
Deep Active Learning Explored Across Diverse Label Spaces

by

Hiranmayi Ranganathan

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved April 2018 by the
Graduate Supervisory Committee:

Sethuraman Panchanathan, Chair
Antonia Papandreou-Suppappola

Baoxin Li
Shayok Chakraborty

ARIZONA STATE UNIVERSITY

May 2018

ABSTRACT

Deep learning architectures have been widely explored in computer vision and have

depicted commendable performance in a variety of applications. A fundamental chal-

lenge in training deep networks is the requirement of large amounts of labeled training

data. While gathering large quantities of unlabeled data is cheap and easy, annotat-

ing the data is an expensive process in terms of time, labor and human expertise.

Thus, developing algorithms that minimize the human effort in training deep models

is of immense practical importance. Active learning algorithms automatically identify

salient and exemplar samples from large amounts of unlabeled data and can augment

maximal information to supervised learning models, thereby reducing the human an-

notation effort in training machine learning models. The goal of this dissertation is to

fuse ideas from deep learning and active learning and design novel deep active learn-

ing algorithms. The proposed learning methodologies explore diverse label spaces to

solve different computer vision applications. Three major contributions have emerged

from this work; (i) a deep active framework for multi-class image classification, (ii)

a deep active model with and without label correlation for multi-label image classi-

fication and (iii) a deep active paradigm for regression. Extensive empirical studies

on a variety of multi-class, multi-label and regression vision datasets corroborate the

potential of the proposed methods for real-world applications. Additional contribu-

tions include: (i) a multimodal emotion database consisting of recordings of facial

expressions, body gestures, vocal expressions and physiological signals of actors en-

acting various emotions, (ii) four multimodal deep belief network models and (iii)

an in-depth analysis of the effect of transfer of multimodal emotion features between

source and target networks on classification accuracy and training time. These re-

lated contributions help comprehend the challenges involved in training deep learning

models and motivate the main goal of this dissertation.

i

DEDICATION

Shree Gurubhyo Namaha

This dissertation is dedicated to my dearest amma & appa.

ii

ACKNOWLEDGMENTS

I would like to take this opportunity to thank everyone who has supported me and

been a part of my PhD journey. I am very grateful to all the guidance, encouragement

and friendship that I have earned during this time.

First, I would like to express my heartfelt gratitude to my mentor and advisor Dr.

Sethuraman Panchanathan, who magnanimously gave me the freedom to pursue my

research interests from the very beginning. I am deeply indebted to him for helping

me convert to part-time status and allowing me continue my PhD journey while I

stayed off-campus with family. I cannot thank him enough for believing in me and

pushing me to strive for excellence in all my ventures.

I would like to thank Dr. Antonia Papandreou-Suppappola and Dr. Baoxin

Li for serving on my committee and providing useful feedback on my research. I

would like to convey my sincere gratitude to my mentor and committee member, Dr.

Shayok Chakraborty for shaping my PhD dissertation and helping at every step of

my research.

It has been an elevating experience working with fellow members of the Center for

Cognitive Ubiquitous Computing (CUbiC) at Arizona State University. I would like

to thank Vineeth, Sreekar and Troy for the many fruitful discussions and feedback

during the initial stages of my graduate study. Many thanks to Rita and Prasanth for

their helpful insights during research discussions. My sincere thanks to Hemanth for

having supported my research from proof of concept to implementation to completion.

I would also like to thank Kathy and Jessica for their prompt help whenever needed.

I extend my gratitude to all the faculty and staff at Arizona State University for

providing me with all the necessary support during the course of my PhD tenure.

Many thanks to all my friends for the wonderful memories made throughout my

doctoral career.

iii

To my dear husband Arvind, words fail to express my gratitude. Thank you for

being there for me and standing by me through the lows and highs of my PhD. If it

wasn’t for your support, co-operation and encouragement, this endevour would not

have been possible. I appreciate my daughter, Yashasvee for the patience she showed

during my thesis writing.

Most importantly, I would like to thank all my family (parents, parents-in-law,

Radha, Ravi and Patti) for their continuous encouragement, patience and love through

all the years. I would like to dedicate this work to my amma and appa, who have

been an unwavering source of inspiration and support in every step of my life. Thank

you for motivating me to pursue a doctoral degree in science and engineering. I am

what I am today because of your love, care and support.

I thank the Almighty for giving me the strength and patience to work through all

these years so that today I can stand proudly with my head held high.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . xii

LIST OF FIGURES . xiv

CHAPTER

1 INTRODUCTION . 1

1.1 Goals and Motivation . 2

1.2 Major Contributions . 4

1.3 Additional Contributions . 6

1.4 Dissertation Outline . 8

1.5 Previously Published Work . 12

2 LITERATURE SURVEY . 14

2.1 Benchmark Emotion Recognition Datasets . 15

2.2 Multimodal Emotion Recognition Models . 17

2.3 Transfer of Emotion Features between Deep Models 20

2.4 Multi-class Image Classification using Deep Models 21

2.5 Multi-class Active Learning . 23

2.6 Multi-label lmage Classification using Deep Models 24

2.7 Multi-label Active Learning . 26

2.8 Deep Models for Regression . 27

2.9 Active Learning for Regression . 27

2.10 Deep Active Learning . 28

3 DEEP LEARNING MODELS . 31

3.1 Artificial Neural Networks, (ANNs) . 32

3.1.1 The Error Function . 34

3.1.2 The Back-Propagation Algorithm. 35

v

CHAPTER Page

3.1.3 Overfitting . 39

3.2 Restricted Boltzmann Machines, (RBMs) . 40

3.2.1 Training an RBM: Contrastive Divergence 42

3.3 Deep Belief Networks, (DBNs) . 43

3.3.1 Greedy Pre-Training in Deep Belief Networks 44

3.3.2 Generating Data from a DBN . 47

3.3.3 Stacked RBMs and Deep Belief Networks 49

3.4 Stacked Auto-Associators, (SAs) . 50

3.5 Convolutional Neural Networks, (CNNs) . 52

3.5.1 Notation . 52

3.5.2 Architecture . 53

3.5.3 Forward Propagation . 54

3.5.4 Stochastic Gradient Descent, (SGD) . 55

3.5.5 Back Propagation . 56

3.5.6 ReLU Layer . 57

3.5.7 Convolution Layer . 57

3.5.8 Update Parameters . 58

3.5.9 Gradient Computation . 59

3.5.10 Pooling layer . 60

3.5.11 Fully Connected Layer . 61

3.6 Recurrent Neural Networks, (RNNs) . 61

3.6.1 Long Short-Term Memory Networks, (LSTMs) 64

3.6.2 LSTM Equations . 65

3.6.3 Backpropagation Through Time, (BPTT). 67

vi

CHAPTER Page

3.7 Summary . 69

4 DEEP MODELS FOR MULTIMODAL EMOTION RECOGNITION . . . 70

4.1 Database for Holistic Emotion Recognition . 71

4.2 emoFBVP Database. 74

4.2.1 Apparatus and Setup For Data Collection 74

4.2.2 Data Capture Procedure . 75

4.2.3 Properties of emoFBVP Database . 78

4.2.4 Conclusions . 81

4.3 Deep Belief Networks for Emotion Recognition . 81

4.3.1 Multimodal Emotion Recognition Model 84

4.3.2 Unsupervised Feature Learning . 86

4.3.3 Supervised Feature Selection . 87

4.3.4 Feature Extraction - emoFBVP Database. 88

4.4 Experiments . 89

4.4.1 Baseline Model . 89

4.4.2 DemoFV DBN Models . 90

4.4.3 Results for DemoFV DBN . 90

4.4.4 DemoBV DBN Models . 93

4.4.5 Results for DemoBV DBN . 93

4.4.6 DemoFBV DBN Models . 95

4.4.7 Results for DemoFBV DBN . 96

4.4.8 DemoFBVP DBN Models . 98

4.4.9 Results for DemoFBVP DBN . 98

4.4.10 Results on Standard Emotion Corpora . 100

vii

CHAPTER Page

4.4.11 Conclusions . 101

4.5 Convolutional Deep Belief Networks for Emotion Recognition 101

4.5.1 Results for CDBN Models . 102

4.5.2 Conclusions . 103

4.6 Auto-associators for Emotion Recognition . 103

4.6.1 Feature Learning Methods . 104

4.6.2 Experiments . 105

4.6.3 Results . 107

4.6.4 Conclusions . 108

4.7 Transfer of Emotion-Rich Features between Deep Belief Networks . . 108

4.7.1 emoDBN Models . 110

4.7.2 emosource DBN model . 110

4.7.3 emotarget and emotargetft DBN models 111

4.7.4 Parameter Selection . 112

4.8 Experiments and Results . 112

4.8.1 Results when emosource is trained on emoFBVP dataset 116

4.8.2 Results when emosource is trained on Mind Reading dataset 117

4.8.3 Results when emosource is trained on MMI dataset 120

4.8.4 Results when emosource is trained on Cohn Kanade dataset . 120

4.8.5 Layer-wise Summary of the Results . 120

4.8.6 Conclusions . 122

4.9 Summary . 123

5 DEEP ACTIVE LEARNING FOR SINGLE-LABEL IMAGE CLASSI-

FICATION . 125

viii

CHAPTER Page

5.1 Active Learning Models . 126

5.1.1 Definition . 126

5.1.2 Active Learning Scenarios . 127

5.1.3 Query Strategies . 129

5.1.4 An Example of Active Learning . 131

5.2 Deep Active Learning Models . 134

5.3 Proposed Framework . 135

5.3.1 Cross-entropy Loss for Labeled Data . 136

5.3.2 Entropy - Measure of Uncertainty . 137

5.3.3 Joint Loss for Active Learning . 138

5.3.4 Computing the Gradient . 139

5.3.5 Active Learning Network Architecture and Training 140

5.4 Experiments and Results . 142

5.4.1 Implementation Details . 142

5.4.2 Datasets and Experimental Setup . 143

5.4.3 Comparison Baselines . 144

5.4.4 Active Learning Performance . 146

5.5 Conclusion and Future Work . 148

5.6 Summary . 149

6 DEEP ACTIVE LEARNING FOR MULTI-LABEL IMAGE CLASSIFI-

CATION . 150

6.1 Proposed Framework . 152

6.2 Multi-Label Active Learning Without Label Correlation 154

6.2.1 Sigmoid Cross-Entropy Loss for Labeled Data 154

ix

CHAPTER Page

6.2.2 Entropy Loss for Unlabeled Data . 155

6.2.3 Joint Objective for Multi-label Active Learning 155

6.2.4 Training and Implementation Details . 156

6.3 Multi-Label Deep Active Learning With Label Correlation 157

6.3.1 Loss on Labeled Data . 159

6.3.2 Loss on Unlabeled Data . 160

6.3.3 Joint Objective for Training . 160

6.4 Experiments and Results . 163

6.5 Summary . 167

7 DEEP ACTIVE LEARNING FOR IMAGE REGRESSION 168

7.1 Related Work . 171

7.1.1 Deep Learning for Regression . 171

7.1.2 Active Learning for Regression . 172

7.1.3 Deep Active Learning for Regression . 174

7.2 Proposed Framework . 174

7.2.1 Loss on Labeled Data . 176

7.2.2 Principle of Expected Model Output Change (EMOC) 176

7.2.3 Loss on Unlabeled Data . 178

7.2.4 Novel Joint Objective Function . 180

7.2.5 Gradient of Objective Function . 181

7.3 Experiments and Results . 183

7.3.1 Implementation Details . 183

7.3.2 Datasets and Experimental Setup . 184

7.3.3 Comparison Baselines and Evaluation Metrics 185

x

CHAPTER Page

7.3.4 Active Learning Performance . 188

7.3.5 Study of the Active Sampling Criterion . 190

7.3.6 Visual Illustration of the Selected Samples 194

7.4 Conclusions . 196

8 FUTURE DIRECTIONS . 198

8.0.1 Multimodal Emotion Recognition . 198

8.0.2 Deep Active Learning Models for all Label Spaces 199

9 SUMMARY . 202

9.0.1 Summary of Contributions . 202

9.0.2 Conference Submissions . 204

9.0.3 Workshop Poster Presentations . 205

BIBLIOGRAPHY. 206

APPENDIX

A DERIVATIVE OF THE JOINT OBJECTIVE FUNCTIONS 219

B PERMISSION STATEMENTS FROM CO-AUTHORS 229

xi

LIST OF TABLES

Table Page

4.1 emoFBVP Emotion Database Properties . 73

4.2 Apparatus Used for Data Capture for Multi Modal Emotional Expression 75

4.3 Animation Units and Shape Units from Face Tracking data 79

4.4 Classification Accuracy (%) for DemoFV Models . 91

4.5 Classification Accuracy (%) for DemoBV Models. 94

4.6 Classification Accuracy (%) for DemoFBV Models 97

4.7 Classification Accuracy (%) for DemoFBVP Models 99

4.8 Emotion Recognition Using Facial Expressions . 100

4.9 Emotion Recognition Using Vocal Expressions . 100

4.10 Emotion Recognition Using Physiological Data . 100

4.11 Emotion Recognition Using Multimodal Data . 100

4.12 Emotion Recognition Using emoFBVP Database . 102

4.13 Emotion Recognition Using Cohn Kanade Database 102

4.14 Emotion Recognition Using Mind Reading Database 102

4.15 Emotion Recognition Using DEAP Database . 102

4.16 Emotion recognition using MAHNOB-HCI database 102

4.17 Multi-Modal Feature Learning Settings . 104

4.18 Emotion Recognition Accuracy on emoFBVP Database 107

4.19 emosource DBN Trained on Dataset X . 114

4.20 Source: emoFBVP, Target: Mind Reading. 115

4.21 Source: emoFBVP, Target: MMI . 115

4.22 Source: emoFBVP, Target: Cohn Kanade . 115

4.23 Source: Mind Reading, Target:emoFBVP . 118

4.24 Source: Mind Reading, Target:MMI. 118

xii

Table Page

4.25 Source: Mind Reading, Target: Cohn Kanade . 118

4.26 Source: MMI, Target: emoFBVP . 119

4.27 Source: MMI, Target: Mind Reading . 119

4.28 Source: MMI, Target: Cohn Kanade . 119

4.29 Source: Cohn Kanade, Target: emoFBVP . 121

4.30 Source: Cohn Kanade, Target: Mind Reading. 121

4.31 Source: Cohn Kanade, Target:MMI . 121

5.1 Query Strategy- Explanation . 130

5.2 Active Learning - Example . 131

5.3 Labeled Dataset . 132

5.4 Unlabeled Dataset . 132

5.5 Updated Labeled Dataset. 133

5.6 Updated Unlabeled Dataset . 133

5.7 Uni-modal Dataset Details. 144

5.8 Multi-modal Dataset Details. 144

7.1 Dataset Details . 185

7.2 Label Complexity for MAE = 9 . 191

xiii

LIST OF FIGURES

Figure Page

3.1 Feed Forward Neural Network . 33

3.2 Restricted Boltzmann Machine . 41

3.3 Deep Belief Network Model. 45

3.4 Recognition Weights Versus Generative Weights . 46

3.5 Initialization of Weights . 47

3.6 Stacked RBM Architecture . 50

3.7 DAA Training Scheme. 52

3.8 Recurrent Neural Network . 62

3.9 An Unrolled RNN. 62

3.10 Short - Term Dependency in RNN . 63

3.11 Long - Term Dependency in RNN . 64

3.12 LSTM Cell State . 65

3.13 LSTM Gate Operation . 65

3.14 LSTM Forget Gate . 66

3.15 LSTM Input Gate . 66

3.16 Updated Cell State . 66

3.17 LSTM Output Gate . 67

4.1 Equipment Used for Data Capture . 76

4.2 Snapshot of a Subject Portraying Emotion, Surprise. 77

4.3 Skeletal Tracking and Joint Hierarchy - 20 Bone Joints Are Tracked. . . . 80

4.4 The RBM Architecture With Visible (V) and Hidden (H) Layers. 83

4.5 Illustration of Proposed DemoFV Models . 91

4.6 Illustration of Proposed DemoBV Models: . 94

4.7 Illustration of Proposed DemoFBV Models . 97

xiv

Figure Page

4.8 Illustration of Proposed Models: . 99

4.9 RBM Pre-Training Models . 105

4.10 Deep Auto-Associator Models. 106

4.11 Proposed emoDBN Models . 111

5.1 Active Learning Example Using Toy Dataset . 127

5.2 Membership Query Systhesis . 128

5.3 Stream-Based Selective Sampling. 128

5.4 Pool-Based sampling . 129

5.5 Illustration of the Principle of Active Learning . 134

5.6 Deep Active Learning Network Architecture. 141

5.7 Active Learning on the Uni-Modal Datasets. 147

5.8 Active Learning on Multimodal Datasets . 148

6.1 Architecture of Multi-Label CNN Model Without Label Correlation. . . . 156

6.2 Architecture of Multi-Label CNN-LSTM Model With Label Correlation.161

6.3 Deep Active Learning on Benchmark Multi-Label Datasets. 162

6.4 Analysis of the Unlabeled Samples Queried for Annotation. 166

7.1 Illustration of the Proposed Deep Active Learning Framework 179

7.2 CNN Architecture for Deep Active Regression . 184

7.3 MSE Vs Iteration Number: Synthetic Handwritten Digits 186

7.4 MSE Vs Iteration Number: WIKI Age Estimation . 187

7.5 MSE Vs Iteration Number: MNIST Rotation . 188

7.6 MSE Vs Iteration Number: BIWI Kinect . 189

7.7 MSE Vs Iteration Number: QMUL Multiface . 190

7.8 Results after Iteration Number 9 - MSE Vs Digit Class 191

xv

Figure Page

7.9 Results after Iteration Number 9 -Proposed Method 193

7.10 Results after Iteration Number 9 - Random Sampling 194

7.11 Visual Comparison of top 15 EMOC scores -Proposed Method 195

7.12 Visual Comparison of top 15 EMOC scores -Random Sampling 196

xvi

Chapter 1

INTRODUCTION

Artificial Intelligence (AI) is one of the largely significant technologies of the cur-

rent era. Machine learning is a way of achieving AI. It relies on the machine’s ability

to learn how to solve problems. Training the machine involves feeding large amounts

of data to the algorithm and allowing it to adjust itself and improve. The system

is then fed with new examples and asked to make predictions. If the training was

successful, the system predicts labels with a high level of accuracy. The algorithms

that have powered much of this success are referred to as Deep Learning (DL) algo-

rithms. Deep learning is a new area of machine learning research, introduced with

the objective of moving machine learning closer to AI. Deep learning architectures

are inspired by the structure and function of the human brain. A major advantage of

deep learning algorithms over machine learning algorithms is that they make better

use of much larger datasets. Learning from more data leads to improved superior

predictions thereby contributing to achieving state-of-the-art performance.

In recent years, deep learning has emerged as a dominant machine learning tool

for a wide variety of domains. Deep architectures have been widely explored in com-

puter vision and have achieved tremendous improvements in several vision tasks.

Deep learning models have replaced the need for hand-crafted features with efficient

algorithms for unsupervised and semi-supervised feature learning and have depicted

commendable performance in a variety of applications. With the widespread deploy-

ment of cheap and inexpensive video cameras, computer vision has become ubiqui-

tous in our society. They form an integral component of self-driving cars, security

1

and surveillance, assistive technology, medical diagnosis and robotics among myriads

of other applications.

A fundamental challenge in training a deep neural network is the requirement of

large amounts of labeled training data. The rapid escalation of technology and the

widespread emergence of new data capture apparatus has resulted in the generation

of humungous amounts of digital data in the modern era. However, while gathering

such large quantities of unlabeled data is cheap and easy, annotating the data (with

class labels) is an expensive process in terms of time, labor and human expertise. This

poses a significant challenge in inducing supervised learning models. The situation is

even more serious for deep networks as they require more hand-labeled training data

as compared to other classification models. Thus, developing algorithms that mini-

mize the human effort in training deep models is of paramount practical importance.

Active learning (AL) algorithms have gained popularity in reducing the human

annotation effort in training machine learning models. Such algorithms automatically

identify the salient and exemplar samples from large amounts of unlabeled data that

can augment maximal information to the classification models that need to be labeled

manually.

1.1 Goals and Motivation

The goal of this dissertation is to fuse ideas from deep learning and active learning

and design novel deep active learning algorithms. The proposed learning methodolo-

gies explore diverse label spaces to solve a range of computer vision applications like

multimodal emotion recognition, single-label and multi-label image classification and

2

regression. The dissertation has been inspired by some of the key challenges and goals

in AI for computer vision. The motivations are highlighted below.

Even though both deep learning and active learning have been extensively studied,

research on combining the two is still in a nascent stage. Most of the algorithms treat

deep learning and active learning as two independent problems and do not exploit

the deep model’s ability to learn discriminating sets of features for the given task. A

deep model is first learned using a conventional loss function (softmax loss for classi-

fication/ L2 loss for regression); the active sampling condition is then defined based

on the posterior probabilities obtained from the last layer or the distance of a sample

from the decision boundary. However, the merit of a deep model lies in its ability

to learn a discriminating set of features for a given task; this property has not been

leveraged in the existing algorithms combining deep learning and active learning. In

this dissertation, we propose novel deep active learning algorithms which are designed

to exploit this property and study their performance on a wide variety of computer

vision applications. The proposed learning methodologies explore three diverse label

spaces. We briefly describe the three label spaces here.

1. Multi-class Classification: In machine learning, multiclass or multinomial

classification is the problem of classifying instances into one of three or more

classes. (Classifying instances into one of the two classes is called binary clas-

sification). For example, classification of a set of images of fruits into oranges,

apples, or pears. Multiclass classification makes the assumption that each sam-

ple is assigned to one and only one label: a fruit can be either an apple or a

pear but not both at the same time.

3

2. Multi-label Classification: In machine learning, multi-label classification is

a classification problem where multiple labels may be assigned to each instance.

Multi-label classification is a generalization of multiclass classification, which is

the single-label problem of categorizing instances into precisely one of more than

two classes. In the multi-label problem there is no constraint on how many of

the classes the instance can be assigned to. Formally, multi-label classification is

the problem of finding a model that maps inputs x to binary vectors y (assigning

a value of 0 or 1 for each element (label) in y). This can be thought as predicting

properties of a data-point that are not mutually exclusive, such as topics that

are relevant for a document. A text might be about any of religion, politics,

finance or education at the same time or none of these.

3. Regression: In machine learning, regression refers to the problem of finding

the best relationship that represents a set of given data. Regression involves

estimating or predicting a response where the output variable takes continuous

values. Given the following: f : x → y; if y is real number/continuous, then

this is a regression problem.

From the above discussion, we appreciate the need to fuse deep learning and active

learning to develop novel deep active learning methodologies. The various label spaces

explored are highly diverse in nature and annotating them (with class labels) is an

expensive process in terms of time, labor and human expertise. Thus, developing

algorithms that minimize the human effort in training deep models is of immense

practical importance.

1.2 Major Contributions

The three major contributions of the dissertation as as follows.

4

1. A novel active learning framework to select the most informative unlabeled

samples to train a Deep Belief Network (DBN) is proposed. A loss function

specific to the task of active learning is introduced and the model is trained

to minimize this loss. Extensive empirical studies on a wide variety of uni-

modal and multi-modal vision datasets corroborate the potential of the proposed

method for real-world image recognition applications.

2. The feature learning capabilities of deep neural networks is exploited and a

novel framework to address the problem of multi-label active learning is pro-

posed. An active sample selection criterion is integrated in the loss function

used to train the deep networks. First, a framework without considering the

correlation among the multiple labels is proposed using Convolutional Neural

Networks (CNNs). Second, the correlations that exist among the multiple labels

is modeled using Long Short Term memory (LSTM) cells. Extensive empirical

studies on five benchmark multi-label datasets show that the proposed methods

outperform state-of-the-art active learning techniques.

3. Ideas from deep learning and active learning are fused and a novel deep ac-

tive learning paradigm for regression is proposed. The Expected Model Output

Change (EMOC) is used as the active selection criterion and integrated with the

objective function used to train the deep model. The resulting model optimizes

this novel objective function and learns from salient examples that cause max-

imum change to the current model. Extensive empirical results on benchmark

regression datasets demonstrate the effectiveness of the proposed paradigm in

choosing the most informative samples for learning and annotation.

5

1.3 Additional Contributions

Through the course of the thesis the following additional contributions were made.

Their motivations are detailed here.

Let us consider a social interaction situation where two people are having a conver-

sation. Their interaction typically consists of a combination of verbal and non-verbal

communication (like body gestures, facial expressions etc.) cues that help understand

each other. Now, if one of the individuals is visually impaired, he/she misses out on

all of the non-verbal communication cues during the interaction, making it difficult to

comprehend the emotion of the interaction partner. We propose algorithms that use

multimodal data like facial expressions, body gestures, audio expressions and physi-

ological signals to recognize human emotions using deep architectures. For this, we

created a comprehensive multimodal emotion dataset and made it publicly available

to the research community. Using these deep models, one could build assistive devices

for visually impaired people to help enrich their social interactions.

One significant challenge while training deep networks is the time taken to train

these networks on large datasets. Consider a real-world example where we have a deep

model trained on a multimodal emotion dataset. Let us call this model as the source

model. The model recognizes emotions with reasonable accuracy and the training time

is approximately 10 days. Now, we come across a new emotion dataset. We wish to

train a new model (let us call this model as the target model) on the new dataset, but

do not have much time available for training. Can we use the emotion-rich features

already learned by our source model for training the target model? What is the effect

on the classification accuracy and training time when we do so? We present answers

to these questions. This makes our study extremely useful in a practical setting.

6

To the best of our knowledge, this is the first research approach to studying the ef-

fect of transfer of emotion features in a layer-by-layer manner in a multimodal setting.

The additional contributions made are as follows:

1. A new multi-modal emotion database (emoFBVP) was created consisting of

multi-modal recordings of facial expressions, body gestures, vocal expressions

and physiological signals of actors enacting various expressions of emotion. The

database consists of audio and video sequences of actors enacting 23 differ-

ent emotions in three varying intensities of expressions along with facial feature

tracking, skeletal tracking and the corresponding physiological data. This is one

of the first emotion datasets that has recordings of varying intensities of expre-

sions of emotions in multiple modalities recorded simultaneously. The affective

computing community will greatly benefit from the large collection of modal-

ities recorded. The second contribution investigated the use of deep learning

architectures - Deep Belief Networks (DBNs) and Convolutional Deep Belief

Networks (CDBNs) for multimodal emotion recognition. Four DBN models

were proposed and experiments showed that they generated robust multimodal

features for emotion recognition. The CDBN model proposed learned salient

multimodal features of low intensity expressions of emotions.

2. The effect of transfer of emotion-rich features between source and target net-

works on classification accuracy and training time in a multimodal setting for

vision based emotion recognition is studied. This is the first research effort to

study the transfer of emotion features layer-by-layer in a multimodal setting.

The emotarget and emotargetft models proposed were able to successfully re-

purpose the emotion rich features learned by the emosource model to train

7

the target models and achieve shorter training times and performance boosts

respectively. The results obtained are extremely useful in a practical setting.

These related contributions help comprehend the challenges involved in training

deep learning models and motivate the main goal of this dissertation. Due to this

reason, we describe these additional contributions in the initial chapters of the thesis

before illustrating the major contributions. The outline of the dissertation is given in

the following section.

1.4 Dissertation Outline

The dissertation is structured in the following manner.

Chapter 2 has been organized to showcase a literature review for each of the

contributions in the thesis. It begins by listing state of the art emotion recogni-

tion datasets in literature and motivates the need for a comprehensive multimodal

database. It then describes deep models used in literature for emotion recognition

using multiple modalities. It talks about the various challenges involved while per-

forming emotion recognition and ways in which current models solve the problems.

The chapter then describes the motivation to employ transfer learning in a deep

context and outlines models available in literature that perform such a transfer of

knowledge. These techniques greatly help with reducing the time taken to train large

deep networks. The next section of the chapter gives an exhaustive survey of deep

models that perform various computer vision applications like emotion recognition,

object recognition, image annotation, digit recognition in the multi-class label space.

This is followed by a survey of multi-label deep models and multi-label active learning

techniques available in literature. The last section of the chapter enumerates deep

models used for regression and popular active learning methods for regression.

8

Chapter 3 begins with an introduction to deep learning as a part of a larger fam-

ily of machine learning methods based on learning data representations. It briefly

introduces different deep architecture such as artificial neural networks, Restricted

Boltzmann machines, deep belief networks, stacked auto-associators, convolutional

neural networks and recurrent neural networks. This chapter provides high level

descriptions of the deep models, their equations, training methodologies employed

along with examples of potential applications. The chapter highlights the difference

between discriminative learning and generative learning, error functions employed and

explains the back-propagation algorithm used to train the deep models. The chapter

also outlines the algorithm for stochastic gradient descent and minibatch gradient de-

scent along with the advantages and disadvantages of using the same. The different

parameters of the deep model - learning rate, momentum, rprop, rmsprop and weight

decay are presented along with potential methods that can be employed to prevent

overfitting. Extensions of these models are used in this dissertation along with active

learning to perform different computer vision tasks.

Chapter 4 commences with the motivation for creating a comprehensive multi-

modal emotion database. The apparatus used, data capture methods and different

properties of the emoFBVP database are discussed here. An explanation about the

proposed deep models for multimodal emotion recognition and methods employed to

train the models are also presented. Two baseline models are proposed to help ana-

lyze the performance of the proposed models. The experiments conducted to perform

multimodal emotion recognition are outlined here. The performance of the proposed

DBN models is compared with the baseline models and the results are presented in

this chapter as well. The next two sections describe convolutional DBNs and stacked

auto-associators for multimodal emotion recognition. The last section of the chapter

9

describes the emosource, emotarget and emotargetft DBN models and how these

models learn emotion rich multimodal features through the deep layers. The selec-

tion strategy employed while selecting the various parameters of the emoDBN models

is also explained here. The experiments and results section investigates the effect of

transfer of emotion rich features between source and target DBN networks along

with the results. The performance gains observed are two-fold; there is a significant

decrease in the time taken to train the networks and the recognition accuracy also

shows an increase. The chapter ends highlighting the contributions made with a brief

summary.

Chapter 5 opens with a brief overview of active learning methodologies with rele-

vant algorithms and examples. It gives a formal definition and describes active learn-

ing scenarios and different query strategies. It explains the advantages of combining

active learning and deep learning concepts with a toy dataset example. The next

section of this chapter introduces the field of deep active learning - where ideas from

deep learning and active learning are combined to learn intelligent models for classifi-

cation and/ regression. A novel active sampling algorithm to identify the salient and

exemplar unlabeled samples to be manually annotated to train DBNs is proposed.

To the best of our knowledge, this is the first research effort to incorporate an active

learning based criterion in the loss function and train the deep network to optimize

the objective. The proposed method is validated on single-label image classification

on a variety of benchmark datasets for different applications. Experimental results on

a variety of uni-modal and multi-modal datasets from different application domains

depict the promise and potential of the method for real-world image recognition ap-

plications.

10

Chapter 6 commences with a definiiton of multi-label classification highlighting

the motivation to employ deep active methods for the same. In a multi-label learning

setting, the problem is further aggravated as the presence/absence of each class needs

to be checked separately to annotate a single unlabeled sample. Often, the number of

possible classes is of the order of hundreds, which tremendously increases the labeling

burden on the human annotator. Therefore, developing algorithms that reduce hu-

man effort in training deep models in a multi-label setting is of paramount practical

importance. Active learning algorithms alleviate this problem by selecting the salient

and informative samples from vast amounts of unlabeled data. This not only reduces

the human effort in training machine learning models, but also produces models with

much better generalization capabilities, as they get trained on the salient examples

from the underlying data population. In this chapter, we propose a multi-label deep

active learning framework that did not model the inherent label correlations and

a framework that modeled the relationships between multiple labels. We success-

fully integrated an entropy based active sampling criterion in the loss function and

used this novel joint objective to train the deep models. Our empirical results on

benchmark multi-label datasets show that the proposed models outperform state-of-

the-art multi-label active learning algorithms, thereby corroborating the potential of

our methods for real-world classification problems.

In Chapter 7, ideas from deep learning and active learning are fused and a novel

deep active learning paradigm for regression is proposed. The chapter embarks with a

brief motivation to develop active learning for deep regression. It explains the princi-

ple of Expected Model Output Change (EMOC) and describes how it is modeled as an

active selection criterion in the objective function used to train the deep model. The

resulting model optimizes this novel objective function and learns from salient exam-

11

ples that cause maximum change to the current model. The latter part of the chapter

details the CNN model used followed by a description of the extensive experiments

conducted on benchmark regression datasets. The results obtained demonstrate the

effectiveness of the proposed paradigm in choosing the most informative samples for

learning and annotation.

Chapter 8 features possible future directions for methods proposed in this dis-

sertation. The contributions of this dissertation have shown tremendous promise

in using deep active learning techniques in real-world computer vision applications.

The results depict the usefulness of the algorithms in reducing human annotation

effort in inducing an appropriate classification / regression model. The possibilities

of future work are numerous and a few sample directions are presented in this chapter.

Chapter 9 provides a high-level summary of contributions in this dissertation. It

continues to enumerate the conference submissions, both published and under-review,

inspired from the proposed research. The chapter concludes by listing some workshop

presentations made during this dissertation.

Appendix A develops the derivation for the derivative of the joint objective func-

tions for multi-class, multi-label and regression scenarios. Appendix B gives the

permission statements from co-authors.

1.5 Previously Published Work

The contents of chapter (4) are based on previously published works, ”Multimodal

Emotion Recognition Using Deep Learning Architectures”, WACV 2016. Chapter (5)

12

is adapted from published work, ” Deep Active Learning for Image Classification”,

ICIP 2017. Chapter (6) is based on work under review, ”Multi-label Deep Active

Learning with Label Correlation”, submitted to ICIP 2018 and Chapter (7) on Deep

Active learning for Regression is adapted from work submitted to ACM MM 2018

(also under review).

13

Chapter 2

LITERATURE SURVEY

This chapter has been organized to showcase a literature review for each of the

contributions in the thesis. It begins by listing state of the art emotion recogni-

tion datasets in literature and motivates the need for a comprehensive multimodal

database. It then investigates deep models used in literature for emotion recogni-

tion using multiple modalities. It talks about the various challenges involved while

performing emotion recognition and ways in which current models solve the prob-

lems. The chapter then describes the motivation to employ transfer learning in a

deep context and outlines models available in literature that perform such a transfer

of knowledge. These techniques greatly help with reducing the time taken to train

large deep networks. The next section of the chapter gives an exhaustive survey of

deep models that perform various computer vision applications like emotion recogni-

tion, object recognition, image annotation, digit recognition in the multi-class label

space. We briefly motivate the main goal of the dissertation here. This is followed by

an assessment of multi-label deep models and multi-label active learning techniques

available in literature. Here, we highlight multi-label techniques that consider the

correlations that exist between the multiple labels. The last section of the chapter

enumerates deep models used for regression and current active learning methods for

regression. We discuss the dearth of literature in active learning methods for regres-

sion and conceive the need for a general deep active learning paradigm for the same.

14

2.1 Benchmark Emotion Recognition Datasets

Emotion plays an important role in social interaction, human intelligence and

perception. Understanding emotions becomes indispensable for the day-to-day func-

tioning of humans. Perception of human emotions is vital for communication in the

social environment. Technologies for processing daily activities like facial expression

recognition, understanding speech and language have expanded the interaction modal-

ities between humans and computers. With the growing use of human - computer

interactions, emotion recognition technologies provide an opportunity to promote har-

monious communication between computers and humans.

To study human emotional experience and expression in more detail and to develop

benchmark methods for automatic emotion recognition, researchers are in need of rich

sets of data. Recent advances in emotion recognition have motivated the creation of

novel databases containing emotional expressions with most databases including au-

dio, video or audio-visual data (Pantic et al. (2005); Douglas-Cowie et al. (2007);

Grimm et al. (2008); McKeown et al. (2010); Koelstra et al. (2012)). Older databases

consist of acted or deliberately expressed emotions while recently researchers have

shared spontaneous or natural expression databases. Below, we present a discussion

of the existing databases, organized by the captured modality. There are many fa-

cial expression databases available such as the Cohn-Kanade database (Kanade et al.

(2000b)), PICS database, JAFFE database, AR database, PIE database and the MMI

database. The MMI database is a web-based emotion database of posed and spon-

taneous facial expressions with both static images and videos in frontal and profile

views (Pantic et al. (2005); Valstar and Pantic (2010)). The database consists of 61

15

adults acting basic emotions. This database provides an option to search within the

corpus and is easily downloadable. The majority of databases have only static images

(except Cohn-Kanade and MMI). The apex of the expression is only available making

it difficult to understand the temporal segments of the expression. The data consists

of unstructured files and further processing is required before use in automatic facial

expression recognition systems.

The Belfast Database (BE) was created by Douglas-Cowie et al. (2000) and it in-

cludes spontaneous reactions in TV talk shows. It is very rich in both body gestures

and facial expressions. The video sequences in this database have a lot of variety in

the background and this makes it very challenging for automated recognition systems.

The HUMAINE database consists of recordings of three natural reactions and six in-

duced reactions. The database consists of varying number of participants and data

in different modalities (Douglas-Cowie et al. (2007)) collected in different sites and at

different times. Twelve hours of a German talk show were segmented and annotated

to form the Vera Am Mittag (VAM) database (Grimm et al. (2008)). The database

consists of 104 speakers uttering different sentences. The segments were annotated us-

ing the valence, activation and dominance framework. The MAHNOB-HCI database

has five modalities precisely synchronized - eye gaze data, video, audio, peripheral

and central nervous system physiological signals. Here, spontaneous emotional re-

sponses to affectively stimulating videos were recorded for 27 participants. Only 9

different emotions were captured for each participant. As spontaneous responses were

being captured, the audio sequences captured consist of very few natural utterances

and laughter only. Participants are seated during the capture and no body gesture

details are available. Facial features are not tracked and head movement data is not

available as part of the database.

