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ABSTRACT

SKINNYSENSOR: ENABLING BATTERY-LESS
WEARABLE SENSORS VIA INTRABODY POWER

TRANSFER

SEPTEMBER 2018

NEEV KIRAN

B.E., NED UNIVERSITY OF ENGINEERING AND TECHNOLOGY, KARACHI,

PAKISTAN

M.S.E.C.E., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Sunghoon Ivan Lee and Professor Daniel Holcomb

Tremendous advancement in ultra-low-power electronics and radio communica-

tions has significantly contributed towards the fabrication of miniaturized biomedical

sensors capable of capturing physiological data and transmitting them wirelessly.

However, most of the wearable sensors require a battery for their operation. The

battery serves as one of the critical bottlenecks to the development of novel wearable

applications, as the limitations offered by batteries are affecting the development of

new form-factors and longevity of wearable devices. In this work, we introduce a novel

concept, namely Intra-Body Power Transfer (IBPT), to alleviate the limitations and

problems associated with batteries, and enable wireless, batteryless wearable devices.

The innovation of IBPT is to utilize the human body as the medium to transfer

power to passive wearable devices, as opposed to employing on-board batteries for

each individual device. The proposed platform eliminates the on-board rigid battery
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for ultra-low-power and ultra-miniaturized sensors such that their form-factor can

be flexible, ergonomically designed to be placed on small body parts. The platform

also eliminates the need for battery maintenance (e.g., recharging or replacement)

for multiple wearable devices other than the central power source. The performance

of the developed system is tested and evaluated in comparison to traditional Radio

Frequency based solutions that can be harmful to human interaction. The system de-

veloped is capable of harvesting on average 217 µW at 0.43 V and provides an average

sleep/high impedance mode voltage of 4.5 V.
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CHAPTER 1

INTRODUCTION

The phenomenal growth of semiconductor devices and MEMS technologies have

been stimulated by the downscaling of transistor dimensions leading to a constant

shrink in size and cost of unit computing. This advancement inspired the growth

of new technology areas such as wearable devices enabling ubiquitous computing to

infiltrate every aspect of our lives. These include consumer-level wearable sensors

such as smart watches, smart chest bands, smart headbands, and smart ring sensors,

and medical-purpose wearable/implantable sensors such as hearing aids, pacemakers,

and deep brain stimulators which in combination, result in an enhanced healthcare

and lifestyle. Thus, the existence of intelligent, miniaturized and low-power sensors

has accelerated the proliferation of wearable devices for wellness and healthcare [8].

Most of these wearable sensors are battery powered for their operation and despite

the tremendous advances in semiconductor devices the use of on-device batteries as

the primary source of power poses a number of challenges that serve as the key barrier

to widespread use of numerous, seamless wearable sensors [23, 66].

Major challenges associated with battery-powered sensors include:

1. Battery is often the largest component that takes up most of the physical space

of wearable devices. This impedes the development of new form factors (e.g.,

flexible [42, 62] or tattoo-like sensors [26, 27]) and further miniaturization of

wearable sensors, making it difficult to place sensors on small parts of the body,

such as fingernail [25], in-ear [37], and in-mouth [7].
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2. Over the past few decades, technological advancement of battery energy density

(per physical volume) has been much slower compared to other core technologies

contributing to the realization of wearable devices (e.g., computational capacity,

memory size, and wireless transfer speed) [39, 52, 51]. Battery energy density

has followed the linear trend as compared to exponential improvement for other

technologies (e.g., Moore’s law) [23]. Thus, battery serves as one of the critical

bottlenecks to the development of novel wearable applications.

3. Periodic maintenance of batteries is a tedious task as the recharging and replace-

ment of multiple, heterogeneous devices at different time periods in a network

of over hundred sensors can be exasperating and significantly degrades user

adherence to the technologies [9, 10].

4. The lifetime of a battery’s utilization is limited. Any battery available in the

market cannot be expected to supply energy for an infinite amount of time and

will wear out eventually, because recharging cause battery capacities to degrade

over time. For example, implantable devices have a predetermined lifetime and

requires surgical replacement of depleted battery cells leading to high cost for

patients and the health care system [45].

5. Owing to the robust growth of portable (including wearable) devices, battery

waste has been one of the fastest growing waste streams, which introduces

significant environmental impacts [11]. Reducing the amount of battery waste

can reduce greenhouse gas emissions and save natural resources (i.e., virgin

material) [11, 16].

In this work, we introduce a novel concept, namely Intra-Body Power Transfer (IBPT),

to alleviate the aforementioned limitations and problems associated with batteries,

and enable wireless, batteryless wearable devices. The fundamental technological in-

novation of IBPT is to utilize human body as the medium to transfer power from a
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source (e.g., a battery or energy supply unit) to on-body wearable devices, as opposed

to employing on-board batteries for each individual device. The proposed platform

eliminates the on-board rigid battery for ultra-low-power and ultra-miniaturized sen-

sors such that their form-factor can be flexible, ergonomically designed to be placed

on small body parts. The platform also eliminates the need for battery maintenance

(e.g., recharging or replacement) for multiple wearable devices other than the central

power source.

Power source
(interrogrator)

b)a)

Passive device
(transponder)

Power Transfer Path

Figure 1.1: (a) A conceptual illustration of IBPT that uses the human body as the
medium to transfer power from a source (e.g., a battery or energy harvesting unit) to
passive wearable devices. (b) The prototype system that we used to demonstrate the
concept of IBPT, which contains a wrist-worn, battery-powered interrogator and a
finger-worn, batteryless transponder that can collect sensor data and transmit wire-
lessly.

To demonstrate and validate the concept of IBPT, we implemented a prototype sys-

tem that consists of: 1) wrist-worn, battery-powered interrogator capable of trans-

mitting time-varying electromagnetic signals through the human body and 2) finger-

worn, batteryless transponder (passive wearable devices) that can be powered from

the transmitted signals via human skin, collect sensor data, and wirelessly transfer the

collected data to other devices (or back to the interrogator). Our main contributions

include:

3



• Development and optimization of a novel embedded system architecture for the

battery-powered interrogator and batteryless transponders.

• Implementation of a prototype consisting of a wrist-worn interrogator and a

finger-worn transponder.

