1,122 research outputs found

    A Surface-based In-House Network Medium for Power, Communication and Interaction

    Get PDF
    Recent advances in communication and signal processing methodologies have paved the way for a high speed home network Power Line Communication (PLC) system. The development of powerline communications and powerline control as a cost effective and rapid mechanism for delivering communication and control services are becoming attractive in PLC application, to determine the best mix of hard and software to support infrastructure development for particular applications using power line communication. Integrating appliances in the home through a wired network often proves to be impractical: routing cables is usually difficult, changing the network structure afterwards even more so, and portable devices can only be connected at fixed connection points. Wireless networks aren’t the answer either: batteries have to be regularly replaced or changed, and what they add to the device’s size and weight might be disproportionate for smaller appliances. In Pin&Play, we explore a design space in between typical wired and wireless networks, investigating the use of surfaces to network objects that are attached to it. This article gives an overview of the network model, and describes functioning prototypes that were built as a proof of concept. The first phase of the development is already demonstrated both in appropriate conferences and publications. [1] The intention of researchers is to introduce this work to powerline community; as this research enters phase II of the Pin&Play architecture to investigate, develop prototype systems, and conduct studies in two concrete application areas. The first area is user-centric and concerned with support for collaborative work on large surfaces. The second area is focused on exhibition spaces and trade fairs, and concerned with combination of physical media such as movable walls and digital infrastructure for fast deployment of engaging installations. In this paper we have described the functionality of the Pin&Play architecture and introduced the second phase together with future plans. Figure 1 shows technical approach, using a surface with simple layered structure Pushpin connectors, dual pin or coaxial

    Wireless body sensor networks for health-monitoring applications

    Get PDF
    This is an author-created, un-copyedited version of an article accepted for publication in Physiological Measurement. The publisher is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at http://dx.doi.org/10.1088/0967-3334/29/11/R01

    Review of energy harvesting techniques and applications for microelectronics

    Get PDF
    The trends in technology allow the decrease in both size and power consumption of complex digital systems. This decrease in size and power gives rise to new paradigms of computing and use of electronics, with many small devices working collaboratively or at least with strong communication capabilities. Examples of these new paradigms are wearable devices and wireless sensor networks. Currently, these devices are powered by batteries. However, batteries present several disadvantages: the need to either replace or recharge them periodically and their big size and weight compared to high technology electronics. One possibility to overcome these power limitations is to extract (harvest) energy from the environment to either recharge a battery, or even to directly power the electronic device. This paper presents several methods to design an energy harvesting device depending on the type of energy available.Peer Reviewe

    Kinetic energy harvesting

    No full text
    This paper reviews kinetic energy harvesting as a potential localised power supply for wireless applications. Harvesting devices are typically implemented as resonant devices of which the power output depends upon the size of the inertial mass, the frequency and amplitude of the driving vibrations, the maximum available mass displacement and the damping. Three transduction mechanisms are currently primarily employed to convert mechanical into electrical energy: electromagnetic, piezoelectric and electrostatic. Piezoelectric and electrostatic mechanisms are best suited to small size MEMS implementations, but the power output from such devices is at present limited to a few microwatts. An electromagnetic generator implemented with discrete components has produced a power 120 ?W with the highest recorded efficiency to date of 51% for a device of this size reported to date. The packaged device is 0.8 cm3 and weighs 1.6 grams. The suitability of the technology in space applications will be determined by the nature of the available kinetic energy and the required level of output power. A radioactively coupled device may present an opportunity where suitable vibrations do not exist

    Emerging Needs for Pervasive Passive Wireless Sensor Networks on Aerospace Vehicles

    Get PDF
    NASA is investigating passive wireless sensor technology to reduce instrumentation mass and volume in ground testing, air flight, and space exploration applications. Vehicle health monitoring systems (VHMS) are desired on all aerospace programs to ensure the safety of the crew and the vehicles. Pervasive passive wireless sensor networks facilitate VHMS on aerospace vehicles. Future wireless sensor networks on board aerospace vehicles will be heterogeneous and will require active and passive network systems. Since much has been published on active wireless sensor networks, this work will focus on the need for passive wireless sensor networks on aerospace vehicles. Several passive wireless technologies such as microelectromechanical systems MEMS, SAW, backscatter, and chipless RFID techniques, have all shown potential to meet the pervasive sensing needs for aerospace VHMS applications. A SAW VHMS application will be presented. In addition, application areas including ground testing, hypersonic aircraft and spacecraft will be explored along with some of the harsh environments found in aerospace applications

    The Potential of Printed Electronics and Personal Fabrication in Driving the Internet of Things

    Get PDF
    In the early nineties, Mark Weiser, a chief scientist at the Xerox Palo Alto Research Center (PARC), wrote a series of seminal papers that introduced the concept of Ubiquitous Computing. Within this vision, computers and others digital technologies are integrated seamlessly into everyday objects and activities, hidden from our senses whenever not used or needed. An important facet of this vision is the interconnectivity of the various physical devices, which creates an Internet of Things. With the advent of Printed Electronics, new ways to link the physical and digital worlds became available. Common printing technologies, such as screen, flexography, and inkjet printing, are now starting to be used not only to mass-produce extremely thin, flexible and cost effective electronic circuits, but also to introduce electronic functionality into objects where it was previously unavailable. In turn, the growing accessibility to Personal Fabrication tools is leading to the democratization of the creation of technology by enabling end-users to design and produce their own material goods according to their needs. This paper presents a survey of commonly used technologies and foreseen applications in the field of Printed Electronics and Personal Fabrication, with emphasis on the potential to drive the Internet of Things

    Towards a cyber physical system for personalised and automatic OSA treatment

    Get PDF
    Obstructive sleep apnea (OSA) is a breathing disorder that takes place in the course of the sleep and is produced by a complete or a partial obstruction of the upper airway that manifests itself as frequent breathing stops and starts during the sleep. The real-time evaluation of whether or not a patient is undergoing OSA episode is a very important task in medicine in many scenarios, as for example for making instantaneous pressure adjustments that should take place when Automatic Positive Airway Pressure (APAP) devices are used during the treatment of OSA. In this paper the design of a possible Cyber Physical System (CPS) suited to real-time monitoring of OSA is described, and its software architecture and possible hardware sensing components are detailed. It should be emphasized here that this paper does not deal with a full CPS, rather with a software part of it under a set of assumptions on the environment. The paper also reports some preliminary experiments about the cognitive and learning capabilities of the designed CPS involving its use on a publicly available sleep apnea database
    • 

    corecore