16

Affective physiological databases are fewer when compared with audio-visual databases.

Healey and Picard (2005) of MIT recorded a physiological dataset of 17 drivers under

different stress levels. The electrocardiogram (ECG), Galvanic skin response (GSR)

from hands and feet, electromyogram (EMG) from the right trapezius muscles and res-

piration pattern were recorded. Physiological signals from the peripheral and central

nervous system along with face videos were recorded in the Database for Emotion

Analysis Using Physiological Signals (DEAP) (Koelstra et al. (2012)). The videos

were recorded for 22 participants and the EMG, electrooculogram (EOG), blood vol-

ume pulse (BVP), skin temperature and GSR were captured.

To contribute to the need for a comprehensive database consisting of multiple

modalities, we create the emoFBVP database of multimodal (face, body gesture,

voice and physiological signals) recordings of actors enacting various expressions of

emotions.The database consists of audio and video sequences of actors displaying three

different intensities of expressions of 23 different emotions along with facial feature

tracking, skeletal tracking and the corresponding physiological data. We provide

details about data capture, apparatus and other properties of the database in Chapter

4.

2.2 Multimodal Emotion Recognition Models

Emotion recognition is the process of predicting high-level affective content from

the low-level signal cues. This process is complicated by the inherent multimodality

of human emotion expression (e.g., facial and vocal expression). This multimodality

is characterized by complex high dimensional and non-linear cross-modal interactions

(Taylor et al. (2007)). Previous research has demonstrated the benefit of using mul-

17

timodal data in emotion recognition tasks and has identified various techniques for

generating robust multimodal features (Busso et al. (2004); Ververidis and Kotropou-

los (2008); Vogt and André (2005); Wimmer et al. (2008); Pantic et al. (2011)).

However, although effective, these techniques do not take advantage of the complex

nonlinear relationship that exists between the modalities of interest, or alternatively

require the use of labeled data. In this dissertation, we apply deep learning techniques

to provide robust features for emotion recognition.

Emotion recognition accuracy relies heavily on the ability to generate represen-

tative features. However, this is a very challenging problem. In this section, we

demonstrate the effectiveness of Deep Belief Networks (DBN) for multimodal emotion

feature generation. In this dissertation, we learn multi-layered DBNs that capture

the non-linear dependencies of audio-visual and physiological features while reducing

the dimensionality of the feature space.

There has been a substantial body of work on feature representation, extraction,

and selection methods in the emotion recognition field in the last decade. Our work

in this thesis, is motivated by the discovery of methods for learning multiple layers

of adaptive features using DBNs (Bengio et al. (2009)). Research has demonstrated

that deep networks can effectively generate discriminative features that approximate

the complex non-linear dependencies between features in the original set. These deep

generative models have been applied to speech and language processing, as well as

emotion recognition tasks (Morgan (2012); Mohamed et al. (2012); Sivaram and Her-

mansky (2012)). In speech processing, Ngiam et al. (2011) proposed and evaluated

deep networks to learn audio-visual features from spoken letters. In emotion recog-

nition, Brueckner and Schuller (2012) found that the use of a Restricted Boltzmann

18

Machine (RBM) prior to a two-layer neural network with fine-tuning could signifi-

cantly improve classification accuracy in the Interspeech automatic likability classifi-

cation challenge (Schuller et al. (2012)). The work by Stuhlsatz et al. (2011) took a

different approach for learning acoustic features in speech emotion recognition using

Generalized Discriminant Analysis (GerDA) based on Deep Neural Networks (DNNs).

In recent years, there has been a growing interest in the development of technol-

ogy to recognize an individual’s emotional state. There is also an increase in the

use of multimodal data (facial expressions, body expressions, vocal expressions and

physiological signals) to build such technologies. Each of these modalities have very

distinct statistical properties and fusing these modalities helps us learn useful repre-

sentations of the data. Literature has shown various techniques for generating robust

multimodal features (Busso et al. (2004); Vogt and André (2005); Pantic et al. (2011);

Wimmer et al. (2008)) for emotion recognition tasks. The high dimensionality of the

data, the non-linear interactions across the modalities along with the fact that the

way an emotion is expressed varies across people complicate the process of generat-

ing emotion specific features (Taylor et al. (2007); Anagnostopoulos et al. (2015)).

Deep architectures and learning techniques have shown to overcome these limitations

by capturing complex non-linear feature interactions in multimodal data (Kim et al.

(2013)).

Previous research has shown that deep architectures effectively generate robust

features by exploiting the complex non-linear interactions in the data (Taylor et al.

(2007)). Deep architectures and learning techniques are very popular in the speech

and language processing community (Morgan (2012); Sivaram and Hermansky (2012);

Mohamed et al. (2012)). Ngiam et al. (2011)) report impressive results on audio-

19

visual speech classification. They use sparse Restricted Boltzmann Machines (RBMs)

for cross-modal learning, shared representation learning and multimodal fusion on

CUAVE and AVLetters dataset. Srivastava and Salakhutdinov (2012) applied multi-

modal deep belief networks to learn joint representations that outperformed SVMs.

They used multimodal deep Boltzmann machines to learn a generative model of im-

ages and text for image retrieval tasks. Kahou et al. (2013) used an ensemble of

deep learning models to perform emotion recognition from video clips. This was

the winning submission to the Emotion Recognition in the Wild Challenge (Dhall

et al. (2013)). Deep learning has also been applied in many visual recognition studies

(Lee et al. (2008); Tang and Eliasmith (2010); Lee et al. (2011); Sohn et al. (2011);

Krizhevsky et al. (2012)).

Our research is motivated by the above recent approaches in multimodal deep

learning. We investigate the use of deep learning architectures - Deep Belief Net-

works (DBNs) and Convolutional Deep Belief Networks (CDBNs) for multimodal

emotion recognition. Four DBN models are proposed and experiments show that

they generate robust multimodal features for emotion recognition. A Convolutional

Deep Belief Network (CDBN) model is proposed which successfully learns salient

multimodal features of low intensity expressions of emotions.

2.3 Transfer of Emotion Features between Deep Models

The introduction of deep architectures has brought significant improvements in

many visual recognition tasks. These algorithms come with huge computational costs

and finding the best training algorithm that offers the shortest training time is an

interesting area of research.

20

Complex models like the CNNs can overfit the data, especially when the dataset is

small. Researchers have resorted to using transfer learning across tasks to overcome

this problem. The weights of the deep model are initialized with those of the network

trained for related tasks before finetuning them using the target datasets (Girshick

(2015); Donahue et al. (2014); Krizhevsky et al. (2012); Raina et al. (2007)). Yosinski

et al. (2014) experimentally quantified the generality versus specificity of neurons in

each layer of a deep CNN. They trained pairs of CNNs on the ImageNet dataset and

characterized the layer by layer transition of features from general to specific.

One of the main concerns with using deep architectures for vision tasks is the

amount of time required to train the network. Therefore, finding the appropriate

training algorithm that gives good performance accuracy with reduced training time

becomes very important. In this dissertation, we follow a transfer learning approach

and present a study to investigate the effect of transfer of emotion-rich features be-

tween source and target networks on classification accuracy and training time.

2.4 Multi-class Image Classification using Deep Models

In recent years, deep learning has emerged as a dominant machine learning tool

for a wide variety of domains. Deep architectures have been widely explored in

computer vision and have achieved tremendous improvement in several vision tasks

including image recognition, object detection, and image segmentation among others.

The surge of deep learning started in 2006 when Deep Belief Networks (DBNs) were

introduced (Hinton et al. (2006)). DBNs and its variants have been shown to de-

pict excellent performance in several applications including visual object recognition,

21

emotion recognition, speech phone recognition and image denoising.

Computer vision problems like image classification and object detection have tra-

ditionally been approached using hand-engineered features like SIFT, HoG, bag-of-

visual-words descriptor, followed by learning algorithms like the SVM. The perfor-

mance of these algorithms was heavily dependent on the features used. To alleviate

this issue, deep models were developed which incorporated learning of features from

raw images. The Restricted Boltzmann Machines (Hinton (2002)) and the Deep Be-

lief Networks (Hinton and Salakhutdinov (2006)) are some of the early examples of

deep models that depicted promising empirical performance. The fundamental idea

was to leverage vast amounts of unlabeled data to train the models; the pre-trained

models served as a good initialization for supervised tasks such as image classification.

There are several different kinds of deep learning architectures (CNNs, RNNs, DBNs

to name a few); in this section, we present a brief survey of deep belief networks

(DBNs), as we use them to study the performance of our framework - deep active

learning for single label image classification.

DBNs are generative deep models and can be effectively constructed by greedily

training and stacking multiple RBMs (Hinton and Salakhutdinov (2006)). This is

done in two stages - pre-training and fine-tuning. The pre-training stage is unsuper-

vised and has no labels involved and solely relies on the unlabeled data. The weights

and biases that are learned are used as starting points for the fine-tuning supervised

learning stage. In the fine-tuning stage, typically, a softmax layer is added on top of

the stacked RBMs to make the model discriminative. A standard back-propagation

is performed with a goal to minimize classification errors given the labeled samples.

Tang and Mohamed (2012)proposed a multi-resolution DBN model which learns fea-

22

tures from a multi-scale representation of images. Liu et al. (2011) proposed dis-

criminative DBNs (DDBNs) which integrated the abstraction ability of DBNs and

the discriminative ability of backpropagation strategy. DBNs and its variants have

been shown to depict excellent performance in several applications including visual

object recognition (Salakhutdinov and Larochelle (2010)), emotion recognition (Ran-

ganathan et al. (2016a)), speech phone recognition (Dahl et al. (2010)) and image

denoising (Ranzato et al. (2011)).

2.5 Multi-class Active Learning

A fundamental challenge in training a deep neural network is the requirement

of large amounts of labeled training data. Thus, developing algorithms to minimize

human effort in training deep models is of paramount practical importance. Active

learning algorithms automatically identify the salient and exemplar samples from

large amounts of unlabeled data and reduce human annotation efforts in inducing

a classification model. Active learning is a well-studied problem in machine learn-

ing. A comprehensive review of several active learning algorithms developed over

the last several years can be found in Settles (2010). In a typical pool-based batch

mode active learning (BMAL) setting, the learner is exposed to a pool of unlabeled

instances and it iteratively queries batches of samples for annotation. Initial batch

mode active learning techniques were largely based on greedy heuristics, such as max-

imizing the diversity of the selected samples or minimizing their distance from the

classification hyperplane (Schohn and Cohn (2000); Brinker (2003a)). More recently,

optimization based strategies have been proposed which have been shown to outper-

form the heuristic approaches. Hoi et al. (2006a) used the Fisher information matrix

as a measure of model uncertainty and proposed to query the set of points that max-

23

imally reduced the Fisher information. The same authors also proposed a BMAL

scheme based on SVMs where a kernel function was first learned from a mixture of

labeled and unlabeled samples, which was then used to identify the informative and

diverse examples through a min-max framework (Hoi et al. (2008)). Guo and Schu-

urmans (2007) proposed a discriminative BMAL strategy where the sample selection

criterion was based on maximizing the log-likelihoods of the selected samples with

respect to their optimistically assigned class labels and minimizing the entropy of the

unselected samples in the unlabeled pool. Guo also proposed a batch mode active

learning algorithm, independent of the classification model, by maximizing the mu-

tual information between the labeled and unlabeled sets (Guo (2010a)), so that the

labeled samples, together with the samples queried for annotation were good repre-

sentatives of the unselected unlabeled samples. Chakraborty et al. (2013) proposed

a generalized BMAL scheme, based on Quasi-Newton optimization, and applied it to

the face-based biometric recognition problem.

2.6 Multi-label lmage Classification using Deep Models

Multi-label image annotation is one of the most important open problems in com-

puter vision. Unlike existing works that usually use conventional visual features to

annotate images, features based on deep learning have shown potential to achieve

outstanding performance. Recent years have witnessed an explosive growth of dig-

ital images, and most of them are captured by handheld mobile devices. There is

an urgent need to develop effective techniques to annotate images with several labels

according to the semantic contents, which can be deployed in many applications, such

as personal image collection organization and large-scale image retrieval. From the

point of view of pattern recognition, the issue of image annotation can be considered

as an issue of assigning a set of relevant tags to an image according to the contents

24

inside it, in which learning good features is a very important task and will signifi-

cantly improve the overall system performance.

By exploiting deep architectures, deep learning technologies discover hidden struc-

tures and effective features from the training data and help improve model perfor-

mance. We know that Convolutional Neural Networks (CNNs) use convolution and

max-pooling as the fundamental operations and are specifically suited for image data.

K.Zhaoa et al. (2016) proposed a unified framework for Deep Region and Multi-label

learning (DRML) using CNNs and showed that their method outperformed alterna-

tive techniques. Zhu et al. (2017) successfully used CNNs for multi-label pedestrian

attribute classification. Huang et al. (2013) used deep belief networks for multi-task,

multi-label learning and showed state-of-the-art performance on two public image

datasets. Zhu et al. (2015) proposed a multi-modal deep learning network that op-

tionally integrated multiple deep networks pre-trained with CNNs. Their empirical

studies evaluated the performance of the proposed framework for multi-label image

annotation and the results validated the effectiveness of their algorithm. Gong et al.

(2013) proposed the multi-label deep convolutional ranking net to address the multi-

label annotation problem. They proposed a model that successfully redesigned the

ranking cost layer for multi-label prediction tasks. From the above survey, we note

that CNNs have depicted promising performance for multi-label image classification.

In this dissertation, we therefore use CNNs as our preferred architecture for the pro-

posed deep active framework for multi-class classification.

25

2.7 Multi-label Active Learning

In multi-label classification problems, each data sample can be associated with

multiple labels simultaneously. A challenging issue for multi-label classification is

to identify and model the correlation of multiple labels, to achieve good prediction

accuracy. Moreover, manual annotation of a multilabel sample necessitates a hu-

man oracle to consider the presence/ absence of every individual label, which is an

expensive process in terms of time, labor and human expertise. Thus, developing

algorithms that reduce human effort in training a multi-label classifier is of immense

practical importance.

While active learning has been extensively studied for the multi-class problem,

multi-label active learning is much less explored. Wu et al. (2014) proposed a novel

example-label based multi-label active learning method. Huang et al. (2015) pro-

posed a multi-label active learning method, which queried the relevance ordering of

label pairs (by incorporating a selection strategy and a label ranking model) to re-

duce the labeling burden on the human annotator. Hung and Lin (2011) proposed a

multi-label active learning framework with an auxiliary learner, based on the princi-

ple of maximum loss reduction with maximum confidence (MMC). Qi et al. (2008)

proposed a two dimensional active learning framework which queried sample-label

pairs for annotation, rather than all the labels of a given sample. Wang et al. (2016)

used Recurrent Neural Networks (RNNs) in conjunction with CNNs and built a joint

embedding space of image and semantic structures. The RNN memorizes long-term

label dependencies and the framework exhibits good performance with cross-label

correlation implicitly preserved.

26

2.8 Deep Models for Regression

A large number of regression based deep learning algorithms have been recently

proposed. Here, the goal is to predict a set of continuous values as output. Recently,

CNNs have been successfully applied for human pose estimation (Li and Chan (2014),

Pfister et al. (2014), Toshev and Szegedy (2014)) where the regressed values corre-

spond to the positions of the body joints on the image plane. CNNs also effectively

predict facial fiducial points (Sun et al. (2013)) when applied to facial landmark de-

tection. Szegedy et al. (2013) and Jaderberg et al. (2016) use deep networks for object

and text detection and predict a bounding box for localization. These deep models

use the conventional L2 loss function for training. Zhang et al. (2014) introduced a

CNN optimized for landmark detection and attribute classification. They combine

the L2 loss function with the Softmax classification function to increase robustness to

outliers. Wang et al. (2014) combine bounding box localization with object segmen-

tation using a similar approach. Gkioxari et al. (2014) use a loss function composed

of a body pose estimation term and an action detection term. Dosovitskiy et al.

(2015) and Eigen et al. (2014) use multiple L2 loss functions for object generation

and depth estimation. From the above survey, we see that deep models (specifically

CNNs) trained using the L2 loss function can be applied effectively for regression

tasks.

2.9 Active Learning for Regression

In the literature, work targeting AL for regression is less explored when com-

pared to AL methods developed for classification. Willett et al. (2006) theoretically

analyzed AL in the context of regression. Population based AL methods were pro-

27

posed by Sugiyama (2006), where the input data examples are arbitrarily generated

in the space. A theoretically optimal AL algorithm was proposed by Sugiyama and

Nakajima (2009). This directly minimizes the generalization error by employing an

additive regression model. Freund et al. (1997) applied a variance-based Query by

Committee (QBC) framework to regression. Cohn et al. (1996) minimized the output

variance to reduce the generalization error. Yu and Kim (2010) provided passive sam-

pling heuristics based on the geometric characteristics of the data. Cai et al. (2013)

presented a novel data sampling solution which queries the example leading to the

largest model change. Most regression-based AL techniques are developed only for

sequential mode. Batch Mode Active Learning (BMAL) techniques are very useful

in practice and it is highly desirable to derive BMAL methods in the context of re-

gression. Existing BMAL algorithms are derived with classification models (Brinker

(2003b), Hoi et al. (2006b), Belagiannis et al. (2014), Hoi et al. (2009), Guo and

Schuurmans (2008), Guo (2010b), Chattopadhyay et al. (2013), Azimi et al. (2012),

Chakraborty et al. (2015a)) and cannot be directly generalized to regression. Cai

et al. (2013) extend to BMAL by simulating the sequential mode AL behavior to

simultaneously choose a set of examples without re-training. They introduce a novel

AL framework for regression called EMCM, which queries the examples maximizing

the model change once added to the training data.

2.10 Deep Active Learning

Even though both deep learning and active learning have been extensively stud-

ied, research on combining the two is still in a nascent stage. Wang and Shang

(2014a) proposed ALDL, an active labeling method for deep learning using DBNs.

After training the DBN, it was applied on all the samples in the unlabeled set; three

active learning criteria were studied to select a batch of k unlabeled samples: least

28

confidence, margin sampling and entropy. Stark et al. (2015a) presented an active

learning algorithm using CNNs for CAPTCHA recognition. An uncertainty sampling

approach was proposed for active learning where the difference between the highest

and the second highest probabilities for a given unlabeled sample was used to compute

its uncertainty. Along similar lines, Zhou et al. (2010a) proposed the active deep net-

work (ADN) framework for sentiment classification. Uncertainty sampling was used

to select the unlabeled samples for annotation, where the uncertainty of a sample

was defined as its distance from the separating hyperplane. Freytag et al. (2014)

proposed an approach to measure the expected change of model outputs. For each

example in the unlabeled set, the expected change of model predictions is calculated

and marginalized over the unknown label. The resulting score for each unlabeled

example is used for active learning with a broad range of models (including deep

models) and learning algorithms. Käding et al. (2016) propose a new generalization

of the EMOC principle for deep architectures. They also present easy-to-implement

approximations that yield efficient techniques for active selection.

All these algorithms treat active learning and deep model training as two inde-

pendent problems. A deep model is first learned using a conventional loss function

(softmax loss or L2 loss); the active sampling condition is then defined based on the

posterior probabilities obtained from the last layer or the distance of a sample from

the decision boundary or the EMOC scores. However, the merit of a deep model lies

in its ability to learn a discriminating set of features for a given task; this property

has not been leveraged in the existing algorithms combining deep learning and active

learning.

In order to address these practical issues, we propose three major contributions

29

in this Ph.D dissertation:

1. A novel active learning framework to select the most informative unlabeled

sample to train a Deep Belief Network (DBN) is proposed. A loss function

specific to the task of active learning is introduced and the model is trained

to minimize this loss. Extensive empirical studies on a wide variety of uni-

modal and multimodal vision datasets corroborate the potential of the proposed

method for real-world image recognition applications.

2. The feature learning capabilities of deep neural networks is exploited and a

novel framework to address the problem of multi-label active learning is pro-

posed. An active sample selection criterion is integrated in the loss function

used to train the deep networks. First, a framework without considering the

correlation among the multiple labels is proposed using Convolutional Neural

Networks (CNNs). Second, the correlations that exist among the multiple labels

is modeled using Long Short Term memory (LSTM) cells. Extensive empirical

studies on five benchmark multi-label datasets show that the proposed methods

outperform state-of-the-art active learning techniques.

3. Ideas from deep learning and active learning are fused and a novel deep ac-

tive learning paradigm for regression is proposed. The Expected Model Output

Change (EMOC) is used as the active selection criterion and integrated with the

objective function used to train the deep model. The resulting model optimizes

this novel objective function and learns from salient examples that cause max-

imum change to the current model. Extensive empirical results on benchmark

regression datasets demonstrate the effectiveness of the proposed paradigm in

choosing the most informative samples for learning and annotation.

30

Chapter 3

DEEP LEARNING MODELS

This chapter first introduces deep learning as part of a larger family of machine

learning methods based on learning data representations. It describes different deep

architectures like Restricted Boltzmann Machines (RBMs), Deep Belief Networks

(DBNs), Convolutional Neural Networks (CNNs) and Recurrent Neural Networks

(RNNs). We will employ these models and extensions of these models in later chap-

ters for different computer vision applications.

A Neural network is a biologically-inspired architecture which enables a computer

to learn from the data it observes. Deep learning is a powerful learning technique for

neural networks. Deep learning is a class of machine learning algorithms that consists

of multiple layers of non-linear processing units for feature extraction and transfor-

mation. Each successive layer uses the output from the previous layer as input. The

learning is either supervised (e.g., classification) and/or unsupervised (e.g., pattern

analysis). The deep models learn multiple levels of representations that correspond to

different levels of abstraction forming a hierarchy of concepts. Modern deep learning

models are based on artificial neural networks or latent variables organized layer-wise

in deep generative models.

Deep learning exploits a hierarchy where higher level, more abstract concepts are

learned from the lower level ones. Deep architectures are often constructed in a greedy

layer-by-layer method. Deep learning chooses features that improve performance by

disentangling thses abstractions. For supervised learning tasks, deep learning meth-

31

ods avoid feature engineering, by translating the data into compact intermediate

representations similar to principal components and derive layered structures that

remove redundancy in representation. Deep learning algorithms can be applied to

unsupervised learning tasks. This is an important benefit because unlabeled data are

more abundant than labeled data.

In the following sections, we briefly explain popular deep architectures such as deep

neural networks, deep belief networks, convolutional neural networks and recurrent

neural networks.

3.1 Artificial Neural Networks, (ANNs)

The structure of a neural network is a graph as shown in Figure (3.1). In this

context the vertices are called nodes or neurons and edges are called synaptic connec-

tions. The synaptic connections have strengths, called weights, which change during

the learning process. The networks are structured in layers, according to the connec-

tions between nodes. The nodes inside a layer are not connected with each other but

are connected to all the nodes in the following layer. The layers can be grouped as

follows: the input layer that stores the given data, the hidden layers that define a

better representation of the data and the output layer that contains the output, after

a pass through the network. The details given in this dissertation about ANNs, Re-

stricted Boltzmann machines and deep belief networks are inspired from descriptions

given in (Rosca (2018)).

The input data is transformed into a vector of real numbers and presented to the

network. A pass is performed and the neurons get activated, taking values (binary

{0, 1} or real numbers). These are called states or activations. The output layer can

be missing, depending on the task performed by the neural network. The state (or

32

Figure 3.1: Feed Forward Neural Network

activation of a neuron) is typically a real value that depends on the activities in the

previous layer and the weights, as follows:

yl+1
i = σ

(∑
j

wijy
(l)
j + bi

)
(3.1)

Here, bi is the bias associated with the unit and σ is the activation function. Most

often, the activation functions come from the sigmoid family (such as the logistic

sigmoid). The range of the logistic sigmoid σ(x) =
1

(1 + e−x)
is {0, 1}, making the

function particularly suitable when the activations of the neurons represent proba-

bilities. Recent developments have shown that rectifier functions such as max{0, x}

perform better for certain kind of tasks (Dahl et al. (2013)). Neural networks can be

split in different categories, according to the connections between layers: feed forward

networks and recurrent networks. In feed forward nets, the connections between units

do not form a directed cycle. Recurrent neural nets are characterized by forming a

33

cycle in the connections between neurons.

3.1.0.1 Discriminative and Generative Learning

The aim of discriminative learning is to find a map from the input data to labels.

The labels can be discrete (classification) or continuous (regression). When solving

a discrimination problem, the neural network is given a labelled dataset, of the form

(x, y), where x is the data instance (represented as a vector of real numbers) and y

is the label. The aim of the neural network is to learn a target function f such that

f(x) = y and be able to predict the value of the function for unseen data. In general,

discriminative models aim to compute the conditional probability of a label (y) given

a data instance (x) : p(y|x).

The aim of generative learning is to compute a probability distribution that is very

likely to have generated the data. Unlike discriminative models, generative models

can be used in an unsupervised setting, in which there are no labels given for the data,

making them suitable for applications like clustering and density estimation (chapters

2 and 9 from (Nasrabadi (2007)). Generative models can be applied for classification

and regression, as they can model the joint probabilities, p(x, y), between the data

x and the labels y, by first computing the marginal probability of the data given a

label: p(x|y). Traditionally, neural networks are used as discriminative models.

3.1.1 The Error Function

Correcting the network when it makes mistakes is an important step in the learning

process. We need to show the network what it needs to learn and how it needs to

improve, so that it can adjust its current understanding about the target function.

This requires a measure for the error. The choice of error function is application

dependent and has many consequences in the learning process. When presenting a

34

data instance to the network, we can compare the output it produces (y) with the

target output (t). A common choice is to use the square of the L2 norm between the

two vectors:

E(t, y) = ‖t− y‖2 . (3.2)

When computing the error on the entire dataset, the mean square error is used, which

is the average error on each individual training cases:

MSE =
1

N

N∑
i=1

‖yi − ti‖2 (3.3)

The root mean square error is also used in common so that the data and error have

same units.

RMSE =
√
MSE. (3.4)

3.1.2 The Back-Propagation Algorithm

The back-propagation algorithm uses the derivatives of the error function with re-

spect to the weight matrix and the bias term to find a set of parameters that minimizes

the value of the error function. The algorithm (refer Algorithm (1)) back propagates

the derivatives from the output layer to the layers below, one layer at a time. Once

the partial derivatives are computed, an optimization method is employed to find

values of the parameters that minimize the error function. The most common opti-

mization technique used is gradient descent, but other algorithms such as conjugate

gradient have been successfully employed (LeCun et al. (1998b)). For a more com-

prehensive understanding on back propagation, please refer to (LeCun et al. (1998b)).

Multiple passes through the data are required when training a neural network.

Each pass is called a training epoch. Inside an epoch, the parameters can be updated

at different frequencies:

35

Algorithm 1 Back propagation learning algorithm (LeCun et al. (1998b))

1: Initialize the weights with random values between 0 and 1.

2: While not done training do

3: for d in data do

4: Forward Pass

5: Starting from the input layer, use equation (3.1) to do a forward pass through

the network, computing the activitions of the neurons at each layer.

6: Backward Pass

7: Compute the gradient of the error with respect to the output layer activations

8: for layer in layers do

9: Compute the gradient with respect to the linear input of neurons in the layer

above

10: Compute the gradient with respect to the parameters of the current layer

11: Compute the gradient with respect to the activations of the current layer

12: Update the parameters

1. Online Weight Update

In the Online weight update method, we correct the model after each training

sample. Because the error function changes after each data sample, the gra-

dients with respect to the parameters fluctuate highly between updates. This

results in less stable learning and is not used in practice for this reason.

2. Full-batch Weight Update

The entire dataset is used to compute the error and the weights are updated

using the sum of the gradients obtained from the individual samples. This

requires that we go through the entire dataset multiple times to improve the set

36

of parameters available in the beginning. This method is computation intensive

and therefore not used widely.

3. Mini-batch Weight Update

The above two approaches are combined and we run only a part of the training

cases, making the parameters reasonable before continuing. The updates are

averaged over multiple cases. This makes the parameters more stable than

online learning. When using mini-batch learning it is important to ensure that

a mini batch has an equal number of instances of each class the model is trying to

learn. This helps reduce fluctuations between the different mini-batch updates.

The back-propagation algorithm describes a way to compute the derivatives of

the error function with respect to the weights of the network. These derivatives

are then used in conjunction with various optimization algorithms. In the gradient

descent algorithm (refer Algoirithm (2)), the weights are updated in the direction of

the negative of the gradient. Here ε is called the learning rate.

Algorithm 2 Gradient Descent (ε, threshold)

1: while |xn − xn−1| < threshold do

2: xn+1 = xn − ε∇f(xn)

3.1.2.1 Parameters and Techniques

Learning rate

Experiments have shown that the learning rate is a crucial parameter that influences

the convergence of training (Schulz et al. (2010)). There are many ways to set the

learning rate. One method is to try different values in the set 10−1, 10−2, · · · , 10−5

37

and cross validate. The value that yields the best result is chosen. The learning rate

is constant throughout training. Another method would be to monitor the error on

a validation set. If the error is steadily decreasing, increase the learning rate by a

constant factor. If the error is increasing, decrease the learning rate. Towards the

end of training, when the error stops decreasing steadily, we further decrease learning

rate. This removes the fluctuations in the weights between mini-batches and helps

towards keeping a steady set of weights for the final ones.

Momentum

The momentum method is a technique used to improve the speed of learning. Here,

the previous values of the weight gradients are used when computing the current up-

date. This ensures that the gradient moves in the same direction as before, thereby

speeding up learning. When the current gradient and the previous gradient agree on

the direction the weight should move, a bigger step is performed in that direction.

Nesterov Method for Momentum

In the Nesterov momentum method, the parameters according to the direction of the

old update are first updated. Then, a forward and a backward pass are performed to

compute the gradients. The parameters are updated again using the new computed

gradients. The Nesterov momentum can increase the performance of neural networks

and tends to perform better than classic momentum (Sutskever et al. (2013), (Tiele-

man and Hinton (2012))).

38

3.1.3 Overfitting

During training, the network sees regularities in data. It is impossible for a net-

work to distinguish between real regularities that we aim to learn and the accidental

regularities occurring in the data. These accidental regularities can potentially make

the network not generalize well to unseen testing data. This is an important issue that

arises when using machine learning techniques, and it is called overfitting. Trying to

fit the training set perfectly will guarantee that the model has learned the accidental

regularities in the data and thus will not be able to generalize. Methods that aim

to avoid overfitting by imposing a complexity penalty to the model are commonly

referred to as regularization techniques. Some regularization techniques are discussed

below.

Weight Decay

It has been observed (Krogh and Hertz (1992)) that extreme values (very small or

very big) for the parameters of a machine learning model are a symptom of over-

fitting: the model is trying to perfectly learn the regularities of the data. In order

to avoid weights increasing too much, a weight penalty is imposed (Srivastava (2013)).

Early stopping

The idea behind early stopping is to prevent the network from overfitting by stopping

training before convergence is achieved. This is done by keeping a validation set on

which the error is computed during learning. Once the error stops decreasing on the

validation set, training is stopped. This method is highly used to determine when to

stop training a model.

39

Model Averaging

In this method, multiple models are used and their predictions are averaged. Liter-

ature has shown that averaging the predictions from multiple models is better than

using one single model. This method helps find good models that err on different test

cases.

Bagging and boosting

Bagging uses multiple bootstrap datasets to train different classifiers, and at test

time averages them in order to obtain a classification result. A bootstrap dataset is

obtained by uniformly sampling with repetition from the original dataset. In Boost-

ing, the bootstrap sets are not obtained by increasing the probability of obtaining

a sample misclassified by the models trained with the previous bootstrap sets. A

comprehensive comparison between boosting, bagging and Bayesian model averaging

is offered by Davidson and Fan (2006).

Generative Pre-training

Generative pre-training is another technique that helps in reduction of overfitting.

The core idea is to learn the structure of the data, without supervision, and then

apply discriminative learning algorithms.

3.2 Restricted Boltzmann Machines, (RBMs)

A Restricted Boltzmann machine is a neural network with two layers of stochastic

binary units, with their connections forming an undirected bipartite graph. The layers

of the network are called visible and hidden (Figure (3.2)).

RBMs are generative models: the hidden units are latent variables that generate

40

Figure 3.2: Restricted Boltzmann Machine

the observable data (the visible units). These hidden units define a posterior prob-

ability distribution on the states of the visible units. The energy function is given

below; it emphasizes the structure of the network:

E(v, h) =
∑

i visible

aivi −
∑

i hidden

bihi −
∑

i visible, j hidden

wijvihj

= aTv − bTh− vTWh (3.5)

At equilibrium the network assigns a probability to each possible state of the network,

depending on the energy:

p(v, h) =
1

Z
e−E(v,h) (3.6)

In equation (3.6), Z is the normalizing constant, called the partition function:

Z =
∑
v,h

e−E(v,h) (3.7)

p(v) =
∑
h

p(v, h) =
1

Z

∑
h

e−E(v,h) (3.8)

The derivative of the log probability of a data instance can be computed as follows:

∂

∂wij
(log p(v)) = 〈vi, hj〉data − 〈vi, hj〉model (3.9)

Equation (3.9) gives an idea for a learning algorithm: use the gradient ascent algo-

rithm with the following weight updates:

∇wij = ε (〈vi, hj〉data − 〈vi, hj〉model) (3.10)

41

In order to be able to use equation (3.10) as part of a training algorithm we need:

• an unbiased sample of 〈vi, hj〉data

• an unbiased sample of 〈vi, hj〉model

Due to the structure of an RBM, the hidden units are conditionally independent

given the value of the visible units. This property makes it simple to get an unbiased

sample from the 〈vi, hj〉data distribution, as the hidden units do not depend on each

other given the visible unit:

p(hj = 1
∣∣v) = σ

(
N∑
i=1

wijvi + bi

)
(3.11)

Similarly, the visible units are conditionally independent given the hidden units:

p(vi = 1
∣∣h) = σ

(
N∑
j=1

wjihj + ai

)
(3.12)

Calculating the unbiased sample of 〈vihj〉data, is called the positive phase of an algo-

rithm that trains an RBM. Calculating an approximation of the unbiased sample of

〈vihj〉model, is called the negative phase of an algorithm that trains an RBM.

3.2.1 Training an RBM: Contrastive Divergence

Contrastive divergence (CD) (Hinton (2002)) is a training algorithm for RBMs

that uses a simple approximation of 〈vihj〉model. Contrastive divergence is time effi-

cient and gives good results. It starts with a data vector from the training set and

uses a step of Gibbs sampling to obtain the states of the hidden units. From the

states of the hidden units, visible units are sampled. The process is repeated multiple

times, obtaining reconstructions for both the visible and hidden units. An approxi-

mation to the unbiased sample of 〈vihj〉model, is obtained by using the values of the

42

reconstructions.

∇wij = ε (〈vihj〉data − 〈vihj〉reconstruction) (3.13)

∇ai = ε (〈vi〉data − 〈vi〉reconstruction) (3.14)

∇bj = ε (〈hj〉data − 〈hj〉reconstruction) (3.15)

Positive phase in CD

Fix the data vector on the visible units and sample from the hidden units. Use vihj

as an unbiased sample of 〈vihj〉data.

Negative phase in CD

Starting with the data vector on the visible units, perform alternating steps of Gibbs

sampling. Use the reconstruction of visible and hidden states as an approximation

for the unbiased sample of 〈vihj〉reconstruction. For mini-batch learning, the samples

obtained in the positive and negative phase above are averaged on the entire mini-

batch before updating parameters. CDk denotes the contrastive divergence algorithm

with k alternating Gibbs sampling steps performed to obtain the reconstructions.

CD1, is most commonly used, as it is the most time efficient and gives good enough

results.

3.3 Deep Belief Networks, (DBNs)

A deep belief network (DBN) is a generative graphical model, composed of mul-

tiple layers of latent variables (”hidden units”), with connections between the layers

but not between units within each layer. DBNs can be viewed as a composition of

simple, unsupervised networks such as restricted Boltzmann machines (RBMs) or au-

toencoders, where each sub-network’s hidden layer serves as the visible layer for the

next.

43

3.3.1 Greedy Pre-Training in Deep Belief Networks

Deep belief networks use the principle of greedy layer-wise training to initialize

parameters before performing any discriminative or generative fine-tuning. They were

discovered by Hinton et al. (2006). Like Restricted Boltzmann machines, deep belief

networks are probabilistic generative models that use latent variables to learn features

from the data. Unlike RBMs, they use multiple layers of hidden units, giving them

a more hierarchical structure and allowing them to learn higher level representations

(features of features). Deep belief nets were initially introduced using stochastic

binary units, but the extensions of RBMs can be stacked together to form DBNs.

Multiple hierarchical levels in an image are the pixel level, the stroke level, the edge

level and the object level.

In a hierarchical model, we now want to learn the features of these features. We

do this by creating another RBM, for which the input are the first set of learned

features of the data (the state of the hidden units of the first RBM, when the input

is a data vector) (Figure 3.3).

This process can be repeated multiple times, allowing learning of higher and higher

layer of features. It can be proven that every time we add another layer, we improve

the variational lower bound on the log probability of generating the data. After

creating these RBMs, we have to combine them together. The recognition weights

are the transpose of the generative weights and will be used for inference. Figure

(3.4) exemplifies the difference between recognition and generative weights. DBNs

model the joint distribution between the observable data (v) and the latent hidden

variables (feature vectors hk):

p(v, h1, h2, · · · , hn) = p(hn, hn−1)
n−2∏
k=0

p(hk
∣∣hk+1) (3.16)

44

Figure 3.3: Deep Belief Network Model.

As an interesting observation, we note that DBNs are recursive: removing the visible

layer of a deep belief net with more than 3 layers will result in another deep belief

network, with one layer less.

3.3.1.1 Improving Greedy Pre-training for Network Architectures

In order to stack two RBMs on top of each other, the number of hidden units of

the first RBM has to be equal to the number of visible units of the second RBM. This

is required in order to propagate the hidden activations of the first RBM as training

data for the second RBM. When the number of visible units of the first RBM is equal

to the number of hidden units in the second RBM, we can use the same weights.