• Evaluation and demonstration of the prototype transponder’s reliable power

harvesting capabilities. The proposed system could support between 190 µW to

217 µW of power at the transponder.

• Evaluation of important design parameters, such as distance, body posture,

motion, and potential environmental factors that may affect the system perfor-

mance.

1.1 Outline of the Thesis

The remainder of this thesis document is organized as follows:

Chapter 2 explores the existing approaches to harvest energy as well as on-going re-

search regarding intra-body communication.

Chapter 3 focuses on the core idea behind intra-body transmission methods and the

inherent challenges associated with the system design for IBPT.

Chapter 4 describes the implementation details of SkinnySensor and our experimental

methodology.

Chapter 5 presents the evaluation of our measurement setup and discussion of results.

Chapter 6 summarizes the results and discusses the scope for adoption of the tech-

nology for future research.

4



CHAPTER 2

RELATED WORKS

In order to alleviate the aforementioned limitations of contemporary battery tech-

nologies, energy harvesting from available ambient sources has proved to be a promis-

ing solution [59]. This chapter first discusses possible sources for energy harvesting

and their corresponding limitations, which inspires the exploration of capabilities of

an alternative approach known as Wireless Power Transfer (WPT), that utilizes an

active energy source to wirelessly charge the battery or continuously power battery-

less sensors. Furthermore, relevant related work is presented regarding intra-body

communications that serve as the fundamental groundwork inspiring this research of

energy transfer through the human body.

2.1 Passive Wearable Sensors – Energy Harvesting

Wearable sensor devices can be made self-sustaining by harvesting energy from

ambient environmental sources or human-generated power sources. These energy

harvesting approaches can be either active or passive. Common energy sources for

passive technologies include thermal energy [57], photovoltaic/solar energy [12, 20],

ambient Radio Frequency (RF) energy [21, 56, 58], and motion and vibration [32,

34, 53].

2.1.1 Thermal Energy

Energy scavenging via thermoelectric generators could provide compact, low weight

and maintenance-free operation of sensors, potentially providing 20 µW cm−2 [30]

5



power by extracting energy from human body temperature gradient but thermoelec-

tric devices have a low energy conversion efficiency and their application is limited

due to high-temperature gradient requirements (> 10°C).

2.1.2 Photovoltaic/Solar Energy

Solar energy based power harvesting is a mature technology that has been in use

for decades [41, 17], but its utilization for wearable technology is limited due to one

of its limiting factor that is the system needs to be continuously exposed to a light

source, unless the device is equipped with energy storage elements, such as batteries

or ultra-capacitors [41]. Unfortunately, wearable devices are commonly used in indoor

environments for a long period where the light source is artificial which is insufficient

to harvest sufficient amount of energy. Additionally, occlusions caused by clothing

often significantly limit the energy intake [33].

2.1.3 Radio Frequency (RF) Energy

Ambient RF energy is considered an appealing source of power, owing to ubiq-

uitous deployment of RF signals in urban and suburban areas (e.g TV and cellular

transmissions from base stations). However, the signal power level in indoor settings

is substantially low for powering wearable devices. Additionally, smartphones/tablets

transmit RF energy but these cellular transmissions only occur during calls/text or

data transmission and the control over transmitted power level is decided by the base

station instead of the handset [31]. UHF RFID tag based sensor network have shown

to harvest power in µW range (1 − 160µW ), capable of operating low-power sensors

such as accelerometer and temperature sensors [13]. Other RF signals, such as Wi-Fi

have shown to support a similar range of power. However, the high frequency range

(2.4 GHz for Wi-Fi and 300 MHz - 3 GHz for UHF) poses safety and health concerns

offered by electromagnetic radiation whereas passive LF and HF based RFID tags

offer very short read ranges (e.g., 1m - 4m) due to the inherent characteristics of

6



the noisy air channel [42], which may not be practical for human subjects that are

highly mobile in nature. Moreover, the high water content of the human body can

detune the RFID tag’s antenna and shift the frequency response out of the readable

frequency bands of the tag resulting in shorter read ranges, lower read rates or no

signal detection making it inadequate for wearable technology. RF communication

systems also undergo many types of losses, such as the skin effect, where alternating

current gets distributed within the conductor, resulting in an increase in the effective

resistance of the conductor at higher frequencies and mismatch loss due to the im-

proper matching impedance of consecutive stages forming standing waves and loss of

power.

2.1.4 Motion and Vibration

Energy harvesting from vibration (i.e., movement) is another promising energy

source. Many solutions that leverage oscillator, electromagnetic, and piezoelectric

generators have been proposed to harvest energy during motion. Experiments by

Kymissis et al. for harvesting locomotive motion energy revealed that 250mW [29]

power can be scavenged from shoes during walking, and the nanogenerators consisting

an array of piezoelectric nanowires harvest 2.8mWcm−3 average power density [65].

Additionally, energy can be harvested using piezoelectric or micro-electromagnetic

generators. The power harvesting efficiency exhibited by electromagnetic generator

solutions prove to be more promising [3]. Motion and vibration-based energy can

serve as clean and renewable energy sources in low-power wearable devices, but the

piezoelectric materials used for the harvester degrade over time due to depolarization,

where polarity decreases with a number of switching cycles - this is often referred as

electric fatigue [61, 15].

Many other human-body characteristics can generate power to operate wearable

devices [44]. Energy scavenged from sweat [5], friction between the body and smart
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Table 2.1: Summary of energy harvesting via different sources [50]

Source Placement Harvested Power

Thermal Human 20 µW cm−2

Solar Human 4 µW cm−2

RF Human 0.1 µW cm−2

Vibration Human 40 µW cm−2

textiles [28], have also shown to harvest couple mW of power. However, the appli-

cability of these power sources to wearable devices is constrained as they can only

operate in scenarios where sufficient sources of power (e.g., motion, thermal gradient,

the presence of sweat) are available and thus, cannot guarantee continuous energy sup-

ply. More importantly, transferring the power harvested from the energy harvesters

to wearable devices located at different body parts (e.g., based on wires) remains a

challenge.

2.2 Passive Wearable Sensors – Energy Transfer

Instead of exploiting the potential energy generated by the host, energy could

be transferred wirelessly to remote wearable sensors by an external unit for either

recharging or continuously powering the sensor. This energy transfer can be achieved

either via optical transmission, electromagnetic radiation or through ultrasonic waves.

