10 research outputs found

    Active Learning to Classify Macromolecular Structures in situ for Less Supervision in Cryo-Electron Tomography

    Full text link
    Motivation: Cryo-Electron Tomography (cryo-ET) is a 3D bioimaging tool that visualizes the structural and spatial organization of macromolecules at a near-native state in single cells, which has broad applications in life science. However, the systematic structural recognition and recovery of macromolecules captured by cryo-ET are difficult due to high structural complexity and imaging limits. Deep learning based subtomogram classification have played critical roles for such tasks. As supervised approaches, however, their performance relies on sufficient and laborious annotation on a large training dataset. Results: To alleviate this major labeling burden, we proposed a Hybrid Active Learning (HAL) framework for querying subtomograms for labelling from a large unlabeled subtomogram pool. Firstly, HAL adopts uncertainty sampling to select the subtomograms that have the most uncertain predictions. Moreover, to mitigate the sampling bias caused by such strategy, a discriminator is introduced to judge if a certain subtomogram is labeled or unlabeled and subsequently the model queries the subtomogram that have higher probabilities to be unlabeled. Additionally, HAL introduces a subset sampling strategy to improve the diversity of the query set, so that the information overlap is decreased between the queried batches and the algorithmic efficiency is improved. Our experiments on subtomogram classification tasks using both simulated and real data demonstrate that we can achieve comparable testing performance (on average only 3% accuracy drop) by using less than 30% of the labeled subtomograms, which shows a very promising result for subtomogram classification task with limited labeling resources.Comment: Statement on authorship changes: Dr. Eric Xing was an academic advisor of Mr. Haohan Wang. Dr. Xing was not directly involved in this work and has no direct interaction or collaboration with any other authors on this work. Therefore, Dr. Xing is removed from the author list according to his request. Mr. Zhenxi Zhu's affiliation is updated to his current affiliatio

    Parallelizing Exploration-Exploitation Tradeoffs in Gaussian Process Bandit Optimization

    Get PDF
    How can we take advantage of opportunities for experimental parallelization in exploration-exploitation tradeoffs? In many experimental scenarios, it is often desirable to execute experiments simultaneously or in batches, rather than only performing one at a time. Additionally, observations may be both noisy and expensive. We introduce Gaussian Process Batch Upper Confidence Bound (GP-BUCB), an upper confidence bound-based algorithm, which models the reward function as a sample from a Gaussian process and which can select batches of experiments to run in parallel. We prove a general regret bound for GP-BUCB, as well as the surprising result that for some common kernels, the asymptotic average regret can be made independent of the batch size. The GP-BUCB algorithm is also applicable in the related case of a delay between initiation of an experiment and observation of its results, for which the same regret bounds hold. We also introduce Gaussian Process Adaptive Upper Confidence Bound (GP-AUCB), a variant of GP-BUCB which can exploit parallelism in an adaptive manner. We evaluate GP-BUCB and GP-AUCB on several simulated and real data sets. These experiments show that GP-BUCB and GP-AUCB are competitive with state-of-the-art heuristics

    Uncertainty Estimation: single forward pass methods and applications in Active Learning

    Get PDF
    Machine Learning (ML) models are now powerful enough to be used in complex automated decision-making settings such as autonomous driving and medical diagnosis. Despite being very accurate in general, these models do still make mistakes. A critical factor in being able to depend on such models is that they can quantify the uncertainty of their predictions, and it is paramount that this is taken into account by users of the model. Unfortunately, deep learning models cannot readily express their uncertainty, rendering them unsafe for many real-world applications. Bayesian modelling provides a mathematical framework for learning models that can express their uncertainty. However, exact Bayesian methods are computationally expensive to learn and evaluate, and approximate methods often reduce accuracy or are still prohibitively expensive. Meanwhile, ML models continue to increase in number of parameters, meaning that one has to make a decision between being (more) Bayesian or using a larger model. So far it has always fallen in favour of larger models. Instead of building on Bayesian methods, we deconstruct uncertainty estimation and formulate desiderata that we base our work on throughout the thesis (Chapter 1). In Chapter 3, we introduce a new model (DUQ) that is able to estimate uncertainty in a single forward pass by carefully constructing the model’s parameter and output space based on the desiderata. We then extend this model in Chapter 4 (DUE) by placing it in the framework provided by Deep Kernel Learning. This enables the model to work well for both classification and regression tasks (as opposed to just classification), and estimate uncertainty over a batch of inputs jointly. Both models are competitive with standard softmax models in terms of accuracy and speed, while having significantly improved uncertainty estimation. We additionally consider the problem of Active Learning (AL), where the goal is to maximise label efficiency by selecting only the most informative data points to be labelled. In Section 4.5, we evaluate the DUE model in AL for personalised healthcare. Here, the labelled dataset needs to adhere to specific assumptions made in causal inference, which makes this a challenging problem. In Chapter 5, we look at AL in the batch setting. We show that current methods do not select diverse batches of data, and we introduce a principled method to overcome this issue. Building upon deep kernel learning, this thesis provides a compelling foundation for single forward pass uncertainty and advances the state of the art in active learning. In the conclusions (Section 6, and at the end of each chapter), we discuss how users of ML models could make use of these tools for making sound and confident decisions