Figure (3.5) shows such an example. If the RBM model is symmetric and the hidden

45

Figure 3.4: Recognition Weights (black arrows) Versus Generative Weights (green
arrows)

activations of the first RBM are the input for the second one, the two networks are

trying to model similar correlations, so the weights learned by the first one can be

used to initialize the weights of the second RBM. This initialization works only if

the RBMs are symmetric. In their initial formulation, RBMs are symmetric because

both hidden and visible units used the same activation function, namely the logistic

sigmoid. Recent work has shown that using Gaussian visible units along with noisy

rectified linear units can improve performance of RBMs (Nair and Hinton (2010)).

This type of RBM is not symmetric, due to the use of different activation functions.

It is also common to scale the input data to the RBM with Gaussian visible units to

have zero mean and unit variance so that it does not learn the variance of the visible

46

units using CD. Here, the input data for the second RBM is not given by the hidden

activations of the first RBM, but are given by the scaled hidden activations. Hence

the second RBM models different correlations, meaning that we should not initialize

the weights of the second RBM to the ones resulted from training the first network,

even though the shapes of the two networks allow it.

3.3.2 Generating Data from a DBN

Because DBNs are generative models, we would like to sample from the distribu-

tions they define. This is done as follows:(1) Get an equilibrium sample from the top

level RBM (by performing alternated Gibbs sampling between the two layers). (2)

Starting from the hidden nets of the top layer RBM, use the top down generative

weights to perform a pass through the network.

3.3.2.1 Classification using Deep Belief Networks

DBNs can be adapted and used for classification and regression. In order to use

deep nets for classification, another layer has to be added on top of the network.

Usually this layer is a softmax. To train the network, we first perform the greedy

Figure 3.5: Initialization of Weights

47

pre-training, learning one layer of features at a time. Afterwards, we apply back

propagation to the entire network, in order to learn how to discriminate between

class labels. This approach eliminates a lot of the problems usually encountered with

back propagation. Advantages of using back propagation after greedy pre-training:

� Back-propagation does not have to learn the features of the data. The task

has been taken over by the greedy pre-training. This solves the problem of the

vanishing gradient: the main aim of back propagation is to learn the weights

of the top (discriminative) layer, as the weights of the first layers already have

sensitive values. If the gradient is too small to affect the first layers, the impact

on learning is not as drastic.

� The algorithm is less likely to get stuck in a bad local minimum of the energy

function, due to the sensible initialization of weights.

� Less labelled data is needed. The greedy pre-training does not require labelled

data, as it is inherently unsupervised. Labelled data is a scarce resource, as

obtaining it involves manual work. Requiring less labelled data is a plus for any

algorithm, as it can be given as input bigger datasets.

� Greedy pre-training causes less overfitting than just using standard back prop-

agation, as a lot more information is obtained from the input data (namely the

higher-level features which are learned in the first phase of training).

3.3.2.2 Data generation using DBNs

The wake-sleep algorithm described by Hinton et al. (1995) can be adapted to

DBN, allowing layers to influence each other, after greedy pre-training. The aim of

this is to make the network better at data generation. For this algorithm we start

48

differentiating between the generative and recognition weights of the network. The

main steps of the algorithm are:

� Use the recognition weights to do a stochastic bottom-up pass. From the layer

activities obtained, adjust the generative weights.

� Do a few iterations of sampling in the top level RBM and adjust its weights

using contrastive divergence.

� Use the generative weights to do a top-down pass and use the activities to adjust

the reconstruction weights.

3.3.3 Stacked RBMs and Deep Belief Networks

In an RBM, the hidden variables are independent conditionally to the visible

variables, but they are not statistically independent. Stacking RBMs aims at learning

these dependencies with another RBM. The visible layer of each RBM of the stack

is set to the hidden layer of the previous RBM (Figure 3.6). Following the deep

learning scheme, the first RBM is trained from the input instances and other RBMs

are trained sequentially after that. Stacking RBMs increases a bound on the log-

likelihood (Bengio et al. (2009)), which supports the expectation to improve the

performance of the model by adding layers. A stacked RBMs architecture is a deep

generative model. Patterns generated from the top RBM can be propagated back to

the input layer using only the conditional probabilities as in a belief network.

49

Figure 3.6: Stacked RBM Architecture

3.4 Stacked Auto-Associators, (SAs)

Another model which can be stacked in order to train a deep neural network in a

greedy layer-wise manner is the Auto-Associator (AA) (Bourlard and Kamp (1988);

Hinton (1990)). An AA is a two-layer neural network. The first layer is the encoding

layer and the second is the decoding layer. The number of neurons in the decoding

layer is equal to the networks input dimensionality. The goal of an AA is to compute

a code y of an input instance x from which x can be recovered with high accuracy.

50

This models a two-stage approximation to the identity function.

fdec (fenc(x)) = fdecy = x̂ ≈ x. (3.17)

Here, fenc is a function computed by the encoding layer and fdec is the function

computed by the decoding layer. An AA can be trained by applying standard back

propagation of error derivatives. Depending on the nature of the input data, the loss

function can either be the squared error LSE for continuous values or the cross-entropy

LCE for binary vectors:

LSE(x, x̂) =
∑
i

(x̂l − xi)2 (3.18)

LCE(x, x̂) =
∑
i

[xi log x̂l + (1− xi) log (1− x̂l)] (3.19)

The AA training method approximates the CD method of the RBM (Bengio et al.

(2009)). Another important fact is that an AA with a nonlinear fenc differs from a

PCA as it is able to capture multimodal aspects of the input distribution (Japkowicz

et al. (2000)). Similar to the parameterization in an RBM, the decoders weight matrix

Wdec can be set to the transpose of the encoders weight matrix, i.e. Wdec = W T
enc. In

such a case, the AA is said to have tied weights. The advantage of this constraint

is to avoid undesirable effects of the training process, such as encoding the identity

function, i.e. fenc(x) = x. This result is possible when the encoding dimensionality

is bigger than the input dimensionality. An interesting variant of the AA is the

Denoising Auto-Associator (DAA). A DAA is an AA trained to reconstruct noisy

inputs. To achieve this goal, the instance fed to the network is not x but a corrupted

version x̂. After training, if the network is able to compute a reconstruction x̂ of x

with a small loss, then it is admitted that the network has learned to remove the

noise in the data in addition to encode it in a different feature space (Figure 3.7).

Finally, a Stacked Auto-Associator (SAA) (Bengio et al. (2007); Larochelle et al.

51

(2007); Vincent et al. (2008); Poultney et al. (2007)) is a deep neural network trained

following the deep learning scheme: an unsupervised greedy layer-wise pre-training

before a fine-tuning supervised stage (Boureau et al. (2008); Mirowski et al. (2010)).

Figure 3.7: DAA Training Scheme

3.5 Convolutional Neural Networks, (CNNs)

The Convolutional Neural Network (CNN) has shown excellent performance in

many computer vision and machine learning problems. CNN is useful in a lot of

applications, especially in image related tasks. Applications of CNN include image

classification, image semantic segmentation, object detection in images, etc. An image

is classified into one of the classes based on the identity of its main object, e.g., dog,

airplane, bird, etc. We first present the notation and background knowledge. Please

refer to Wu (2018) for a detailed mathematical description about CNNs. The theory,

figures and derivations about CNNs presented here are inspired from Wu (2018).

3.5.1 Notation

x ∈ RD is a column vector with D elements. We use a capital letter to denote

a matrix, e.g., X ∈ RH×D is a matrix with H rows and W columns. The vector x

52

can also be viewed as a matrix with 1 column and D rows. These concepts can be

generalized to higher-order matrices, i.e., tensors. For example, x ∈ RH×W×D is an

order 3 tensor. It contains HWD elements, and each of them can be indexed by an

index triplet (i, j, d), with 0 ≤ i < H, 0 ≤ j < W and 0 ≤ D. Another way to view

an order 3 tensor is to treat it as containing D channels of matrices. Every channel

is a matrix with size H×W . An image with H rows and W columns is a tensor with

size H ×W × 3: if a color image is stored in the RGB format, it has 3 channels (for

R, G and B, respectively), and each channel is a H×W matrix (second order tensor)

that contains the R (or G, or B) values of all pixels. Tensors are essential in CNN.

The input, intermediate representation, and parameters in a CNN are all tensors.

3.5.2 Architecture

A CNN usually takes an order 3 tensor as its input, e.g., an image with H rows, W

columns, and 3 channels (R, G, B color channels). The input goes through a series of

processing steps. Each processing step is called a layer. This could be a convolution

layer, a pooling layer, a normalization layer, a fully connected layer or a loss layer.

x1 −→ w1 −→ x2 −→ · · · −→ xL−1 −→ wL−1 −→ xL −→ wL −→ z (3.20)

The above equation illustrates the forward pass in a CNN. The input is x1, usually

an image (order 3 tensor). It goes through the processing in the first layer, which

is the first box. We denote the parameters involved in the first layer’s processing

collectively as a tensor w1. The output of the first layer is x2, which also acts as

the input to the second layer processing. This processing proceeds till all layers in

the CNN have been finished, which outputs xL. We add another layer for backward

error propagation, a method that learns good parameter values in the CNN. Let’s

53

suppose the problem at hand is an image classification problem with C classes. We

output xL as a C dimensional vector, whose i-th entry encodes the prediction. To

make xL a probability mass function, we can set the processing in the (L−1)-th layer

as a softmax transformation of xL−1. In other applications, the output xL may have

other forms and interpretations. The last layer is a loss layer. Let us suppose t is the

corresponding ground-truth value for the input x1, then a cost or loss function can

be used to measure the discrepancy between the CNN prediction xL and the target t.

z =
1

2
||t− xL||2, (3.21)

This squared L2 loss can be used in a regression problem. In a classification problem,

the cross entropy loss is used. The ground-truth in a classification problem is a

categorical variable t. We first convert the categorical variable t to a C dimensional

vector t. Now both t and xL are probability mass functions, and the cross entropy

loss measures the distance between them. Hence, we can minimize the cross entropy.

3.5.3 Forward Propagation

Suppose all the parameters of a CNN model w1, w2, · · · , wL−1 have been learned,

then we can use this model for prediction.

Starting from the input x1, we make it pass the processing of the first layer (the

box with parameters w1), and get x2. In turn, x2 is passed into the second layer,

etc. Finally, we achieve xL ∈ RC , which estimates the posterior probabilities of x1

belonging to the C categories. We can output the CNN prediction as

argmax
i

xLi (3.22)

Note that the loss layer is not needed in prediction. It is only useful when we try to

learn CNN parameters using a set of training examples.

54

3.5.4 Stochastic Gradient Descent, (SGD)

The parameters of a CNN model are optimized to minimize the loss z.

Let’s suppose one training example x1 is given for training such parameters. The

training process involves running the CNN network in both directions. We first for-

ward propagete to get xL to achieve a prediction using the current CNN parameters.

Instead of outputting a prediction, we compare the prediction with the target t cor-

responding to x1. Finally, we achieve a loss z. The loss z is then a supervision signal,

guiding how the parameters of the model should be updated. And the SGD way of

modifying the parameters is:

wi ←− wi − η ∂z
∂wi

. (3.23)

In Equation 3.23, the ←− sign implicitly indicates that the parameters wi (of the

i-layer) are updated from time t to t + 1. If a time index t is explicitly used, this

equation will look like

(wi)t = (wi)t−1 − η ∂z

∂(wi)t
(3.24)

In Equation 3.24, the partial derivative
∂z

∂wi
measures the rate of increase of z with

respect to the changes in different dimensions of wi. In order to minimize the loss

function, we should update wi along the opposite direction of the gradient. This

updating rule is called the gradient descent.

In every update we only change the parameters by a small proportion of the

negative gradient, controlled by η (the learning rate). η > 0 is usually set to a small

number (e.g., η = 0.001). One update based on x1 will make the loss smaller for this

particular training example if the learning rate is not too large. However, it is possible

that it will make the loss of some other training examples larger. Hence, we need to

update the parameters using all training examples. When all training examples have

55

been used to update the parameters, we say one epoch has been processed.

3.5.5 Back Propagation

The last layer’s partial derivatives are easy to compute. Because xL is connected

to z directly under the control of parameters wL, it is easy to compute
∂z

∂wL
. This

step is only needed when wL is not empty. It is also easy to compute
∂z

∂xL
. For every

layer, we compute two sets of gradients: the partial derivatives of z with respect to

the layer parameters wi, and that layer’s input xi.

• The term
∂z

∂wi
, can be used to update the current (i-th) layer’s parameters;

• The term
∂z

∂xi
can be used to update parameters backwards, e.g., to the (i−1)-th

layer.

This layer-by-layer backward updating procedure makes learning a CNN much easier.

Let’s take the i-th layer as an example. When we are updating the i-th layer, the

back propagation process for the (i+ 1)-th layer must have been finished.

That is, we already computed the terms
∂z

∂wi+1
and

∂z

∂xi+1
. Both are stored in

memory and ready for use. Next, we compute
∂z

∂wi
and

∂z

∂xi
. Using the chain rule,

we have:

∂z

∂(vec(wi)T)
=

∂z

∂(vec(xi+1)T)

∂(vec(xi+1))

∂(vec(wi)T)
(3.25)

∂z

∂(vec(xi)T)
=

∂z

∂(vec(xi+1)T)

∂(vec(xi+1))

∂(vec(xi)T)
(3.26)

Since
∂z

∂xi+1
is already computed and stored in memory, it requires just a matrix

reshaping operation (vec) and an additional transpose operation to get
∂z

∂(vec(xi+1)T)
,

which is the first term in the right hand side (RHS) of both equations.
∂(vec(xi+1))

∂(vec(wi)T)

56

and
∂(vec(xi+1))

∂(vec(xi)T)
are much easier to compute than directly computing

∂z

∂(vec(wi)T)

and
∂z

∂(vec(xi)T)
, because xi is directly related to xi+1, through a function with pa-

rameters wi.

3.5.6 ReLU Layer

A ReLU layer does not change the size of the input, that is, xl and y share the

same size. In fact, the Rectified Linear Unit (hence the name ReLU) can be regarded

as a truncation performed individually for every element in the input:

yi,j,d = max{0, xli,j,d} (3.27)

with 0 ≤ i < H l = H l+1, 0 ≤ j < W l = W l+1, and 0 ≤ d < Dl = Dl+1. There is no

parameter learning in this layer. Based on Equation (3.27), it is obvious that

dyi,j,d
dxli,j,d

= [[xli,j,d > 0]] (3.28)

where [[.]] is the indicator function, being 1 if its argument is true, and 0 otherwise.

Hence, we have [
∂z

∂xl

]
i,j,d

=

[
∂z
∂y

]
i,j,d

if xii,j,d > 0

0 otherwise

(3.29)

Note that y is an alias for xl+1. The purpose of ReLU is to increase the nonlinearity

of the CNN.

3.5.7 Convolution Layer

Let the input in the l-th layer be an order 3 tensor with size H l ×W l × Dl. A

convolution kernel is also an order 3 tensor with size H ×W ×Dl. When we overlap

the kernel on top of the input tensor at the spatial location (0, 0, 0), we compute

57

the products of corresponding elements in all the Dl channels and add the HWDl

products to get the convolution result at this spatial location. Then, we move the

kernel from top to bottom and from left to right to complete the convolution.

In a convolution layer, multiple convolution kernels are used. Let us assume D

kernels are used and each kernel is of spatial spanH×W . The kernels are denoted as f .

f is an order 4 tensor in RH×W×Dl×D. Similarly, we use index variables 0 ≤ i < H, 0 ≤

j < W, 0 ≤ dl < Dl and 0 ≤ d < D to pinpoint a specific element in the kernels. In

this section, we consider the simple case when the stride is 1 and no padding is used.

Hence, we have xl+1 in RHl+1×W l+1×Dl+1
, with H l+1 = H l−H+1,W l+1 = W l−W+1,

and Dl+1 = D. In precise mathematics, the convolution procedure can be expressed

as an equation:

yil+1,jl+1,d =
H∑
i=0

W∑
j=0

Dl∑
dl=0

fi,j,dl,d × xlil+1+i,jl+1+j,dl
. (3.30)

One of the major advantages of the convolution layer is that all spatial locations

share the same convolution kernel, which greatly reduces the number of parameters

needed for a convolution layer.

3.5.8 Update Parameters

As previously mentioned, we need to compute two derivatives:
∂z

∂vec(xl)
and

∂z

∂vec(F)
, where the first term

∂z

∂vec(xl)
will be used for backward propagation to

the previous (l− 1)-th layer, and the second term will determine how the parameters

of the current (l)-th layer will be updated. A friendly reminder is to remember that

f, F and wi refer to the same thing (modulo reshaping of the vector or matrix or

tensor). Similarly, we can reshape y into a matrix Y ∈ R(Hl+1W l+1)×D, then y, Y and

xl+1 refer to the same object (again modulo reshaping).

The rule for updating the parameters in the l-th layer: the gradient with respect

58

to the convolution parameters is the product between φ(xl)T and
∂z

∂Y
.

∂z

∂F
= φ(xl)T

∂z

∂Y
, (3.31)

which is a simple rule to update the parameters in the l-th layer:

3.5.9 Gradient Computation

In the l-th layer, we still need to compute
∂z

∂vec(xl)
. For this purpose, we want to

reshape xl into a matrix X ∈ R(HlW l)×Dl , and use these two equivalent forms (modulo

reshaping) interchangeably. The chain rule states that

∂z

∂(vec(xl)T)
=

∂z

∂(vec(y)T)

∂vec(y)

∂(vec(xl)T)
.

∂vec(y)

∂(vec(xl)T)
=
∂(F ⊗ I)vec(φ(xl))

∂(vec(xl)T)
= (F ⊗ I)M. (3.32)

Thus,

∂z

∂(vec(xl)T)
=

∂z

∂(vec(y)T)
(F ⊗ I)M. (3.33)

Therefore,

∂z

∂(vec(xl))
= MT

(
∂z

∂Y
F T

)
(3.34)

In order to pinpoint one element in vec(xl) or one row in MT , we need an index

triplet (il, jl, dl), with 0 ≤ il < H l, 0 ≤ jl < W l, and 0 ≤ dl < Dl. Similarly, to

locate a column in MT or an element in
∂z

∂Y
F T , we need an index pair (p, q), with

0 ≤ p < H l+1W l+1 and 0 ≤ q < HWDl.

Thus, the (il, jl, dl)-th entry of
∂z

∂vec(xl)
equals the multiplication of two vectors:

the row in MT (or the column in M) that is indexed by (il, jl, dl), and vec

(
∂z

∂Y
F T

)
Furthermore, since MT is an indicator matrix, in the row vector indexed by

(il, jl, dl), only those entries whose index (p, q) satisfies m(p, q) = (il, jl, dl) have a

59

value 1, all other entries are 0. Thus, the (il, jl, dl)-th entry of
∂z

∂(vec(xl))
equals the

sum of these corresponding entries in vec

(
∂z

∂Y
F T

)
.

In precise mathematical form, we get the following succinct equation:[
∂z

∂X

]
il,jl,dl

=
∑

(p,q)∈m−1(il,jl,dl)

[
∂z

∂Y
F T

]
(p,q)

(3.35)

3.5.10 Pooling layer

Let xl ∈ RHl×W l×Dl be the input to the l-th layer, which is now a pooling layer.

The pooling operation requires no parameter. The spatial extent of the pooling

(H ×W) is specified in the design of the CNN structure. Assume that H divides

H l and W divides W l and the stride equals the pooling spatial extent, the output of

pooling (y or equivalently xl+1) will be an order 3 tensor of size H l+1×W l+1×Dl+1,

with

H l+1 =
H l

H
, W l+1 =

W l

W
,Dl+1 = Dl (3.36)

A pooling layer operates upon xl channel by channel independently. Within each

channel, the matrix with H l × W l elements are divided into H l+1 × W l+1 non-

overlapping subregions, each subregion being H ×W in size. The pooling operator

then maps a subregion into a single number.

Two types of pooling operators are widely used: max pooling and average pooling.

In max pooling, the pooling operator maps a subregion to its maximum value, while

the average pooling maps a subregion to its average value.

max : yil+1,jl+1,d = max
0≤i<H, 0≤j<W

xlil+1×H+i,jl+1×W+j,d, (3.37)

average : yil+1,jl+1,d =
1

HW

∑
0≤i<H, 0≤j<W

xlil+1×H+i,jl+1×W+j,d, (3.38)

60

where 0 ≤ il+1 < H l+1, 0 ≤ jl+1 < W l+1 and 0 ≤ d < Dl+1 = Dl

3.5.11 Fully Connected Layer

One benefit of the convolution layer is that convolution is a local operation. The

spatial extent of a kernel is often small (e.g., 3 × 3). One element in xl+1 is usually

computed using only a small number of elements in its input xl.

A fully connected layer refers to a layer if the computation of any element in the

output xl+1 (or y) requires all elements in the input xl. A fully connected layer is

sometimes useful at the end of a deep CNN model. Most often, after many convolu-

tion, ReLU and pooling layers, the output of the current layer contains distributed

representations for the input image. We want to use all these features in the current

layer to build features with stronger capabilities in the next one. A fully connected

layer is useful for this purpose.

Let the input of a layer xl have size H l ×W l ×Dl. If we use convolution kernels

whose size is H l×W l×Dl, then D such kernels form an order 4 tensor in H l×W l×

Dl ×D. The output is y ∈ RD. It is obvious that to compute any element in y, we

need to use all elements in the input xl. Hence, this layer is a fully connected layer,

but can be implemented as a convolution layer. Hence, we do not need to derive

learning rules for a fully connected layer separately.

3.6 Recurrent Neural Networks, (RNNs)

A recurrent neural network (RNN) is a class of artificial neural networks where

connections between units form a directed graph along a sequence. This allows it to

exhibit dynamic temporal behavior for a time sequence. Unlike feedforward neural

networks, RNNs can use their internal state (memory) to process sequences of inputs.

There are two types of recurrent networks - a finite impulse and infinite impulse RNN.

61

A finite impulse recurrent network is a directed acyclic graph that can be unrolled

and replaced with a strictly feedforward neural network, while an infinite impulse

recurrent network is a directed cyclic graph that cannot be unrolled. Both finite

impulse and infinite impulse recurrent networks have additional stored state, and the

storage can be under direct control by the neural network. The storage can also be

replaced by another network or graph, if that incorporates time delays or has feedback

loops. Such controlled states are referred to as gated state or gated memory, and are

part of Long short-term memory (LSTM) and gated recurrent units. The theory,

figures and explanation about RNNs and LSTMs presented here are inspired from

Colah (2018).

Figure 3.8: Recurrent Neural Network; Source: Colah (2018)

In Figure (3.8), A represents the neural network, xt is its input and ht is the

output’s value. The loop allows information to be passed from one step of the network

to the next. A recurrent neural network can be thought of as multiple copies of the

same network, each passing a message to their successor. Figure (3.9) shows an

unrolled network.

Figure 3.9: An Unrolled RNN; Source: Colah (2018)

62

This chain-like nature makes RNNs the natural architecture to use for temporal

data. In the recent years, RNNs have achieved great success in a variety of problems:

speech recognition, language modeling, translation, image captioning.

3.6.0.1 The Issue of Long-Term Dependencies

In a temporal sequence, sometimes, we only look at recent information to perform

the present task. For example, consider a language model trying to predict the next

word based on the previous ones. When trying to predict the last word in the clouds

are in the sky, we do not need any further context. It is pretty obvious the next word

is going to be sky. In such cases, where the gap between the relevant information

and the place that it is needed is small, RNNs can learn to use the past information.

Figure (3.10) shows such a situation.

Figure 3.10: Short - Term Dependency in RNN; Source: Colah (2018)

In cases where we need more context, the gap between the relevant information

and the point where it is needed, becomes very large. For example, consider trying to

predict the last word in the text, I grew up in France I speak fluent French. Recent

information suggests that the next word is probably the name of a language, but if

we want to narrow down which language, we need the context of France, from further

back. Unfortunately, as that gap grows, RNNs become unable to learn to connect

the information.

63

Figure 3.11: Long - Term Dependency in RNN; Source: Colah (2018)

3.6.1 Long Short-Term Memory Networks, (LSTMs)

Long Short-Term Memory networks (LSTMs) are a special kind of RNNs, ca-

pable of learning long-term dependencies. They were introduced by Hochreiter and

Schmidhuber (1997). They work tremendously well on a large variety of problems,

and are now widely used. LSTMs are explicitly designed to avoid the long-term de-

pendency problem, as remembering information for long periods of time is built in

their architecture.

3.6.1.1 The Core Idea Behind LSTMs

The key to LSTMs is the cell state, the horizontal line running through the top of

the diagram in Figure 3.12. The cell state is like a conveyor belt, it runs straight down

the entire chain, with some minor linear interactions. The LSTM can add or remove

information to the cell state. This is regulated by structures called gates. Gates can

optionally let information through. They are composed of a sigmoid neural net layer

and a pointwise multiplication operation (refer Figure (3.13)). All the above figures

were taken from Colah (2018), please refer to the url for more details.

The sigmoid layer outputs numbers between 0 and 1, describing how much of each

component should be let through. A value of zero means allow nothing through, while

a value of one means allow everything through. An LSTM has three such gates that

64

Figure 3.12: LSTM Cell State; Source: Colah (2018)

Figure 3.13: LSTM Gate Operation; Source: Colah (2018)

help protect and control the cell state.

3.6.2 LSTM Equations

The LSTM network first decides what information to forget from the current cell

state. This decision is made by a sigmoid layer called the forget gate layer. It looks

at ht−1 and xt, and outputs a number between 0 and 1 for each number in the cell

state Ct−1. A 1 represents completely retain while a 0 represents completely forget.

Figure 3.14 shows the LSTM forget gate along with the equation.

The next step is to decide what new information is to be stored in the cell state.

This has two parts. First, a sigmoid layer called the input gate layer decides which

values need to be updated. Next, a tanh layer creates a vector of new candidate

values, C̃t, that are added to the state. In the next step, these are combined to create

65

Figure 3.14: LSTM Forget Gate; Source: Colah (2018)

an update to the state as shown in Figure 3.15. The corresponding equations are also

given in the figure.

Figure 3.15: LSTM Input Gate; Source: Colah (2018)

Next, the old cell state Ct−1 is updated into the new cell state Ct. The old state is

multiplied by ft. Then, we add it to it ? C̃t. This is the new candidate value. Figure

(3.16) shows this operation along with the equations.

Figure 3.16: Updated Cell State; Source: Colah (2018)

Finally, the LSTM decides what to output. This output is dependent on the cell

state. First, a sigmoid layer is employed which decides what parts of the cell state is

66

output. Then, the cell state is put through tanh (to push the values to be between 1

and 1) and multiplied by the output of the sigmoid gate (Figure (3.17)).

Figure 3.17: LSTM Output Gate; Source: Colah (2018)

The LSTM is well-suited to classify, process and predict time series given time

lags of unknown size and duration between important events. LSTMs were developed

to deal with the exploding and vanishing gradient problem when training traditional

RNNs. Relative insensitivity to gap length gives an advantage to LSTM over alterna-

tive RNNs, hidden Markov models and other sequence learning methods in numerous

applications.

3.6.3 Backpropagation Through Time, (BPTT)

Backpropagation Through Time, or BPTT, is the application of the Backpropa-

gation training algorithm to recurrent neural network applied to sequence data like

a time series. At each time step, a recurrent neural network uses one input and pre-

dicts one output. Conceptually, BPTT works by unrolling all input timesteps. Each

timestep has one input timestep, one copy of the network, and one output. Errors

are then calculated and accumulated for each timestep. The network is rolled back

up and the weights are updated. Spatially, each timestep of the unrolled recurrent

neural network may be seen as an additional layer given the order dependence of the

problem and the internal state from the previous timestep is taken as an input on the

subsequent timestep. We can summarize the algorithm as follows:

67

1. Present a sequence of timesteps of input and output pairs to the network.

2. Unroll the network, then calculate and accumulate errors across each timestep.

3. Roll-up the network and update weights.

4. Repeat.

BPTT can be computationally expensive as the number of timesteps increases. If

input sequences are comprised of thousands of timesteps, then this will be the number

of derivatives required for a single weight update. This can cause weights to vanish

or explode (go to zero or overflow) and make slow learning and model skill noisy.

Truncated Backpropagation Through Time, or TBPTT, is a modified version of

the BPTT training algorithm for recurrent neural networks where the sequence is

processed one timestep at a time and periodically (k1 timesteps) the BPTT update

is performed back for a fixed number of timesteps (k2 timesteps). We can summarize

the algorithm as follows:

1. Present a sequence of k1 timesteps of input and output pairs to the network.

2. Unroll the network, then calculate and accumulate errors across k2 timesteps.

3. Roll-up the network and update weights.

4. Repeat

The TBPTT algorithm requires the consideration of two parameters:

k1: The number of forward-pass timesteps between updates. Generally, this influ-

ences how slow or fast training will be, given how often weight updates are performed.

k2: The number of timesteps BPTT is applied. Generally, it should be large enough to

capture the temporal structure in the problem. Too large a value results in vanishing

gradients.

68

3.7 Summary

This chapter described popular deep learning architectures like Restricted Boltz-

mann Machines (RBMs), Deep Belief Networks (DBNs), Convolutional Neural Net-

works (CNNs) and Recurrent Neural Networks (RNNs). It gave details about the

corresponding network architectures and training methodologies along with tips and

tricks for their implementation. Extensions of these models will be used in later

chapters for different computer vision applications.

69

Chapter 4

DEEP MODELS FOR MULTIMODAL EMOTION RECOGNITION

Multimodal emotion recognition from images has been a field of intense research

for many years. The difficulty of the problem lies in its interdisciplinary nature.

Psychology, neuroscience and machine learning concern themselves with how we can

teach computers to detect emotions in humans. Emotion recognition can be divided in

two main tasks: feature extraction and emotion classification. We tackle the problem

by using deep belief networks, a type of neural network that allows both feature

detection and classification.

In this chapter, we first present the emoFBVP database of multimodal (face,

body gesture, voice and physiological signals) recordings of actors enacting various

expressions of emotions. The database consists of audio and video sequences of ac-

tors displaying three different intensities of expressions of 23 different emotions along

with facial feature tracking, skeletal tracking and the corresponding physiological

data. Next, we describe four deep belief network (DBN) models and show that these

models generate robust multimodal features for emotion classification in an unsuper-

vised manner. Our experimental results show that the DBN models perform better

than the state of the art methods for emotion recognition. Finally, we propose convo-

lutional deep belief network (CDBN) models that learn salient multimodal features of

expressions of emotions. Our CDBN models give better recognition accuracies when

recognizing low intensity or subtle expressions of emotions when compared to state

of the art methods.

We then propose two multi-modal deep auto-associator for learning audio and

video emotion data. Our model handles large amounts of unlabeled data effectively

70

and fuses multiple data modalities to form unified representations that captured fea-

tures useful for emotion recognition. Our intra-modal audio-only and video-only mod-

els are able to effectively capture correlations across shallow representations between

multiple modalities.

Finally, the chapter presents a study to investigate the effect of transfer of emotion-

rich features between source and target networks on percentage emotion classification

accuracy and training time. We make three interesting contributions. First, we

propose emosource - a 6-layer DBN trained on multimodal and unimodal emotion

corpora for emotion classification. Second, we propose emotarget and emotargetft

DBN models and study the transfer of features between emosource and these networks

in a layer-by-layer manner. Finally, we experimentally show that our emotarget

model achieves reasonably comparable classification accuracies to that of emosource

with significantly shorter training times when the transferred features are left frozen

while our emotargetft model achieves a performance boost over emosource model with

similar training times as the source network when the entire network is trained on

the target dataset. In short, our emotarget and emotargetft models successfully re-

purpose the emotion-rich features learned by the source model to train the target

models and achieve shorter training times and performance boosts respectively. This

makes our study extremely useful in a practical setting. To the best of our knowledge,

this is the first research approach to studying the effect of transfer of emotion features

in a layer-by-layer manner in a multimodal setting.

4.1 Database for Holistic Emotion Recognition

To contribute to this need for holistic emotional databases, we present the emoF-

BVP database of multimodal (face, body gesture, voice and physiological signals)

recordings of participants enacting various expressions of emotions. The Microsoft

71

Kinect sensor was used for facial feature tracking, skeletal tracking of the body, and

recording vocal expressions. The Zephyr BioHarness was used to capture physiological

signals and wrist-worn accelerometers were used to capture movement activity. The

database consists of 1380 samples of audio and video sequences of people displaying

various intensities of expressions of emotions along with facial feature tracking, skele-

tal tracking and corresponding physiological data. The richness in human emotional

expressiveness poses both a technological as well as research challenge. Obtaining

multimodal sensor data is a challenge in itself. Different modalities of measurements

require different equipment, developed and manufactured by different companies, and

different expertise to set up and operate them. Interdisciplinary knowledge and tech-

nological solutions to combine measurement data from different sensor equipment are

necessary to create a multimodal emotion database. Emotion recognition using facial

features is a challenging problem on its own. It is only now that facial expression

recognition is reaching commercialization, which makes this the most opportune time

to create a publicly available multimodal emotion database. To contribute to this

need for multimodal emotional databases, we have recorded natural responses of par-

ticipants to affective emotion labels using four different modalities- facial expressions,

body expressions, vocal expressions and physiological signals. Along with the video

and audio sequences, we provide facial feature tracking and skeletal tracking data.

The database is freely available to the academic community and is easily accessible

through a web-interface http://www.emoFBVP.org . The recordings of all the data

are rated through an evaluation form completed by participants immediately after

each excerpt of acting emotions. The recordings of this database are synchronized to

enable researchers to study simultaneous emotional responses using all the channels.

A summary of the emoFBVP database is given in Table (4.1).

It is evident from the discussion in Section (2.1) that there is no single database

72

Table 4.1: emoFBVP Emotion Database Properties

Number of Subjects 10

Recorded Modalities

Face and body video and audio using Microsoft Kinect.

Physiological signals using Zephyr Bio Harness and Acceleration

data using wrist worn Accelerometers.

Data
Face Tracking data, Skeletal Tracking data, Heart Rate, Breathing

Rate, ECG, R-R interval, Posture, Activity Level, Acceleration

Evaluation

Affective Communication Skill assessment in each modality.

Confidence in expressing expressions overall and in each modality.

Ease of expression in each modality (Participant’s Self Rating)

Number of Emotion Labels 23

Number of Intensities of Expression per

Emotion Label

3

Number of Audio, Video Sequences per Subject 69

Number of Audio, Video Sequences per

Standing and Seated Sessions

690

Total Number of Audio, Video Sequences in

Database

1380

that has recordings of varying intensities of expression of emotion in multiple modal-

ities recorded simultaneously. The emoFBVP database presented in this dissertation

has recordings of facial expressions, body gestures, vocal expressions, physiological

signals and activity data along with facial and skeletal tracking data. Ten participants

were involved in data capture, and every participant displayed 23 different emotions.

Recordings of each emotion were done six times: three in a standing position and three

in a seated position when the body gestures and facial expressions were tracked and

recorded along with vocal expressions, physiological data and activity respectively.

Therefore, the database provides six examples of each of the 23 emotions in varying

intensities of expression. The two sessions of recordings (standing and seated) are

independent of each other. This makes it possible to use our database for unimodal

(using only face, body, physiological signals or activity), bimodal (face & voice, body

73

& voice, etc.) and multimodal emotion recognition studies. Our database provides

information about the affective communication skills of every participant. It also

provides evaluation details about the confidence of expression of emotion, intensity of

expression of emotion and level of ease of expression of emotion using facial expres-

sions, body gestures and vocal expressions. Our database, therefore, provides both

valuable expression data and metadata that will contribute to the ongoing develop-

ment of emotion recognition algorithms and systems as well as to studies on human

emotion and emotion expression. The affective computing community will greatly

benefit from the large collection of modalities recorded.

4.2 emoFBVP Database

This section gives details about the apparatus and setup employed for collection

of data, the data capture method and other important properties of the database,

and details about the metadata that is provided.

4.2.1 Apparatus and Setup For Data Collection

The emoFBVP database consists of responses of participants to affectively stim-

ulating emotion labels. Different modalities of measurement require different equip-

ment. We set up apparatus to record face videos, facial feature tracking, body gesture

videos, skeletal tracking, vocal expressions and physiological signals simultaneously.

The sensor equipment used to facilitate the recording of the aforementioned modalities

includes Microsoft Kinect Sensor, Zephyr BioHarness and wrist-worn accelerometers.

Details about each of these sensors are given in Table (4.2).

Figure (4.1) shows a picture of the equipment used along with their component

parts labeled. All equipment produced time stamped data to synchronize the data

74

Table 4.2: Apparatus Used for Data Capture for Multi Modal Emotional Expression

Apparatus Modality Software Comments

Microsoft Kinect

for Windows Sen-

sor

Body gestures Facial,

Vocal Expressions

Brekel Kinect Pro Body and Face

• Body gestures: Captured using Skele-

tal tracking feature

• Facial Expressions: Captured using Fa-

cial fiducial tracking feature

• Vocal Expressions: Captured using

Kinect’s Microphone array

Zephyr BioHarness Physiological signals BioHarness Log Downloader

• Signals Captured: Heart Rate, R-R In-

terval, Breathing Rate, Posture, Activ-

ity Level and Peak Acceleration

• FDA approved device, unobtrusive and

comfortable

Wrist worn Ac-

celerometers

Activity Level Custom software for extracting

and Storing Acceleration Data • Measures Acceleration using Triple

Axis Accelerometers (LilyPad Ac-

celerometer ADXL 335)

• Discreet and unobtrusive

post-recording. The subjects were instructed to include a clap at the start of data

capture to help improve data synchronization.

4.2.2 Data Capture Procedure

Recruitment: Participants were recruited after a city-wide call for people who

have completed basic coursework in acting/non-verbal communication. They were

requested to provide their formal consent to participate by signing a consent form

that gave a detailed description of the purpose and data capture procedure of the

study.