Optical-charging methods deploy photovoltaic cell at the sensor node that can re-

ceive power from a laser diode operating in the near-infrared range [36]. Ultrasonic

Power Transfer (UPT) is an emerging WPT technology which utilizes ultrasound to

transfer power and has attracted growing research attention due to its comparative

efficiency, immunity to electromagnetic radiation and its ability to traverse through

multiple mediums such as air, fluid, or solid medium, including metal barriers [43, 6].

Nonetheless, wireless power transmission through electromagnetic radiation is widely
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used WPT method [35] capable of delivering sufficient power to sensor nodes. This

energy accessing technique commonly consists of the far-field and the near-field trans-

missions. Energy transfer through a pair of antennas undergoing magnetic coupling

is a typical near-field transmission method that can transfer power in the Watts level

but its efficiency decreases significantly as the distance between the antennas increase

making it inappropriate for wearable sensors as it restricts the mobility of users.

To extend the distance of WPT, RF-based far-field power transfer has provided

promising results. The far-field RF based WPT platform can support comparatively

larger separation distances but they require accurate alignment and designing of the

antenna and often require direct lines of sight. With RF technology, all the aforemen-

tioned limitations such as detuning effect with the human body, propagation power

losses etc. become significant. In order to have sufficient power for the sensor node,

the transmission energy density has to be higher (approximately 1W), which can in-

troduce risks of excessive RF energy exposure leading to harmful biological effects

such as excessive heating of the body tissue, significantly damaging it [19].

Alternatively, the conductive fabric can be weaved into clothes and can distribute

power to different areas on the body. Malleable conductive materials can also be

applied on the skin to transfer power [55]. Worgan et al. connected two coils with a

pair of long elastic conductive strips to relay power from one coil to the other [63].

The coils are made from flexible material so that they can be easily stitched onto

normal clothes but the reliability of these clothes and maintenance is still a major

research challenge.

2.3 Intra-Body Communications

IBPT is extended based on the concept of Intra-Body Communication (IBC), a

wireless communication technology that uses the human body as the signal propa-

gation medium. IBC has emerged as an appealing technology capable of providing
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better energy-efficiency and built-in security for connecting wearable and implantable

biomedical sensors compared to traditional Body Area Network (BAN) [4]. In late

2011, the standardization of new Wireless Body Area Network (WBAN) protocol,

IEEE 802.15.6 [2] by task group (TG6) was ratified which gave recognition to this

new Physical Layer (PHY) that is non-RF technique based on IBC. The conventional

Electric Field IBC was introduced by Zimmerman in 1995 [67]. The inhibition of com-

munication signal to the users’ proximity help in confining energy within the human

skin rather than being dissipated into the surrounding environment, which results in

lower power consumption. Research has shown that IBC technique is an attractive

solution for short-range communications as it can support transmission power as low

as 1 mW and data rates greater than 10 Mb/s [60]. Additionally, a unique human

body motion sensor has also been introduced that utilizes electric field IBC concepts

to sense motion [14].
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CHAPTER 3

INTRA-BODY POWER TRANSFER
TECHNOLOGY–OVERVIEW

IBPT is a novel wireless power harvesting technique that utilizes human body

to transfer power from a source (e.g., a battery or energy supplying unit) to passive

wearable devices, as opposed to employing on-board batteries for each individual de-

vice. Scientific premise of the IBPT technology is grounded in the fundamentals of

IBC technologies. The standardized IBC (i.e., IEEE 802.15.6 standard) outlines three

PHY schemes i.e. Narrowband (NB), Ultra-wideband (UWB), and Human body com-

munication (HBC). NB and UWB are based upon RF propagation techniques, while

HBC is non-RF based communication technique that utilizes human body tissues for

signal propagation [2].

Frequency band allocation for each physical layer is summarized in Table: 3.1 as

follows:

Table 3.1: Frequency distribution for IEEE 802.15.6 WBAN [2]

Frequency

Narrow Band (NB) Implantable Devices 402 MHz – 405 MHz

Wearable Application 863 MHz – 956 MHz

Medical Demands 2360 MHz – 2400 MHz

Ultra Wideand (UWB) 3 GHz – 5 GHz

6 GHz – 10 GHz

Human Body
Communication (HBC)

Centered at 21 MHz and Bandwidth = 5.25 MHz
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The following characteristics substantiate the growing interest in intra-body trans-

mission technique:

• Contrary to standard wireless transmission technologies intra-body signal trans-

mission is uniquely based on body proximity and directly benefits from the

presence of human body.

• Operating frequency is considerably lower than RF based propagation tech-

niques due to which transmitted signal is mainly confined within and near hu-

man body resulting in less signal leakage through skin.

• Since the transmission is independent of antenna size and shape, operating

frequency can be lowered for a comparatively lower power consumption without

compromising on the form factor of the device [67].

• The wavelength of carrier signal is larger as compared to the electrode size

resulting in lower signal interference.

• Same frequency band can be reused by WBAN for other users with minimal

interference due to signal confinement.

3.1 Intra-body Transmission Methods

In order to propagate electrical signals via human body tissue, two general cou-

pling methods have been developed 1) Galvanic Coupling (Waveguide) and 2) Ca-

pacitive Coupling (Electric Field).

