most of the conclusions are similar to
those drawn from the complex-valued signal model. We
will, however, shortly discuss the relation between the
performance of the estimators for real and complex
models at the end of this section.

The performance is evaluated with respect to the
following metrics:

normalized mean�squared error: NMSE9〈‖ŵ�w‖22〉=〈‖w‖22〉:

support error rate9#ffi: ŵi ¼ 0 and wia0g [ fi: ŵia0 and wi ¼ 0gg=N

We also report the convergence speed, measured in terms of
the number of algorithmic iterations used, of the Bayesian
inference methods as they share the same computational
complexity.

4.2. Inference algorithms considered

The proposed Fast-BesselK algorithm is tested with two
settings for ϵ and η:
�

sett

(sta
par

lcar

edu
Fast-BesselK (ϵ¼0): we set ϵ¼0 and η¼0 corresponding to
the use of the Jeffreys prior as mixing density.18
�
 Fast-BesselK (ϵ¼0.5): we set ϵ¼0.5 and η¼1.

Instead of selecting a particular value of η, we could have
included this parameter in the inference framework as
done in [2]. Our investigations, however, show that
for ϵ{1 the performance of Fast-BesselK becomes largely
independent of the choice of η, and we have therefore
simply selected η¼ 1.19

The performance of Fast-BesselK is contrasted with the
state-of-the-art sparse estimators listed below:
1.
 Fast-RVM [1,37]: Equivalent to Fast-BesselK with ϵ¼1
and η¼0 (see Section 3).20
2.
 Fast-Laplace [2]: Equivalent to Fast-BesselK with ϵ¼1
when including the update for η in [2] (see Section 3).21
3.
 OMP, see, e.g., [12]: OMP terminates when the greedy
algorithm has included Kþ10 column vectors in Φ.
We empirically observed that this choice induces a better
NMSE performance than when including K columns only.
4.
 SpaRSA [34]: The sparse reconstruction by separable
approximation (SpaRSA) algorithm for solving the
LASSO cost function. Following [34], we use the adap-
tive continuation procedure for the regularization κ of
the ℓ1�norm penalty in the LASSO cost function. Here
SpaRSA repeatedly solves the LASSO cost function with
decreasing values for κ until a minimum value of κ is
reached. The minimum value of κ is set through train-
ing. Specifically, we run 50 Monte Carlo trials for each
specific settings of M, N, K, and SNR value. We then
18 We also considered Fast-BesselK with ϵ¼ 0 and η¼1. However, this
ing led to similar performance to Fast-BesselK (ϵ¼0,η¼0).
19 If the Fast-BesselK is implemented with a “top-down” approach
rting out with the full dictionary Φ) including individual rate
ameters ηi for each wi, i¼ 1;…;N, may be beneficial [7].
20 The software is available on-line at http://people.ee.duke.edu/
in/BCS.html.
21 The software is available on-line at http://ivpl.eecs.northwestern.
/.

http://people.ee.duke.edu/lcarin/BCS.html
http://people.ee.duke.edu/lcarin/BCS.html
http://people.ee.duke.edu/lcarin/BCS.html
http://ivpl.eecs.northwestern.edu/
http://ivpl.eecs.northwestern.edu/


Fig. 5. Performance versus SNR when λ is known ((a), (c)) and λ is unknown and estimated ((b), (d)). Selected system parameter settings: M¼100, N¼256,
and K¼25.
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choose the value of κ from a set of 50 candidate values
in the range ½0:001‖ΦHy‖1;0:1‖ΦHy‖1� that leads to
the smallest error ‖w�ŵ‖22.

22

For brevity, we refer to Fast-RVM, Fast-Laplace, and Fast-
BesselK as Bayesian algorithms. We initialize these algorithms
as outlined in [1, Sec. 4]. They stop when either the stopping
criterion ‖μ̂ ½tþ1� � μ̂ ½t�‖1r10�8 is fulfilled or the number of
iterations has reached its max limit set to 1000.