75

Figure 4.1: Equipment Used for Data Capture. Left: Microsoft Kinect for Win-
dows Sensor With Labeled Components. Middle: Zephyr BioHarness With Labeled
Component Parts. Right: Wrist-Worn Accelerometers. Best Viewed in Color

Participant Information and Assessment: Participants were asked to provide

their age range, gender and ethnic background. They answered questions to help as-

sess their affective communication skills. In particular, each participant rated his/her

overall skill in expressing emotions, their affective communication skill using facial

expressions, body gestures, vocal expressions and how emotionally expressive they

were (on a scale of 1 to 5, where 5 was very effective). This information is provided

in the database as part of metadata.

Data Capture: Participants were instructed to perform/express emotions using

facial expressions, body gestures and vocal expressions naturally. They were specifi-

cally instructed not to exaggerate while expressing the emotion to facilitate capture

of natural expressions. Their natural responses (using face, body, voice and phys-

iological) were recorded for 23 emotion labels: Happy, Sad, Anger, Disgust, Fear,

Surprise, Boredom, Interest, Agreement, Disagreement, Neutral, Pride, Shame, Tri-

76

Figure 4.2: Snapshot of a Subject Portraying Emotion, Surprise. Left: 3D Face-
Mesh Corresponding to the Emotion. Middle: Brekel Kinect Pro Face Tracking
Animation and Shape Units Shown as Yellow Dots Over the SubjectS Face. Right:
Tracking Indicator Showing Presence or Absence of Animation Units at Each Instant.
Best Viewed in Color, Source: Ranganathan et al. (2016a)

umphant, Defeat, Sympathy, Antipathy, Admiration, Concentration, Anxiety, Frus-

tration, Content and Contempt during two sessions. During the first session, par-

ticipants expressed each of the 23 emotions in three varying intensities of expression

in a standing position; their body gestures were recorded and their skeletal repre-

sentation was tracked. During the second session, participants expressed each of the

23 emotions in three varying intensities of expression in a seated position; their fa-

cial expressions were recorded and facial features were tracked. Physiological signals,

vocal expressions and acceleration were recorded continuously during both sessions.

After recording their responses to each emotion label, they filled out an evaluation

form. Here, they provided details about their level of comfort in acting/expressing

emotions in each modality. They were asked to rate their confidence level with ex-

pressing each emotion, their intensity while expressing each emotion and their ease of

77

expressing each emotion using facial expressions, body gestures and vocal expressions

on a scale of 1 (low) to 5 (high). Participants were given about 2 minutes between

expressing different emotions. They used this time to complete the evaluation form

and think about their responses to the next emotion label. Further, participants were

requested to share their comments and feedback about the data capture process. This

information is also made available in the database as part of metadata.

4.2.3 Properties of emoFBVP Database

Face and Voice: We obtained facial expression video sequences and facial tracking

data from the Microsoft Kinect for Windows sensor. All video sequences were recorded

at the rate of 30 fps with a video resolution of 640× 480 pixels. The sequences are of

variable length lasting between 600 and 2000 frames. We used Brekel Kinect Pro Face

software to record 3D face tracking data obtained from the Kinect sensor. The face

tracking data consists of 3D head position and rotation information, 3D coordinates

for 11 animation units and 3D coordinates for 11 shape units for each frame of the

video. Table (4.3) lists the animation and shape units that were tracked. This data is

provided in .txt and.csv formats (.bvh, .daz .pz2 and .fbx formats also available for 3D

modeling). Figure (4.2) shows a snapshot of a subject portraying emotion, Surprise

along with a 3D face-mesh corresponding to the emotion. The animation and shape

units tracked are shown as yellow dots over the subjects face and an indicator shows

their presence or absence.

The voice data was recorded using Microsoft Kinect for Windows sensor. The

Kinect sensor includes a four-element linear microphone array that captures audio

data at 24-bit resolution. This allows accuracy across a wide dynamic range of voice

data. The sensor enables high quality audio capture with focus on audio coming

from a particular direction with beamforming. The audio sequences are provided in

78

standard .wav format and are synchronized with the face and body sequences.

Table 4.3: Animation Units and Shape Units from Face Tracking data

Number Animation Unit Shape Unit

1 Brows Inner Up Head Height

2 Brows Inner Down Eyebrows Vertical Position

3 Brows Outer Up Eyes Vertical Position

4 Brows Outer Down Eyes Width

5 Lip Stretch Eyes Height

6 Lip Kiss Eyes Separation Distance

7 Lip Corners Up Nose Vertical Position

8 Lip Corners Down Mouth Vertical Position

9 Upper Lip Up Mouth Width

10 Upper Lip Down Eyes Vertical Difference

11 Jaw Open Chin width

Body : We obtained body expression video sequences and skeletal tracking data from

the Microsoft Kinect for Windows sensor. All video sequences were recorded at the

rate of 30 fps with a video resolution of 640×480 pixels. The sequences are of variable

length and synchronized with the face and audio data. We used the Brekel Kinect

Pro for Body software to record the skeletal tracking data. The skeletal tracking data

provides 3D coordinates of twenty joints of the users body along with 3D coordinates

for hand, foot and head rotations for each frame of the video sequence. Figure (4.3)

lists the twenty joints that were tracked. The data is available in both .txt and .csv

formats (.bvh, .daz .pz2 and .fbx formats also available for 3D modeling).

One of the best ways to validate the authenticity of a new emotion database is

79

Figure 4.3: Skeletal Tracking and Joint Hierarchy - 20 Bone Joints Are Tracked.

to apply known methods of feature extraction and investigate the performance of

state of the art models on the collected data. In order to show the usefulness of

our emoFBVP database, we apply extensions of known deep learning techniques for

feature learning and investigate the performance accuracies for emotion recognition

in unimodal, bimodal and multimodal scenarios. Our database also provides facial

feature tracking and skeletal tracking data. We investigate the advantages of adding

these features to the deep models using feature selection methods. Kim et al. (2013)

developed a suite of deep belief network models that showed improvements in emo-

tion classification performance over baselines that do not use deep learning. They

perform rigorous experiments to show that deep learning techniques can be used for

multimodal emotion recognition. We build extensions of these models, train them on

our multimodal data, perform similar experiments and investigate the usefulness of

the emoFBVP database for emotion recognition in the following sections.

80

4.2.4 Conclusions

We presented the emoFBVP database of multimodal recordings of actors enacting

various expressions of emotions. This is one of the first emotion datasets that has

recordings of varying intensities of expressions of emotions in multiple modalities

recorded simultaneously. We strongly believe that the affective computing community

will greatly benefit from the large collection of modalities recorded.

4.3 Deep Belief Networks for Emotion Recognition

In statistical machine learning, a major issue is the selection of an appropriate

feature space where input instances have desired properties for solving a particular

problem. For example, in the context of supervised learning for binary classification, it

is often required that the two classes are separable by a hyperplane. In the case where

this property is not directly satisfied in the input space, one is given the possibility to

map instances into an intermediate feature space where the classes are linearly separa-

ble. This intermediate space can either be specified explicitly by hand-coded features,

be defined implicitly with a so-called kernel function, or be automatically learned. In

both of the first cases, it is the users responsibility to design the feature space. This

can incur a huge cost in terms of computational time or expert knowledge, especially

with highly dimensional input spaces, such as when dealing with images. As for the

third alternative, automatically learning the features with deep architectures, i.e. ar-

chitectures composed of multiple layers of nonlinear processing, can be considered as

a relevant choice. Indeed, some highly nonlinear functions can be represented much

more compactly in terms of number of parameters with deep architectures than with

shallow ones (e.g. SVM). Unfortunately, training deep architectures is a difficult task

and classical methods that have proved effective when applied to shallow architec-

81

tures are not as efficient when adapted to deep architectures. Adding layers does not

necessarily lead to better solutions. For example, the more the number of layers in a

neural network, the lesser the impact of the back-propagation on the first layers. The

gradient descent then tends to get stuck in local minima or plateaus (Bengio et al.

(2007)), which is why practitioners have often preferred to limit neural networks to

one or two hidden layers. This issue has been solved by introducing an unsupervised

layer-wise pre- training of deep architectures (Hinton et al. (2006)). More precisely, in

a deep learning scheme each layer is treated separately and successively trained in a

greedy manner: once the previous layers have been trained, a new layer is trained from

the encoding of the input data by the previous layers. Then, a supervised fine-tuning

stage of the whole network can be performed.

The deep learning paradigm tackles problems on which shallow architectures (e.g.

SVM) are affected by the curse of dimensionality. As part of a two-stage learning

scheme, involving multiple layers of non- linear processing, a set of statistically robust

features are automatically extracted from the data.

Deep belief networks (DBNs) are probabilistic generative models that stand in

contrast to the discriminative nature of traditional neural nets (Bengio et al. (2007)).

Generative models provide a joint probability distribution over observable data and

labels, facilitating the estimation of both P (Observation|Label) as well as

P (Label|Observation). DBNs address problems encountered when back-propagation

is applied to deeply-layered neural networks; namely:

1. necessity of a substantial labelled data set for training;

2. slow convergence times;

3. inadequate parameter selection techniques that lead to poor local optima

(Arel et al. (2010)).

82

DBNs are composed of several layers of Restricted Boltzmann Machines (RBMs), a

type of neural network (see Figure 4.4). These networks consist of a single visible

layer and single hidden layer, where connections are formed between the layers (Wi, j)

(units within a layer are not connected). The hidden units (h) are trained to capture

higher-order data correlations that are observed at the visible units (v). An RBM

defines a probability distribution p on data vectors v as follows:

p(v) =
∑
h

e−E(v,h)∑
u,g e

−E(u,g)
. (4.1)

Figure 4.4: The RBM Architecture With Visible (V) and Hidden (H) Layers.

Here, the variable v is the input vector and h corresponds to unobserved features

that are hidden units not available in the original dataset (Ghahramani (2004)). A

RBM defines a joint probability on both the observed and the unobserved variables

which are referred to as visible and hidden units respectively. The distribution is

then marginalized over the hidden units to give a distribution over the visible units.

The probability distribution is defined by an energy function E, defined over couples

(v, h) of binary vectors by:

E(v, h) = −
∑
i

aivi −
∑
j

bjhj −
∑
i,j

wi,jvihj (4.2)

83

Here, ai and bj are the biases associated with vi and hj respectively and wi,j are the

weights of the pairwise interaction between vi and hj. The energy function above is

crafted to make the conditional probabilities p(v|h) and p(h|v) tractable.

p(v
∣∣h) =

∏
i

p(vi
∣∣h) and p(h

∣∣v) =
∏
j

p(hj
∣∣v)

p(vi = 1
∣∣h) = sigm

(
ai +

∑
j

hjwi,j

)

p(hj = 1
∣∣v) = sigm

(
bj +

∑
i

viwi,j

)
(4.3)

Here sigm(x) = 1
1+e−x

is the logistic activation function which is a special case of the

more general sigmoid function. The above formulation models the visible variables as

real valued units and hidden variables as binary units. As it is intractable to compute

the gradient of the log-likelihood term, we learn the parameters of the model using

contrastive divergence (Hinton (2002)). We have already seen a detailed description

of the architecture and equations of the RBM in Chapter 3.

4.3.1 Multimodal Emotion Recognition Model

In this section, we focus on applying deep architectures for multimodal emotion

recognition using face, body, voice and physiological signal modalities. We apply ex-

tensions of known DBN models for multimodal emotion recognition using the emoF-

BVP database and investigate recognition accuracies to validate the utility of the

database for emotion recognition tasks. To the best of our knowledge, the use of

DBNs for multimodal emotion recognition of data comprising of all the modalities

(facial expressions, body gestures, vocal expressions and physiological signals) has

not been explored by the affective research community. Recent developments in deep

learning techniques exploit the use of single layer building blocks called as Restricted

84

Boltzmann Machines (RBMs) (Hinton et al. (2006)) to build DBNs in an unsuper-

vised manner. DBNs are constructed by greedy layerwise training of stacked RBMs

to learn hierarchical representations from the multimodal data (Bengio et al. (2007)).

RBMs are undirected graphical models that use binary latent variables to represent

the input. Like Kim et al. (2013), we also use Gaussian RBMs for training the first

layer of the network. The visible units of the first layer are real-valued. The deeper

layers are trained using Bernoulli-Bernoulli RBMs that employ visible and hidden

units that are binary valued.

Here, we present a suite of deep models to investigate audio-visual feature learning

for multimodal emotion recognition. Later, we extend the model to learn audio-

visual and physiological signal features for emotion recognition. Our baseline is a

Support Vector Machine that uses subsets of the original feature space selected using

supervised and unsupervised feature selection.

We compare unsupervised feature learning (DBN) and supervised feature selec-

tion. We first build an unsupervised two-layer DBN, enforcing multi-modal learning

as introduced by Ngiam et al. (2011), we call it DemoFV. Here we use facial ex-

pression and vocal expressions as features, hence the name DemoFV. We form two

other models by adding supervised features to augment DemoFV. For one model,

we add features before pre-training the DBN and for the other model, we add the

features after DBN pre-training. This helps us compare between feature learning ex-

clusively from emotional salient subset of original features and reduction in learned

feature space in a supervised context. We then compare this to the performance of

a three-layer 3DemoFV model. We also form DemoBV that uses body gestures and

vocal expressions as features, DemoFBV that uses face, body and vocal expressions

and DemoFBVP that uses face, body, vocal expressions and physiological signals of

emotions.

85

The results provide important insight into feature learning methods for multi-

modal emotion data. The results show that the Demo* models outperform the base-

line models. Further, the results demonstrate that the three layer 3Demo* models

outperform the two-layer Demo* models for low intensity expressions of emotions.

This suggests that unsupervised feature learning can be used in lieu of supervised

feature selection for emotion data. In addition, the relative performance improve-

ment of the three-layer model for subtle expressions of emotions suggests that these

complex feature relationships are particularly important for identifying low intensity

emotional cues. This is an important finding given the challenges inherent in and

needed for recognizing emotions elicited in realistic scenarios.

4.3.2 Unsupervised Feature Learning

DBNs learn hierarchical representation from data and can be effectively con-

structed by greedy training and stacking multiple RBMs. RBMs are undirected

graphical models that represent the density of input data using binary latent variables.

In this dissertation, we use Gaussian RBMs that employ real-valued visible units

for training the first layer of the DBNs. We use Bernoulli-Bernoulli RBMs that employ

binary visible and hidden units for training the deeper layers. In a Gaussian RBM,

the joint probability distribution and energy function of v and h is as follows:

p(v, h) =
1

Z
e−E(v,h) (4.4)

E(v, h) =
1

2σ2

∑
i

v2i −
1

σ2

(∑
i

civi +
∑
j

bjhj +
∑
i,j

viWi,jhj

)
(4.5)

where c ∈ RD and b ∈ RK are the biases for visible and hidden units respectively

and W ∈ RD×K are weights between visible units and hidden units, σ is a hyper-

parameter, and Z is a normalization constant. The conditional probability distribu-

86

tions of the Gaussian RBM are as follows:

P
(
hj = 1

∣∣v) = sigmoid

(
1

σ2

(∑
i

Wi,jvi + bj

))
(4.6)

P
(
vi
∣∣h) = N

(
vi;
∑
j

Wi,jhj + ci, σ
2

)
(4.7)

The posteriors of the hidden units given visible units form the generated features

used in the classification framework. The parameters of the RBM (W, b, c) are learned

using contrastive divergence as in (Hinton (2002)). We use sparsity regularization to

penalize a deviation of expected activation of the hidden units from a low fixed level

p. Given a training set {v(1), v(2), · · · , v(m)}, we include a regularization penalty as in

(Lee et al. (2008)).

4.3.3 Supervised Feature Selection

Here, we discuss the feature selection techniques that are used extensively in emo-

tion research including: Information Gain (IG), and Principal Component Analysis

(PCA). These techniques are either supervised (forward selection and IG) or use rep-

resentations based on the linear dependencies between the original features (PCA).

IG based feature selection methods are also commonly used in emotion recognition

(Polzehl et al. (2009); Mower et al. (2011)). This method ranks features by calculat-

ing the reduction in the entropy of class labels given knowledge of each feature. Both

forward selection and IG methods require labeled data during the feature selection

process. PCA and its variants (e.g., Principal Feature Analysis, or PFA (Lu et al.

(2007))) are broadly used in the emotion recognition literature Steidl et al. (2005);

Metallinou et al. (2010); Wöllmer et al. (2010)) . PCA finds a linear projection of the

base feature set to a new feature space where the new features are uncorrelated. PFA

is an extension of PCA. It clusters the data in the PCA space and returns final fea-

tures closest to the center of each cluster. This results in a feature set that maintains

87

an approximation of the variance of the original set, while minimizing correlations be-

tween features. We use IG for our proposed deep learning feature selection methods,

and IG and PFA for the baseline models.

4.3.4 Feature Extraction - emoFBVP Database

The database has recordings of facial expressions, body gestures, vocal expressions,

physiological signals and activity data along with facial and skeletal tracking data and

intensity of expression of emotions. The emoFBVP database allows the study of the

relation between simultaneous emotion-related activity and behavior in addition to

unimodal, bimodal and multimodal emotion recognition studies. The ground truth

of the data was labeled by three evaluators. We only consider utterances with labels

from the following set: Angry, Happy, Sad, Disgust, Fear, Surprise and Neutral. We

divide the data into three types:

1. Ideal data (complete agreement on the affective state from evaluators),

2. non-ideal data (majority agreement),

3. a combined set of these two data types.

The audio features available include both prosodic and spectral features, such as

pitch, energy and mel-frequency filter banks (MFBs). MFBs have been shown to

be better discriminative features than mel-frequency cepstral coefficients (MFCCs)

in emotion recognition (Busso et al. (2007)). The original video features are facial

tracking and skeletal tracking points provided by the Brekel Software. The final fea-

tures are statistical functions of the raw audio-visual and physiological signal features.

These include mean, variance, lower and upper quantiles, and quantile range. The

features are normalized on a per-person basis to avoid person dependency (Mower

et al. (2011)).

88

4.4 Experiments

We pre-train the DBN models (unsupervised) and search for the best hyper-

parameters including sparsity parameters and the number of final output nodes. We

select our hyper-parameters using cross validation over the training data. We use

leave-one-person-out cross validation to ensure that the models are not overtraining

to the affective styles of an individual. We fix the number of hidden nodes of the

two-layer DBNs, the sigma parameter for the first-layer Gaussian RBMs, and the L2

regularization parameter. We select the best hyper-parameters for each data type:

ideal, non-ideal and combined. We use Unweighted Accuracy (UA) for the results

(Schuller et al. (2012)).

4.4.1 Baseline Model

We propose two baseline models. These models are two SVMs with radial basis

function (RBF) kernels. The SVMs do not use features generated via deep learning

techniques. We train seven emotion-specific binary SVMs in a self vs. other approach.

The final emotion class label is assigned by identifying the model in which the test

point is maximally far from the hyperplane similar to Smolensky (1986). The first

SVM baseline model uses IG for supervised feature selection (Duch et al. (2002))

and the second SVM baseline model uses PFA (Lu et al. (2007)) for unsupervised

feature selection. IG is applied to each emotion class, resulting in seven sets of

emotion-specific features. Each emotion-specific SVM uses the associated emotions

specific feature subset. We optimized the baselines using leave-one-subject-out cross

validation for each data type (ideal, non-ideal, and combined data).

89

4.4.2 DemoFV DBN Models

We experiment with four different DBN models in order to explore different non-

linear dependencies between audio and video features. We also assess the utility of

feature selection methods in deep architectures (Figure 5.4). Our basic DBN is a

two-layer model and is a building block for the other DBN models. It learns the

audio features and video features separately in the first hidden layer. The learned

features from the first layer are concatenated and used as the input to the second

hidden layer. We call this the DemoFV model (Figure 4.5(a)). The other three DBN

models (Figure 4.5(b, c, d)) use this model as their building block. The four models

are defined as follows:

1. DemoFV is a basic two-layer DBN model.

2. f+DemoFV is a two-layer DBN with feature selection prior to the training of

DemoFV.

3. DemoFV+f is a two-layer DBN with feature selection added post training of

DemoFV.

4. 3DemoFV is a three-layer DBN that stacks an additional RBM on the second-

layer RBM output nodes of DemoFV model.

4.4.3 Results for DemoFV DBN

A summary of the emotion classification results can be seen in Table (4.4). All

DBN models outperform the baseline models. The two baseline models perform com-

parably. The DBN models for ideal data achieve accuracies ranging from 82.98%

(DemoFV) to the maximum of 86.56% (3DemoFV). The performance gap between

the maximum accuracies of the proposed models and maximum accuracies of the

90

Figure 4.5: Illustration of Proposed DemoFV Models: (A) DemoFV, (B)
F+DemoFV, (C) DemoFV+F, and (D) 3DemoFV , Source: Ranganathan et al.
(2016a)

Table 4.4: Classification Accuracy (%) for DemoFV Models

Data Type Baseline IG Baseline PFA DemoFV DemoFV+f f +DemoFV 3DemoFV

Ideal 86.32 82.33 82.98 84.92 84.56 86.56

Non-Ideal 64.78 64.95 65.52 65.82 65.21 66.41

Combined 75.64 75.83 77.25 78.32 77.78 77.62

91

baseline models is 0.24%. The IG baseline does better than the PFA baseline by

3.99%. This may suggest that in emotionally clear data, supervised feature selection

is preferable to unsupervised feature selection (PFA). The 3DemoFV model out-

performs unsupervised feature selection (PFA baseline) by 4.23%, highlighting the

potential importance of feature learning rather than unsupervised feature reduction

for emotionally clear data. The accuracy of the 3DemoFV model indicates that unsu-

pervised feature learning can achieve comparable performance to supervised feature

selection for emotionally clear data.

The DBN models for the non-ideal data achieve accuracies ranging from 65.21%

(f +DemoFV) to 66.41. (3DemoFV). The performance gaps between the maximum

accuracies of proposed models and baseline models range from 1.63% to 1.46%.

We obtain a slight performance gain when using 3DemoFV compared to both f

+DemoFV and DemoFV+f for subtle or non-ideal data (0.59% and 1.2% increase,

respectively). We know that 3DemoFV uses unsupervised feature learning (unlabeled

data) while f +DemoFV model learns a new set of features from a previously iden-

tified subset of emotionally salient features and DemoFV+f model performs feature

selection at the output. Therefore, this proves that we can effectively use unsuper-

vised feature learning for emotion recognition instead of supervised feature selection,

even for subtle emotions (non-ideal data).

The DBN models for the combined data achieve accuracies ranging from 77.25%

(DemoFV) to 78.32% (DemoFV+f). The performance gap between the maximum

accuracies of proposed models and the IG and PFA baselines are 2.68% and 2.49%

respectively.

We observe that even with unsupervised learning methods, DBNs can be used to

generate audio-visual features for emotion classification. The comparison of the clas-

sification performances between the baseline and the proposed DBN models demon-

92

strate that it is important to retain complex non-linear feature relationships in emo-

tion classification tasks. The performance gain is strongest when using non-ideal

data. This is a very useful result when building automatic emotion recognition sys-

tems where discriminating between different intensities of emotions is required.

4.4.4 DemoBV DBN Models

We propose DemoBV DBN models similar to the models in Section (4.4.2). We

experiment with four different DBN models to explore different non-linear depen-

dencies between audio and video features from body gestures. Our basic DBN is a

two-layer model and is a building block for the other DBN models. The four models

are shown in (Figure (4.6) (a), (b), (c), (d)) and defined as follows:

1. DemoBV is a basic two-layer DBN model.

2. f +DemoBV is a two-layer DBN with feature selection prior to the training of

DemoBV.

3. DemoBV+f is a two-layer DBN with feature selection added post training of

DemoBV.

4. 3DemoBV is a three-layer DBN that stacks an additional RBM on the second-

layer RBM output nodes of DemoBV model.

4.4.5 Results for DemoBV DBN

From Table (4.5), we see that all DBN models outperform the baseline models.

The two baseline models perform comparably.

The DBN models for ideal data achieve accuracies ranging from 80.78% (DemoBV)

to the maximum of 84.99% (3DemoBV). The performance gap between the maxi-

93

Figure 4.6: Illustration of Proposed DemoBV Models: (A) DemoBV, (B)
f +DemoBV, (c) DemoBV+f, and (d) 3DemoBV, Source: Ranganathan et al. (2016a)

Table 4.5: Classification Accuracy (%) for DemoBV Models

Data Type Baseline IG Baseline PFA DemoFV DemoFV+f f +DemoFV 3DemoFV

Ideal 84.22 80.25 80.78 82.88 82.46 84.99

Non-Ideal 62.66 62.86 63.67 63.89 63.42 64.64

Combined 73.64 73.83 75.25 76.32 75.78 75.62

94

mum accuracies of the proposed models and maximum accuracies of the baseline

models is 0.77%. The IG baseline outperforms the PFA baseline by 3.97%. This

again suggests that in emotionally clear data, supervised feature selection is prefer-

able to unsupervised feature selection. However, it is interesting to note the accuracy

of the 3DemoBV. This model indicates that unsupervised feature learning can achieve

comparable performance to supervised feature selection for emotionally clear data.

Further, the 3DemoBV outperforms unsupervised feature selection (PFA baseline) by

4.74%, further highlighting the potential importance of feature learning rather than

unsupervised feature reduction for emotionally clear data.

The DBN models for the non-ideal data achieve accuracies ranging from 63.42% (f

+DemoBV) to 64.64% (3DemoBV). The performance gaps between the maximum

accuracies of proposed models and baseline models range from 1.98% to 1.78%. We

again obtain a slight performance gain when using 3DemoBV compared to both f

+DemoBV and DemoBV+f for subtle or non-ideal data (1.22% and 0.75% increase,

respectively).

The DBN models for the combined data achieve accuracies ranging from 75.25%

(DemoBV) to 76.32% (DemoBV+f). The performance gap between the maximum

accuracies of proposed models and the IG and PFA baselines are 2.68% and 2.49%

respectively.

We have obtained very similar results as DemoFV DBNs. We further evaluate

the performance when using data from facial features from face and body, vocal

expressions and physiological signals in the following sections.

4.4.6 DemoFBV DBN Models

We propose DemoFBV DBN models similar to the models in Section 4.4.5 and

4.4.6. We experiment with four different DBN models to explore different non-linear

95

dependencies between audio and video features of face and body. The four models

are shown in (Figure 4.7 (a), (b), (c), (d)) and defined as follows:

1. DemoFBV is a basic two-layer DBN model.

2. f+DemoFBV is a two-layer DBN with feature selection prior to the training of

DemoFBV.

3. DemoFBV+f is a two-layer DBN with feature selection added post training of

DemoFBV.

4. 3DemoFBV is a three-layer DBN that stacks an additional RBM on the second-

layer RBM output nodes of DemoFBV model.

4.4.7 Results for DemoFBV DBN

As seen from Table (4.6), all DBN models outperform the baseline models. The

two baseline models perform comparably. The DBN models for ideal data achieve ac-

curacies ranging from 83.10% (DemoFBV) to the maximum of 86.68% (3DemoFBV).

The performance gap between the maximum accuracies of the proposed models and

maximum accuracies of the baseline models is 0.26%. The IG baseline outperforms

the PFA baseline by 3.99%. The 3DemoFBV outperforms unsupervised feature selec-

tion (PFA baseline) by 4.25%, further highlighting the potential importance of fea-

ture learning rather than unsupervised feature reduction for emotionally clear data.

The DBN models for the non-ideal data achieve accuracies ranging from 68.34% (f

+DemoFBV) to 69.54% (3DemoFBV). The performance gaps between the maximum

accuracies of proposed models and baseline models range from 4.65% to 3.79%.

The DBN models for the combined data achieve accuracies ranging from 77.38%

(DemoFBV) to 78.45% (DemoFBV+f). The performance gap between the maximum

96

Figure 4.7: Illustration of Proposed DemoFBV Models: (A) DemoFBV, (B)
f +DemoFBV, (c) DemoFBV+f, and (d) 3DemoFBV, Source: Ranganathan et al.
(2016a)

Table 4.6: Classification Accuracy (%) for DemoFBV Models

Data Type Baseline IG Baseline PFA DemoFBV DemoFBV+f f +DemoFBV 3DemoFBV

Ideal 86.42 82.43 83.10 84.99 84.68 86.68

Non-Ideal 64.89 65.75 68.66 68.93 68.34 69.54

Combined 75.77 75.90 77.38 78.45 77.89 77.78

accuracies of proposed models and the IG and PFA baselines are 2.68% and 3.45%

respectively.

97

We have obtained very similar results as DemoFV and DemoBV DBNs. We fur-

ther evaluate the performance when using data from facial features, vocal expressions

and physiological signals in the following sections.

4.4.8 DemoFBVP DBN Models

We experiment with four different DBN models to explore different non-linear

dependencies between audio, video features of face and body and physiological fea-

tures. Our basic DBN is a two-layer model and is a building block for the other DBN

models. The four models are shown in (Figure 4.8 (a), (b), (c), (d)) and defined as

follows:

1. DemoFBVP is a basic two-layer DBN model.

2. f+DemoFBVP is a two-layer DBN with feature selection prior to the training

of DemoFBVP.

3. DemoFBVP+f is a two-layer DBN with feature selection added post training

of DemoFBVP.

4. 3DemoFBVP is a three-layer DBN that stacks an additional RBM on the

second-layer RBM output nodes of DemoFBVP model.

4.4.9 Results for DemoFBVP DBN

As seen from Table (4.7), all DBN models outperform the baseline models. The

two baseline models perform comparably. The DBN models for ideal data achieve ac-

curacies ranging from 86.20% (DemoFBVP) to the maximum of 90.10% (3DemoFBVP).

.

98

Figure 4.8: Illustration of Proposed Models: (A) DemoFBVP, (B) F+DemoFBVP,
(C) DemoFBVP+f, and (D) 3DemoFBVP, Source: Ranganathan et al. (2016a)

Table 4.7: Classification Accuracy (%) for DemoFBVP Models

Data Type Baseline IG Baseline PFA DemoFBVP DemoFBVP+f f +DemoFBVP 3DemoFBVP

Ideal 89.41 85.33 86.20 87.82 87.52 90.10

Non-Ideal 68.89 68.71 71.14 71.84 71.22 73.11

Combined 79.82 79.90 82.28 83.10 82.54 82.40

The performance gap between the maximum accuracies of the proposed models

and of the baseline models is 0.69. The DBN models for the non-ideal data achieve

accuracies ranging from 71.14% (f +DemoFBVP) to 73.11% (3DemoFBVP). The

performance gaps between the maximum accuracies of proposed models and baseline

99

models range from 4.22% to 4.4%.

The DBN models for the combined data achieve accuracies ranging from 82.28%

(DemoFBVP) to 83.10% (DemoFBVP+f). The performance gap between the max-

imum accuracies of proposed models and the IG and PFA baselines are 3.28% and

3.2% respectively.

4.4.10 Results on Standard Emotion Corpora

We compare our models to the SVM baseline we explained in earlier sections

for each modality. Tables (4.8), (4.9), (4.10) and (4.11) give emotion recognition

accuracies while using unimodal (facial, vocal, physiological expressions of emotions)

and multimodal DBN models (multimodal expressions of emotions).

Table 4.8: Emotion Recognition Using Facial Expressions

Database SVM Baseline DemoF 3DemoF

Cohn Kanade 95.4 % 95.9 % 96.3 %

Table 4.9: Emotion Recognition Using Vocal Expressions

Database SVM Baseline DemoV 3DemoV

Mind Reading 90.62% 92.1 % 92.87 %

Table 4.10: Emotion Recognition Using Physiological Data

Database SVM Baseline DemoP 3DemoP

DEAP 78.6% 78.8 % 79.2 %

Table 4.11: Emotion Recognition Using Multimodal Data

Database SVM Baseline DemoFBVP 3DemoFBVP

MAHNOB-HCI 52.4% 53.1 % 54.8 %

To depict generalizability, we use the Cohn Kanade, MindReading, DEAP and

MAHNOB-HCI databases to evaluate respective performances. These databases are

very popular and are standard datasets used by the affective research community for

100

emotion recognition. We observe that our deep models perform better than the SVM

baselines in both unimodal and multimodal scenarios.

4.4.11 Conclusions

Our results show that we can successfully employ DemoDBN models for the task of

multimodal emotion recognition. The proposed DemoDBN models successfully retain

complex non-linear feature relationships that exist between the different modalities

for ideal, non-ideal and combined data types (as shown by the performance accura-

cies achieved). Our results highlight the importance of feature learning using deep

architectures over unsupervised feature selection for bimodal and multimodal emo-

tion classification using the emoFBVP database of facial expressions, body gestures,

vocal expressions and physiological signals. Our experimental results showed that

our DemoDBN models perform better than the state of the art methods for emotion

recognition using popular emotion corpora. This validated the use of our emoF-

BVP database for multimodal emotion recognition studies. The affective computing

community will benefit from the collection of modalities recorded.

4.5 Convolutional Deep Belief Networks for Emotion Recognition

In this section, we describe our multimodal Convolutional Deep Belief Network

(CDBN) model and investigate their usability to recognize subtle or low intensities

of expressions of emotions. Convolutional RBMs are an extension of regular RBMs.

These are inspired by convolutional neural nets and rely on convolution and weight

sharing. When convolutional RBMs are stacked together, they form convolutional

deep belief networks. Convolutional DBNs are solely generative models that are

trained in a greedy layer-wise manner. Here, the input is fed into the networks and

the features learned by the last layer are fed to a Support Vector Machine (SVM).

101

In CRBMs, the network’s visible layer is a matrix, instead of a vector. This enables

the network to understand the spatial proximity of the pixels, leading to more robust

feature learning (when compared to regular RBMs).

4.5.1 Results for CDBN Models

We used primary expressions of emotion of the lowest intensity from the emoF-

BVP, Cohn-Kanade, Mind Reading, DEAP and MAHNOB-HCI databases.

Table 4.12: Emotion Recognition Using emoFBVP Database

SVM Baseline DemoFBVP CDemoFBVP CDemoFBVP

+ROI

75.67 76.54 81.41 83.18

Table 4.13: Emotion Recognition Using Cohn Kanade Database

SVM Baseline DemoF CDemoF CDemoF +ROI

95.4 95.9 96.8 97.3

Table 4.14: Emotion Recognition Using Mind Reading Database

SVM Baseline DemoV CDemoV

90.62 92.1 93.4

Table 4.15: Emotion Recognition Using DEAP Database

SVM Baseline DemoP CDemoP

78.6 78.8 79.5

Table 4.16: Emotion recognition using MAHNOB-HCI database

SVM Baseline DemoFBVP CDemoFBVP CDemoFBVP +ROI

52.4 53.1 57.9 58.5

We applied the CDemoFBVP model (a model very similar to DemoFBVP but

formed by stacking convolutional RBMs) to learn the multimodal deep features. We

also extracted regions of interest (ROI) in the face (around the eyes, eyebrows and

102

mouth area) and body images (head, hands and legs) and fed them to the deep

CDemoFBVP+ROI model. Tables (4.12), (4.13) , (4.14) , (4.15) and (4.16) show

percentage emotion recognition accuracies on various emotion corpora. Tables (4.12),

(4.13) and (4.16) compare performances of DBN, CDBN and CDBN+ROI models

with the SVM baselines. Tables (4.13) and (4.14) compare performances of DBN

and CDBN models with SVM baseline models on voice and physiological signal data

(there is no ROI in voice and physiological data). Again, to depict generalizability, we

show results on standard emotion datasets. We notice that our CDBN+ROI models

outperform our CDBN models which in turn perform better than the DBN models

and SVM baselines.

4.5.2 Conclusions

In the above section, we showed that convolutional deep belief network (CDBN)

models along with region of interest extraction learn salient multimodal features for

recognition of low intensity/subtle expressions of emotions.

4.6 Auto-associators for Emotion Recognition

In the following section, we are interested in modeling relationships between audio

and video data. We have used audio-visual emotion recognition to validate our meth-

ods. We consider three learning settings uni-modal deep learning, intra-modality

learning and multimodal fusion, as shown in Table (4.17). A simple linear classifier

is used for supervised training and testing to examine the different feature learn-

ing models with multimodal data. In the intra-modality feature learning model, data

from multiple modalities is available during the feature learning phase. In this model,

supervised training and testing phases use data from a single modality. In the multi-

modal fusion setting, data from all modalities is available at all phases; this represents

103

the setting considered in most multimodal emotion recognition systems.

In the following sections, we first describe the building blocks of our model. We

present different multimodal learning models for successful emotion recognition. We

give a brief description about the different datasets used for feature learning and

supervised training and testing. Finally, we report our experimental results and

conclusions.

Table 4.17: Multi-Modal Feature Learning Settings
FEATURE

LEARNING

SUPERVISED

TRAINING

TESTING

Uni-Modal

Deep Learning

Audio

Video

Audio

Video

Audio

Video

Intra-Modality

Learning

Audio+ Video Video

Audio

Video

Audio

Multi-Modal

Fusion

Audio + Video Audio + Video Audio + Video

.

4.6.1 Feature Learning Methods

In this section, we describe multimodal feature learning models for the task of

emotion recognition. The audio and video input to the model are spectrogram and

video frames respectively.

We first describe our uni-modal deep learning model. We use this model as a

baseline to compare the results of our multimodal models. This model also acts

as a pre-training model for our deep networks. In this model, we train the RBM

separately for audio and video data (see Figure 4.9 (a) and (b)). After learning the

RBM, the posteriors of the hidden variables given the visible variables acts as a new

representation of the data. To pre-train the deep multimodal model, we consider

greedy training a RBM over the pre-trained layers for each modality. The posteriors

of the first layer hidden variables are used as the training data for the new layer.

104

Figure 4.9: RBM Pre-Training Models for (A) Audio, (B) Video (C) Multimodal
Models

This new representation of data helps the model learn higher-order correlations across

modalities (see Figure 4.9 (c)).

In Intra-modality feature learning setting, both modalities are present during fea-

ture learning but only a single modality is used for supervised training and testing. We

initialize deep auto-associators (see Figure 4.10 (a)) with multi-modal DBN weights.