3.1.1 Galvanic Coupling Intra-Body Transmission

Galvanic coupling differentially couples time-varying electrical signal through hu-

man tissues. A simplified illustration detailing the operating principle of the method
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is shown in Figure 3.1(a). A pair of coupler electrodes and a pair of detector elec-

trodes are coupled to the human body for transmission. One electrode of the pair

at coupler represents the transmitted signal while the other acts as a ground termi-

nal. Similarly, at the detector, one of the electrodes acts as ground terminal while

the other receives the signal. The signal is differentially induced across the coupler

electrodes and a primary current flow is established between the two coupler elec-

trodes while the secondary current propagates through conductive human tissues as

shown in Figure 3.1(b). The alternating current flow through body parts controls the

amount of coupling due to the establishment of a potential difference across detector

electrodes. For galvanic coupling method ionic fluids act as the signal carrier rather

than electromagnetic waves in an air medium.
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Figure 3.1: (a) Galvanic-coupled intra-body transmission method. (b) Current flow
establishment between electrodes for galvanic method [48].
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3.1.2 Capacitive Coupling Intra-Body Transmission

The theory of capacitive coupled human body transmission relies upon the electric

field based capacitive coupling between the human body and its surrounding envi-

ronment as depicted in Figure 3.2(a). Both the coupler and the detector electrodes

have their signal electrode attached to the human body which forms the conductive

path for signal propagation, while the ground electrode at each side is subjected into

the air to provide the return path. The signal is generated between the two pairs

of electrodes by making a current loop through the external ground. The coupler

electrode induces the electric field into the human body which is controlled by an

electric potential. The conductive body tissues form the forward path between the

two body attached electrodes and the ground electrodes get capacitively coupled to

each other via air or external ground. A simplified circuit modelling capacitively

coupled intra-body transmission is illustrated in Figure 3.2(b).
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Figure 3.2: (a) Capacitive-coupled intra-body transmission method. (b) Simplified
circuit model for capacitive coupling [64].
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3.1.3 Considerations and Justifications of the Coupling Method for the

Proposed System

A broad range of approaches exist that utilize both the coupling methods to ex-

plore the conductivity of human tissues. For galvanic coupling based approaches,

the major amount of signal is propagated between the two transmitter electrodes

and a highly attenuated signal is obtained at the receiver. Thus, the galvanic cou-

pled communication techniques achieve very low transmission efficiency as well as

low data rates. Additionally, for galvanic coupling, the signal quality is significantly

influenced by the dielectric properties of human tissues. Capacitive coupling offers

high variation because return path is coupled via the surrounding environment and

the capacitive coupling between external ground and the ground electrodes make fre-

quency selection an important design parameter that plays a major role for achieving

high transmission efficiency. Although capacitive coupling method has its own lim-

itations its implementation has indicated that we can achieve data rates as high as

10Mb/s and a high channel gain [48]. Moreover, capacitive coupling does not need to

have a direct contact with the skin, which may be ideal for loosely coupled wearable

devices. Since the objective of this research is achieving high transmission efficiency

we employ capacitive coupling to transfer power through human skin.

3.2 Factors Affecting Intra-Body Transmission

In order to achieve higher transmission efficiency through the human body, the

following parameters have to be taken into account.

3.2.1 Electrical Properties of Human Body Tissues

The electrical properties of human tissue significantly influence the propagation

of the coupled signal through the human body. The two major properties are relative

permittivity (εr) and electrical conductivity (σ). The electrical conductivity is the
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current density within the body tissues due to applied electric field while relative per-

mittivity is the dipole density induced as a response of the electric field applied across

the electrodes. Many factors contribute towards the variation of the aforementioned

properties and decide the tissue conductivity, such as

• Body temperature

• Moisture content of the skin as well as the water content of tissues

• Operating frequency range

• Tissue type and cellular membrane intactness

Research conducted on human tissues studying the effects of different operating

frequency revealed that dielectric properties of living tissue vary differently with fre-

quency dispersions. In order to characterize the electrical properties of biomaterials,

Schwan [47] introduced the concept of frequency dispersion. The dispersion refers to

the behaviour of human tissues at various frequency ranges. It was observed that

conductivity increases while the permittivity declines within these frequency disper-

sions. Additionally, the tissue conductivity within the lower frequency range of 1 Hz

to 100 kHz, has minimal increment whereas permittivity shows a significant decrease

over this range of frequency. At higher frequency (300 MHz to several GHz), the

electrical signal wavelength becomes comparable to the human body channel length

and body radiates energy acting as an antenna (dipole antenna). It is required to

find a frequency range where a balance between electrical conductivity and relative

permittivity is established. This range of frequency should not exceed the human

safety regulations either. Thus optimal frequency range selection is the key design

challenge for human body based transmission systems.
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3.2.1.1 Human body Circuit Model

The electric properties of human tissue are key design parameters for designing

an effective human body based transceiver and modelling the medium (i.e. human

body) characteristics significantly assists in design parameter optimization. The hu-

man body can be modelled as a communication channel to investigate the propagation

of electrical signal for predicting transmission efficiency. In order to model the elec-

trical properties of human body tissues, equivalent RC elements could be employed

for prediction of signal leakages through body channel for different frequency ranges.

Zimmerman [67] proposed a simplified version of the circuit model for body channel

(inter-electrode impedance were ignored). The model consists of the body as well as

environmental capacitance as shown in Figure: 3.3. In the model, A is the capacitive

coupling between the transmitter signal electrode and the transmitter ground elec-

trode, B is the capacitive coupling between the transmitter ground electrode and the

body, C is the capacitive coupling between the transmitter signal electrode and the

body, D is the capacitive coupling between the transmitter ground electrode and the

environment, E is the capacitive coupling between the body and the environment, F

is the capacitive coupling between the body and the receiver signal electrode, G is

the capacitive coupling between the receiver ground electrode and the environment

ground, H is the capacitive coupling between the receiver signal electrode and the

body.

3.2.2 Coupling Between Human Body and Environment

The coupling between the body and environment i.e. the return path for ca-

pacitive coupled body transmission causes significant signal leakages. The coupling

capacitance between the ground electrode and the external earth ground (D, G in

Figure: 3.3) are generally small [64] and hence becomes the most critical component

affecting signal transmission at low frequencies. In low-frequency range, the body
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Figure 3.3: Four electrodes based human arm circuit model [67]

path impedance can be neglected. When the frequency range is above 10 MHz the

body impedance (B, C, F in Figure: 3.3) also becomes comparable to the impedance

offered by environmental capacitance (E, D, G in Figure: 3.3) and hence further affect

signal transmission efficiency as the involvement of the body, affects the capacitive

return path. It was reported that the operating frequency should be below 100 MHz

to minimize the radiation of the signal out of the body and avoid significant channel

variation [48].