As a reference, we also consider the performance of the
oracle estimator of w [38] that “knows” the support of w,
denoted by suppðwÞ9fi:wia0g. The oracle estimate reads

ŵoðyÞ ¼
ðΦH

oΦoÞ�1ΦH
o y; on suppðwÞ

0; elsewhere;

(
ð35Þ

where Φo is the M�K dictionary matrix constructed from
those columns of Φ that correspond to the non-zero
entries in w.

4.3. Performance comparison

As our analysis in Section 2 shows, the noise precision λ
greatly impacts the sparsity property of the Type II penalty. We
22 The software is available on-line at http://www.lx.it.pt/mtf/SpaRSA/.
therefore investigate the impact of this parameter on the
algorithms. First, we assume this quantity to be known to
the Bayesian algorithms. Note that SpaRSA and OMP do not
estimate λ. In the next step, this parameter is considered
unknown and estimated by the Bayesian algorithms.

4.3.1. Performance versus SNR
The goal of this investigation is to evaluate whether the

algorithms can achieve sparse and accurate estimates in
conditions of low and medium SNR. In these simulations,
we set K¼25. In Figs. 5(a) and (c), λ is known by the
Bayesian algorithms. Fig. 5(a) shows that Fast-BesselK
(ϵ¼0) and Fast-BesselK(ϵ¼0.5) achieve the lowest NMSE
among the algorithms across the whole SNR range. Their
performance is close to that of the oracle estimator in the
high SNR regime, i.e., above 20 dB. These algorithms also
achieve the lowest support error rate across the whole SNR
range with a value close to zero as shown in Fig. 5(c).

We repeat the investigation for the Bayesian algorithms
but this time with the noise precision λ unknown and
being estimated alongside w and γ using (26). The esti-
mate λ̂ is updated at every third iteration. We observe a
significant performance degradation in NMSE and support
error rate for Fast-RVM and Fast-Laplace in Figs. 5(b) and
(d). The reason is that Fast-RVM and Fast-Laplace heavily
overestimate λ, thus, K is overestimated as well (results not

http://www.lx.it.pt/mtf/SpaRSA/


Fig. 6. Performance versus K at 20 dB SNR when λ is known ((a), (c)) and λ is unknown and estimated ((b), (d)). Selected system parameter settings:
M¼100, N¼256, and K¼25.
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shown).23 Consequently, the support error rate and NMSE
is high. In contrast, the Fast-BesselK algorithms perform
essentially the same as when λ is known.

In summary, the results presented in Fig. 5 corroborate the
significant impact of the estimation of the noise precision on
the performance of the Fast Bayesian algorithms. When λ is
known, all algorithms achieve an acceptable performance,
both in terms of NMSE and support error rate. However, when
λ is unknown and estimated by the algorithms, only Fast-
BesselK is able to produce accurate estimates of this parameter,
resulting in greatly improved performance as compared to
Fast-Laplace and Fast-RVM. This is an important result as, in
many applications, the noise precision parameter is not known
in advance and, hence, needs to be estimated.
4.3.2. Performance versus K
We fix the SNR at 20 dB and compare the performance of

the algorithms versus the number K of non-zero entries inw.
In Figs. 6(a) and (c) we assume λ to be known to the Bayesian
algorithms. The NMSE curves in Fig. 6(a) show that when
Kr40 the algorithms achieve an accurate reconstruction of
w. Fast-BesselK(ϵ¼0) and Fast-BesselK(ϵ¼0.5) yield the
23 In some cases, the sequence of estimates of λ produced by Fast-
RVM and Fast-Laplace did not converge. Due to this, a maximum value of
108 was set for λ̂ .
lowest NMSE which turns out to be close to that of the oracle
estimator. In this range, these algorithms exhibit a support
error rate close to zero as depicted in Fig. 6(c).