It is then trained to reconstruct both modalities when given only single modality data

and thus able to discover correlations across modalities. In the multimodal fusion set-

ting, multiple modalities are present for supervised training and testing. The deep

auto-associator is then trained to reconstruct both modalities when given multimodal

data (see Figure 4.10 (b)).

4.6.2 Experiments

We test the deep learning architectures described in the previous sections for mul-

timodal emotion recognition using audio, video and audio-visual data. Unsupervised

105

Figure 4.10: Deep Auto-Associator Models. (A)Intra-Modal Audio/ Video-Only
Deep Auto- Associator (B) Multimodal Deep Auto-Associator

feature learning requires only unlabeled data; therefore, we combine data from multi-

ple datasets to learn the features. All deep auto-associator models were trained with

the available unlabeled audio and video data. The Cohn-Kanade database, MMI

database, Haq and Jackson database were used for unsupervised feature learning

while the emoFVBP database was used for supervised training and testing. Care

was taken that no test data was used for unsupervised feature learning. The emoF-

BVP is a multimodal database capturing facial expressions, body expressions, vocal

expressions and physiological data under different emotion labels. We used the face

and voice data of the six basic expressions (Happy, Sad, Anger, Disgust, Fear and

106

Surprise) from this database for supervised training and testing.

4.6.3 Results

Table 4.18 shows recognition accuracies for emotion recognition on the emoFVBP

database. We see that when audio and video data are both used during the feature

learning and classification stages (Multimodal fusion), we obtain close to an 8% in-

crease in accuracy as compared to using only single modalities (Audio RBM, Video

RBM). The intra-modal audio-only deep encoder reconstructs audio and video data

using only audio signals. Similarly, the intra-modal video-only deep encoder recon-

structs both the modalities given only video data. In this case, we are essentially

training a modality-specific deep auto-associator network. It is very interesting to

note that their recognition accuracies are 93.1% and 94.2% respectively. This shows

Table 4.18: Emotion Recognition Accuracy on emoFBVP Database

Deep Learning Model % Recognition Accuracy

Audio RBM 87.7%

Video RBM 89.2%

Multimodal deep auto-associator 96.8%

Intra-modal audio-only deep auto-associator 93.1%

Intra-modal video-only deep auto associator 94.2%

that the model performs well by learning better single modality features using other

additional unlabeled audio and video data. Effectively, the network learns a model

that is robust to inputs when a modality is absent. Therefore, we can successfully use

these models in emotion recognition systems when only a single modality is present.

In the above section, we proposed two multi-modal deep auto-associator for learn-

ing audio and video emotion data. Our multi-modal fusion model gives a recognition

accuracy of 96.8%. This shows that our model handles large amounts of unlabeled

data effectively and fuses multiple data modalities to form unified representations

107

that capture features useful for emotion recognition. Our intra-modal audio-only and

video-only models give recognition accuracies of 93.1% and 94.2% respectively. This

shows that our model effectively captures correlations across shallow representations

between modalities.

4.6.4 Conclusions

We proposed two multi-modal deep auto-associator for learning audio and video

emotion data. Our model was able to handle large amounts of unlabeled data effec-

tively and fuse multiple data modalities to form unified representations that captured

features useful for emotion recognition. Our intra-modal audio-only and video-only

models effectively captured correlations across shallow representations between mul-

tiple modalities.

4.7 Transfer of Emotion-Rich Features between Deep Belief Networks

The introduction of deep architectures has brought significant improvements in

many visual recognition tasks. These algorithms come with huge computational costs

and finding the best training algorithm that offers the shortest training time is an

interesting area of research. In this section, we follow a transfer learning approach and

present a study to investigate the effect of transfer of emotion-rich features between

source and target networks on classification accuracy and training time. First, we

propose emosource -a 6-layer Deep Belief Network (DBN), trained on popular emotion

corpora for multimodal emotion classification. Second, we propose two 6-layer DBNs -

emotarget and emotargetft and study the transfer of emotion features between source

and target networks in a layer-by-layer fashion. Our experimental results reveal that

our emotarget model achieves comparable classification accuracy as that of emosource,

with reduced training times when the transferred emotion features are not changed

108

during training on the target dataset. We also show that our emotargetft model

achieves a performance boost over the emosource model with approximately the same

training time when the entire target network is re-trained on the target dataset. To

the best of our knowledge, this is the first research effort to study the transfer of

emotion features layer-by-layer in a multimodal setting.

One of the main concerns with using deep architectures for vision tasks is the

amount of time required to train the network. Therefore, finding the appropriate

training algorithm that gives good performance accuracy with reduced training time

becomes very important.

Consider a real world example where we have a deep model trained on a mul-

timodal emotion dataset. Let us call this model as the source model. The model

recognizes emotions with reasonable accuracy and the training time is approximately

10 days. Now, we come across a new emotion dataset. We wish to train a new

model (let us call this model as the target model) on the new dataset, but do not

have much time available for training. Can we use the emotion-rich features already

learned by our source model for training the target model? What is the effect on the

classification accuracy and training time when we do so?

We present answers to these questions in three contributions. First, we apply

deep belief networks to solve the problem of multimodal emotion recognition. We

train a 6-layer DBN on standard emotion corpora and document the time taken to

train the network and the classification accuracy achieved. This model acts as our

source network and we call it emosource. Second, we propose the emotarget DBN

model, which is also a 6-layer DBN, and study the transfer of multimodal emotion

features between the networks in a layer-by-layer fashion. We document the effect

of the transfer on the models emotion classification accuracy and training time when

trained on new emotion datasets. Finally, as our third contribution, we show that our

109

emotargetft model achieves a performance boost over emosource model with similar

training time when the entire target network is re-trained on the target dataset.

4.7.1 emoDBN Models

In this section, we introduce our emosource, emotarget and emotargetft mod-

els. In section 4.7.2 and 4.7.3, we explain how our models learn multimodal emo-

tion features through the deep layers. We train our deep belief network models on

four popular emotion datasets - emoFBVP database, Mind Reading emotions library,

MMI database of facial expressions and the Cohn-Kanade (CK) database for emotion

classification tasks.

4.7.2 emosource DBN model

Figure 4.11 (a) gives an illustration of the emosource DBN network. We extend

the DBN models proposed in Kim et al. (2013) to include multiple modalities of

expressions of emotions. The emosource model is a 6-layer DBN that learns multi-

modal emotion features from facial expressions, body gestures, vocal expressions and

physiological signals individually in the first hidden layer. All of these features are

concatenated and fed as input to the second hidden layer. Hidden layers 3 to 6 cap-

ture higher order non-linear dependencies of the multimodal emotion features. We

employ 2000 hidden units in each of the hidden layers in this model. The output of

the last layer is fed to an SVM for emotion classification as in Kim et al. (2013). Our

emosource model is trained on each of the standard emotion datasets. This model

acts as the source network for the emotarget and emotargetft models.

110

Figure 4.11: Proposed emoDBN Models (Best Viewed in Color), Source: Ran-
ganathan et al. (2016b)

4.7.3 emotarget and emotargetft DBN models

The emotarget model is also a 6-layer DBN that learns multimodal emotion fea-

tures just like our emosource DBN model. We follow a transfer learning approach

(Yosinski et al. (2014)) and transfer emotion-rich features from the emosource DBN

layer-by-layer to the emotarget DBN model and train the remaining layers of the

emotarget DBN on a new emotion dataset leaving the transferred features frozen.

Figure 4.11 (b) shows an example to describe the layer-by-layer transfer of features.

The features from the first two layers of the emosource model trained on dataset

X (in Figure 4.11 (a)) are transferred to the first two layers of the emotarget DBN

model. The layers 3, 4 and 5 of the emotarget DBN are re-initialized randomly and

trained on a new dataset Y.

In the emotargetft model (see Figure 4.11 (c)), the features from the first two layers

of the emosource model trained on dataset X (in Figure 4.11 (a)) are transferred to

the first two layers of the emotargetft DBN model. The entire network is re-trained

on the new dataset Y.

111

4.7.4 Parameter Selection

emoDBN models are trained in a greedy layer-wise manner. In this section, we

discuss how we select the parameters of our DBN models. We use the mini-batch

learning approach in our models, i.e. learning is done in mini-batches and the param-

eters are made reasonable before learning more data.

Learning Rate: Learning rate is a crucial parameter that influences the conver-

gence of training. We try out different values in the set 10−1, 10−2, · · · , 10−5 and

perform cross validation. The learning rate that yields the best results is chosen and

kept constant while training each of the stacked RBMs.

L2 norm constraint : We employ a L2 norm constraint on the input weights of the

hidden layer units during training of our emoDBN models.

Momentum: We increase the momentum parameter linearly from a rate of 0.5

to a maximum value, which we determine using cross validation. We find that the

value of momentum and the rate of increase of momentum impacted the classification

performance significantly.

Dropout : Two dropout masks, one for the visible units and one for the hidden

units are used. The weight matrices of the visible and hidden units are multiplied by

the hidden dropout factor (chosen as 0.5) and visible dropout factor (chosen as 0.8)

respectively.

Hyperparameters : We select the hyperparameters using cross-validation over the

training data.

4.8 Experiments and Results

In this section, we describe our experiments to investigate the effect of transfer

of emotion-rich features between source and target DBN networks. In our first ex-

112

periment, we train our 6-layer emosource model on each of the emotion databases

for emotion classification. We document the classification accuracy achieved and the

time taken for training. The network acts as a baseline to which we compare the

results from our second set of experiments. It is to be noted that our goal here is

not to achieve state-of-the-art performance for emotion classification but to present

a study to investigate the effect of transfer of emotion features between networks on

classification accuracies. Table 4.19 shows the percentage classification accuracies and

the training times to train our emosource network on the emoFBVP, Mind Reading,

MMI and Cohn Kanade databases. All our testing is done on the target datasets.

The emosource model trains on the multimodal data of facial expressions, body

gestures, vocal expressions and physiological signal data as explained in Section 5.1.

The first row of Table 4.19 gives us the emotion classification accuracy and the time

taken to train our emosource network on the emoFBVP database. Our 6-layer

emosource model achieves a percentage emotion classification accuracy of 81.36%.

The model trains on the dataset for 18 hours and 24 minutes. We achieve a percent-

age classification accuracy of 87.62% on the Mind Reading Emotions library database

with a training time of 22 hours and 5 minutes. As the dataset consists of only facial

and vocal modalities of expressions of emotions, a bimodal variant of our emosource

model with only two modalities in the input layer is used. The MMI database of

facial expressions and the Cohn-Kanade database consist of only the face modality of

expressions of emotions. Again, we use a unimodal variant of our emosource model

to train on these datasets. Our model achieves a percentage classification accuracy

of 87.39% and training time of 16 hours and 38 minutes when trained on the MMI

database and a percentage classification accuracy of 89.51% and training time of 15

hours and 49 minutes when trained on the Cohn-Kanade database.

In the second set of experiments, we study the transfer of emotion features layer-

113

Table 4.19: emosource DBN Trained on Dataset X

Dataset Accuracy Training Time

emoFBVP 81.36 18 hrs 24 mins

Mind Reading 87.62 22 hrs 05 mins

MMI 87.39 16 hrs 38 mins

Cohn Kanade 89.51 15 hrs 49 mins

by-layer between our emosource and emotarget models. As explained earlier, the first

k layers from the emosource model, which is trained on dataset X, are copied and

transferred to the first k layers of the emotarget model and left frozen. The higher

layers (layers (k+1) to 6) are initialized randomly and trained on dataset Y . We

document the percentage classification accuracy and training time after transferring

each layer of emotion features from emosource to emotarget. For this experiment,

we choose different pairs of emotion databases to train our emosource and emotarget

DBN models. For example, when emosource is trained on emoFBVP, we document re-

sults when emotarget is trained on Mind Reading, MMI and Cohn Kanade databases.

Similarly, when emosource is trained on Mind Reading, we document results when

emotarget is trained on emoFBVP, MMI and Cohn-Kanade databases. We do this

for all combinations of source and target datasets.

In our final set of experiments, we study the transfer of emotion features layer-by-

layer between our emosource and emotargetft models. Here, the first k layers from the

emosource model, which is trained on dataset X, are copied and transferred to the first

k layers of the emotargetft model. The entire network is re-trained on a new target

dataset Y. We document the percentage classification accuracy and training time

after transferring each layer of emotion features from emosource to emotargetft. We

follow the same set of rigorous experiments done between emosource and emotarget

114

models and document results in a similar way.

Table 4.20: Source: emoFBVP, Target: Mind Reading.

Layer # emotarget emotargetft

Accuracy Tr.Time Accuracy Tr.Time

1 87.59 20:32 87.93 22:28

2 85.61 17:02 89.57 21:43

3 82.18 13:15 90.33 21:36

4 79.34 09:17 93.64 21:47

5 78.72 04:50 94.99 22:07

Table 4.21: Source: emoFBVP, Target: MMI

Layer # emotarget emotargetft

Accuracy Tr.Time Accuracy Tr.Time

1 87.32 13:36 87.74 16:44

2 84.57 10:53 90.26 16:15

3 81.93 07:49 94.11 16:26

4 77.71 04:06 95.35 16:39

5 76.80 01:52 96.18 16:40

Table 4.22: Source: emoFBVP, Target: Cohn Kanade

Layer # emotarget emotargetft

Accuracy Tr.Time Accuracy Tr.Time

1 89.42 12:22 89.49 15:30

2 86.99 09:54 92.23 15:46

3 83.24 04:58 93.67 15:28

4 82.86 03:17 95.74 15:56

5 80.66 01:33 97.04 15:32

115

4.8.1 Results when emosource is trained on emoFBVP dataset

Tables 4.20, 4.21 and 4.22 document the results of percentage classification accu-

racies and training times achieved when emosource is trained on emoFBVP database

and emotarget and emotargetft are trained on Mind Reading, MMI and Cohn Kanade

databases respectively. The first column of the tables specifies the Layer #, i.e. the

layer at which the network is chopped and re-trained. From Table 4.19, we know

that a 6-layer emosource DBN trained on the Mind Reading database achieves a

percentage classification accuracy of 87.62% and a training time of 22 hours and 5

minutes when trained from scratch. From Table 4.20, we observe that, as we transfer

features from successive layers of emosource, the percentage classification accuracy

falls from 87.59% (when we transfer features from layer 1) to 78.72% (when we trans-

fer features from first 5 layers) while the time taken to train the emotarget network

becomes shorter and shorter (only 4 hours and 50 minutes when features from the

first 5 layers are transferred). Thus, our emotarget DBN network is able to achieve

comparable classification accuracy to that achieved by emosource model with shorter

training time when more and more layers are transferred from source to target net-

works. This is a very interesting and practically useful result for researchers in the

emotion recognition domain. The last two columns of Table 4.20 give us the classifi-

cation accuracy and training time when our emotargetft model is trained on the Mind

Reading dataset. Here, we observe that, as we transfer features from successive lay-

ers of emosource, the percentage classification accuracy increases from 87.93% (when

we transfer features from layer 1) to 94.99% (when we transfer features from first 5

layers) while the time taken to train the emotargetft network is similar to the time

taken to train emosource on Mind Reading from scratch (approximately 22 hours

and 15 minutes). Thus, our emotargetft DBN model is able to achieve a boost in

116

classification accuracy compared to the emosource model with similar training time

profiles when more and more layers are transferred from source to target networks.

Again, this is a very interesting observation. Tables 4.21 and 4.22 follow the same

trend in our observations when we train emotarget and emotargetft models on MMI

and Cohn Kanade databases.

4.8.2 Results when emosource is trained on Mind Reading dataset

Tables 4.23, 4.24 and 4.25 document the results of percentage classification accu-

racies and training times achieved when emosource is trained on the Mind Reading

database and emotarget and emotargetft are trained on emoFBVP, MMI and Cohn

Kanade databases respectively. From Table 4.19, we know that a 6-layer emosource

DBN trained on the emoFBVP database achieves a percentage classification accuracy

of 81.36% and a training time of 18 hours and 24 minutes when trained from scratch.

Again, we notice from Table 4.23 that, the percentage classification accuracy falls

from 81.24% (when we transfer features from layer 1) to 73.67% (when we transfer

features from first 5 layers) while the time taken to train the emotarget network be-

comes shorter and shorter (only 2 hours and 48 minutes when features from the first

5 layers are transferred). Also, the percentage classification accuracy increases from

82.46% (when we transfer features from layer 1) to 90.15% (when we transfer features

from first 5 layers) while the time taken to train the emotargetft network is similar

to the time taken to train emosource on Mind Reading from scratch (approximately

18 hours and 30 minutes). Tables 4.24 and 4.25 follow the same trend in our obser-

vations when we train emotarget and emotargetft models on MMI and Cohn Kanade

databases.

117

Table 4.23: Source: Mind Reading, Target:emoFBVP

Layer # emotarget emotargetft

Accuracy Tr.Time Accuracy Tr.Time

1 81.24 16:48 82.46 18:39

2 78.62 14:23 85.33 18:42

3 77.99 10:59 86.94 18:34

4 74.38 07:46 87.61 18:38

5 73.67 02:48 90.15 18:26

Table 4.24: Source: Mind Reading, Target:MMI.

Layer # emotarget emotargetft

Accuracy Tr.Time Accuracy Tr.Time

1 86.99 13:42 87.03 16:39

2 85.02 11:02 90.47 16:48

3 82.40 07:24 92:35 16:30

4 79.64 03:54 95.62 16:44

5 77.77 01:31 96.34 16:40

Table 4.25: Source: Mind Reading, Target: Cohn Kanade

Layer # emotarget emotargetft

Accuracy Tr.Time Accuracy Tr.Time

1 80.04 12:34 89.94 15:36

2 86.89 09:23 92.66 15:24

3 83.14 05:14 94.78 15:16

4 81.68 03:48 95.33 15:52

5 80.75 01:57 96.89 15:41

118

Table 4.26: Source: MMI, Target: emoFBVP

Layer # emotarget emotargetft

Accuracy Tr.Time Accuracy Tr.Time

1 80.42 16:31 82.14 18:21

2 77.94 13:59 84.83 18:34

3 74.83 11:14 85.37 18:36

4 72.96 07:15 88.65 18:27

5 72.41 03:20 89.78 18:41

Table 4.27: Source: MMI, Target: Mind Reading

Layer # emotarget emotargetft

Accuracy Tr.Time Accuracy Tr.Time

1 86.88 20:06 87.79 22:15

2 85.41 17:01 89.42 22:31

3 82.68 12:48 93.14 22:24

4 79.14 09:34 93.89 22:38

5 78.93 05:10 94.35 22:18

Table 4.28: Source: MMI, Target: Cohn Kanade

Layer # emotarget emotargetft

Accuracy Tr.Time Accuracy Tr.Time

1 88.33 11:58 90.14 15:34

2 86.45 09:44 91.33 15:42

3 83.96 04:53 93.47 15:28

4 81.21 03:31 96.63 15:42

5 80.84 01:23 97.08 15.55

119

4.8.3 Results when emosource is trained on MMI dataset

Tables 4.26, 4.27 and 4.28 document the results of percentage classification accu-

racies and training times achieved when emosource is trained on the MMI database

and emotarget and emotargetft are trained on emoFBVP, Mind Reading and Cohn

Kanade databases respectively. We notice similar trends in the classification accura-

cies and time taken for training as in previous sections.

4.8.4 Results when emosource is trained on Cohn Kanade dataset

Tables 4.29, 4.30 and 4.31 document the results of percentage classification accu-

racies and training times achieved when emosource is trained on the Cohn Kanade

database and emotarget and emotargetft are trained on emoFBVP, Mind Reading

and MMI databases respectively. We again notice similar trends in the classification

accuracies and time taken for training as in previous sections.

4.8.5 Layer-wise Summary of the Results

In this section, we present a layer-wise summary of the observations from our

study.

Layer-wise transfer of features to emotarget DBN

Layer # 1: the emotion classification accuracy is similar to the emosource model.

From this, we observe that, for the dataset pairs X and Y used to train emosource

and emotarget networks, the emotion features in the first layer of the DBN networks

are general. We achieve faster training time when compared to the source network

because we are learning only the top 5 layers of the network.

Layer # 2: The emotion classification accuracy shows a slight drop in performance

when compared to the emosource model. This is because the transferred features are

120

Table 4.29: Source: Cohn Kanade, Target: emoFBVP

Layer # emotarget emotargetft

Accuracy Tr.Time Accuracy Tr.Time

1 80.86 16:24 82.08 18:15

2 77.38 14:56 84.16 18.23

3 76.04 11:15 87.38 18.34

4 73.83 07:24 88.09 18:21

5 71.78 03:00 90.09 18:20

Table 4.30: Source: Cohn Kanade, Target: Mind Reading.

Layer # emotarget emotargetft

Accuracy Tr.Time Accuracy Tr.Time

1 86.34 20:20 87.88 22:03

2 83.42 16:48 88.44 22.11

3 82.14 12:53 92.16 22:10

4 80.11 08:56 93.49 22.16

5 78.35 04:44 94.00 22:21

Table 4.31: Source: Cohn Kanade, Target:MMI

Layer # emotarget emotargetft

Accuracy Tr.Time Accuracy Tr.Time

1 87.12 13:31 88.14 16:48

2 86.42 11:22 89.38 16:42

3 84.64 07:04 92.46 16:37

4 83.18 04:10 94.11 16:30

5 82.91 01:12 96.55 16:29

121

more specific to dataset X. We achieve faster training time when compared to the

source network and when only one layer is transferred because we are learning only

the top 4 layers of the network.

Layer # 3, 4, 5: The emotion classification accuracy decreases further as the trans-

ferred features become more and more specific to the source dataset X. The training

time further decreases as we learn only fewer layers of features at a time.

Layer-wise transfer of features to emotargetft DBN

Layer # 1: the models show a comparable performance to emosource with respect to

classification accuracy and training time. Again, this is attributed to the first layer

features being general.

Layer # 2, 3, 4, 5: We observe a significant boost in performance accuracy as we

transfer more and more layers from emosource to emotargetft. This result shows that

the transfer of emotion-rich features boosts the generalization performance of the

target network. The important point to note here is that we achieve this boost in

performance in approximately the same time taken to train the source.

4.8.6 Conclusions

Here, we presented a study to investigate the effect of transfer of emotion-rich

features between source and target networks on percentage emotion classification ac-

curacy and training time. We made three interesting contributions in this work.

First, we proposed emosource - a 6-layer DBN trained on multimodal and uni-

modal emotion corpora for emotion classification. Second, we proposed emotarget

and emotargetft DBN models and studied the transfer of features between emosource

and these networks in a layer-by-layer manner. Finally, we experimentally showed

that our emotarget model achieved reasonably comparable classification accuracies to

122

that of emosource with significantly shorter training times when the transferred fea-

tures are left frozen while our emotargetft model achieved a performance boost over

emosource model with similar training times as the source network when the entire

network is trained on the target dataset. In short, our emotarget and emotargetft

models were able to successfully re-purpose the emotion-rich features learned by the

source model to train the target models and achieve shorter training times and per-

formance boosts respectively. Going back to our real world example, depending on

the need for reduced training time or performance boost in accuracy, one could use

either of our emotarget or emotargetft models. This makes our study extremely useful

in a practical setting. To the best of our knowledge, this is the first research approach

to studying the effect of transfer of emotion features in a layer-by-layer manner in a

multimodal setting.

4.9 Summary

In this chapter, we first presented the emoFBVP database of multimodal (face,

body gesture, voice and physiological signals) recordings of actors enacting various ex-

pressions of emotions. The database consisted of audio and video sequences of actors

displaying three different intensities of expressions of 23 different emotions along with

facial feature tracking, skeletal tracking and the corresponding physiological data.

Next, we described four deep belief network (DBN) models and showed that these

models generate robust multimodal features for emotion classification in an unsuper-

vised manner. Our experimental results showed that the DBN models perform better

than the state of the art methods for emotion recognition. Finally, we proposed con-

volutional deep belief network (CDBN) models that learn salient multimodal features

of expressions of emotions. Our CDBN models furnished better recognition accura-

cies when recognizing low intensity or subtle expressions of emotions when compared

123

to state of the art methods.

We also proposed two multi-modal deep auto-associator for learning audio and

video emotion data. Our model effectively handled large amounts of unlabeled data

and fused multiple data modalities to form unified representations that captured

features useful for emotion recognition. Our intra-modal audio-only and video-only

models were able to effectively capture correlations across shallow representations

between multiple modalities.

The last section in this chapter, presented a study to investigate the effect of

transfer of emotion-rich features between source and target networks on percentage

emotion classification accuracy and training time. We made three interesting contri-

butions. First, we proposed emosource - a 6-layer DBN trained on multimodal and

unimodal emotion corpora for emotion classification. Second, we proposed emotarget

and emotargetft DBN models and studied the transfer of features between emosource

and these networks in a layer-by-layer manner. Finally, we experimentally showed

that our emotarget model achieved reasonably comparable classification accuracies

to that of emosource with significantly shorter training times when the transferred

features are left frozen while our emotargetft model achieved a performance boost

over emosource model with similar training times as the source network when the en-

tire network is trained on the target dataset. In short, our emotarget and emotargetft

models successfully re-purposed the emotion-rich features learned by the source model

to train the target models and achieve shorter training times and performance boosts

respectively. This makes our study extremely useful in a practical setting. To the

best of our knowledge, this is the first research approach to studying the effect of

transfer of emotion features in a layer-by-layer manner in a multimodal setting.

124

Chapter 5

DEEP ACTIVE LEARNING FOR SINGLE-LABEL IMAGE CLASSIFICATION

Deep learning algorithms learn a highly discriminating set of features for a given

machine learning task and have depicted commendable performance in a variety of

applications. One of its major successes has been in computer vision, where it has

achieved state-of-the-art performance in object recognition, image segmentation and

activity recognition among others. A fundamental challenge in training a deep neural

network is the requirement of large amounts of labeled training data. The rapid es-

calation of technology and the widespread emergence of modern technological equip-

ments has resulted in the generation of humongous amounts of digital data in the

modern era. However, while gathering large quantities of unlabeled data is cheap and

easy, annotating the data (with class labels) is an expensive process in terms of time,

labor and human expertise. This poses a significant challenge in inducing supervised

learning models. The situation is even more serious for deep neural network models

as they require much more hand-labeled training data as compared to other classi-

fication models. Thus, developing algorithms to minimize human effort in training

deep models is of paramount practical importance. Active learning algorithms have

gained popularity in reducing the human annotation effort in training machine learn-

ing models. Such algorithms automatically identify the salient and exemplar samples

from large amounts of unlabeled data that can augment maximal information to the

classification models and need to be labeled manually.

In this chapter, we begin with a brief overview of active learning methodologies

with relevant algorithms and examples. We then describe the field of deep active

learning - where we combine ideas from deep learning and active learning to learn in-

125

telligent models for classification. We then propose a novel active sampling algorithm

to identify the salient and exemplar unlabeled samples to be manually annotated to

train DBNs. Our method is validated on single-label image classification on a variety

of benchmark datasets for different applications.

5.1 Active Learning Models

The main hypothesis in active learning is that when a learning algorithm can

choose the data it wants to learn from, it can perform better than traditional meth-

ods with substantially less data for training. In many settings, there can be limiting

factors that hamper gathering large amounts of labelled data. Let’s take the example

of studying pancreatic cancer. We wish to predict whether a patient will get pancre-

atic cancer, however, we only have the opportunity to give a small number of patients

further examinations to collect features. In this case, rather than selecting patients

at random, we select patients based on certain criteria. An example criteria is, if the

patient drinks alcohol and is over 40 years. This criteria does not have to be static

but can change depending on results from previous patients. For example, if we find

that the model is good at predicting pancreatic cancer for those over 50 years, but

struggles to make accurate predictions for those between 40-50 years, we change our

selection criteria accordingly. The process of selecting these patients based upon the

data we have collected so far is called active learning.

5.1.1 Definition

Let us first examine why active learning works. Looking at the leftmost picture in

Figure (5.1) (taken from Settles (2010)), we see two clusters, those colored green and

those colored red. This is a classification task and we would like to create a decision

boundary that would separate the green and red shapes. However, we can assume

126

Figure 5.1: Active Learning Example Using Toy Dataset (Best Viewed in Color)
(Settles (2010))

that we do not know the labels (red or green) of the data points, but trying to find

the label for each of them would be very expensive. As a result, we sample a small

subset of points and find those labels and use these labelled data points as training

data for a classifier.

In the middle picture, logistic regression is used to classify the shapes by first

randomly sampling a small subset of points and labeling them. However, we see that

the decision boundary created using logistic regression (the blue line) is sub-optimal.

This line is clearly skewed away from the red data points and into the green shapes

area. This means that there will be many green data points that will be labelled

incorrectly as red. This skew is due to the poor selection of data points for labelling.

In the right-most picture, logistic regression is used again, but this time, a small

subset of points is selected using an active learning query method. This new decision

boundary is significantly better as it better separates both colors. This improvement

comes from selecting superior data points so that the classifier was able to create a

very good decision boundary.

5.1.2 Active Learning Scenarios

In active learning, there are typically three scenarios or settings in which the

learner will query the labels of instances. The three main scenarios that have been

considered in literature are:

127

Figure 5.2: Membership Query Systhesis

Figure 5.3: Stream-Based Selective Sampling

• Membership Query Synthesis: this means that the learner generates an instance

from some underlying natural distribution (Refer Figure (5.2)). For example, if

the data is pictures of digits, the learner would create an image that is similar

to a digit and this created image is sent to the oracle to label.

• Stream-Based Selective Sampling: in this setting, we make the assumption that

getting an unlabeled instance is free. Based on this assumption, we select each

unlabeled instance one at a time and allow the learner to determine whether it

wants to query the label of the instance or reject it based on its informativeness

(Refer Figure (5.3)). To determine informativeness of the the instance, we use

a query strategy. For example, we would select one image from the set of

unlabeled images, determine whether it needs to be labelled or discarded, and

then repeat with the next image.

• Pool-Based sampling: this setting assumes that there is a large pool of unlabeled

128

Figure 5.4: Pool-Based sampling

data, Instances are then drawn from the pool according to some informativeness

measure. This measure is applied to all instances in the pool (or some subset

if the pool is very large) and then the most informative instance(s) are selected

(Refer Figure (5.4)). This is the most common scenario in the active learning

community. For example, all the unlabeled images of digits are ranked and then

the best (most informative) instance(s) are selected and their labels requested.

5.1.3 Query Strategies

The core difference between an active and a passive learner is the ability to query

instances based upon past queries and the labels from those queries. All active learn-

ing scenarios require some sort of informativeness measure of the unlabeled instances.

In this section, we explain three popular approaches for querying instances under the

common topic called uncertainty sampling due to its use of probabilities (for more

query strategies and in-depth information on active learning, refer to Settles (2010)).

We will use Table (5.1) to explain the query strategies. This table shows two data

points and the probabilities that each point has each label. The probability d1 has

label A, B and C is 0.9, 0.09 and 0.01 respectively and probability that d2 has label

A, B and C is 0.2, 0.5 and 0.3.

1. Least Confidence (LC): in this strategy, the learner selects the instance for

129

Table 5.1: Query Strategy- Explanation

Instances Label A Label B Label C

d1 0.9 0.09 0.01

d2 0.2 0.5 0.3

which it has the least confidence in its most likely label. From Table (5.1), the

learner is pretty confident about the label for d1, since it thinks it should be

labelled A with probability 0.9, however, it is less sure about the label of d2

since its probabilities are more spread and it thinks that it should be labelled B

with a probability of only 0.5. Thus, using least confidence, the learner would

select d2 to query it’s actual label.

2. Margin Sampling: the shortcoming of the LC strategy, is that it only takes

into consideration the most probable label and disregards the other label prob-

abilities. The margin sampling strategy seeks to overcome this disadvantage

by selecting the instance that has the smallest difference between the first and

second most probable labels. Looking at d1, the difference between its first and

second most probable labels is 0.81 and for d2 it is 0.2. Hence, the learner will

select d2 again.

3. Entropy Sampling: in order to utilize all the possible label probabilities, you

use a popular measure called entropy. The entropy formula is applied to each

instance and the instance with the largest value is queried. Using our example,

d1 has a value of 0.155 while d2’s value is 0.44 and so the learner will select d2

once again.

130

5.1.4 An Example of Active Learning

In the previous section, we have seen the different components that make up active

learning. This section puts all the components together with a simple example.

1. Gathering Data:

The dataset is representative of the true distribution of the data. In reality, it

becomes impossible to have a totally representative sample due to limitations

such as time and availability.

Consider an example detailed in Table (5.2) with 5 data points. Feature A and

Feature B represent some features that a data point might have. It is important

to note that the data we gather is unlabeled.

Table 5.2: Active Learning - Example

Instances Feature A Feature B

d1 10 0

d2 4 9

d3 8 5

d4 3 3

d5 5 5

2. Split into Labeled and Unlabeled Datasets:

We then split the data into a very small dataset which we will label and a large

unlabeled dataset. There is no set number or percentage of the unlabeled data

that is typically used.

Usually, researchers do not use an oracle or an expert to label these instances.

Typically, the dataset is fully labeled and we use a small amount as labeled data

131

and use the rest as unlabeled data. Whenever the learner selects an instance to

query the oracle with, we look up the label for the instance.

Continuing with the example, we select two instances for labeled data, d1 and

d3. The possible labels in this case are ′Y ′ and ′N ′ (Refer Table (5.3) and Table

(5.4)).

Table 5.3: Labeled Dataset

Instances Feature A Feature B Label

d1 10 0 Y

d3 8 5 N

Table 5.4: Unlabeled Dataset

Instances Feature A Feature B

d2 4 9

d4 3 3

d5 5 5

3. Training the Model:

After splitting the data, we use the labeled data to train the learner. Leaners

that give a probabilistic response to whether an instance has a particular label

are typically used, to enable the use of these probabilities for querying.

In the example, we can use any classifier to train on the two labelled instances.

4. Choosing Unlabeled Instances:

After training is complete, we select an instance or instances to query. We would

use one of the active learning scenarios (Membership Query Synthesis, Stream-

Based Selective Sampling or Pool-Based sampling) and the query strategy.

132

Let us use pool-based sampling with a batch size of 2 for our example. This

means that, at each iteration, we will select two instances from the unlabeled

dataset and then add these instances to the labelled dataset. Let us use least

confidence to select instances. The learner selects d2 and d4 whose queried labels

are ’Y’ and ’N’, respectively (refer Tables 5.5 and 5.6).

Table 5.5: Updated Labeled Dataset

Instances Feature A Feature B Label

d1 10 0 Y

d3 8 5 N

d2 4 9 Y

d4 3 3 N

Table 5.6: Updated Unlabeled Dataset

Instances Feature A Feature B

d5 5 5

5. Stopping Criterion:

Now, we repeat steps 2 and 3 until some stopping criteria. That means that, we

re-train our learner using the updated labeled dataset and then select further

unlabeled data to query.

In our example, we will stop at one iteration and are finished with the active

learning algorithm. We use a separate test dataset to evaluate our learner and

record its performance. This way, we see how the performance on the test set

improved or stagnated with added labelled data.

Now that we have seen an overview of how active learning works, we will move on to

describe an overview of deep active learning.

133

Figure 5.5: Illustration of the Principle of Active Learning With a Toy Two-Moon
Dataset. Two Class Problem With Labeled Data in red and blue and Unlabeled
Data in gray. SVM-Based Classification Results (Left) With Given Labeled Data,
(Center) After Randomly Selecting Points and Getting Their Labels and (Right) After
Labeling the Most Uncertain (Informative) Points Based on Entropy. Best Viewed in
Color.

5.2 Deep Active Learning Models

Deep learning algorithms learn a highly discriminating set of features for a given

machine learning task and have depicted commendable performance in a variety of

applications. One of its major successes has been in computer vision, where it has

achieved state-of-the-art performance in object recognition, image segmentation and

activity recognition among others.

Active learning algorithms have gained popularity in reducing the human anno-

tation effort in training machine learning models. Such algorithms automatically

identify the salient and exemplar samples from large amounts of unlabeled data that

can augment maximal information to the classification models and need to be labeled

manually.

A visual illustration of active sampling is depicted in Figure 5.5. The figure on

the left shows the original two-moon dataset with one labeled sample (blue and red)

from each class. The unlabeled samples are marked in gray. The middle figure depicts

the decision boundary (the white curve) corresponding to random sampling of two

unlabeled data points and the figure on the right shows the decision boundary corre-

sponding to uncertainty based active learning. Evidently, active learning produces a

134

much more discriminating decision boundary with very few labeled examples.

Existing algorithms treat active learning and deep model training as two inde-

pendent problems. A deep model is first learned using a conventional loss function

(softmax loss); the active sampling condition is then defined based on the posterior

probabilities obtained from the last layer or the distance of a sample from the decision

boundary. However, the merit of a deep model lies in its ability to learn a discrim-

inating set of features for a given task; this property has not been leveraged in the

existing algorithms combining deep learning and active learning. The core idea of this

research presented in this dissertation is to leverage the feature learning capability of

deep models to identify the most informative unlabeled samples for active learning.

In this work, we propose a novel active sampling algorithm to identify the salient

and exemplar unlabeled samples to be manually annotated to train a deep belief

network model. We introduce a novel loss function which consists of the conventional

softmax loss and an entropy loss (to guide the active learning process) and train the

deep model to optimize this joint objective. To the best of our knowledge, this is

the first attempt to incorporate an uncertainty based criterion to train a deep belief

network so that it can appropriately identify the most informative unlabeled samples

for manual annotation. Although validated on the image classification task in this

paper, the proposed algorithm is generic and can be used in any application where the

salient and exemplar unlabeled samples need to be identified to train a deep learning

model.

5.3 Proposed Framework

The core idea of this research is to leverage the feature learning capability of deep

models to identify the most informative unlabeled samples for active learning. While

existing algorithms first train a deep model using the softmax loss and then use the

135

posterior probabilities from the last network layer to derive sample selection criteria,

we attempt to integrate the active sample selection criterion in the loss function and

train the network to optimize the function. The feature representations learnt by

the network are then specially tailored to the active learning task and enables it to

better identify the samples that can augment maximal information to the model.