3.2.3 Safety Regulations

Human body transmission poses a possible health risk with dangers of electrical

shock. Therefore, compliance of safety regulations enforced by national commis-

sions such as Federal Communications Commission (FCC) for limiting exposure to

time-varying electric, magnetic and electromagnetic fields, based on the guidelines

of International Commission on Non-Ionizing Radiation Protection (ICNIRP) [1] be-
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comes essential. The exposure to time-varying electromagnetic field induces internal

body currents and energy absorption in tissues which are directly dependent upon the

coupling mechanisms and the frequency of operation. The physical quantities used

to specify the basic restrictions on exposure to EMF are as follows:

• Current Density (J)

• Specific-Energy Absorption Rate (SAR)

• Power Density (S)

• Contact Current Intensity (Ic)

3.2.4 Current Density

Very high current density can have adverse effects on nervous system functions

and the basic restrictions for different frequency ranges are listed in Table: 3.2. As

Table 3.2: Restrictions on current density [1]

Frequency
Current Density

mA/m2

f < 1 Hz 8

1 Hz < f < 4 Hz 8/f

4 Hz < f < 1 kHz 2

1 kHz < f < 10 MHz f/500

per Table: 3.2, the most stringent restrictions are set in the frequency range between

4 Hz < f < 1 kHz, where the maximum current density is 2 mA/m2.
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3.2.5 Specific-Energy Absorption Rate

Specific Absorption Rate (SAR) is the rate at which energy is absorbed by the

human body when exposed to time varying electromagnetic field. It is defined as the

power absorbed per mass of tissue and is expressed as watts per kilogram (W/kg) [24].

SAR restrictions are provided to prevent whole-body heat stress and excessive local-

ized tissue heating. Table: 3.3 gives maximum recommended SAR values for the

general public population.

Table 3.3: Maximum recommended SAR values [1]

Specificity Max. SAR W/kg

Whole body average SAR 0.08

Localized SAR in head and trunk 2

Localized SAR in limbs 4

3.2.6 Power Density

Restrictions on power density prevent excessive heating in tissue at or near the

body surface. Power density restrictions are significant in the frequency range of

10 GHz - 300 GHz. Maximum recommended power density for the general public is

10 W/m2.
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3.2.7 Contact Current Intensity

Contact current is the amount of current that flows when the human body comes

in contact with an object at a different electric potential [1]. ICNIRP poses re-

strictions on contact current as well to avoid shock and burn hazards. Table: 3.4

summarizes the maximum recommended contact current for the general public.

Table 3.4: Restrictions on contact current intensity [1]

Frequency Contact Current mA

f < 2.5 kHz 0.5

2.5 kHz < f < 100 kHz 0.2f

100 kHz < f < 110 MHz 20

100 kHz < f < 110 MHz for limbs 45

For any application involving human subjects the irritation, heating, and destruction

of human tissue has to be limited in compliance with the above mentione regulations

and hence the regulations significantly affect the design parameters for the proposed

system.
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CHAPTER 4

TRANSCEIVER DESIGN FOR INTRA BODY POWER
TRANSFER

The feasibility and novelty of the proposed power transfer approach can be ex-

plored only with a dedicated hardware setup ensuring compliance of the safety guide-

lines by ICNIRP [1]. In this chapter, enabled by the system developed, the concept

of capacitive coupled IBPT will be demonstrated and investigations of the harvested

power with varying design parameters will be conducted to obtain optimal parame-

ters. Section 4.1 defines the system requirements and the main design parameters.

The system architecture is explained in Section 4.2. The experimental setup and

initial results for design optimization are presented in Section 4.3.

4.1 System Design Considerations

In order to design an effective power transfer system utilizing human body as a

transmission medium, it is necessary to address all design challenges that influence

energy harvesting at the passive wearable sensor along with fulfilling safety require-

ments for measurements on human subjects. In this section, we present the key design

considerations for transmitted power.

4.1.1 Operating Frequency Range

The current design focuses on developing a wrist-worn interrogator that can trans-

fer power to a remote wearable sensor on the finger. In this setup, most of the signal

transmission occurs through the skin tissues rather than traversing into the bones.

Gabriel et al. [18] presented a variation of dielectric properties for different human
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tissues and it was observed that the electrical conductivity of human skin is very

low (200 µ0/m) for lower frequency range but increases significantly beyond 100 kHz

whereas permittivity of human skin is very low for higher frequency range that is

beyond 100 MHz. From his study, it can be concluded that the signal transmission

via human skin encounters significant electromagnetic interference for frequencies be-

low 100 kHz. On the other hand, at higher frequencies - 300 MHz to several GHz,

the signal wavelength becomes comparable to the human body channel length and

the body radiates energy acting as an antenna. Hence, an optimal frequency for our

experimental setup should be higher than 100 kHz, to avoid electromagnetic (EM)

interference, and lower than 100 MHz, to minimize the radiation of the signal out of

the body.

4.1.2 Contact Current Intensity

The intensity of electric shock through human body due to intra-body signal trans-

mission is determined by the induced current intensity at particular frequencies. The

maximum induced current intensity for body transmission that is considered harm-

less for humans in the frequency range of 100 kHz to 100 MHz (optimal for our setup)

is 20 mA for entire body. For limbs the current intensity should be 45 mA in the

frequency range of 10 MHz - 110 MHz [1]. For our current setup, the experiments

involve human arm as the prime location where electrodes are mounted for measure-

ments and therefore, in order to comply with this limit, the contact current intensity

should always be below 45 mA.

4.1.3 Specific-Energy Absorption Rate (SAR)

Exposure to time-varying electrical signal results in absorption of energy in tis-

sues that depend on the coupling mechanisms and the frequency involved. Referring

to Table: 3.3 from Section 3.2.5 the maximum recommended SAR for human arm

23



(localized limb) as per our experimental setup is 4 W/kg [1] and failure to comply

with this limit might result in heat stress and localized tissue heating.

4.1.4 Power Density

The ICNIRP [1] regulations for power density apply for frequency between 10 GHz

- 300 GHz (that is 10 W/m2 for general public), and therefore does not apply on the

frequency range selected for current design.

4.1.5 Current Density

Current density safety restrictions are applicable between 1 Hz and 10 MHz in

order to prevent effects on nervous system functions. For the selected frequency range

(100 kHz - 100 MHz) the current density ranges from 200 mA/m2 - 200 A/m2 [1].

4.2 Proposed System Architecture

A block diagram of the proposed system is shown in Figure 4.1. Four main

segments of the IBPT system are on-body surface electrodes, human body as trans-

mission medium, interrogator (transmitter) and transponder (receiver).
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Figure 4.1: Block diagram of the SkinnySensor system.