When λ is estimated the NMSE and support error rate
performance achieved by Fast-RVM and Fast-Laplace degrade
as depicted in Figs. 6(c) and (d). Fast-BesselK(ϵ¼0) achieves
the lowest NMSE but only for Kr30, as it only accurately
estimates λ in this range. Consequently, its support error rate
decreases for K430. In turn, Fast-BesselK(ϵ¼0.5) achieves
similar performance to when λ is known. Hence, the selection
of ϵ¼0.5 seems to be a good trade-off between achieved
sparseness and reconstruction error.

4.3.3. Number of performed algorithmic iterations
We evaluate the convergence speed for the Bayesian

algorithms in terms of the number of performed algorithmic
iterations. Fig. 7 reports the number of algorithmic iterations
until either the stopping criterion is fulfilled or the number of
iterations has reached its max limit of 1000 (see Section 4.2)
versus SNR and K. The Fast-BesselK algorithms perform
significantly less number of iterations across the whole SNR
range as compared to Fast-RVM and Fast-Laplace, especially in
low to medium SNR as seen in Figs. 7(a) and (b). The same
superior performance is observed when K is varied in Figs. 7
(c) and (d). Notice that the iteration count of greedy algo-
rithms inherently depends on K. As Fast-RVM and Fast-
Laplace tend to heavily overestimate K, they inevitably require



Fig. 7. Number of used iterations versus SNR and K when λ is known ((a), (c)) and λ is unknown and estimated ((b), (d)). Selected system parameter
settings: M¼100, N¼256. In ((a), (b)) K¼25 and in ((c), (d)) the SNR is fixed at 20 dB.
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a larger number of iterations than algorithms achieving
sparser estimates. The Fast-BesselK algorithms exhibit a
modest increase of used iterations when Kr40 as they
achieve good reconstruction error in this range, see Fig. 6.
When KZ40, the different performance behavior for Fast-
BesselK in Figs. 7(c) and (d) is attributed to the fact that Fast-
BesselK significantly underestimates λ in this range. In this
case, the penalty qIIðwÞ has a high impact on the estimate ŵ ,
which leads to a very sparse estimate ŵ and, thus, a low
number of algorithmic iterations.

4.3.4. Performance versus different distributions of the non-
zero entries in w

We investigate the dependency of the performance of the
considered algorithms on the underlying prior distribution of
the non-zero entries inw. To this end we repeat the previous
numerical studies while considering two additional prior
distributions for these entries. The first distribution results
from selecting the non-zero entries to be of the form
expðjϕkÞ, k¼ 1;…;K with the phases fϕkg drawn indepen-
dently and uniformly on the interval ½0;2πÞ. The second
distribution results from drawing the non-zero entries inde-
pendently according to a complex Laplace distribution, see
(14), with unit variance. We show results only for Fast-RVM,
Fast-Laplace, and Fast-Besselk(ϵ¼0.5), as the performance
gain achieved by Fast-BesselK(ϵ¼0.5) as compared to OMP
and SpaRSA is similar to the performance observed in the
previous investigations. We conclude from Figs. 8 and 9 that
Fast-BesselK(ϵ¼0.5) still maintains its superior performance.
Furthermore, we again observe the important fact that Fast-
BesselK(ϵ¼0.5) achieves similar performance in scenarios
with known or unknown noise precision. This is in direct
contrast to the other Bayesian methods.

4.3.5. Performance for real signal models
We conclude this section by briefly commenting

on the performance achieved by the considered algorithms
when they are devised for and applied to real-valued
signal models. To distinguish between the algorithms
devised based on real signal model from those devised
for a complex signal model, in the subsequent discussion
we refer to the former (latter) as real (complex) algo-
rithms.

In general, all considered complex algorithms perform
better than their real variant. In particular, complex algo-
rithms produce accurate results for less sparse weight
vectors than their real counterpart. This is explained by
the fact that the former use both real and imaginary parts
to prune components in ŵ , thus, improving the sparse
signal representation.