From the above survey, it is clear that uncertainty sampling is the most widely used

strategy for active sample selection. Entropy is a well-accepted measure to quantify

the uncertainty of a classification model. We therefore append an entropy based term

to the conventional softmax loss term and train the network to optimize the joint loss

function.

Formally, let X = {x1, x2, . . . , xn} be the training set containing n samples. The

subset of labeled samples is represented as Xl = {x1, x2, . . . , xnl}. The corresponding

labels for Xl are denoted by Yl = {y1, y2, . . . , ynl}. Let the subset of unlabeled data

points be, Xu = {xnl+1, xnl+2, . . . , xnl+nu}. X = Xl ∪Xu, is the union of the disjoint

subsets Xl and Xu. Therefore, n = nl + nu. The goal is to estimate a classifier

function f(x), using the labeled data D = {Xl, Yl}. Here, f(xi), ∀i ∈ [1, nl] is the

conditional probability that the classifier assigns xi to label yi. The classifier function

f(.) is then applied on the unlabeled data f(xi), ∀i ∈ [nl + 1, n], to predict the label

ŷi. The accuracy of the classifier is tested by comparing the predicted labels of the

unlabeled data with the ground truth labels for the unlabeled data.

5.3.1 Cross-entropy Loss for Labeled Data

Since the classifier f(.) is implemented using a deep belief network, we use the

standard cross-entropy loss to estimate the empirical classification error E(D ; f),

136

which is given by,

argmin
f∈F

E(D ; f) =
1

nl

nl∑
i=1

L(f(xi), yi), (5.1)

where the cross-entropy loss is given by,

L(f(xi), yi) = −
C∑
j=1

1{yi = j}logfj(xi), ∀i ∈ [1, nl]. (5.2)

Here, C is the total number of label categories and 1{.} is the indicator function.

fj(xi) = eh
N
ij/
∑

j′ e
hN
ij′ is the softmax function defined on the activation hNij , where

hNij is j-th component of the i-th data point in the N -th (final) layer of the network.

The softmax function ensures f(xi) = [f1(xi), f2(xi), . . . , fC(xi)]
> is a probability

vector with fj(xi) being the probability that data point xi is assigned to category

C. During the process of active learning the labeled dataset is repeatedly augmented

with newly obtained labeled data taken from the unlabeled dataset. The classifier

f(.) is in turn updated by retraining with the updated labeled dataset.

5.3.2 Entropy - Measure of Uncertainty

In the active learning setting, we have an oracle who provides labels for the unla-

beled data at a fixed cost for every unlabeled data point. From the unlabeled set Xu,

the oracle is given a batch of points B to be labeled. The labeled batch B is then

combined with the labeled set Xl along with the corresponding labels (added to Yl)

that are provided by the oracle, i.e. Xl → Xl ∪ B. These data points are removed

from the unlabeled set Xu in order to ensure Xl and Xu are disjoint, i.e. Xu → Xu\B.

A new and improved classifier is estimated using the augmented labeled sets {Xl, Yl}.

This procedure is repeated until we run out of budget to get labeled data from the

oracle. The challenge in active learning is to identify the most informative set of

unlabeled samples to be labeled by the oracle. Intuitive reasoning leads us to select

137

data points that have been classified with highest uncertainty by the existing classi-

fier. The classification of a data point is said to be uncertain if the data point can be

assigned to more than one category with nearly equal probability. Given the prob-

ability of label assignment for a data point, entropy (from Information Theory) can

be used to obtain a measure of uncertainty regarding its label assignment. The set

B can therefore be chosen by selecting the data points with the largest uncertainty.

Entropy based measures have been applied previously to select a set B with the most

informative (highest uncertainty) data points in order to estimate an active learning

based classifier (Chakraborty et al. (2015b)). The entropy can be expressed in terms

of assigned label probabilities for the unlabeled data as,

H(f(xi)) = −
C∑
j=1

fj(xi)logfj(xi), ∀i ∈ [nl + 1, n] (5.3)

where fj(xi) is the probability of assigning xi to category j. We define a probability

vector for xi as pi := [f1(xi), f2(xi), . . . , fC(xi)]
>. In standard active learning settings,

a classifier is first trained on the labeled data and used to obtain the predictions for

the unlabeled data. Entropy is then applied to obtain the uncertainty of such a

classifier prediction. In this two-step approach, the unlabeled data does not play a

role in training the classifier. We propose an active learning model where we combine

the entropy measure along with the cross-entropy loss during training. We discuss

the benefits of this joint loss in the following section.

5.3.3 Joint Loss for Active Learning

In our active learning DBN model, we treat the entropy measure as a loss and

attempt to reduce the uncertainty of classification. The DBN is trained by combining

both the labeled and unlabeled data with the aim to obtain least entropy on the

unlabeled data and also least cross-entropy on the labeled data. We see the following

138

advantages to incorporating entropy minimization along with standard cross-entropy

loss when training an active learning model: (i) all the available data is used to train

the active learning model which results in a much more robust and adaptive model

when compared to training with only the labeled data; (ii) training with unlabeled

data eventually results in learning an effective classifier for the unlabeled data and

(iii) the network trains itself to reduce entropy along with estimating a classifier (by

reducing cross-entropy). In a single step, the network restructures its weights while

minimizing cross-entropy (for labeled data) and minimizing entropy (for unlabeled

data). The joint loss ensures that the data points with the largest entropy that are

selected to form B, are the most uncertain and informative unlabeled data points with

respect to the classifier f(.). Over successive iterations, the positive effects of joint

training with the labeled and unlabeled data get enhanced. Based on this intuitive

reasoning, we combine the cross-entropy loss in Equation (5.2) and the entropy in

Equation (5.3) to formulate a classifier with a joint loss that is given by,

argmin
f∈F

E(D ; f) =
1

nl

nl∑
i=1

L(f(xi), yi)

+
λ

nu

n∑
i=nl+1

H(f(xi)). (5.4)

where λ controls the relative importance of the entropy loss.

5.3.4 Computing the Gradient

We use the standard backpropagation algorithm to learn the weights of the DBN.

The output of the N -th layer of the network (before the loss) for a data point xi, is

given by the vector hNi . We define pij := fj(xi) = eh
N
ij/
∑

j′ e
hN
ij′ , the probability that

139

data point xi belongs to class j. The loss in terms of probabilities is given by,

E(Xl, Xu, Yl) =− 1

nl

nl∑
i=1

C∑
j=1

1{yi = j}logpij

− λ

nu

n∑
i=nl+1

C∑
j=1

pijlogpij. (5.5)

We outline the derivative of the loss E(.) with respect to hNpq, which is the q-th

component of the p-th data point in the output of the N -th layer as,

∂E

∂hNpq
=

1
nl
ppq − 1{yp = q}, p ∈ [1, nl]

λ
nu
ppq

(∑C
j ppjh

N
pj − hNpq

)
, p ∈ [nl + 1, n].

(5.6)

During the training procedure, the derivative ∂E/∂hN is back - propagated through

the network in order to update the weights of the network 1.

5.3.5 Active Learning Network Architecture and Training

The network architecture and the method employed for training the network are

discussed here along with the algorithm pseudocode. Figure 7.2 illustrates the

network architecture of our Deep Active Learning model. Our model is a three layer

deep belief network constructed by greedily training and stacking RBMs. Since the

number of data points n = nl + nu, is usually very large, we use mini-batch based

gradient descent to train the network. We present the network with a mini-batch

of n′ data points which consists of n′l labeled data points (green circles) and n′u

unlabeled data points (red circles), i.e. n′ = n′l+n′u with n′l ≤ nl and n′u ≤ nu. The

cross-entropy loss is computed over the labeled data in the mini-batch and entropy

loss is computed over the unlabeled data in the mini-batch. The negative gradient of

the joint loss function with respect to the mini-batch is back - propagated in order

1The derivation of the gradient computations in detailed in Appendix A

140

to train the DBN. When the network has seen all the data points in the training

set (labeled and unlabeled), we consider it as one epoch. We repeat the training

procedure over multiple epochs until convergence and consider this as one training

iteration t of the active learning algorithm. At the end of every iteration t, we sample

the most informative batch of unlabeled data points (highest entropy data points

using Equation 5.3) to form B. We obtain the labels for B using an oracle and

update the labeled and unlabeled datasets, as discussed earlier. We iterate until we

run out of unlabeled data to be labeled or we run out of budget to get them labeled.

For ease of representation and evaluation we fix the number of these iterations as T .

The pseudo-code of our algorithm is presented in Algorithm 3.

Figure 5.6: Deep Active Learning Network Architecture. Best Viewed in Color,
Source: Ranganathan et al. (2016c)

141

Algorithm 3 The proposed Deep Active Learning Algorithm

Input: The labeled set Xl, class labels Yl, unlabeled set Xu, weight parameter λ,

batch size k, maximum number of iterations T

1: for t = 1, 2, . . . T do

2: Compute the derivative of the loss function, using Equation 6

3: Train the deep model to obtain the network weights

4: Compute the entropy of each unlabeled sample, using Equation 3

5: Select a batch B containing k unlabeled samples from Xu furnishing the high-

est entropy

6: Update Xl ← Xl ∪B; Xu ← Xu\B

5.4 Experiments and Results

The following sections detail the implementation specifics of the proposed model,

baseline models for comparison and evaluation metrics for validation.

5.4.1 Implementation Details

Our DBN model consists of three hidden layers, with 500 units in each hidden

layer. Depending on the dataset we are experimenting with, the number of nodes in

the input and the final layers are set to the data dimensions and number of categories

of the the dataset respectively. In the unsupervised learning stage, we used a learning

rate of 0.05 and number of epochs as 100. We employed minibatch (n′ = 100),

momentum (0.5 for first 5 epochs and 0.9 later) and weight decay (0.0002) techniques

for accelerating the learning process and for preventing overfitting respectively. The

DBN learning parameters for the supervised finetuning stage are as follows: learning

rate = 0.05, number of epochs = 50 and minibatch size = 100 (with 50 labeled and 50

unlabeled data samples). The same deep architecture and parameters were used for

142

all the competing methods for fair comparison. The weight parameter λ was selected

as 1 based on preliminary experiments.

5.4.2 Datasets and Experimental Setup

We studied the performance of the algorithm on a variety of uni-modal and multi-

modal datasets from different application domains. These are detailed below:

Uni-modal datasets: We used four uni-modal datasets in our experiments: (i)

the VidTIMIT face recognition dataset (Sanderson (2008) consisting of video and

corresponding audio recordings of subjects reciting short sentences; (ii) the Cohn-

Kanade (CK) AU-Coded Expression Database (Kanade et al. (2000a)), which is

widely used for research in automatic facial image analysis, synthesis and for percep-

tual studies; (iii) the MNIST database of handwritten digits (LeCun et al. (1998a));

and (iv) the CIFAR 10 dataset (Krizhevsky (2009)) for object recognition, which

contains images from 10 different classes of objects.

Multi-modal datasets: We also validated the performance of our algorithm

on two multi-modal datasets: (i) emoFBVP, which contains 23 different emotions

enacted by 10 professional actors together with corresponding recordings of Face,

Body gesture, Voice (captured using the Microsoft Kinect sensor) and Physiological

data (captured using the wearable Zephyr BioHarness) (Ranganathan et al. (2016a))

and (ii) MindReading, which is a bi-modal dataset to study human emotions from

audio and vocal cues (El-Kaliouby and Robinson (2004)). For the emoFBVP dataset,

we also studied the performance of our algorithm on subsets of modalities (face and

voice, face, body and voice).

Our objective was to test the performance of the proposed active sampling frame-

work for deep learning and not to outperform the best accuracy results on these

datasets; so, we did not follow the precise train/test splits given for many of these

143

datasets. Each dataset was divided into an initial training set, an unlabeled set and

a test set. For a given batch size k, each algorithm selected k instances from the

unlabeled pool to be labeled in each iteration. After each iteration, the selected

points were removed from the unlabeled set, appended to the training set and the

performance was evaluated on the test set. The goal was to study the improvement in

performance on the test set with increasing sizes of the training set. The experiments

were run for 20 iterations. This setup is similar to previous work by Wang and Shang

(2014a). The dataset details are summarized in Tables 5.7 and 5.8.

Dataset Training Unlabeled Testing Batch Size

VidTIMIT 500 20000 8000 100

CK 500 10000 5000 100

MNIST 1000 50000 10000 200

CIFAR 1000 45000 10000 200

Table 5.7: Uni-modal Dataset Details.

Dataset Training Unlabeled Testing Batch Size

emoFBVP 400 20000 10000 80

MindReading 1000 70000 10000 200

Table 5.8: Multi-modal Dataset Details.

5.4.3 Comparison Baselines

Uni-modal datasets: We used the following algorithms as baselines for com-

parison: (i) Random Sampling, which selects a batch of unlabeled samples at

random from the unlabeled pool; (ii) Active Labeling with Least Confidence

(AL-LC) (Wang and Shang (2014a)) which selects the samples with the smallest of

the maximum activations as follows:

xLCi = argmin
xi

max
j
pij (5.7)

144

where xi is the input vector and pij = eh
N
ij/
∑

j′ e
hN
ij′ , is the probability that data

point xi belongs to class j. hNij is the activation of the unit j for xi in the final layer

N before the loss layer; (iii) Active Labeling with Margin Sampling (AL-MS)

(Wang and Shang (2014a)) which selects the samples with the smallest separation

between the top two class predictions:

xMS
i = argmin

xi

(pi,j′ − pi,j′′) (5.8)

where j′ and j′′ are the first and second most probable class labels for sample xi

predicted by the DBN; and (iv) Active Labeling with Entropy (AL-Entropy)

(Wang and Shang (2014a)), which selects the unlabeled samples with the largest class

prediction information entropy:

xEntropyi = argmax
xi

−
∑
j

pij log pij (5.9)

Multi-modal datasets: Multi-modal learning has gained importance in recent

years where each data sample is characterized by multiple features representing dis-

tinct statistical properties. Multi-modal active learning has not been studied in the

context of deep learning. Existing algorithms query unlabeled samples based on

the principle of mutual disagreement. Muslea et al. (2006) proposed the Multi-view

(MV) algorithm in which a separate classification model was trained for each modal-

ity (view). A set of Contention Points was identified from the unlabeled set, where

at least two models produced different predictions; samples were queried from this

set using three selection strategies: (i) MV-Naive, where samples were selected at

random from the set of contention points; (ii) MV-Aggressive, where we select a

batch of samples on which the least confident of the models makes the most confident

prediction; (iii) MV-Conservative, where we select a batch of contention points

on which the confidence of the predictions made by the models is as close as possi-

ble. Cebron and Berthold (2010) proposed a multi-modal active learning algorithm

145

called Parallel Universes (PU) which followed the general Multi-view Active Learn-

ing framework but incorporated sample diversity along with uncertainty (entropy) in

batch selection. We compared our algorithm against all these methods, together with

Random Sampling.

5.4.4 Active Learning Performance

Uni-modal datasets: The results on the uni-modal datasets are depicted in

Figure 5.7. In each graph, the x-axis denotes the iteration number and the y-axis

denotes the accuracy on the test set. The proposed framework outperforms Random

Sampling on all the datasets; the accuracy increases at a faster rate with increasing

size of the labeled set. Our algorithm therefore identifies the salient and exemplar

instances for manual annotation and attains a given level of performance with much

reduced human labeling effort. The AL-LC, AL-MS and AL-Entropy methods depict

better performance than Random Sampling, but are not as good as our method. This

corroborates the merit of incorporating an entropy based term in the loss function

to train the deep belief network and learning the features accordingly, so that the

unlabeled samples selected for annotation are maximally informative. The results

unanimously lead to the conclusion that our algorithm depicts the best performance

consistently across all the datasets.

Multi-modal datasets: The results on the multi-modal emoFBVP and Min-

dReading datasets are depicted in Figure 5.8 (a) and 5.8 (b). We note that Random

Sampling depicts comparable performance as the MV-Aggressive and MV-Conservative

methods. Thus, a simple method like random selection can sometimes depict good

performance. The PU algorithm combining uncertainty and diversity depicts better

performance than the Multi-view active learning algorithms. Our method demon-

strates the best performance on both datasets; at any given iteration, it attains the

146

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Iteration Number

70

75

80

85

90

 A
cc

ur
ac

y
(%

)

Active Learning on the VidTIMIT Dataset

Random Sampling
AL-LC
AL-MS
AL-Entropy
Our Method

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Iteration Number

84

86

88

90

92

94

96

98

100

 A
cc

ur
ac

y
(%

)

Active Learning on the CK Dataset

Random Sampling
AL-LC
AL-MS
AL-Entropy
Our Method

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Iteration Number

86

88

90

92

94

96

98

 A
cc

ur
ac

y
(%

)

Active Learning on the MNIST Dataset

Random Sampling
AL-LC
AL-MS
AL-Entropy
Our Method

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Iteration Number

75

80

85

90

95

 A
cc

ur
ac

y
(%

)

Active Learning on the CIFAR-10 Dataset

Random Sampling
AL-LC
AL-MS
AL-Entropy
Our Method

Figure 5.7: Active Learning on the Uni-Modal Datasets. Best Viewed in Color,
Source: Ranganathan et al. (2016c)

highest accuracy on the test set. Thus, a deep belief network trained to minimize the

cross-entropy loss on the labeled data together with the entropy loss on the unlabeled

data succeeds in selecting the exemplar unlabeled samples for manual annotation in

both uni-modal and multi-modal settings and achieves a given level of accuracy with

the least amount of human effort.

We also studied the performance of our framework on different subsets of modal-

ities of the emoFBVP dataset. Figure 5.8 (c) and Figure 5.8 (d) depict the results

when using only the face and voice modalities and only the face, body and voice

modalities respectively. The results depict a similar trend, further corroborating the

generalizibility of our framework. A two-sided paired t-test at the significance level

of α < 0.05 reveals that the improvement in performance achieved by our method is

statistically significant for all the datasets.

147

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Iteration Number

60

65

70

75

80

85

90

95

A
cc

ur
ac

y(
%

)

Active Learning on the emoFBVP Dataset

Random Sampling
MV-Naive
MV-Aggressive
MV-Conservative
AL-PU
Our Method

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Iteration Number

65

70

75

80

85

90

95

A
cc

ur
ac

y(
%

)

Active Learning on the Mind Reading Dataset

Random Sampling
MV-Naive
MV-Aggressive
MV-Conservative
AL-PU
Our Method

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Iteration Number

60

65

70

75

80

85

90

A
cc

ur
ac

y(
%

)

Active Learning on emoFBVP (Face and Voice)

Random Sampling
MV-Naive
MV-Aggressive
MV-Conservative
AL-PU
Our Method

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Iteration Number

60

65

70

75

80

85

90

95

A
cc

ur
ac

y(
%

)

Active Learning on emoFBVP (Face, Body and Voice)

Random Sampling
MV-Naive
MV-Aggressive
MV-Conservative
AL-PU
Our Method

Figure 5.8: Active Learning on Multimodal Datasets. (A) and (B) Active Learn-
ing on the Multi-Modal Datasets emoFBVP and MindReading. (C) and (D) Ac-
tive Learning on Subsets of Modalities of the emoFBVP Multi-Modal Dataset. Best
Viewed in Color, Source: Ranganathan et al. (2016c)

5.5 Conclusion and Future Work

In this chapter, we proposed a novel algorithm to actively sample unlabeled in-

stances that are most promising in training a deep belief network model. We in-

troduced a loss function based on softmax and entropy losses and trained the deep

model to optimize the loss function. The network therefore gets specifically trained

for the active learning task and depicts much better performance than a network

trained only on the conventional softmax loss. To the best of our knowledge, this is

the first research effort to incorporate an active learning based criterion in the loss

function and train the deep network to optimize the objective. Our experimental

results on a variety of uni-modal and multi-modal datasets from different applica-

tion domains depict the promise and potential of the method for real-world image

148

recognition applications.

As part of future research, we plan to extensively validate the performance of the

framework on other computer vision applications such as image segmentation, image

search and retrieval, clustering and object detection among others. We also intend

to study the performance of the network trained to optimize other loss functions

specific to active learning. For instance, some active learning algorithms include a

diversity based criterion (besides uncertainty), to ensure that the samples selected

for annotation also have a high diversity among them (Chakraborty et al. (2015b));

representativeness based algorithms explored in Shen et al. (2004), enforce the selected

samples to be good representatives of the unselected unlabeled samples. We plan to

integrate these criteria in the loss function and study their effects on the results. We

would also like to modify our algorithm to work on video datasets, where the temporal

structure provides useful information that are less obvious in static images.

5.6 Summary

This chapter began with a brief overview of active learning methodologies in liter-

ature and then continued to introduce the field of deep active learning - where ideas

from deep learning and active learning are combined to learn intelligent models for

classification and/ regression. We then proposed a novel active sampling algorithm

to identify the salient and exemplar unlabeled samples to be mannually annotated to

train DBNs. The proposed method was validated on single-label image classification

on a variety of benchmark datasets for different applications and shown to outperform

current state-of-the-art techniques.

149

Chapter 6

DEEP ACTIVE LEARNING FOR MULTI-LABEL IMAGE CLASSIFICATION

Multi-label classification is a generalization of conventional classification prob-

lems, where each data sample can have multiple labels. Deep learning algorithms

learn a highly discriminating set of features for a given machine learning task and

have depicted commendable performance in a variety of applications, including multi-

label learning. However, training a deep model necessitates a large amount of labeled

training data, which is an expensive process in terms of time, labor and human ex-

pertise. The problem is further compounded in a multi-label learning application, as

the human oracle needs to consider the presence/absence of every label to annotate a

single data sample. Active learning algorithms automatically identify the salient and

exemplar samples from large amounts of unlabeled data and tremendously reduce

human annotation effort in inducing a machine learning model. In this chapter, we

propose a novel active learning framework to select the most informative unlabeled

samples to train a deep model for multi-label classification. We introduce a novel

loss function specific to the task of multi-label active learning and train the model to

optimize this loss. To the best of our knowledge, this is the first research effort to de-

velop a deep learning framework for multi-label active learning. Our experiments on

three challenging, real-world multi-label datasets show that our method outperforms

the state-of-the-art multi-label active learning algorithms, corroborating its potential

for real world image classification applications.

In a conventional classification problem, each data sample is assumed to belong

to a single class. However, many applications necessitate a more generalized setting,

150

where each data sample can belong to multiple classes simultaneously. This is referred

as the multi-label classification setting. For instance, classifying a natural scene image

is a multi-label problem, as a single image can have multiple classes (like sky, sunset,

mountains and trees) associated with it.

A fundamental challenge in training a deep neural network is the requirement of

large amounts of labeled training data. While gathering large quantities of unlabeled

data is cheap and easy, annotating the data (with class labels) entails significant

human effort. In a multi-label learning setting, the problem is further aggravated

as the presence/absence of each class needs to be checked separately to annotate a

single unlabeled sample. Often, the number of possible classes is of the order of hun-

dreds, which tremendously increases the labeling burden on the human annotator.

Therefore, developing algorithms that reduce human effort in training deep models

in a multi-label setting is of paramount practical importance. Active learning algo-

rithms alleviate this problem by selecting the salient and informative samples from

vast amounts of unlabeled data. This not only reduces the human effort in training

machine learning models, but also produces models with much better generalization

capabilities, as they get trained on the salient examples from the underlying data

population. Specifically, batch mode active learning (BMAL) algorithms, where a

batch of unlabeled samples are simultaneously selected for manual annotation, have

been widely used in computer vision applications with encouraging empirical results.

In our work, we leverage the feature learning capabilities of deep neural networks

and propose a novel framework to address the challenging problem of multi-label ac-

tive learning. We integrate an active sample selection criterion in the loss function

and train the deep network to optimize the function. First, we propose a framework

151

without considering the correlation among the multiple labels using CNNs. Second,

we model the correlations that exist among the multiple labels using Long Short Term

Memory networks (LSTMs).

6.1 Proposed Framework

We propose to exploit the feature learning capabilities of deep networks to identify

the most informative unlabeled samples for multi-label active learning. We do this by

appending an active sampling criterion to the objective function and train the deep

network to optimize the function. In our framework, we formulate a loss function

which captures the active sampling criterion and train the deep network to optimize

that loss. The feature representations learnt by the network are then specially tai-

lored to the active learning task and enable it to better identify the samples that can

augment maximal information to the model. Formally, let XL = {x1, x2, · · · , xnl}

denote the labeled training set with nl samples and Y L = {y1, y2, · · · , ynl} de-

note the corresponding multi-labels with yi ∈ {0, 1}1×M where M is the number

of unique labels in the dataset. The learner is also presented with an unlabeled set

XU = {xnl+1, xnl+2, · · · , xnl+nu}. Let X = XL ∪XU denote the union of the disjoint

subsets XL and XU and N = nl + nu. The objective is to select a batch B with

k unlabeled samples for manual annotation (k being the batch size) such that the

modified learner, trained on XL ∪B, has maximal generalization capability.

In a multi-label active learning setting, we have an oracle who provides labels at

a fixed cost for every label in the unlabeled data. From the unlabeled set XU , the

oracle is given a batch of points B to be labeled. The labeled batch B is then added

to the labeled set XL along with the corresponding labels Y L; i.e. XL → XL ∪ B.

152

These data points are removed from the unlabeled set XU to ensure that XL and

XU are disjoint, i.e. XU → XU\B. A new and improved multi-label classifier is

estimated using the augmented labeled sets {XL, Y L}. This procedure is repeated

for a fixed number of iterations, T .

The challenge in multi-label active learning is to identify the most informative set

of unlabeled samples to be labeled by the oracle while considering the correlation be-

tween the multiple labels. Intuitive reasoning leads us to select data points that have

been classified with highest uncertainty by the existing multi-label classifier. Entropy

(from Information Theory) is a widely used measure of uncertainty regarding label

assignment. The set B can therefore be chosen by selecting the data points with the

largest uncertainty. In standard active learning settings, a classifier is first trained

on the multi-labeled data and used to obtain the predictions for the unlabeled data.

Entropy is then applied to obtain the uncertainty of such a classifier prediction. In

this two-step approach, the unlabeled data does not play a role in training the multi-

label classifier. In our deep active learning model, we append the entropy measure to

the conventional loss function and train the network with both labeled and unlabeled

data using a novel joint training objective.

Our intuition behind training multi-label active learning models using the joint

objective function is based on the following advantages: (i) all the available data is

used to train the model. This results in a much more robust and adaptive model when

compared to training with only the labeled data; (ii) training with unlabeled data

eventually results in learning an effective multi-label classifier for unlabeled data and

(iii) the deep network trains itself to reduce entropy along with estimating a robust

multi-label classifier (by reducing cross-entropy). This joint training objective ensures

153

that the data points with the largest entropy that are selected to form B, are the

most uncertain and informative unlabeled data points with respect to the classifier.

Over successive iterations, the positive effects of the joint training with labeled and

unlabeled data get enhanced.

6.2 Multi-Label Active Learning Without Label Correlation

In this framework, the multiple labels of a data sample are assumed to be indepen-

dent of each other. We propose a method to solve the problem of multi-label active

learning using CNNs without considering label correlation. We introduce a novel joint

objective function that integrates an active selection criterion to the conventional loss

function, and train the CNN to optimize this function.

6.2.1 Sigmoid Cross-Entropy Loss for Labeled Data

Let the ground truth of all the nl labeled samples be Y L ∈ {0, 1}nl×M and yi,j

indicates the (i, j)th element of Y L . We have the predictions Ŷ ∈ Rnl×M and ŷi,j

indicates the (i, j)th element of Ŷ . The loss over the labeled data was designed as the

multi-label sigmoid cross-entropy loss (K.Zhaoa et al. (2016)) given by:

C(Y L, Ŷ) =− 1

nl

nl∑
n=1

M∑
m=1

[ynm log (ŷnm)

+ (1− ynm) log (1− ŷnm)]. (6.1)

154

6.2.2 Entropy Loss for Unlabeled Data

Uncertainty sampling is the most widely used strategy for active sample selection

and entropy is a well-accepted measure to quantify the uncertainty of a classification

model. We therefore append an entropy based term to the loss function, which

quantifies the level of uncertainty of the network on an unlabeled sample. The entropy

of an unlabeled sample in the multi-label setting is defined as in Clare and King

(2001):

H(Ŷ) =− 1

nu

nl+nu∑
n=nl+1

M∑
m=1

[ŷnm log (ŷnm)

+ (1− ŷnm) log (1− ŷnm)]. (6.2)

6.2.3 Joint Objective for Multi-label Active Learning

The CNN is trained by combining both the labeled and unlabeled data with the

objective of obtaining a robust classifier for labeled data and reducing the uncertainty

of classification on the unlabeled data. The joint objective function for multi-label

deep multi-label active learning is thus given by:

L(XL, Xu, Y L) = C(Y L, Ŷ) + λH(Ŷ) (6.3)

where C(Y L, Ŷ) and H(Ŷ) are as in equations (6.1) and (6.2) respectively. Here λ ≥ 0

controls the relative importance of the two terms. The function is optimized using

the mini-batch gradient descent algorithm to train the network 1.

Figure 6.1 illustrates the network architecture of the CNN used for multi-label

deep active learning without label correlation. The CNN model employed consists of

eight layers. The input images are re-sized to 256× 256. The weight parameter λ in

1The gradient computation is detailed in Appendix B

155

Data

Convolution
Layer 1

Convolution
Layer 3

Convolution
Layer 5

Sub-Sampling
Layer 2

Sub-Sampling
Layer 4

Sub-Sampling
Layer 6

Fully Connected
Layer 7

Output
Layer 8

9 x 9 filter

256 x 256

5 x 5 filter 3 x 3 filter2 x 2 stride 2 x 2 stride 2 x 2 stride
4096

Labeled &
unlabeled
minibatche

s

Cross Entopy
Loss on labeled

Data

Entopy Loss on
unlabeled Data

DATA

256 x 256
x 3

9 x 9
filter

2 x 2
stride

5 x 5
filter

2 x 2
stride

3 x 3
filter

2 x 2
stride

Labeled and
Unlabeled Mini-

batches

Figure 6.1: Architecture of Multi-Label CNN Model Without Label Correlation.
Best Viewed in Color.

equation (6.3) was selected to be 1 giving equal weight to both terms in the equation.

We compute the entropy of each unlabeled sample in XU using equation (6.2) and

select k samples furnishing the maximum entropies to form batch B. We update the

labeled and the unlabeled data sets and repeat for T iterations.

6.2.4 Training and Implementation Details

The training procedure is repeated over multiple epochs until convergence, and

this is considered as one training iteration t. At the end of t, the model is applied on

all the unlabeled samples and those furnishing the highest entropies are selected to

form a set B. The joint loss ensures that the data points with the largest entropy that

are selected to form B, are the most uncertain and informative unlabeled data points

with respect to the classifier. This is a much more informed way of actively select-

ing unlabeled samples for annotation, since the active learning criterion is embedded

in the loss function used to train the network. These samples are appended to the

labeled set and a new classifier is estimated with the updated labeled and unlabeled

156

data. We repeat this for a fixed number of iterations, T .

The CNN model employed consists of eight layers. Before feeding inputs to the

first layer of the CNN, the images in the datasets were resized to 256× 256. The first

convolution layer has a filter size of 9×9 and 96 feature maps, the second convolution

layer has a filter size of 5×5 and 256 feature maps and the third convolution layer has

a filter size of 3× 3 and 256 feature maps. All the sub-sampling layers have a stride

of 2 × 2. The fully connected layer has an output size of 4096. The fully connected

layer combines these features and feeds them to the classifier. The weight parameter

λ was selected to be 1 based on preliminary experiments.

The multi-label deep active CNN model treats the labels independently and does

not exploit the inherent dependencies among the multiple labels. Research has shown

that multi-label datasets exhibit strong label correlations (Xue et al. (2011)). For in-

stance, the labels sea and boat usually appear together, while the labels trees and

desert almost never co-occur. We now describe a multi-label active learning frame-

work that models label correlations using RNN models, which can potentially improve

the learning performance.

6.3 Multi-Label Deep Active Learning With Label Correlation

Here, we propose a multi-label deep active learning framework for image classifica-

tion by effectively learning the higher order dependencies among the multiple labels.

We use CNNs coupled with Long-Short Term Memory (LSTM) cells to learn a joint

low-dimensional image-label embedding to model the semantic relevance among im-

ages and labels. In this model, the CNN is used to produce high level representation

157

of the image and the LSTM models the label dependencies. We incorporate an active

sampling criterion in the objective function used to train the model. This model is

inspired from Wang et al.’s CNN-RNN model (Wang et al. (2016)).

Let the predicted label at time step t be ŷ(t). The LSTM model predicts multiple

labels by finding the prediction path that maximizes the a priori probability. The

probability of a prediction path is obtained as the product of the a priori probability

of each label given the previous labels in the prediction path.

In every image, we represent each of the labels as a one-hot vector yk which is

all zeros and a one in the kth spot. We then obtain the label embedding embedk by

multiplying yk with an embedding matrix (embedmatrix).

embedk = embedmatrix.yk. (6.4)

The LSTM takes embedk(t); the label embedding at time step t; as input and pro-

duces a hidden state h(t) as output using the standard LSTM equations. The output

of the recurrent layer and the image representation are projected into the same low-

dimensional space as the label embedding.

x(t) = RELU(WI .I +Wh.h(t)) (6.5)

Here, RELU is the rectified linear unit activation function, I is the CNN image rep-

resentation and WI , Wh are the projection matrices for the image and hidden state

respectively. The number of columns of WI and Wh are the same as the label embed-

ding matrix embedmatrix. The label scores are computed by multiplying the transpose

of embedmatrix and x(t).

158

s(t) = embedmatrix
T .x(t). (6.6)

The predicted probability is computed using Softmax normalization on the scores.

p(t) = Softmax(s(t)). (6.7)

A prediction path is a sequence of labels (l1, l2, l3, · · · , lN), where the probability of

each label lt can be computed with the information of the image I and the previously

predicted labels lt−1, lt−2, lt−3, · · · , l1. The LSTM model predicts multiple labels by

finding the prediction path that maximizes the a-priori probability. The probability

of a prediction path is obtained as the product of the a-priori probability of each label

given the previous labels in the prediction path.

l1, l2, l3, · · · , lk = argmax
l1,l2,··· ,lk

P (l1, l2, l3, · · · , lk
∣∣∣I)

= argmax
l1,l2,··· ,lk

k∏
j=1

P (lj

∣∣∣I, l1, l2, · · · , lj−1)
= argmax

l1,l2,··· ,lk
P (l1

∣∣∣I) ∗ P (l2

∣∣∣I, l1) ∗ · · · ∗ P (lk

∣∣∣I, l1, l2, · · · , lk−1) (6.8)

The LSTM predicts labels in order of decreasing frequency. The cross-entropy loss

function punishes the model not only if it predicts a label that does not apply to the

image, but also when it predicts a true label in the wrong order of the sequence.

6.3.1 Loss on Labeled Data

First, we decompose the multi-label prediction as an ordered prediction path. A

prediction path is a sequence of labels (y1, y2, · · · , yM), where the probability of each

label ym, at time step t, can be computed with the information of the image I and

159

the previously predicted labels. We train our model with a combination of labeled

and unlabeled data. Let yl be the vector of ground truth labels for an image xl

sorted from the most frequent label to the least frequent label in the dataset. During

training, at time step t, we feed yl(t − 1) as input, and the loss the model incurs is

the cross-entropy loss between the prediction ŷl(t) and the next true label yl(t) as:

Cxl(yl(t), ŷl(t)) =− yl(t) log(ŷl(t)) (6.9)

This formulation has edge cases at the first time step and last time step. To begin,

we feed the LSTM with the embedding of a special START label and force the LSTM

to predict a special END label at the end of the sequence.

6.3.2 Loss on Unlabeled Data

When training using unlabeled data, we begin by feeding the network with the

START label and employ a beam search approach to predict the set of labels for an

image xu. The loss on unlabeled data is the entropy loss on the predicted label ŷu(t)

given by:

Hxu(ŷu(t)) =− ŷu(t) log(ŷu(t)) (6.10)

6.3.3 Joint Objective for Training

The proposed joint objective function for training is given by:

Lxl,xu(t) = Cxl(yl(t), ŷl(t)) + αHxu(ŷu(t)) (6.11)

Here α ≥ 0 controls the relative importance of the entropy loss. We accumulate the

joint loss at each time step and estimate the average loss for every data point to obtain

the total loss the model incurs. Back-propagation through time algorithm is used to

update the weights of the network. In order to obtain the most informative unlabeled

160

samples to form batch B, we forward propagate XU and compute the average entropy

loss on every unlabeled sample. We then select k samples furnishing the highest

average entropies to form batch B. We update the labeled and the unlabeled data

sets as explained in Section 2 and repeat for T iterations.

VGG 16
CNN

CNN(I)

Image I START

Label
Embedding

LSTM

Projection
Layer

Prediction
Layer

Sun

Label
Embedding

LSTM

Projection
Layer

Prediction
Layer

Clouds

Label
Embedding

LSTM

Projection
Layer

Prediction
Layer

Smiley

Label
Embedding

LSTM

Projection
Layer

Prediction
Layer

END

Figure 6.2: Architecture of Multi-Label CNN-LSTM Model With Label Correla-
tion.. Best Viewed in Color.