Figure 4.2: Hardware implementation of the interrogator.
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4.2.1 Interrogator Design

It is critical to preserve the capacitive return path for the design. Any type of

earth-grounded instruments such as function generator, or oscilloscope etc., if con-

nected to the prototype can short the return path and the prototype would not

emulate the real electric-field IBPT. Therefore, experimental measurements have to

be conducted with either battery-powered equipment or by using balun which can

isolate the prototype’s ground electrode from the external earth ground. In order

to emulate electric field based signal transmission, a battery-powered signal genera-

tor was designed that acts as an interrogator. The interrogator board is based on

the Ad9850 Direct Digital Synthesizer (DDS) that is designed with programmable

frequency capability controlled by Arduino mini pro (3.3 V) as shown in Figure 4.2.

The output frequency for the design is configured to vary from 10 MHz to 40 MHz.

A cascaded amplifier stage using ZX60-43-S+ increases the voltage and power level

that can be harvested at the receiver side. Power and peak-to-peak voltage values

for the time-varying electrical signal injected into the human skin using our device

for multiple frequencies are provided in Table 4.1. In order to measure the voltage of

the signal we used DSOX1102A (0-70 MHz) oscilloscope with FTB-1-1*A15+ balun

for ground isolation.

Table 4.1: Transmitter voltage and power profile w.r.t frequency

Frequency (MHz) Voltage (Vp-p) Power (mW)

10 4.78 10.519

20 3.03 7.295

30 2.19 4.581

40 1.05 3.020
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4.2.2 Electrode Design

The electrodes to contact the skin of a human subject are prepared, as shown

in Figure 4.3. The signal electrode is formed on the front side using a copper foil,

and the ground electrode on the back side is of 99% pure copper plate. The SMA

connector is soldered at the edge of the electrode to enable connection with the signal

and ground terminals of the amplifier output on our interrogator design (Figure 4.2).

The copper foil tape that is used for signal electrode provides stable contact with

the human skin. The size of the interrogator electrodes is: 4cm x 13cm for signal

electrode and 4.5cm x 3.5cm for ground electrode. The transponder electrode size is

4cm x 7cm for signal electrode and 2.5cm x 2.5cm for ground panel. The thickness

of the dielectric between the signal electrode and the ground electrode for both the

interrogator and transponder is 2.5mm. These electrodes were copper-based due to

the high conductivity of copper without repeated spreading of conductive paste on

the electrodes (as in pre-wet electrodes) which is inconvenient and may cause inflam-

mation of the skin [22]. Copper electrodes allow good conductivity with loosely fit

electrodes as well. The front side that is the signal electrode for both the interrogator

and the transponder is shown in Figure 4.3(a) and the back side that is the ground

electrode for both the interrogator and the transponder is shown in Figure 4.3(b).

Figure 4.3: Electrode design: (a) Front side of electrodes: signal electrodes for the
interrogator and the transponder. (b) Backside of electrodes: ground electrodes for
the interrogator and the transponder.
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4.2.3 Transponder/Receiver Design

A highly sensitive transponder is developed as shown in Figure 4.4. The signal

coupled from the body is first tuned using LC tank circuit. It is further rectified using

multiple stage voltage doubling stages (power harvesting stage). Power harvesting

stage consists of charge pump regulator stages that deliver power by charging and

discharging capacitors. In the charge pump regulator, the capacitor connection is

altered by the diodes in order to control charging and discharging of the capacitors.

The charge pump based regulators consist of very few components with no inductors

in the design. Therefore, the entire charge pump can be integrated on a single chip to

reduce system cost. The current design for charge pump is the basic design, a more

advanced charge pump regulator based on MOSFETs can further enhance the power

harvesting capabilities of the transponder. For the current design low threshold, RF

Schottky diodes (HSMS-285C) are used to maximize the voltage output of the charge

pump. A detailed comparison of the system with a different number of harvesting

stages (charge pump stages) is presented in Section 5.1 . Finally, this DC voltage

is applied across a large storage capacitor (10uF) which accumulates charge over

time. The DC voltage obtained is supplied to a low-power 1.8V Voltage Regulator

(NCP583) that will be connected to the microcontroller and accelerometer (not part

of the design as yet). It should be noted that the power harvester is a non-linear

device and its efficiency is load dependent. Therefore, the receiver must be tuned to

provide an output voltage in the presence of the desired load.
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Figure 4.4: Hardware implementation of the transponder.

Load Requirements

Microcontroller MSP430F1232

Power Consumption:

• Low Supply Voltage Range 1.8 V to 3.6 V

• Active mode: 200 µA @ 1 MHz, 2.2 V

• Standby mode: 0.7 µA

Accelerometer ADXL362:

Power Consumption:

• 1.8 µA at 100 Hz ODR, 2.0 V supply

• 3.0 µA at 400 Hz ODR, 2.0 V supply

• 270 nA motion activated wake-up mode

• 10 nA standby current
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4.3 Experimental Setup

Figure 4.5: Intra-body power transfer experimental setup.

The capacitive coupled IBPT experiment setup is shown in Figure 4.5. The inter-

rogator is mounted on the human subject's wrist while the transponder is mounted on

the finger. During experiments, the signal electrodes for interrogator and transpon-

der are attached to the skin while the ground electrode (back side of the electrode

design - Figure 4.3(b)) are subjected into the air for capacitive coupling of the re-

turn path. For the voltage measurements, we used high impedance load that is 4 MΩ

(emulating sleep mode of MCU) and the harvested power was calculated by record-

ing the current drawn by a low impedance that is 1 kΩ (emulating active mode of

MCU). For the experiments 5 readings were taken, one at each corner of our lab

(Advanced Human & Health Analytics (AHHA) Laboratory in College of Informa-

tion and Computer Sciences) and one in the centre of the lab to reduce the effect of

electromagnetic interference due to lab equipment. Additionally, the distance of the

arm from the external ground (floor) was 74 cm. The voltage and current measure-

ments were performed using a battery powered Keysight U1282A 4− 1/2 - Handheld

Digital Multimeter in order to avoid any grounding effects from the earth grounded

instruments.
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CHAPTER 5

RESULTS AND ANALYSIS

Normal human activities and body postures such as walking, eating, sitting etc.