Fig. 8. Performance versus SNR when λ is known ((a), (c)) and λ is unknown and estimated ((b), (d)). The non-zero entries in w are complex uniformly
distributed. Selected system parameter settings: M¼100, N¼256, and K¼25.
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The relative performances of the real algorithms com-
pared to each other show the same trends as that observed
for their complex variant. As an illustration, real Fast-
BesselK(ϵ¼0) is especially sensitive to high values of K.
This is a well-known effect that arises when using the
Jeffreys prior as the mixing density. This again emphasizes
our conclusion that Fast-BesselK(ϵ¼0.5) is a good trade-off
between sparseness and reconstruction error.

5. Conclusion

In this paper, we proposed a hierarchical prior model
for sparse Bayesian learning (SBL) that applies to sparse
signal representation in complex and real-valued signal
models. Our motivation was on the one hand to overcome
the lack of sparsity-inducing prior models for complex
signals and on the other hand to propose prior models that
induce sparse, accurate, and robust signal representations
in conditions of low and medium signal-to-noise ratio
(SNR). Both aspects are of particular importance in many
engineering applications of sparse signal representation,
e.g., in wireless communications.

In the proposed hierarchical prior model, the entries of
the parameter vector of interest are modeled as independent
complex Gaussian scale mixtures (GSMs) with mixing hyper-
parameters identically distributed according to a gamma
distribution with shape parameter ϵ and rate parameter η.
This model – we termed it the Bessel K model – comprises a
family of hierarchical prior probability density functions
(pdfs) indexed by these parameters.

We analyzed the properties of Type I and Type II
estimators derived from the Bessel K model. Our analysis
revealed that the ability of a given element in the density
family to induce sparse estimates heavily depends on the
inference method used and, interestingly, whether real or
complex signals are inferred. In the case of Type I estimation,
the Bessel K model invokes, with the right setting of para-
meters ϵ and η, classical penalties such as the ℓ1�norm or the
log-sum as special cases. The hierarchical Bayesian formula-
tion of the ℓ1�norm penalty in the complex case is especially
interesting as, to the authors' knowledge, it has not been
proposed before. In the case of Type II estimation, the
resulting penalties are also strongly influenced by the var-
iance of the measurement noise, as pointed out by [21].
Nonetheless, we showed that the Bessel K model with ϵo1
promotes sparse Type II estimators even when the noise
variance is high. In contrast, traditional prior models lose this
property in such conditions.

Finally, we derived a greedy algorithm of low complexity
based on the modification of the expectation–maximization
algorithm formulated for Type II estimation. As the Bessel K
model encompasses as special cases previously proposed prior



Fig. 9. Performance versus SNR when λ is known ((a), (c)) and λ is unknown and estimated ((b), (d)). The non-zero entries in w are complex Laplace
distributed. Selected system parameter settings: M¼100, N¼256, and K¼25.
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models, the algorithm generalizes existing fast SBL methods,
allowing us to directly compare the impact of the different
prior models on the performance of the resulting estimators.

The numerical results demonstrated that the Bessel K
model with ϵo1 leads to estimators with superior conver-
gence speed, sparseness, and lower mean-squared estimation
error as compared to state-of-the-art sparse Bayesian esti-
mators. We showed a significant robustness compared to the
latter estimators in low and moderate SNR regimes. This is in
agreement with the superior sparsity-inducing property of
the Bessel K model with ϵo1 for highly noisy measurements,
as shown in Section 2. Furthermore, the results corroborate
that the proposed estimators effectively include the estima-
tion of the noise variance, thus avoiding the need for a
training procedure for this parameter.
Acknowledgement

This work was supported by the 4GMCT cooperative
research project funded by Intel Mobile Communications,
Agilent Technologies, Aalborg University and the Danish
National Advanced Technology Foundation.
Appendix A. Approximate Type I estimation using EM

Remember that the Type I estimator is the maximizer of

LðwÞ ¼ logðpðyjw; λÞpðwÞÞ: ðA:1Þ

We formulate the EM algorithm approximating the Type I
estimator by selecting fγ; yg to be the complete data for w.
The E-step of the EM algorithm computes the conditional
expectation