Figure 6.2 describes the architecture of the deep active CNN-LSTM model. The

network is first fed with the START label and it first predicts Sun, this is then fed

as input to the second step which predicts Clouds, which when fed to the next step

predicts Smiley, and when that is fed to the fourth step, we sample the final END label,

stopping the process. For the CNN module, we use the 16- layer V GG16 network

pretrained on the ImageNet 2012 dataset. To keep training simple, we do not finetune

the CNN. The dimensions of the label embedding layer was 64 and that of the LSTM

recurrent layer was 512. We used RMSprop optimization with a minibatch size of

100 to avoid gradient vanishing/exploding issues. The value of momentum used to

optimize the model is 0.9. We employed dropout regularization and hyperparameter

161

tuning to obtain the values for learning rate and weight decay. We also employed

dropout regularization to avoid overfitting the data. We kept the CNN part of our

architecture unchanged for simplicity.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Iteration Number

40

45

50

55

60

65

70

75

80

A
cc

ur
ac

y(
%

)

Multilabel Deep Active learning
on Natural Scene Dataset

Random Sampling

EMAL

LMAL

Without Label Corr

With Label Corr

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Iteration Number

50

55

60

65

70

75

A
cc

ur
ac

y
(%

)

Multilabel Deep Active Learning
on IAPRTC Dataset

Random Sampling

EMAL

LMAL

Without Label Corr

With Label Corr

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Iteration Number

70

75

80

85

90

95

A
cc

ur
ac

y
(%

)

Multilabel Deep Active Learning
on NUS Wide Dataset

Random Sampling

EMAL

LMAL

Without Label Corr

With Label Corr

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Iteration Number

60

65

70

75

80

85

90

95

A
cc

ur
ac

y
(%

)

Multilabel Deep Active Learning
on MSCOCO Dataset

Random Sampling

EMAL

LMAL

Without Label Corr

With Label Corr

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
55

60

65

70

75

80

A
cc

ur
ac

y
(%

)

MultiLabel Deep Active Learning
on Pascal-VOC 2007 Dataset

Random Sampling

EMAL

LMAL

Without Label Corr

With Label Corr

Figure 6.3: Deep Active Learning on Benchmark Multi-Label Datasets. Best Viewed
in Color.

162

6.4 Experiments and Results

We used five benchmark multi-label datasets to evaluate our framework: the Nat-

ural Scene (Zhang and Zhou (2007)), IAPR-TC-12 (Wang et al. (2010)), NUS-WIDE-

OBJECT(Chua et al. (2009)), MSCOCO (Lin et al. (2014)) and PASCAL-VOC 2007

(Everingham et al. (2010)). We used the example based active learning (EMAL) algo-

rithm and example-label based active learning (LMAL) algorithms (Wu et al. (2014))

as baselines for comparison, as these frameworks were recently shown to outperform

several multi-label active learning algorithms. We also used Random Sampling as a

comparison baseline.

Our objective was to test the performance of the proposed framework and not to

outperform the best accuracy results on these datasets. The datasets were divided

into an initial training set, an unlabeled set and a test set. Each algorithm (baseline

and proposed) selected k instances from the unlabeled pool to be labeled in each

iteration. After each iteration, the selected points were removed from the unlabeled

set and appended to the training set. The performances of all the algorithms were

evaluated on the test set. The objective was to study the improvement in perfor-

mance of the algorithms on the test set with each iteration. Our experiments were

run for T = 20 iterations. The EMAL and LMAL algorithms were not proposed in

the context of deep learning. However, to facilitate fair comparison with our method,

we train the CNN described in Section 3 using the standard loss function and then

apply the active selection criterion on the unlabeled data.

The performance of the proposed algorithm is depicted in Figure 6.3. In each

figure, the x-axis specifies the iteration number and y-axis denotes the accuracy on

the test set. We observe that Random Sampling depicts the least performance on all

163

the five datasets. The LMAL method does better than EMAL, which in turn does

better than Random Sampling. Our deep active CNN model without label correlation

performs better than all the baselines. This shows the usefulness of integrating an

active sample selection criterion in the loss function to train a deep network. Our

deep active model with label correlation consistently depicts the best performance

across all datasets. This further depicts the merit of incorporating label correlations

in multi-label active learning using deep learning architectures.

Figure 6.4 presents an analysis of the unlabeled samples queried for annotation. In

Figure 6.4(a), we compare the 200 samples that are chosen to form batch B after it-

eration number 12 on the NUS-WIDE-OBJECT dataset using the proposed methods

and Random Sampling. Figure 6.4(b) and 6.4(c) show the heatmap of the correspond-

ing label co-occurence matrix and frequency of label occurence in the dataset. We

know from (Wang et al. (2016)) that the CNN-LSTM model trained using the con-

ventional cross entropy loss easily predicted labels with high co-occurence and labels

that occurred frequently in the data.

From Figure 6.4 , we see that our deep active model with label correlation at-

tempts at selecting two types of samples - those that exhibit low dependency on

other labels and those that occur less frequently in the data. It selects fewer samples

of labels that co-occur and labels that occur frequently.

For example, from Figure 6.4 (a), we see that the tall violet bars correspond to

the labels “Bear”, “Book”, “Computer”, “Flags” and “Zebra”. From Figure 6.4 (b),

we see that the above labels have low co-occurence and, from Figure 6.4 (c), are the

least frequently occurring labels. The short violet bars in Figure 6.4 (a) correspond to

164

labels “Boats”, “Sun”, “Trees”, and “Vehicle”. These labels have high co-occurence

(Figure 6.4 (b)) and occur very frequently (Figure 6.4 (c)). Our CNN model with-

out label correlation also concentrates on selecting less frequent samples (refer to the

green bars in Figure 6.4 (a) and the corresponding label frequencies in Figure 6.4

(c)). This corroborates the significance of the proposed joint training objective and

the effectiveness of the active sampling criterion employed.

The samples selected by Random Sampling do not bear any specific trend to the

label/sample distribution in the dataset, as seen from the yellow bars in Figure 6.4

(a). This shows that the proposed deep active models are able to successfully augment

the training set with under-represented samples and labels, thereby contributing to

the improvements in the performance of the models.

165

Active Sampling for NUS-WIDE OBJECT

B
ea

r
B

ir
ds

B
oa

ts
B

oo
k

C
ar

s
C

at
C

om
pu

te
r

C
or

al
C

ow D
og E
lk

F
is

h
F

la
gs

F
lo

w
er

s
F

ox
H

or
se

s
L

ea
f

P
la

ne
R

oc
ks

Sa
nd

Si
gn

St
at

ue
Su

n
T

ig
er

T
ow

er
T

oy
T

ra
in

T
re

e
V

eh
ic

le
W

ha
le

s
Z

eb
ra

0

5

10

15

20

25

30

N
um

be
r

of
 E

xa
m

pl
es

With Label Corr
Without Label Corr
RandomSamp

Label Co-occurence Matrix-NUS-WIDE-OBJECT

B
ea

r

B
ir

ds

B
oa

ts

B
oo

k

C
ar

s

C
at

C
om

pu
te

r

C
or

al

C
ow D
og E
lk

F
is

h

F
la

gs

F
lo

w
er

s

F
ox

H
or

se
s

L
ea

f

P
la

ne

R
oc

ks

Sa
nd

Si
gn

St
at

ue

Su
n

T
ig

er

T
ow

er

T
oy

T
ra

in

T
re

e

V
eh

ic
le

W
ha

le
s

Z
eb

ra

Bear
Birds
Boats
Book
Cars

Cat
Computer

Coral
Cow
Dog
Elk

Fish
Flags

Flowers
Fox

Horses
Leaf

Plane
Rocks
Sand
Sign

Statue
Sun

Tiger
Tower

Toy
Train

Tree
Vehicle
Whales

Zebra
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency of Labels in NUS-WIDE-OBJECT

B
ea

r
B

ir
ds

B
oa

ts
B

oo
k

C
ar

s
C

at
C

om
pu

te
r

C
or

al
C

ow D
og E
lk

F
is

h
F

la
gs

F
lo

w
er

s
F

ox
H

or
se

s
L

ea
f

P
la

ne
R

oc
ks

Sa
nd

Si
gn

St
at

ue
Su

n
T

ig
er

T
ow

er
T

oy
T

ra
in

T
re

e
V

eh
ic

le
W

ha
le

s
Z

eb
ra

0

500

1000

1500

2000

2500

3000

3500

4000

F
re

qu
en

cy

Figure 6.4: Analysis of the Unlabeled Samples Queried for Annotation. Best Viewed
in Color.

166

6.5 Summary

In this chapter, we proposed a novel approach to solve the problem of multi-

label deep active learning for image classification. To the best of our knowledge, this

is the first research effort to exploit the feature learning capabilities of CNN and

LSTM architectures for active learning in the multi-label setting. We proposed two

deep learning based frameworks, one which does not consider label correlation and

another model which does, to address the challenging problem of multi-label active

learning. First, we proposed a framework to solve this problem without considering

the correlation among the multiple labels using CNNs. Second, we modeled the corre-

lations that exist among the multiple labels using CNN-LSTMs in an active learning

setting.

We proposed a multi-label deep active learning framework that did not model the

inherent label correlations and a framework that modeled the relationships between

the multiple labels. We successfully integrated an entropy based active sampling cri-

terion in the loss function and used this novel joint objective to train the deep models.

Our empirical results on benchmark multi-label datasets showed that the proposed

models outperformed state-of-the-art multi-label active learning algorithms, thereby

corroborating the potential of our methods for real-world classification problems.

167

Chapter 7

DEEP ACTIVE LEARNING FOR IMAGE REGRESSION

Image regression is the problem of predicting continuous values such as angles or

distances by analyzing image data. Regression-based computer vision applications

require large amounts of manually annotated training data, which is expensive to ac-

quire. Active Learning (AL) algorithms are known to maximize the performance of a

learning model using as few labeled training examples as possible. These algorithms

automatically identify the informative samples from large amounts of unlabeled data

and significantly reduce human annotation efforts in inducing a learning model. Addi-

tionally, deep models (especially Convolutional Neural Networks (CNNs)) have effec-

tively contributed to improve the performance in a variety of regression applications.

In this paper, we exploit the feature learning capabilities of deep neural networks and

propose a novel paradigm to address the problem of active learning for regression.

We use Expected Model Output Change (EMOC) as the active selection criterion

and integrate it within the objective function used to train the deep active model.

The resulting model optimizes this novel objective function and learns from salient

examples that cause maximum change to the current model. Extensive empirical re-

sults on benchmark regression datasets demonstrate the effectiveness of the proposed

paradigm in choosing the most informative samples for learning and annotation.

In regression-based computer vision applications, each data sample is associated

with a set of continuous values. Image regression is the task of predicting these contin-

uous quantities by studying image data. A fundamental challenge in training models

for image regression is the requirement of large amounts of labeled training data.

168

The rapid escalation of technology and the widespread emergence of technological

equipment has resulted in the generation of humongous amounts of digital data in

the modern era. However, while gathering large quantities of unlabeled data is cheap

and easy, annotating the data is an expensive process in terms of time, labor and

human expertise. Thus, developing algorithms to minimize human effort in training

models for image regression is of immense practical importance. Passive learning

randomly selects training examples according to the underlying data distribution and

sends them to the oracle for manual annotations. This process is cost intensive with

respect to both time and labor; forcing a trade-off between data quality and algorithm

performance. Also, not all examples chosen by passive learning contribute construc-

tively to the training process. Active learning algorithms have shown to successfully

reduce the cost of data annotation by effectively selecting the most informative sam-

ples that maximize the accuracy of the model when labeled and added to the training

set. In the recent years, AL has been applied in many machine learning applications

(Campigotto et al. (2014); de Fortuny and Martens (2015); Zliobaite et al. (2014)).

While AL has been extensively studied for classification, AL for regression is

much less explored (Lewis and Gale (1994); Settles and Craven (2008); Tong and

Koller (2001)). The output for regression is a continuous value (and not posterior

probabilities), therefore margin-based sampling strategies are not applicable. Also,

distance-based sampling methods are unsuitable as there is no concept of distance

in regression tasks. Existing work on AL for regression can be found in (Burbidge

et al. (2007); Willett et al. (2006); Sugiyama and Nakajima (2009); Sugiyama (2006);

Yu and Kim (2010); Cohn et al. (1996)). Contributing to the need for a general AL

framework for regression, Cai et al. proposed a model that maximizes the Expected

Model Output Change (EMOC) (Cai et al. (2013)). The proposed criterion considers

169

the capacity of unlabeled examples to change the current model in order to tackle the

problem of AL for regression. Inspired by the Stochastic Gradient Descent (SGD)

update rule, where the model parameters are updated repeatedly using the gradient

of the loss with respect each training example, the gradient of the error with respect

to a candidate example is used to estimate the model changes. In 2016, Kading et

al. proposed a generalization of the EMOC principle for deep neural network archi-

tectures and applied it for image annotation.

Deep learning algorithms have recently emerged as a dominant machine learning

tool to learn representative features for classification and regression tasks (LeCun

et al. (2015)). Architectures such as the CNNs, RNNs, etc. have created a paradigm

shift in multimedia computing applications. DL has been widely explored in computer

vision and has achieved tremendous improvements in several vision tasks including

image recognition (Krizhevsky et al. (2012)), object detection (Girshick et al. (2014)),

multimodal emotion recognition (Ranganathan et al. (2016a,b)) and image segmen-

tation (Liu et al. (2015)) among others. Besides classification, CNNs have also been

effectively trained for regression tasks such as human pose estimation (Li and Chan

(2014); Toshev and Szegedy (2014)), object detection (Szegedy et al. (2013)), facial

landmark detection (Sun et al. (2013)) and depth prediction (Eigen et al. (2014)).

In this chapter, we exploit the virtue of deep networks to learn rich sets of features

and fuse ideas of DL and AL to propose a novel deep active paradigm for regression.

We use Expected Model Output Change (EMOC) as the active selection criterion and

integrate it within the objective function used to train the deep active model. The

resulting model optimizes this novel objective and learns from salient examples that

cause maximum change to the current model. Extensive empirical results on bench-

170

mark regression datasets demonstrate the effectiveness of the proposed paradigm in

choosing the most informative samples for learning and annotation. Research in deep

active learning is still in a nascent stage (Ranganathan et al. (2016c); Stark et al.

(2015b); Wang and Shang (2014b); Zhou et al. (2010b)). To the best of our knowl-

edge, this is the first research effort to develop a paradigm that combines DL and AL

for regression by formulating a novel objective function.

The rest of the chapter is organized as follows: we present a survey of related

techniques in section 7.1; section 7.2 details the principle of EMOC, the proposed

deep active paradigm and the CNN model used are presented in section 7.3 and 7.4

respectively. The experiments and results are analysed in section 7.5. Finally, we

present our conclusions in section 7.7.

7.1 Related Work

In this section, we present a brief survey of existing work in deep learning and

active learning for regression.

7.1.1 Deep Learning for Regression

A large number of regression based deep learning algorithms have been recently

proposed. Here, the goal is to predict a set of continuous values as output. Recently,

CNNs have been successfully applied for human pose estimation, where the regressed

values correspond to the positions of the body joints on the image plane (Li and

Chan (2014); Pfister et al. (2014); Toshev and Szegedy (2014)). Sun et al. use CNNs

effectively to predict the facial fiducial points in facial landmark detection (Sun et al.

171

(2013)). Szegedy and Jaderberg et al. use deep networks for object and text detection

and predict a bounding box for localization (Szegedy et al. (2013); Jaderberg et al.

(2016)). The above deep models use the conventional L2 loss function for training.

Zhang et al. introduced a CNN optimized for landmark detection and attribute clas-

sification (Zhang et al. (2014)). They combine the standard L2 loss function with the

Softmax classification function to increase robustness to outliers. Wang et al. com-

bine bounding box localization with object segmentation using a similar approach

(Wang et al. (2014)). Gkioxari et al. use a loss function composed of a body pose

estimation term and an action detection term (Gkioxari et al. (2014)). Dosovitskiy

and Eigen et al. use multiple L2 loss functions for object generation and depth es-

timation (Dosovitskiy et al. (2015); Eigen et al. (2014)). From the above survey, we

see that deep models (specifically CNNs) trained using the L2 loss function can be

applied effectively for regression tasks. Therefore, we use CNNs as our preferred deep

model in this work.

7.1.2 Active Learning for Regression

In literature, work targeting AL for regression is less explored when compared to

AL methods developed for classification. Here, we summarize some of them.

Willett et al. (2006) provide a theoretical analysis of AL in the context of regres-

sion . Population based AL methods were proposed by Sugiyama (2006) using the

weighted least-squares learning where they predict the conditional expectation of the

generalization error given the input training points. A theoretically optimal AL algo-

rithm was proposed by Sugiyama and Nakajima (2009). This directly minimizes the

generalization error by employing an additive regression model. Freund et al. (1997)

172

applied a variance-based Query-by-Committee (QBC) framework to regression. Cohn

et al. (1996) minimized the output variance to reduce the generalization error. Yu and

Kim (2010) provided passive sampling heuristics based on the geometric characteris-

tics of the data . Freytag et al. (2014) proposed an approach to measure the expected

change of model outputs. For each example in the unlabeled set, the expected change

of model predictions is calculated and marginalized over the unknown label. The re-

sulting score for each unlabeled example is used for active learning with a broad range

of models and learning algorithms. Wenben Cai Cai et al. (2013) presented a novel

data sampling solution which queries the example leading to the largest model change.

Most regression-based AL techniques are developed only for sequential mode.

Batch Mode Active Learning (BMAL) techniques are very useful in practice and

it is highly desirable to derive BMAL methods in the context of regression. Existing

BMAL algorithms are derived with classification models and cannot be directly gen-

eralized to regression (Azimi et al. (2012); Belagiannis et al. (2014); Brinker (2003b);

Chakraborty et al. (2015a); Chattopadhyay et al. (2013); Guo and Schuurmans (2008);

Guo (2010b); Hoi et al. (2006b, 2009)). Cai et al. (2013) extend sequential mode AL

to BMAL by simulating the sequential mode AL behavior to simultaneously choose

a set of examples without re-training. They introduce a novel AL framework for

regression called Expected Model Change Maximization (EMCM), which queries the

examples maximizing the model change once added to the training data. Käding

et al. (2016) proposed a new generalization of the EMOC principle for deep archi-

tectures. Their algorithm actively selected relevant batches of unlabeled examples

for image annotation. Active learning and deep model training were treated as two

independent problems. A deep model was first learned using a conventional loss func-

tion. Batches of unlabeled examples that lead to a significant model output change,

173

based on the EMOC scores, were selected for annotation. Although Käding et al.

(2016) presented easy-to-implement approximations that yielded efficient techniques

for active selection, the deep model employed was not used to its complete ability.

The merit of a deep model lies in its ability to learn rich sets of features for a given

task; this property was not effectively leveraged.

7.1.3 Deep Active Learning for Regression

Even though deep learning and active learning for regression have been studied

individually, research on combining the two is unexplored. In this paper, we exploit

the feature learning capabilities of deep networks and propose a novel framework to

address the problem of active learning for regression. We use Expected Model Output

Change (EMOC) as the active selection criterion and integrate it within the objective

function used to train the deep model. Since the active learning criterion is embedded

within the loss function, the network gets specifically trained for the task of active

learning and can potentially depict better performance than a network trained merely

using a conventional L2 loss. Furthermore, our technique considers changes in all the

parameterized layers of the deep network and implicitly combines them into a single

criterion for active sample selection. This is in contrast to existing methods that

only make use of the current output of a deep neural network for querying unlabeled

samples. We now describe our framework.

7.2 Proposed Framework

In our active learning setting, we are given labeled and unlabeled sets of samples

(images) for training. In addition, there is also a test set of images for evaluation

174

purposes. In each iteration of our algorithm, a batch of unlabeled samples is selected

and given to the human oracle for annotation (labeling). These labeled samples are

removed from the unlabeled set and appended to the labeled set. An active learning

model is iteratively trained using the updated labeled and unlabeled datasets. The

trained model is evaluated using the test set. This procedure is repeated until we run

out of budget to get labeled data from the oracle. The challenge in active learning

is to identify the most informative set of unlabeled samples to be labeled by the oracle.

The core idea of this research is to leverage the feature learning capabilities of deep

neural network models to identify the most informative unlabeled samples for active

learning. We attempt to integrate an active sample selection criterion in the objective

function and train the network to minimize this objective. The features learned by

the network are then specially tailored to the active learning task. This enables the

model to better identify the samples that can augment maximal information to the

model. We use the EMOC criterion to quantify the utility of an unlabeled sample in

our active learning framework. We achieve this by adding an EMOC based loss term

to the conventional regression objective and train the network to optimize this joint

objective function.

Formally, let g(x;φ) be the output of a neural network where parameters φ are the

parameters of the network and x is the input image. In this work, we focus on lay-

ered deep models, g(xi;φ) = gl(· · · (g2(g1(xi;φ1);φ2) · · ·);φl). Here, φ = (φ1, · · · , φl)

denotes the parameters of the deep model and l is the total number of layers in

the deep model. The training data consists of both labeled and unlabeled samples

(images). Let the set of labeled samples be represented as XL = {x1, x2, . . . , xnl}.

The corresponding labels for XL are denoted by Y L = {y1, y2, . . . , ynl} represent-

175

ing continuous real values; yi ∈ R. Let the set of unlabeled samples be XU =

{xnl+1, xnl+2, · · · , xnl+nu}. Let X = XL∪XU denote the union of the disjoint subsets

XL and XU and n = nl+nu. The goal of active learning is to select a batch B contain-

ing k unlabeled samples for manual annotation such that the modified learner trained

on labeled set XL∪B and unlabeled set XU\B has maximum generalization capabil-

ity. We now formulate a novel loss function to train the deep CNN for active learning.

7.2.1 Loss on Labeled Data

We use the conventional L2 loss for regression on the labeled data. Consider

a subset of labeled samples X l = {x1, x2, · · · , xn′l} and their corresponding labels

Y l = {y1, y2, · · · , yn′l}. Let Ŷ l = [ŷ1, ŷ2, · · · , ŷn′l] = [g(x1;φ), g(x2;φ), . . . , g(xn′l ;φ)],

be the predictions of the deep neural network on the subset of labeled data. The

prediction loss is given by,

L(φ;X l, Y l) =
1

n′l

n′l∑
i=1

(yi − ŷi)2 . (7.1)

Minimizing this loss iteratively over different subsets of the training data ensures that

the trained model makes predictions that are consistent with the training data. Dur-

ing the process of active learning the labeled dataset is repeatedly augmented with

newly obtained labeled data taken from the unlabeled dataset. The model g(.;φ), is

in turn updated by retraining with the updated labeled set.

7.2.2 Principle of Expected Model Output Change (EMOC)

The EMOC criterion provides a principled way to quantify the importance of a

sample by measuring the difference of model outputs when trained with and without

176

a particular data sample:

4g(x′) = Ey′|x′Ex
∣∣∣∣g(x;φ′)− g(x;φ)

∣∣∣∣
1
. (7.2)

In Equation (7.2), ||g(x;φ′)−g(x;φ)||1 computes the L1 norm of the difference between

the outputs of the models. Here, φ′ denotes the parameters of the model obtained by

additionally training with unlabeled example x′. In order to estimate φ′ we need to

know the label of x′. We assume y′ is the label for x′. In general, the first expectation

operation is used to marginalize over y′ in the above equation to get the expected

model change. The expectation Ex is estimated by computing the empirical mean

across the dataset and the expectation Ey′|x′ is based on the output of the updated

model g(.;φ′) for all possible values of y′ given x′.

A direct implementation of the EMOC principle would require training a model

from scratch for each example x′ in the dataset, making it very computation intensive.

Therefore, development of efficient techniques that approximate the change in model

output 4g(.), is required. Freytag et al. derived a closed form expression for 4g(x′)

focusing on Gaussian process regression Freytag et al. (2014). Käding et al. used the

stochastic gradient approximation with a single sample to estimate model parameter

updates Käding et al. (2016). This approximation is given in Equation (7.3), where

the gradient of the objective with respect to a candidate example (x′, y′) is used to

estimate the model changes:

(φ′ − φ) ≈ η∇φL(φ; (x′, y′)), (7.3)

where, η > 0 is some constant. The difference ||g(x;φ′) - g(x;φ)||1 can be approxi-

mated using the first-order Taylor series approximation as:

∣∣∣∣g(x;φ′)− g(x;φ)
∣∣∣∣
1
≈
∣∣∣∣∇φg(x;φ)>(φ′ − φ)

∣∣∣∣
1
. (7.4)

177

We substitute Equation (7.3) in Equation (7.4) to get:

||g(x;φ′)− g(x;φ)||1 ≈ η
∣∣∣∣∇φg(x;φ)>∇φL(φ; (x′, y′))

∣∣∣∣
1
. (7.5)

Since marginalizing over all possible values for y′ is impractical, Käding et al. pro-

posed an approximation which considers only the most likely label ȳ′, (as the label

for unlabeled sample x′), inferred by the model g Käding et al. (2016). It is there-

fore assumed that all examples in a given unlabeled set X ′ have label ȳ′. With this

simplifying approximation the EMOC score for each unlabeled set X ′ is given by:

4g(X ′) =
∑
x′∈X′

Ex
∣∣∣∣∇φg(x;φ)>∇φL(φ; (x′, ȳ′))

∣∣∣∣
1
. (7.6)

7.2.3 Loss on Unlabeled Data

In our active learning framework, we leverage the principle of EMOC in develop-

ing the loss function to train the deep network. We train the regression network such

that all the unlabeled samples have low EMOC scores with the trained model, i.e., no

unlabeled sample can drastically affect the model parameters. We see the following

benefits to incorporating the unlabeled data when training the network: (i) the CNN

network is trained to extract features from both the labeled and unlabeled images,

making it more robust compared to a network that only trains with labeled images,

(ii) the EMOC loss from unlabeled data acts like a regularizer preventing over-fitting

and improving the generalization capabilities of the network, (iii) since the network

minimizes the EMOC loss, this helps in selecting the most relevant samples to form

the batch B. This enables the network to converge to the optimal φ∗ with fewer

labeled samples. On the basis of these arguments, we append a term in the loss

function which enforces all the unlabeled samples to have low EMOC scores.

Let Xu = {x′1, x′2, · · · , x′n′u}, denote a subset of unlabeled samples. We do not have

178

Labeled Data (XL)

Unlabeled Data (XU)

Mini-batch
L2 Loss on

Labeled Data

EMOC Loss on
Unlabeled Data

O
U
T
P
U
T

Figure 7.1: Illustration of the Proposed Deep Active Learning Framework. The
deep model is trained with a combination of labeled and unlabeled mini-batches to
minimize the L2 loss over labeled data and EMOC loss over unlabeled data. A batch
B of unlabeled points furnishing maximum EMOC scores is annotated and added to
the labeled set. Best viewed in color.

the labels for Xu. Estimating the model change in Equation (7.2), by marginalizing

over all possible labels for Xu is computation-intensive and impractical. We therefore

approximate the labels of Xu to be the mean of the labels inferred by model g, along

the lines of Käding et al. (2016). We forward propagate Xu = {x′1, x′2, · · · , x′n′u}

through the network g(.;φ) and obtain the predictions Ŷ u = {ŷ′1, ŷ′2, · · · , ŷ′n′u}. Let

ȳ′ = 1/n′u
∑n′u

i=1 ŷ
′
i be the mean of Ŷ u. The unlabeled samples and their approximated

labels are: {(x′1, ȳ′), (x′2, ȳ′), · · · , (x′n′u , ȳ
′)}. We formulate Equation (7.6) as a loss on

unlabeled data. Therefore, in our framework, the loss over a subset of unlabeled data

is given by:

U(φ;Xu) =
∑
x′∈Xu

Ex
∣∣∣∣∇φg(x;φ)>∇φL(φ; (x′, ȳ′))

∣∣∣∣
1
. (7.7)

Here, L(φ; (x′, ȳ′)) = (ȳ′− ŷ′)2, where x′ is an unlabeled sample, ȳ′ is its approximate

label, ŷ′ is the output of the network and Ex is the empirical mean over the dataset.

Minimizing this loss ensures that the features are learned in such a way that all the

unlabeled samples have low EMOC scores on the trained model.

179

7.2.4 Novel Joint Objective Function

The deep model is trained using both labeled and unlabeled data with the objec-

tive of minimizing the L2 loss on labeled data and the EMOC loss on the unlabeled

data. The joint loss ensures that the network can accurately predict the labels of

the labeled training data while the unlabeled samples have minimal effect on the

trained model parameters; i.e., the model depicts good performance on the unlabeled

data. Over successive iterations, the positive effects of this joint training with labeled

and unlabeled data get enhanced. Our novel joint objective function over a batch of

labeled and unlabeled data is given by:

J (φ,X l, Y l, Xu) = L(φ;X l, Y l) + λU(φ;Xu). (7.8)

Here, λ ≥ 0 controls the relative importance of the two terms. The objective function

in Equation (7.8) is minimized over multiple batches of labeled and unlabeled data

using mini-batch gradient descent. In order to train our network, we compute ∇φJ

and use back-propagation to update the network parameters (the next section gives

the expression for the gradient ∇φJ). Once the network is trained, the unlabeled

examples with the largest EMOC scores are selected to form the batch B. These sam-

ples are annotated by a human expert and the resulting labeled batch is appended

to the labeled set XL. Since the network is trained to minimize the EMOC score of

the unlabeled samples, the unlabeled samples furnishing the highest EMOC scores

after model training are the most informative data points with respect to the current

model. They are hence queried for labels.

180

7.2.5 Gradient of Objective Function

We provide a high level overview of the gradient computation of the objective

function in this section. Please refer to the supplemental file for the complete deriva-

tion.

The gradient of the joint objective function for deep active regression is given by:

∇φJ (φ,X l, Y l, Xu) = ∇φL(φ;X l) + λ∇φU(φ;Xu), (7.9)

where the gradients for individual layers are:

∂L(φ;Xl)
∂φj

=
−2

n′l

∑n′l
i=1

[
(yi − ŷi)∂g(xi;φ)∂φj

]
, ∀j ∈ {1, 2, · · · , l}, (7.10)

and

∂U(φ;Xu)

∂φj
=
∑
x′∈Xu

Ex
∂

∂φj

∣∣∣∣∇φg(x;φ)>∇φL(φ; (x′, ȳ′))
∣∣∣∣
1

=
∑
x′∈Xu

Ex (Qj), ∀j ∈ {1, 2, · · · , l}. (7.11)

In equation (A.31), Qj stands for,

Qj =

+(Qj1 +Qj2) if ∇φg(x;φ)>∇φL(φ; (x′, ȳ′)) ≥ 0

−(Qj1 +Qj2) if ∇φg(x;φ)>∇φL(φ; (x′, ȳ′)) < 0,

(7.12)

with

Qj1 =
∂

∂φj

(
∇φg(x;φ)>

)
∇φL(φ; (x′, ȳ′)), (7.13)

and

Qj2 = ∇φg(x;φ)>
∂

∂φj
(∇φL(φ; (x′, ȳ′)) . (7.14)

We compute Qj1 + Qj2 for a fixed x′ ∈ Xu and for all x ∈ X l. Then we com-

pute the expected value Ex(Qj). We do this for every x′ ∈ Xu and then compute

181

Algorithm 4 The proposed Deep Active Paradigm for Regression

Input: The labeled set XL, labels Y L, unlabeled set XU , weight parameter λ, batch

size k, maximum number of iterations T

1: for t = 1, 2, . . . T do

2: Compute the derivative of the joint objective function in Equation (7.8)

3: Train the deep model to obtain the network weights

4: Compute the EMOC score of each unlabeled sample, using Equation (??)

5: Select a batch B containing k unlabeled samples from Xu furnishing the high-

est EMOC scores

6: Update XL → XL ∪B; XU → XU\B

∑
x′∈Xu

Ex(Qj), ∀j ∈ {1, 2, . . . , l} to get ∇φU(φ;Xu).

Figure (7.1) shows a graphical illustration of the proposed framework. We present

the network with a mini-batch of n′ data points consisting of n′l labeled points and n′u

unlabeled points; n′ = n′l + n′u, (n
′
l ≤ nl, n

′
u ≤ nu). The L2 loss is computed over the

labeled data in the mini-batch and the EMOC loss is computed over the unlabeled

data in the mini-batch. The negative gradient of the joint objective function with

respect to the mini-batch is back-propagated to train the CNN. The weight parameter

λ was selected to be 1 giving equal weightage to both the terms. When the network

has seen all the data points in the training set (both labeled and unlabeled), we con-

sider it as one epoch. We repeat the training procedure over multiple epochs until

convergence and consider this one training iteration t of the active learning algorithm.

At the end of every iteration t, we sample the most informative batch of unlabeled

data samples (samples furnishing highest EMOC score from Equation (7.6)) to form

B. We obtain the labels for B using an oracle and update the labeled and unlabeled

182

datasets as discussed earlier. We iterate until we run out of unlabeled data points to

be labeled or run out of budget to get them labeled. For implementation purposes,

we fix the maximum number of iterations as T . The pseudo-code of the proposed

algorithm is given in Algorithm 4.

We note that an outlier in the dataset also furnishes a high EMOC score. There-

fore, a significant change to the current model output does not always lead to better

generalization performance. However, when the model has been altered by an out-

lier, the joint training objective along with the EMOC sampling criterion selects an

informative set of examples in the next iteration that instantly alleviates the adverse

effect of the outlier. In general, the number of outliers is low compared to the number

of samples in the training set. Hence, it is reasonable to assume that the proposed

framework will result in good generalization performance when salient examples are

added to the labeled set over time.

7.3 Experiments and Results

7.3.1 Implementation Details

Figure (7.2) illustrates the network architecture of the CNN used for deep active

regression. As seen in Figure (7.2), the size of the input image in the input layer

of the CNN is 128 × 128 pixels. The convolution layer of our CNN model performs

convolution operations with a kernel size of 3×3 pixels to acquire feature maps of the

input information. The dimension of the first convolution layer is 128×128×32 which

denotes a feature size of 128×128 pixels and 32 different convolution kernels. All con-

volution layers are connected to RELU activation functions and max-pooling layers.

183

Input Image

128 x 128 x 3

Conv. Layer 1

128 x 128 x 32

Conv. Layer 2

64 x 64 x 64

Conv. Layer 3

32 x 32 x 126

Conv. Layer 4

16 x 16 x 256

Fully Connected
Layers

2048 2048

Output

Figure 7.2: CNN Architecture for Deep Active Regression

The dimensions of the second, third and fourth convolution layers are 64 × 64 × 64,

32× 32× 128 and 16× 16× 256 respectively. The dimensions of each fully connected

layer is 2048. The activation function of the output layer is a linear function so as

to obtain a continuous value output. The network is trained by minimizing the joint

loss function given in Equation (7.8) using mini-batch gradient descent with an initial

learning rate of 0.01. The implementations were performed in Matlab R2017b on a

machine running a NVIDIA 1080Ti GPU with 11 GB memory.

7.3.2 Datasets and Experimental Setup

We used five benchmark regression datasets to evaluate our deep active framework;

(1) Synthetic hand-written digit dataset (Zhu et al. (2003)), (2) Rotated MNIST Digits

(Laptev et al. (2016)), (3) WIKI Age Estimation Dataset (Rothe et al. (2015)), (4)

BIWI Kinect Dataset (Baltrušaitis et al. (2012)) and the (5) QMUL Multiview Face

Dataset (Sherrah and Gong (2001)). These datasets represent different application

domains (head pose, age and handwritten digit recognition) and have been widely

used for testing regression models.

Our objective was to test the performance of the proposed active sampling frame-

184

work for deep learning and not to outperform the best accuracy results on these

datasets; so, we did not follow the precise train/test splits given for these datasets.

We split the dataset into three disjoint parts to construct the initial labeled set XL,

unlabeled set XU and the test set T . Each algorithm (baseline and proposed) se-

lected k instances from the unlabeled pool to be labeled in each iteration. After each

iteration, the selected samples were removed from the unlabeled set, appended to the

training set and the performance was evaluated on the test set. The goal was to study

the improvement in performance on the test set with increasing sizes of the training

set. The experiments were run for 15 iterations. The dataset details are summarized

in Table 1.

Dataset Labeled Unlabeled Test Set Batch Size

Name (XL) (XU) (T) (k)

Synthetic Handwritten Digits 500 4500 1000 200

WiKI Age Estimation 20000 30000 10000 400

MNIST Rotation 15000 25000 5000 400

BIWI Kinect 4000 6000 4000 400

QMUL Multiview 800 4200 1000 200

Table 7.1: Dataset Details

7.3.3 Comparison Baselines and Evaluation Metrics

To study the performance of our proposed framework, we compared our method

against four state-of-the-art regression-based active learning algorithms:

1. Käding et al. (2016): In this method a CNN, described in Section 7.3.1, is

trained using the L2 loss function given in Equation (7.1). Unlabeled samples

185

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Iteration Number

0

50

100

150

200

250

300

350

400

450

500

550

600

M
S

E

SYNTHETIC HAND-WRITTEN DIGIT DATASET

Proposed Method
Kading [23]
QBC
Greedy
Random Sampling

Figure 7.3: MSE Vs Iteration Number: Synthetic Handwritten Digits

with the largest EMOC are selected to form a batch. Note that, this is a two-

step process, where a CNN is first trained using a conventional loss function

and the EMOC criterion is then applied for active sampling. In contrast, our

framework integrates the EMOC criterion in the loss function to train the net-

work.

2. Greedy: This model selects unlabeled examples having the largest minimum

distance from labeled data Yu and Kim (2010).

3. Query-by-Committee (QBC): This model selects data points that have the

largest variance among the committee’s predictions Burbidge et al. (2007).

4. Random Sampling: This method selects a batch of samples at random from

the unlabeled pool.

186

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Iteration Number

0

50

100

150

200

250

300

350

400

450

500

550

600

M
S

E

WIKI AGE ESTIMATION DATASET

Proposed Method
Kading [23]
QBC
Greedy
Random Sampling

Figure 7.4: MSE Vs Iteration Number: WIKI Age Estimation

The QBC and Greedy active learning strategies were not proposed in the context

of deep learning. However, for fair comparison, we trained the CNN described in

Section 7.3.1 using the standard L2 loss function and then applied the active selection

criterion.

For evaluation, we used two popular error-based metrics, Mean Squared Error

(MSE) and Mean Absolute Error (MAE), to study the performance of each method

on the test set:

MSE =
1

|T |

|T |∑
i=1

(yi − g(xi))
2 (7.15)

MAE =
1

|T |

|T |∑
i=1

|yi − g(xi)| (7.16)

Here, |T | denotes the size of the test set; yi and g(xi) are the ground truth and the

187

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Iteration Number

0

50

100

150

200

250

300

M
S

E

MNIST ROTATION DATASET

Proposed Method
Kading [23]
QBC
Greedy
Random Sampling

Figure 7.5: MSE Vs Iteration Number: MNIST Rotation

predictions of test sample xi.