influence the direction of the propagation of electrical signal when the intra-body

transmission is employed. The power transfer using IBPT based wearable device can

be established via three different routes. The signal either couples over the surface of

the human skin, across the inner human body tissue, or through the air surrounding

the human body. Although, our system guides the signal through human skin or inner

tissues the signal leakage through the air surrounding the human body during body

movements is inevitable. Additionally, when the human body is in motion the contact

between electrodes and the human skin varies which can influence the power transfer

efficiency. In order to make the system reliable even when worn in a loose fit manner,

it is necessary to study the effects of distance between the signal electrode and the

human skin. Additionally, the variation of the channel length (that is the distance

between the interrogator and transponder) causes signal strength to change during

movement which also becomes an important parameter for system evaluation. This

chapter first studies the effect of varying power harvesting stages for the transponder

to obtain an optimized design. Next, we evaluate the optimized system for different

parameters that can affect the power harvested.

5.1 Transponder Design Parameter Optimization

Influences of different power harvesting stages on the harvested voltage and power

are investigated in this section. The harvesting stage doubles the voltage of incoming
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signal and with an increasing number of harvesting stages the voltage increases but

the power available at the output declines. Therefore, there is a trade-off between the

power and voltage that depend on harvesting stages. In this section, we try to find

the optimum number of harvesting stages which is capable of delivering a sufficient

amount of voltage that can charge the capacitor along with satisfying the power

requirements of the load. In order to find the voltage across the capacitor when MCU

is in sleep mode we used a high impedance load (4 MΩ), and to estimate the power

consumption of MCU when it is in active mode the current across low impedance

(1 kΩ) was measured. One of the challenges of incorporating microcontroller and

sensors with IBPT is the ability to manage large power consumption of these devices.

The resulting power consumption is very high and harvester might not be able to

continuously supply power to the devices. One method to overcome this challenge

was to use a large storage capacitor to accumulate the charge which is incorporated in

our design. Once sufficient voltage is obtained by the system with MCU and sensors,

they can operate in burst mode, polling sensors periodically (duty cycling MCU)

which is the immediate future work of this research. Here we limit the study to the

harvested power using the IBPT.

In order to optimize the transponder a comparison of the system with a different

number of harvesting stages is presented. It can be observed from the plots in Figure

5.3 that the amount of power harvest with 2 stage charge pump is 218 µW for low

impedance (1K) at 30 MHz and for the same frequency we obtain (Refer Figure 5.1)

3.75 V in sleep mode (high impedance mode) which is sufficient to turn microcon-

troller on (we need above 2.2 + −0.2V voltage so that we remain above the MCU

turn-on voltage(1.8V -3.6 V).) Although increasing the number of stages increases

the voltage at the capacitor but the power level is quite low and we do not require

any further increment in the voltage level. The design with 1 stage power harvester

cannot be used as it does not provide voltage in the range of our chosen threshold
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Figure 5.1: Harvested voltage with varying number of harvesting stages - high
impedance (4 MΩ).

Figure 5.2: Harvested power with varying number of harvesting stages - high
impedance (4 MΩ).

2.2 + −0.2V although power level in active mode (low impedance mode) is quite

high for 1 stage harvester. Furthermore, we obtain maximum harvested power for
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2- stage harvester in low impedance mode at 30 MHz indicating the power transfer

efficiency is high at this frequency. Therefore, we selected 2 - stage power harvester

as the optimal harvester which should be operated at 30 MHz. In this configura-

tion the sleep mode (high impedance mode) voltage is 3.75 V and active mode (low

impedance mode) harvested power is 218 µW. An additional observation was made

that the standard deviation for the data points (power as well as voltage) for 1- stage

is less as compared to that for increasing stages - highest for 5- stage. This shows that

adding more stages adds instability to the system. Therefore, achieving high volt-

age and power level with a minimum number of stages is considered optimized design.

Figure 5.3: Harvested power with varying number of harvesting stages - low
impedance (1 kΩ).
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Figure 5.4: Harvested voltage with varying number of harvesting stages - low
impedance (1 kΩ).

5.2 Effect of Varying Distance Between Interrogator and Transpon-

der

The goal of this experiment was to analyze the variation in harvested power and

voltage at the transponder with varying distance between the interrogator and the

transponder. When the time-varying electrical signal is coupled to the human skin

it disperses in multiple directions [54] due to which power loss occurs. In order to

evaluate the efficiency of the designed system with varying distance we fix the position

of the transponder electrodes to the finger (that is signal electrode is attached to the

skin while the ground electrode subjected in air) while the interrogator electrode

is moved along the arm changing the distance by 5 cm for each data recording.

The voltage measurements were recorded with high impedance load that is 4 MΩ

(emulating sleep mode of MCU) and the harvested power was calculated by recording

35



the current drawn by the low impedance that is 1 kΩ (emulating active mode of

MCU). The experiment was conducted 5 times for each distance at different locations

in our lab in order to minimize the effect of electromagnetic radiation from other lab

equipment.

Figure 5.5: Harvested power and voltage with varying distance between interrogator
and transponder - high impedance (4 MΩ).

Figure 5.5 shows the experimental results for the effect of distance on the power

harvested for 1 kΩ and Figure 5.6 illustrates the voltage level in high impedance mea-

surement mode using the prototype for IBPT evaluation. The plot shows the mean

harvested power and mean output voltage of 5 recordings for each measurement on

one human subject. The error bars show the standard deviation of the data points

and by observation, it can be concluded that the amount of variation in data points

and the error or uncertainty in the reported measurement is quite low for harvested

power(active/low impedance mode) and the output voltage(sleep/high impedance

mode). From Figure 5.5, it can be concluded that although power harvested drops

with increasing distance between the interrogator and the transponder but the volt-

age level is above the threshold level that is 2.2V (MCU requirement). If we perform
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Figure 5.6: Harvested power and voltage with varying distance between interrogator
and transponder - low impedance (1 kΩ).

duty cycling of MCU the capacitor can supply power efficiently even with increas-

ing distances. Moreover, since the power injected from the interrogator is quite low

we can increase the power level while ensuring compliance with safety regulations to

obtain higher power harvesting and operate microcontrollers for longer active mode

intervals. Moreover, from Figure 5.6, we observe that power harvested drops sig-

nificantly approximately 100 µW when the distance increases from 10 cm to 15 cm

indicating that distance between interrogator and transponder plays a significant role

in the amount of power harvested.