    Deep Active Learning Explored Across Diverse Label Spaces

    Get PDF
    abstract: Deep learning architectures have been widely explored in computer vision and have depicted commendable performance in a variety of applications. A fundamental challenge in training deep networks is the requirement of large amounts of labeled training data. While gathering large quantities of unlabeled data is cheap and easy, annotating the data is an expensive process in terms of time, labor and human expertise. Thus, developing algorithms that minimize the human effort in training deep models is of immense practical importance. Active learning algorithms automatically identify salient and exemplar samples from large amounts of unlabeled data and can augment maximal information to supervised learning models, thereby reducing the human annotation effort in training machine learning models. The goal of this dissertation is to fuse ideas from deep learning and active learning and design novel deep active learning algorithms. The proposed learning methodologies explore diverse label spaces to solve different computer vision applications. Three major contributions have emerged from this work; (i) a deep active framework for multi-class image classication, (ii) a deep active model with and without label correlation for multi-label image classi- cation and (iii) a deep active paradigm for regression. Extensive empirical studies on a variety of multi-class, multi-label and regression vision datasets corroborate the potential of the proposed methods for real-world applications. Additional contributions include: (i) a multimodal emotion database consisting of recordings of facial expressions, body gestures, vocal expressions and physiological signals of actors enacting various emotions, (ii) four multimodal deep belief network models and (iii) an in-depth analysis of the effect of transfer of multimodal emotion features between source and target networks on classification accuracy and training time. These related contributions help comprehend the challenges involved in training deep learning models and motivate the main goal of this dissertation.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Enhancing Text Annotation with Few-shot and Active Learning: A Comprehensive Study and Tool Development

    Get PDF
    The exponential growth of digital communication channels such as social media and messaging platforms has resulted in an unprecedented influx of unstructured text data, thereby underscoring the need for Natural Language Processing (NLP) techniques. NLP-based techniques play a pivotal role in the analysis and comprehension of human language, facilitating the processing of unstructured text data, and allowing tasks like sentiment analysis, entity recognition, and text classification. NLP-driven applications are made possible due to the advancements in deep learning models. However, deep learning models require a large amount of labeled data for training, thereby making labeled data an indispensable component of these models. Retrieving labeled data can be a major challenge as the task of annotating large amounts of data is laborious and error-prone. Often, professional experts are hired for task-specific data annotation, which can be prohibitively expensive and time-consuming. Moreover, the annotation process can be subjective and lead to inconsistencies, resulting in models that are biased and less accurate. This thesis presents a comprehensive study of few-shot and active learning strategies, systems that combine the two techniques, and current text annotation tools while proposing a solution that addresses the aforementioned challenges through the integration of these methods. The proposed solution is an efficient text annotation platform that leverages Few-shot and Active Learning techniques. It has the potential to assist the field of text annotation by enabling organizations to process vast amounts of unstructured text data efficiently. Also, this research paves the way for inspiring ideas and promising growth opportunities in the future of this field

    Semi-supervised learning for image classification

    Get PDF
    Object class recognition is an active topic in computer vision still presenting many challenges. In most approaches, this task is addressed by supervised learning algorithms that need a large quantity of labels to perform well. This leads either to small datasets (< 10,000 images) that capture only a subset of the real-world class distribution (but with a controlled and verified labeling procedure), or to large datasets that are more representative but also add more label noise. Therefore, semi-supervised learning is a promising direction. It requires only few labels while simultaneously making use of the vast amount of images available today. We address object class recognition with semi-supervised learning. These algorithms depend on the underlying structure given by the data, the image description, and the similarity measure, and the quality of the labels. This insight leads to the main research questions of this thesis: Is the structure given by labeled and unlabeled data more important than the algorithm itself? Can we improve this neighborhood structure by a better similarity metric or with more representative unlabeled data? Is there a connection between the quality of labels and the overall performance and how can we get more representative labels? We answer all these questions, i.e., we provide an extensive evaluation, we propose several graph improvements, and we introduce a novel active learning framework to get more representative labels.Objektklassifizierung ist ein aktives Forschungsgebiet in maschineller Bildverarbeitung was bisher nur unzureichend gelöst ist. Die meisten Ansätze versuchen die Aufgabe durch überwachtes Lernen zu lösen. Aber diese Algorithmen benötigen eine hohe Anzahl von Trainingsdaten um gut zu funktionieren. Das führt häufig entweder zu sehr kleinen Datensätzen (< 10,000 Bilder) die nicht die reale Datenverteilung einer Klasse wiedergeben oder zu sehr grossen Datensätzen bei denen man die Korrektheit der Labels nicht mehr garantieren kann. Halbüberwachtes Lernen ist eine gute Alternative zu diesen Methoden, da sie nur sehr wenige Labels benötigen und man gleichzeitig Datenressourcen wie das Internet verwenden kann. In dieser Arbeit adressieren wir Objektklassifizierung mit halbüberwachten Lernverfahren. Diese Algorithmen sind sowohl von der zugrundeliegenden Struktur, die sich aus den Daten, der Bildbeschreibung und der Distanzmasse ergibt, als auch von der Qualität der Labels abhängig. Diese Erkenntnis hat folgende Forschungsfragen aufgeworfen: Ist die Struktur wichtiger als der Algorithmus selbst? Können wir diese Struktur gezielt verbessern z.B. durch eine bessere Metrik oder durch mehr Daten? Gibt es einen Zusammenhang zwischen der Qualität der Labels und der Gesamtperformanz der Algorithmen? In dieser Arbeit beantworten wir diese Fragen indem wir diese Methoden evaluieren. Ausserdem entwickeln wir neue Methoden um die Graphstruktur und die Labels zu verbessern
    corecore