〈logpðy;w; γÞ〉pðγ;ŵ Þ ðA:2Þ

with

pðγ; ŵÞp∏
i
γϵ�ρ�1
i exp �γ�1

i ρjŵij2�γiη
� � ðA:3Þ

computed in the E-step. The right-hand side expression in
(A.3) is recognized as the product of GIG pdfs [39], i.e.,

pðγÞ ¼∏ipðγi; ν; a; biÞ; where, p γi; ν; a; bi
� �¼ ða=biÞ

ν
2

2Kνð
ffiffiffiffiffi
abi

p
Þ
γν�1
i exp

ð� a
2γi�bi

2γ
�1
i Þ with order ν¼ ϵ�ρ and parameters a¼ 2η

and bi ¼ 2ρjŵij2. The moments of the GIG distribution are
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given in closed form [39]:

〈γni 〉¼
ρjŵij2

η

	 
n
2Kνþnð2 ffiffiffiffiffi

ρη
p jŵijÞ

Kνð2 ffiffiffiffiffi
ρη

p jŵijÞ
; nAR: ðA:4Þ

The M-step of the EM algorithm updates the estimate of w
as the maximizer of (A.2):

ŵ ¼ ΦHΦþλ�1〈Γ�1〉
� ��1ΦHy: ðA:5Þ

In case we use the Laplace GSM model (ν¼ ϵ�ρ¼ 1=2),
(A.4) with n¼ �1 simplifies to

〈γ�1
i 〉¼

ffiffiffiffiffiffiffiffi
η=ρ

p
jŵij

; ðA:6Þ

where we have invoked the identity Kνð�Þ ¼ K �νð�Þ [32].

Appendix B. Results for Section 3.2

This appendix contains the derivations of some results
used in Section 3.2.

B.1. Computation of 〈jwij2〉

We follow the approach in [36] to compute 〈jwij2〉. We
can express 〈jwij2〉 as 〈jwij2〉¼ eTi ðΣþμμHÞei with ei being an
N � 1 vector of all zeros with 1 at the ith position. First, we
consider the dependency of Σ in (23) on a single parameter
γi. We note that Σ¼ ðλΦHΦþP

ka iγ
�1
k ekeTkþγ�1

i eieTi Þ�1.
Making use of the matrix inversion lemma [40] we recast
Σ as

Σ¼Σ� i�
Σ� ieieTi Σ� i

γiþeTi Σ� iei
; ðB:1Þ

where Σ� i9 ðλΦHΦþP
ka iγ

�1
k ekeTkÞ�1. After some straight-

forward algebraic manipulations, 〈jwij2〉 can be expressed as

〈jwij2〉¼
γ2i ðsiþjqij2Þþγis2i

ðγiþsiÞ2
ðB:2Þ

with the definitions si9eTi Σ� iei and qi9λeTi Σ� iΦHy.

B.2. Computation of the stationary points of ℓiðγiÞ

We define

ℓiðγiÞp e logðpðyjγi; γ� i; λÞpðγiÞÞ: ðB:3Þ
Following the steps in [1] we can write ℓðγiÞ as

ℓi γi
� �

9�ρlogj1þγi ~sijþρ
j ~qij2

γ�1
i þ ~si

þ ϵ�1ð Þ logγi�ηγi ðB:4Þ

with the definitions ~si9ϕH
i C

�1
� i ϕi, ~qi9yHC�1

� i ϕi, and
C � i9λ�1IþP

ka iγkϕkϕ
H
k . Taking the derivative of ℓ with

respect to γi and equating the result to zero yields

0¼ η~s2i γ
3
i þγ2i ½2η~si�ðϵ�ρ�1Þ~s2i �þγi½ηþρð~si�j ~qij2Þ

�2ðϵ�1Þ~si��ðϵ�1Þ: ðB:5Þ

Making use of the matrix inversion lemma for C�1
� i , we

show the identities si ¼ ~s�1
i and jqij2 ¼ j ~qij2=~s2i [36]. By

substituting these identities into (31), we arrive at the
cubic equation in (B.5). Thus, the positive solutions of (31)
are the stationary points of (B.4).
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