5.3 Effect of Varying Longitudinal Distance between Transpon-

der Electrode and Human Skin

In order to evaluate the signal propagation for loosely fit electrodes, harvested

power and voltage level was recorded for varying height of the signal electrode with

respect to the human skin. The experimental setup was similar as explained in

Section 4.3. The only difference was that we used a smaller signal electrode for the
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transponder having the size of 4cmx 3.5cm for the feasibility of holding the electrode

above the skin. The signal electrode was suspended in air with the help of plastic

forceps to avoid capacitive coupling between human skin and the signal electrode. The

voltage measurements were recorded with the high impedance load (4 MΩ) and the

harvested power was calculated by recording the current drawn by the low impedance

(1 kΩ). The same measurement equipment was used as in the previous experiment.

The harvested power and voltage level achieved over multiple separations between

Figure 5.7: Harvested power and voltage with varying longitudinal distance between
transponder electrode and human skin - high impedance (4 MΩ).

the signal electrode for the transponder and human skin is illustrated in Figure 5.7

and Figure 5.8. It was observed that the power and voltage level significantly drops if

the electrode is moved away from human skin indicating that the maximum amount

of signal propagation was routed via human skin and tissues because as soon as

the contact distance between the skin and electrode increases a decline of power and

voltage is observed. Additionally, it can be concluded that the recommended distance
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Figure 5.8: Harvested power and voltage with varying longitudinal distance between
transponder electrode and human skin - low impedance (1 kΩ).

between the signal electrode and the human skin for efficient transmission is between

0 − 20mm.

5.4 System Reliability Evaluation

The anticipated usage of wearable sensors includes continuous hand motion. There-

fore, it is necessary to validate that the power harvested sustains for long time in-

tervals during normal hand movement. The similar measurement setup was used as

the previous experiment. Voltage and power through 1 kΩ and 4 MΩ were recorded

for 60 seconds ensuring the subject moves her hand rigorously making circular hand

movements. The system exhibited reliable operation for 1 minute with 212 µW mean

harvested power in active/low impedance mode and 3.33 V mean output voltage in

sleep/high impedance mode as shown in Figure 5.9 and Figure 5.9.
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Figure 5.9: Voltage and power over time - high impedance (4 MΩ).

Figure 5.10: Voltage and power over time - low impedance (1 kΩ).
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Table 5.1: Comparison between harvested power using IBPT with RF based power
transfer techniques.

Method Frequency (MHz)

Output
Power
(µW)

Intra-Body Power Transfer 30 217

Radio Frequency (RF) 1000

140
O’Driscoll
(2011) [38]

Radio Frequency (RF) 1000
5 Poon

(2010) [40]

Radio Frequency (RF) 2400
2.3 Shih

(2011) [49]

5.5 Discussion

The evaluation platform presented here offers significant insight into the developed

system and the concept of IBPT. We demonstrated that the harvested power is sig-

nificantly dependent upon parameters such as the distance between the interrogator

and the transponder as well as separation between electrode and skin. Additionally,

the system was verified to be reliable when the subject performs rigorous hand mo-

tion. The parameter optimization Section 5.1 revealed that the maximum power is

harvested when the system is operated at 30 MHz. It was also demonstrated that the

system developed is capable of harvesting on average 217 µW in low impedance mode

and provides an average high impedance mode voltage of 4.5 V. The harvested power

is comparable to existing Radio Frequency (RF) based power transfer techniques but

with an advantage of using lower frequency signal which is safe for human interaction.

The Table 5.1 compares the harvested power using IBPT with RF-based solutions.

An additional advantage of IBPT is that similar range of power is harvested at the

transponder with very low power signal coupled through human body as compared

to traditional RF based solutions which transmit approximately 1W power [46].
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CHAPTER 6

CONCLUSION AND FUTURE WORK

IBPT is a novel concept that can deliver power to ultra-miniaturized battery-

less wearable sensors that can be mounted on any part of the body, even smaller

body parts such as fingertip, in-ear, and in-mouth, where it is difficult to package

the sensor, embedded processor, communication modules into an integrated system

with a large battery. This innovative technology utilizes the human body itself as the

transmission medium for powering on-body sensors. The cost and energy efficiency,

at relatively lower frequency range and lower human health-related risks, make it an

appealing alternative to RF-based power transmission techniques used for wearable

technology. The technology underlying this research is composed of an interrogator

capable of transmitting time-varying electric signals via human body to transmit

power and an ultra-miniaturized, batteryless transponder (passive wearable sensors)

that can be powered from the transmitted signals for collecting sensory data. IBPT

is an innovative way of simplifying the configurations of BAN and can substantially

reduce the manufacturing cost of sensors, as it will eliminate the use of a battery

and any RF-based communication devices. Furthermore, the technology makes the

system more user-friendly as users would no longer have to recharge multiple sensors

- users will simply need to recharge a single battery socket.

In this study, we focused on designing an optimized transponder capable of har-

vesting maximum power for the target load that is a Microcontroller and an Ac-

celerometer. As the return path for electric field intra-body transmission is provided

by the environment, the optimization phase included the selection of an operating
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frequency that overcomes the parasitic coupling effects and provides maximum signal

propagation through human body which was found to be 30 MHz. At this low fre-

quency, the system harvests power which is comparable to the traditional RF-based

power transfer techniques. The system was demonstrated to be stable and can harvest

power during motion as well. Future design efforts for this project focus on improve-

ments in the current design including duty cycling the active mode data collection of

Microcontroller to adjust the power budget for low power application sensors. Addi-

tionally, the physical design improvements include PCB based miniaturized version of

the current prototype. The first transponder PCB has been manufactured (i.e. shown

in Figure 6.1) and is currently in the testing phase. And we anticipate developing a

real-world application such as a gesture recognition system that uses this technology

because we believe this technology has tremendous potential and wearable technology

can take significant advantages from the idea of IBPT.

Figure 6.1: PCB realization of transponder.
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