7.3.4 Active Learning Performance

The performance of the five active learning algorithms on the benchmark datasets

are presented in Figures (7.3, 7.4, 7.5, 7.6 and 7.7). The x-axis represents the to-

tal number of iterations and the y-axis denotes the MSE values. In general, we see

that, the MSE values decrease when the number of training points increases for all

five algorithms. This is in accordance with the insight that the performance of the

model increases with increase in labeled data. Our proposed deep active framework

consistently depicts the best performance across all datasets; at any given iteration

number, it has the least error among all the methods. This shows that the pro-

posed framework can appropriately identify the most informative unlabeled samples

for manual annotation and can attain a given performance level with the least hu-

188

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Iteration Number

0

100

200

300

400

500

600

700

800

900

M
S

E

BIWI KINECT DATASET

Proposed Method
Kading [23]
QBC
Greedy
Random Sampling

Figure 7.6: MSE Vs Iteration Number: BIWI Kinect

man effort. The performance of the Käding et al. (2016) baseline is better than the

other three baselines, but is not as good as our method. This corroborates the fact

that training a deep network to minimize a joint loss function containing the EMOC

criterion depicts better performance than the two-step process of training a network

to minimize the L2 loss and then selecting samples based on EMOC. The QBC and

Greedy algorithms outperform Random Sampling, but perform poorly compared to

the Käding et al. (2016) baseline.

The MAE active learning curves for all the five datasets depict similar trends as

the MSE curves. For the sake of brevity, we report the label complexity values in

Table 7.2 (corresponding to MAE = 9). Each entry in the table denotes the number

of unlabeled samples that had to be annotated to achieve an MAE value of 9. The

results follow a similar pattern as in Figure ??; the proposed method requires the

189

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Iteration Number

0

100

200

300

400

500

600

700

800

M
S

E

QMUL MULTIVIEW FACE DATASET

Proposed Method
Kading [23]
QBC
Greedy
Random Sampling

Figure 7.7: MSE Vs Iteration Number: QMUL Multiface

least amount of labeled samples (and consequently, the least human effort) to attain

the given level of performance, for all the datasets. For the QMUL dataset, Random

Sampling does not attain an MAE of 9 even after 15 iterations. The results unani-

mously lead to the conclusion that the proposed method consistently depicts the best

performance over all the baseline algorithms, across all datasets.

7.3.5 Study of the Active Sampling Criterion

In order to further evaluate the active sampling criterion employed in our frame-

work, we performed the following two experiments. We conducted these experiments

on the MNIST Rotation dataset.

Experiment 1

190

Dataset Name Proposed Method Käding [23] Greedy QBC Random Sampling

Synthetic Handwritten Digits 400 600 1000 1000 1200

WiKI Age Estimation 1200 1600 2000 2400 2800

MNIST Rotation 1200 1600 2400 2000 2800

BIWI Kinect 2000 2400 4000 3200 5200

QMUL Multiview 1000 1400 1600 2000 -

Table 7.2: Label Complexity for MAE = 9. The proposed framework requires
the least amount of labeled data to reach a given performance level (MAE = 9)
compared to all the baseline methods. For the QMUL dataset, Random Sampling
does not attain an MAE of 9 even after 15 iterations.

(a) Error Vs Digit Class using Proposed Method

0 1 2 3 4 5 6 7 8 9
Digit Class

0

20

40

60

80

100

M
S

E

(b) Error Vs Digit Class using Random Sampling

0 1 2 3 4 5 6 7 8 9
Digit Class

0

50

100

150

200

M
S

E

(c) Deep Active Learning Iter #9 (Proposed method)

0 1 2 3 4 5 6 7 8 9
Digit Class

0

20

40

60

80

100

N
u

m
b

er
 o

f
S

am
p

le
s

(d) Deep Active Learning Iter #9 (Random Sampling)

0 1 2 3 4 5 6 7 8 9
Digit Class

0

10

20

30

40

50

60

70

80

N
u

m
b

er
 o

f
S

am
p

le
s

Figure 7.8: Results after Iteration Number 9. (a) MSE Vs Digit Class using Pro-
posed method, (b) MSE Vs Digit Class using Random sampling, (c) Number of sam-
ples of each digit (0 - 9) selected using proposed method and (d) Number of samples
of each digit (0 - 9) selected using Random sampling. Best viewed in color.

191

We selected 200 samples of each digit (0−9) at random from the test set (200×10 =

2000 samples). Figure (7.8(a)) shows the performance of the proposed model (after

iteration number 9) per digit class on the selected 2000 samples. The x-axis corre-

sponds to the digit class and y-axis shows the MSE. We perform similar experiments

using the Random Sampling method. The performance of Random Sampling per digit

class after iteration number 9 is shown in Figure 7.8(b). We then plot the number

of samples of each digit picked to form batch B after iteration number 9 using the

proposed method and Random Sampling. The results are shown in Figure 7.8(c) and

7.8(d) respectively.

Observations: From Figure 7.8(a), we see that, the top four digits furnishing the

maximum errors are digits 0,4,6 and 1 when using the proposed model. Similarly

from Figure 7.8(b), we observe that the top four digits furnishing the maximum error

are 1,5,0 and 9 when using Random Sampling. From Figure 7.8(c), we observe that,

65% of the 400 samples selected to form batch B by the proposed method, belonged

to digits 0,4,6 and 1 (the digits furnishing the maximum error using the model after

iteration number 9). This shows that our proposed model intelligently selects samples

to augment the training set, which can maximally reduce the generalization error. On

the other hand, when using Random Sampling (Figure 7.8(d)), we notice that only

34.75% of the 400 samples selected to form batch B belonged to the four classes fur-

nishing maximum error. This shows that there is no correlation between the number

of samples selected for a digit to its corresponding error when using Random Sampling

accounting for its poor performance.

Experiment 2

In this experiment, we further look into the rotation angle of the four digits furnishing

maximal errors from the previous experiment. Figure 7.9(a) shows the performance

192

ZERO

1 2 3 4 5 6 7 8 9101112
Angle Bins

0

50

100

150

200

M
S

E

FOUR

1 2 3 4 5 6 7 8 9101112
Angle Bins

0

50

100

150

M
S

E

SIX

1 2 3 4 5 6 7 8 9101112
Angle Bins

0

50

100

150

200

250

M
S

E

ONE

1 2 3 4 5 6 7 8 9101112
Angle Bins

0

50

100

150

M
S

E

ZERO

1 2 3 4 5 6 7 8 9101112
Angle Bins

0

5

10

15

20

25

30

N
u

m
b

er
 o

f
S

am
p

le
s

FOUR

1 2 3 4 5 6 7 8 9101112
Angle Bins

0

2

4

6

8

10

12

14

N
u

m
b

er
 o

f
S

am
p

le
s

SIX

1 2 3 4 5 6 7 8 9101112
Angle Bins

0

5

10

15

20

N
u

m
b

er
 o

f
S

am
p

le
s

ONE

1 2 3 4 5 6 7 8 9101112
Angle Bins

0

2

4

6

8

10

N
u

m
b

er
 o

f
S

am
p

le
s

(c) Number of Samples Vs Angle Bins using Proposed Method

(a) Error Vs Angle Bins using Proposed Method

Figure 7.9: Results after Iteration Number 9. (a) MSE Vs Rotation Angle Bins
- Proposed method,(c) Number of samples selected in each anglular bin - Proposed
method. Best viewed in color.

of the proposed model per angular bin after iteration 9 (for the four digits 0,4,6

and 1 furnishing the maximal errors). We split the range of the predicted angles

into 12 different bins (Bin 1 : (−60◦to − 50◦),Bin 2 : (−49◦to − 40◦), . . . ,Bin 12 :

(+50◦to+60◦)). In Figure 7.9(c), we plot the number of samples picked after iteration

number 9 in each angular bin. Figures 7.10(b) and 7.10(d) show similar plots using

the Random Sampling method (for the four digits 1,5,0 and 9 furnishing the maximal

errors).

Observations: From Figures 7.9(a) and 7.9(c), when using the proposed method, we

see that there is a direct correlation between the angular bins showing high error and

the number of samples chosen in those angular bins. We see no such relations when

193

One

1 2 3 4 5 6 7 8 9101112
Angle Bins

0

50

100

150

200

250

300

350

M
S

E

Five

1 2 3 4 5 6 7 8 9101112

Angle Bins

0

50

100

150

200

250

300

350

400

M
S

E

Zero

1 2 3 4 5 6 7 8 9101112
Angle Bins

0

100

200

300

400

500

600

700

M
S

E

Nine

1 2 3 4 5 6 7 8 9101112
Angle Bins

0

100

200

300

400

500

M
S

E

One

1 2 3 4 5 6 7 8 9101112
Angle Bins

0

2

4

6

8

10

12

N
u

m
b

er
 o

f
S

am
p

le
s

Five

1 2 3 4 5 6 7 8 9101112
Angle Bins

0

1

2

3

4

5

6

7

8

N
u

m
b

er
 o

f
S

am
p

le
s

Zero

1 2 3 4 5 6 7 8 9101112
Angle Bins

0

1

2

3

4

N
u

m
b

er
 o

f
S

am
p

le
s

Nine

1 2 3 4 5 6 7 8 9101112
Angle Bins

0

2

4

6

8

10

12

N
u

m
b

er
 o

f
S

am
p

le
s

(b) Error Vs Angle Bins using Random Sampling

(d) Number of Samples Vs Angle Bins using Random Sampling

Figure 7.10: Results after Iteration Number 9. (b) MSE Vs Rotation Angle Bins -
Random Sampling and (d) Number of samples selected in each angular bin - Random
sampling. Best viewed in color.

using Random Sampling in Figures 7.10(b) and 7.10(d). This further corroborates

the usefulness of the active sampling criterion used to train the deep CNN in our

framework.

7.3.6 Visual Illustration of the Selected Samples

Figure 7.11 and 7.12 presents a visual illustration of the top 15 unlabeled samples,

from each digit class, selected for manual annotation (furnishing the maximum EMOC

scores) by our method and Random Sampling after iteration number 12. It is evident

that the proposed method captures a wide range of informative samples across all

digits while Random Sampling captures much less variation. Thus, the proposed

194

Figure 7.11: Visual Comparison of top 15 EMOC scores furnished by digits 0-9
using Proposed method after iteration number 12.

method augments useful knowledge to the model, which accounts for its improved

performance.

195

Figure 7.12: Visual Comparison of top 15 EMOC scores furnished by digits 0-9
using Random Sampling after iteration number 12.

7.4 Conclusions

In this paper, we proposed a novel deep active learning framework for regression

applications. We used the Expected Model Output Change (EMOC) as the active se-

lection criterion and integrated it within the objective function used to train the deep

CNN. The resulting model optimized this novel objective function and learned from

salient examples that caused the maximum change to the current model. Extensive

empirical results on benchmark regression datasets demonstrated the effectiveness of

the proposed framework in selecting the most informative samples for learning and

annotation. Our in-depth analysis of the proposed active sampling criterion further

corroborated the efficacy of our algorithm. To the best of our knowledge, this is

the first research effort to leverage the feature learning capabilities of deep CNNs to

develop a novel active learning algorithm for regression applications.

As part of future work, we plan to conduct extensive large-scale experiments to

study the performance of our framework. We also intend to study the performance of

196

our deep active learning framework on multimedia applications involving other types

of label spaces, such as multi-label and fuzzy-label classification.

197

Chapter 8

FUTURE DIRECTIONS

This chapter proposes some directions for future research in multimodal emotion

recognition and deep active learning for computer vision.

8.0.1 Multimodal Emotion Recognition

In the current era, human - computer interaction (HCI) interface undoubtedly

plays an important role in our daily life. Automated analysis and recognition of

human emotion has attracted increasing attention from the researchers in multidisci-

plinary research fields. Hand-engineering task-specific features is often difficult and

time consuming. This difficulty is more pronounced with multimodal data as the fea-

tures have to relate multiple data sources. In this dissertation, we showed how deep

learning can be applied to this challenging task for discovering multimodal features.

Although a number of promising studies have been proposed and successfully applied

to emotion recognition, there are some important issues, outlined in the following

that can become potential future directions of research.

• Traditional emotion recognition systems work using laboratory controlled data.

A new direction to explore the performance of emotion recognition methods

that work in real-world conditions will be more useful. A comprehensive and

accessible database covering various social signals such as laughs, smiles, de-

pression, agreement, disagreement, etc. is desirable to help better understand

different affective behaviors.

• Designing better data fusion methods considering various model properties,

198

temporal expression and asynchrony would lead to improved performance of

multimodal emotion recognition systems.

• Another possible direction will be to explore the expression styles from different

users. Here, importance is given not only to the intensity of expression but also

to the manner in which the emotion is expressed along with personality trait.

This is essential for effective emotion recognition.

• It is insufficient to build a general emotion recognition system that performs

equally well for every user. In contrast, it is desirable to use personal comput-

ers/devices to build person-centric emotion recognition systems. Developing

model adaptation methods using small-sized adaptation datasets for person-

centric emotion recognition should be considered in future.

• Existing emotion recognition methods explore variations in spontaneous emo-

tion expressions, including head pose variations, speaking-influenced facial ex-

pression and partial facial occlusion in facial emotion recognition. Further inves-

tigations on these effects are essential for achieving robust emotion recognition

for real-life applications.

8.0.2 Deep Active Learning Models for all Label Spaces

The field of deep active learning combines ideas of deep learning and active learn-

ing. Even though both deep learning and active learning have been extensively stud-

ied, research on combining the two is still in inception. These are either treated as

two independent problems like in existing literature or as one problem as proposed

in this dissertation. This section enumerates some important issues that can become

potential future directions of research.

199

• As mentioned in Wang and Hua (2011), we need to give importance to the

human annotation behavior. Active learning is an interactive approach that

involves two parts - human and computer. But most of the existing research

efforts have been dedicated to computation algorithms, such as sample selection

strategies and learning models, whereas the human part receives relatively less

attention. However, human also plays a very important role in active learning.

As part of future work, the human annotation behavior could be analyzed.

This analysis will help benefit active learning-based multimedia annotation and

retrieval.

• A study of the performance of the network trained to optimize other loss func-

tions specific to active learning will be an interesting direction of research. Some

active learning algorithms include a diversity based criterion (besides uncer-

tainty), to ensure that the samples selected for annotation also have a high

diversity among them (Chakraborty et al. (2015b)); representativeness based

algorithms explored in Shen et al. (2004), enforce the selected samples to be

good representatives of the unselected unlabeled samples. These criteria could

be integrated in the loss function and their effects on the results be studied.

• The proposed algorithms could be modified to work on video datasets, where

the temporal structure provides useful information that are less obvious in static

images and thereby help improve the performance of the deep active models.

• Another direction for future work will be to extensively validate the perfor-

mance of the framework on other computer vision applications such as image

segmentation, image search and retrieval and object detection among others.

• Identifying an appropriate stopping criterion for active learning is still an open

200

problem and is a promising direction for future research.

The following chapter provides a summary of the contributions made in this dis-

sertation.

201

Chapter 9

SUMMARY

This chapter enumerates the summary of all the contributions made in this dis-

sertation. It also lists the conference submissions that are published in peer reviewed

conference proceedings along with submissions that are currently under review. The

chapter finishes with a record of the poster presentations made at different workshops

during my PhD tenure.

9.0.1 Summary of Contributions

1. A new multimodal emotion database (emoFBVP) was created consisting of

multimodal recordings of facial expressions, body gestures, vocal expressions

and physiological signals of actors enacting various expressions of emotion. The

affective computing community will greatly benefit from the large collection of

modalities recorded.

2. The second contribution investigated is the use of deep learning architectures -

Deep Belief Networks (DBNs) and Convolutional Deep Belief Networks (CDBNs)

for multimodal emotion recognition. Four DBN models were proposed and ex-

periments showed that they generated robust multimodal features for emotion

recognition. The CDBN model proposed learned salient multimodal features of

low intensity expressions of emotions.

3. The effect of transfer of emotion-rich features between source and target net-

works on classification accuracy and training time in a multimodal setting for

vision based emotion recognition is studied. This is the first research effort to

202

study the transfer of emotion features layer-by-layer in a multimodal setting.

The models proposed were able to successfully re-purpose the emotion rich fea-

tures learned by the source model to train the target models and achieve shorter

training times and performance boosts respectively. The results obtained are

extremely useful in a practical setting.

4. A novel active learning framework to select the most informative unlabeled

sample to train a Deep Belief Network (DBN) is proposed. A loss function

specific to the task of active learning is introduced and the model is trained

to minimize this loss. Extensive empirical studies on a wide variety of uni-

modal and multimodal vision datasets corroborate the potential of the proposed

method for real-world image recognition applications.

5. The feature learning capabilities of deep neural networks is exploited and a novel

framework to address the problem of multi-label active learning is proposed.

An active sample selection criterion is integrated in the loss function used to

train the deep networks. First, a framework without considering the correlation

among the multiple labels is proposed using Convolutional Neural Networks

(CNNs). Second, the correlations that exist among the multiple labels are

modeled using Long Short Term memory (LSTM) cells. Extensive empirical

studies on five benchmark multi-label datasets show that the proposed methods

outperform state-of-the-art active learning techniques.

6. Ideas from deep learning and active learning are fused and a novel deep ac-

tive learning paradigm for regression is proposed. The Expected Model Output

Change (EMOC) is used as the active selection criterion and integrated with the

objective function used to train the deep model. The resulting model optimizes

this novel objective function and learns from salient examples that cause max-

203

imum change to the current model. Extensive empirical results on benchmark

regression datasets demonstrate the effectiveness of the proposed paradigm in

choosing the most informative samples for learning and annotation.

9.0.2 Conference Submissions

1. Hiranmayi Ranganathan, Shayok Chakraborty, and Sethuraman Panchanathan.

Multimodal Emotion Recognition Using Deep Learning Architectures. In IEEE

Winter Conference on Applications of Computer Vision (WACV), 2016.

2. Hiranmayi Ranganathan, Shayok Chakraborty, and Sethuraman Panchanathan.

Transfer of Multimodal Emotion Features in Deep Belief Networks. In 50th

Asilomar Conference on Signals, Systems and Computers, 2016 , pages 449 -

453. IEEE, 2016.

3. Hiranmayi Ranganathan, Hemanth Venkateswara, Shayok Chakraborty, and

Sethuraman Panchanathan. Deep Active Learning for Image Classification. In

Proc. IEEE International Conference on Image Processing (ICIP), 2017.

4. Hiranmayi Ranganathan, Hemanth Venkateswara, Shayok Chakraborty, and

Sethuraman Panchanathan. Multi-label Deep Active Learning with Label Cor-

relation. In Proc. IEEE International Conference on Image Processing (ICIP),

2018. (Under Review)

5. Hiranmayi Ranganathan, Hemanth Venkateswara, Shayok Chakraborty, and

Sethuraman Panchanathan. Deep Active Learning for Regression. In Proc. of

the ACM international conference on multimedia, 2018. (Under Review)

204

9.0.3 Workshop Poster Presentations

1. Deep Architectures for Multimodal Emotion Recognition, Hiranmayi Ranganathan,

Women in Computer Vision CVPR Workshop (WiCV), 2016.

2. Deep Active models for Image Classification, Hiranmayi Ranganathan, Women

in Computer Vision CVPR Workshop (WiCV), 2017.

3. Deep Active models for Single label and Multi label Image Classification, Hi-

ranmayi Ranganathan, Women in Machine Learning (WiML), 2017 co-located

with NIPS 2017.

4. A Novel Deep Active Paradigm for Regression, Hiranmayi Ranganathan, Women

in Computer Vision CVPR Workshop (WiCV), 2018 (Under Review).

205

BIBLIOGRAPHY

Anagnostopoulos, C.-N., T. Iliou and I. Giannoukos, “Features and classifiers for emo-
tion recognition from speech: a survey from 2000 to 2011”, Artificial Intelligence
Review 43, 2, 155–177 (2015).

Arel, I., D. C. Rose and T. P. Karnowski, “Deep machine learning-a new frontier in
artificial intelligence research [research frontier]”, IEEE computational intelligence
magazine 5, 4, 13–18 (2010).

Azimi, J., A. Fern, X. Zhang-Fern, G. Borradaile and B. Heeringa, “Batch active
learning via coordinated matching”, arXiv preprint arXiv:1206.6458 (2012).

Baltrušaitis, T., P. Robinson and L.-P. Morency, “3d constrained local model for
rigid and non-rigid facial tracking”, in “Computer Vision and Pattern Recognition
(CVPR), 2012 IEEE Conference on”, pp. 2610–2617 (IEEE, 2012).

Belagiannis, V., S. Amin, M. Andriluka, B. Schiele, N. Navab and S. Ilic, “3d picto-
rial structures for multiple human pose estimation”, in “Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition”, pp. 1669–1676 (2014).

Bengio, Y., P. Lamblin, D. Popovici and H. Larochelle, “Greedy layer-wise training
among of deep networks”, in “Advances in neural information processing systems”,
pp. 153–160 (2007).

Bengio, Y. et al., “Learning deep architectures for ai”, Foundations and trends R© in
Machine Learning 2, 1, 1–127 (2009).

Boureau, Y.-l., Y. L. Cun et al., “Sparse feature learning for deep belief networks”,
in “Advances in neural information processing systems”, pp. 1185–1192 (2008).

Bourlard, H. and Y. Kamp, “Auto-association by multilayer perceptrons and singular
value decomposition”, Biological cybernetics 59, 4-5, 291–294 (1988).

Brinker, K., “Incorporating diversity in active learning with support vector ma-
chines”, in “International Conference on Machine Learning (ICML)”, (2003a).

Brinker, K., “Incorporating diversity in active learning with support vector ma-
chines”, in “Proceedings of the 20th international conference on machine learning
(ICML-03)”, pp. 59–66 (2003b).

Brueckner, R. and B. Schuller, “Likability classification–a not so deep neural network
approach”, in “Proceedings INTERSPEECH 2012, 13th Annual Conference of the
International Speech Communication Association”, (2012).

Burbidge, R., J. J. Rowland and R. D. King, “Active learning for regression based on
query by committee”, in “International Conference on Intelligent Data Engineering
and Automated Learning”, pp. 209–218 (Springer, 2007).

206

Busso, C., Z. Deng, S. Yildirim, M. Bulut, C. M. Lee, A. Kazemzadeh, S. Lee, U. Neu-
mann and S. Narayanan, “Analysis of emotion recognition using facial expressions,
speech and multimodal information”, in “Proceedings of the 6th international con-
ference on Multimodal interfaces”, pp. 205–211 (ACM, 2004).

Busso, C., S. Lee and S. S. Narayanan, “Using neutral speech models for emotional
speech analysis”, in “Eighth Annual Conference of the International Speech Com-
munication Association”, (2007).

Cai, W., Y. Zhang and J. Zhou, “Maximizing expected model change for active
learning in regression”, in “Data Mining (ICDM), 2013 IEEE 13th International
Conference on”, pp. 51–60 (IEEE, 2013).

Campigotto, P., A. Passerini and R. Battiti, “Active learning of pareto fronts”, IEEE
transactions on neural networks and learning systems 25, 3, 506–519 (2014).

Cebron, N. and M. Berthold, “Active learning in parallel universes”, in “ACM Inter-
national Conference on Information and Knowledge Management (CIKM)”, (2010).

Chakraborty, S., V. Balasubramanian and S. Panchanathan, “Generalized batch
mode active learning for face-based biometric recognition”, in “Pattern Recognition
Journal”, (2013).

Chakraborty, S., V. Balasubramanian and S. Panchanathan, “Adaptive batch mode
active learning”, IEEE transactions on neural networks and learning systems 26,
8, 1747–1760 (2015a).

Chakraborty, S., V. Balasubramanian, Q. Sun, S. Panchanathan and J. Ye, “Ac-
tive batch selection via convex relaxations with guaranteed solution bounds”,
IEEE transactions on pattern analysis and machine intelligence 37, 10, 1945–1958
(2015b).

Chattopadhyay, R., Z. Wang, W. Fan, I. Davidson, S. Panchanathan and J. Ye,
“Batch mode active sampling based on marginal probability distribution match-
ing”, ACM Transactions on Knowledge Discovery from Data (TKDD) 7, 3, 13
(2013).

Chua, T.-S., J. Tang, R. Hong, H. Li, Z. Luo and Y. Zheng, “Nus-wide: a real-world
web image database from national university of singapore”, in “Proceedings of the
ACM international conference on image and video retrieval”, p. 48 (ACM, 2009).

Clare, A. and R. King, “Knowledge discovery in multi-label phenotype data”, Prin-
ciples of data mining and knowledge discovery pp. 42–53 (2001).

Cohn, D. A., Z. Ghahramani and M. I. Jordan, “Active learning with statistical
models”, Journal of artificial intelligence research (1996).

Colah, Understanding LSTM Networks, URL http://colah.github.io/posts/
2015-08-Understanding-LSTMs/ (2018 (accessed March 16, 2018)).

207

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Dahl, G., M. Ranzato, A. Mohamed and G. Hinton, “Phone recognition with the
mean-covariance restricted boltzmann machine”, in “Advances in Neural Informa-
tion Processing Systems (NIPS)”, (2010).

Dahl, G. E., T. N. Sainath and G. E. Hinton, “Improving deep neural networks for
lvcsr using rectified linear units and dropout”, in “Acoustics, Speech and Signal
Processing (ICASSP), 2013 IEEE International Conference on”, pp. 8609–8613
(IEEE, 2013).

Davidson, I. and W. Fan, “When efficient model averaging out-performs boosting and
bagging”, in “European Conference on Principles of Data Mining and Knowledge
Discovery”, pp. 478–486 (Springer, 2006).

de Fortuny, E. J. and D. Martens, “Active learning-based pedagogical rule extrac-
tion”, IEEE transactions on neural networks and learning systems 26, 11, 2664–
2677 (2015).

Dhall, A., R. Goecke, J. Joshi, M. Wagner and T. Gedeon, “Emotion recognition
in the wild challenge 2013”, in “Proceedings of the 15th ACM on International
conference on multimodal interaction”, pp. 509–516 (ACM, 2013).

Donahue, J., Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng and T. Darrell,
“Decaf: A deep convolutional activation feature for generic visual recognition”, in
“International conference on machine learning”, pp. 647–655 (2014).

Dosovitskiy, A., J. T. Springenberg and T. Brox, “Learning to generate chairs with
convolutional neural networks”, in “Computer Vision and Pattern Recognition
(CVPR), 2015 IEEE Conference on”, pp. 1538–1546 (IEEE, 2015).

Douglas-Cowie, E., R. Cowie and M. Schröder, “A new emotion database: consider-
ations, sources and scope”, in “ISCA tutorial and research workshop (ITRW) on
speech and emotion”, (2000).

Douglas-Cowie, E., R. Cowie, I. Sneddon, C. Cox, O. Lowry, M. Mcrorie, J.-C. Martin,
L. Devillers, S. Abrilian, A. Batliner et al., “The humaine database: addressing the
collection and annotation of naturalistic and induced emotional data”, in “Interna-
tional conference on affective computing and intelligent interaction”, pp. 488–500
(Springer, 2007).

Duch, W., J. Biesiada, T. Winiarski, K. Grudzinski, K. Grabczewski et al., “Fea-
ture selection based on information theory filters”, in “In Proceedings of the In-
ternational Conference on Neural Networks and Soft Computing (ICNNSC 2002),
Advances in Soft Computing”, (Citeseer, 2002).

Eigen, D., C. Puhrsch and R. Fergus, “Depth map prediction from a single image
using a multi-scale deep network”, in “Advances in neural information processing
systems”, pp. 2366–2374 (2014).

El-Kaliouby, R. and P. Robinson, “Mind reading machines: Automated inference of
cognitive mental states from video”, in “IEEE International Conference on Systems,
Man and Cybernetics”, (2004).

208

Everingham, M., L. Van Gool, C. K. Williams, J. Winn and A. Zisserman, “The pascal
visual object classes (voc) challenge”, International journal of computer vision 88,
2, 303–338 (2010).

Freund, Y., H. S. Seung, E. Shamir and N. Tishby, “Selective sampling using the
query by committee algorithm”, Machine learning 28, 2-3, 133–168 (1997).

Freytag, A., E. Rodner and J. Denzler, “Selecting influential examples: Active learn-
ing with expected model output changes”, in “European Conference on Computer
Vision”, pp. 562–577 (Springer, 2014).

Ghahramani, Z., “Unsupervised learning”, in “Advanced lectures on machine learn-
ing”, pp. 72–112 (Springer, 2004).

Girshick, R., “Fast r-cnn”, arXiv preprint arXiv:1504.08083 (2015).

Girshick, R., J. Donahue, T. Darrell and J. Malik, “Rich feature hierarchies for ac-
curate object detection and semantic segmentation”, in “Proceedings of the IEEE
conference on computer vision and pattern recognition”, pp. 580–587 (2014).

Gkioxari, G., B. Hariharan, R. Girshick and J. Malik, “R-cnns for pose estimation
and action detection”, arXiv preprint arXiv:1406.5212 (2014).

Gong, Y., Y. Jia, T. Leung, A. Toshev and S. Ioffe, “Deep convolutional ranking for
multilabel image annotation”, arXiv preprint arXiv:1312.4894 (2013).

Grimm, M., K. Kroschel and S. Narayanan, “The vera am mittag german audio-visual
emotional speech database”, in “Multimedia and Expo, 2008 IEEE International
Conference on”, pp. 865–868 (IEEE, 2008).

Guo, Y., “Active instance sampling via matrix partition”, in “Advances of Neural
Information Processing Systems (NIPS)”, (2010a).

Guo, Y., “Active instance sampling via matrix partition”, in “Advances in Neural
Information Processing Systems”, pp. 802–810 (2010b).

Guo, Y. and D. Schuurmans, “Discriminative batch mode active learning”, in “Ad-
vances of Neural Information Processing Systems (NIPS)”, (2007).

Guo, Y. and D. Schuurmans, “Discriminative batch mode active learning”, in “Ad-
vances in neural information processing systems”, pp. 593–600 (2008).

Healey, J. A. and R. W. Picard, “Detecting stress during real-world driving tasks using
physiological sensors”, IEEE Transactions on intelligent transportation systems 6,
2, 156–166 (2005).

Hinton, G. E., “Connectionist learning procedures”, in “Machine Learning, Volume
III”, pp. 555–610 (Elsevier, 1990).

Hinton, G. E., “Training products of experts by minimizing contrastive divergence”,
Neural computation 14, 8, 1771–1800 (2002).

209

Hinton, G. E., P. Dayan, B. J. Frey and R. M. Neal, “The” wake-sleep” algorithm
for unsupervised neural networks”, Science 268, 5214, 1158–1161 (1995).

Hinton, G. E., S. Osindero and Y.-W. Teh, “A fast learning algorithm for deep belief
nets”, Neural computation 18, 7, 1527–1554 (2006).

Hinton, G. E. and R. R. Salakhutdinov, “Reducing the dimensionality of data with
neural networks”, science 313, 5786, 504–507 (2006).

Hochreiter, S. and J. Schmidhuber, “Lstm can solve hard long time lag problems”, in
“Advances in neural information processing systems”, pp. 473–479 (1997).

Hoi, S., R. Jin, J. Zhu and M. Lyu, “Batch mode active learning and its application
to medical image classification”, in “International Conference on Machine Learning
(ICML)”, (2006a).

Hoi, S., R. Jin, J. Zhu and M. Lyu, “Semi-supervised SVM batch mode active learn-
ing for image retrieval”, in “IEEE Conference on Computer Vision and Pattern
Recognition (CVPR)”, (2008).

Hoi, S. C., R. Jin and M. R. Lyu, “Large-scale text categorization by batch mode
active learning”, in “Proceedings of the 15th international conference on World
Wide Web”, pp. 633–642 (ACM, 2006b).

Hoi, S. C., R. Jin and M. R. Lyu, “Batch mode active learning with applications
to text categorization and image retrieval”, IEEE Transactions on knowledge and
data engineering 21, 9, 1233–1248 (2009).

Huang, S.-J., S. Chen and Z.-H. Zhou, “Multi-label active learning: Query type
matters.”, in “IJCAI”, pp. 946–952 (2015).

Huang, Y., W. Wang, L. Wang and T. Tan, “Multi-task deep neural network for
multi-label learning”, in “Image Processing (ICIP), 2013 20th IEEE International
Conference on”, pp. 2897–2900 (IEEE, 2013).

Hung, C.-W. and H.-T. Lin, “Multi-label active learning with auxiliary learner”, in
“Asian conference on machine learning”, pp. 315–332 (2011).

Jaderberg, M., K. Simonyan, A. Vedaldi and A. Zisserman, “Reading text in the wild
with convolutional neural networks”, International Journal of Computer Vision
116, 1, 1–20 (2016).

Japkowicz, N., S. J. Hanson and M. A. Gluck, “Nonlinear autoassociation is not
equivalent to pca”, Neural computation 12, 3, 531–545 (2000).

Käding, C., E. Rodner, A. Freytag and J. Denzler, “Active and continuous exploration
with deep neural networks and expected model output changes”, arXiv preprint
arXiv:1612.06129 (2016).

210

Kahou, S. E., C. Pal, X. Bouthillier, P. Froumenty, Ç. Gülçehre, R. Memisevic,
P. Vincent, A. Courville, Y. Bengio, R. C. Ferrari et al., “Combining modality
specific deep neural networks for emotion recognition in video”, in “Proceedings of
the 15th ACM on International conference on multimodal interaction”, pp. 543–550
(ACM, 2013).

Kanade, T., J. Cohn and Y. Tian, “Comprehensive database for facial expression anal-
ysis”, in “IEEE International Conference on Automatic Face and Gesture Recog-
nition”, (2000a).

Kanade, T., J. F. Cohn and Y. Tian, “Comprehensive database for facial expres-
sion analysis”, in “Fourth IEEE International Conference on Automatic Face and
Gesture Recognition, 2000. Proceedings.”, pp. 46–53 (IEEE, 2000b).

Kim, Y., H. Lee and E. M. Provost, “Deep learning for robust feature generation
in audiovisual emotion recognition”, in “Acoustics, Speech and Signal Processing
(ICASSP), 2013 IEEE International Conference on”, pp. 3687–3691 (IEEE, 2013).

Koelstra, S., C. Muhl, M. Soleymani, J.-S. Lee, A. Yazdani, T. Ebrahimi, T. Pun,
A. Nijholt and I. Patras, “Deap: A database for emotion analysis; using physiolog-
ical signals”, IEEE Transactions on Affective Computing 3, 1, 18–31 (2012).

Krizhevsky, A., “Learning multiple layers of features from tiny images”, in “Technical
Report”, (2009).

Krizhevsky, A., I. Sutskever and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks”, in “Advances in neural information processing sys-
tems”, pp. 1097–1105 (2012).

Krogh, A. and J. A. Hertz, “A simple weight decay can improve generalization”, in
“Advances in neural information processing systems”, pp. 950–957 (1992).

K.Zhaoa, W.S.Chu and H.Zhang, “Deep region and multilabel learning for facial
action unit detection”, in “CVPR”, (2016).

Laptev, D., N. Savinov, J. M. Buhmann and M. Pollefeys, “Ti-pooling:
transformation-invariant pooling for feature learning in convolutional neural net-
works”, in “Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition”, pp. 289–297 (2016).

Larochelle, H., D. Erhan, A. Courville, J. Bergstra and Y. Bengio, “An empirical
evaluation of deep architectures on problems with many factors of variation”, in
“Proceedings of the 24th international conference on Machine learning”, pp. 473–
480 (ACM, 2007).

LeCun, Y., Y. Bengio and G. Hinton, “Deep learning”, nature 521, 7553, 436 (2015).

LeCun, Y., L. Bottou, Y. Bengio and P. Haffner, “Gradient-based learning applied
to document recognition”, in “Proceedings of IEEE”, (1998a).

211

LeCun, Y., L. Bottou, G. Orr and K. Muller, “Efficient backprop in neural networks:
Tricks of the trade (orr, g. and müller, k., eds.)[j]”, Lecture Notes in Computer
Science 1524 (1998b).

Lee, H., C. Ekanadham and A. Y. Ng, “Sparse deep belief net model for visual area
v2”, in “Advances in neural information processing systems”, pp. 873–880 (2008).

Lee, H., R. Grosse, R. Ranganath and A. Y. Ng, “Unsupervised learning of hierar-
chical representations with convolutional deep belief networks”, Communications
of the ACM 54, 10, 95–103 (2011).

Lewis, D. D. and W. A. Gale, “A sequential algorithm for training text classifiers”, in
“Proceedings of the 17th annual international ACM SIGIR conference on Research
and development in information retrieval”, pp. 3–12 (Springer-Verlag New York,
Inc., 1994).

Li, S. and A. B. Chan, “3d human pose estimation from monocular images with deep
convolutional neural network”, in “Asian Conference on Computer Vision”, pp.
332–347 (Springer, 2014).

Lin, T.-Y., M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár and
C. L. Zitnick, “Microsoft coco: Common objects in context”, in “European confer-
ence on computer vision”, pp. 740–755 (Springer, 2014).

Liu, Y., S. Zhou and Q. Chen, “Discriminative deep belief networks for visual data
classification”, in “Pattern Recognition”, (2011).

Liu, Z., X. Li, P. Luo, C.-C. Loy and X. Tang, “Semantic image segmentation via
deep parsing network”, in “Computer Vision (ICCV), 2015 IEEE International
Conference on”, pp. 1377–1385 (IEEE, 2015).

Lu, Y., I. Cohen, X. S. Zhou and Q. Tian, “Feature selection using principal feature
analysis”, in “Proceedings of the 15th ACM international conference on Multime-
dia”, pp. 301–304 (ACM, 2007).

McKeown, G., M. F. Valstar, R. Cowie and M. Pantic, “The semaine corpus of
emotionally coloured character interactions”, in “Multimedia and Expo (ICME),
2010 IEEE International Conference on”, pp. 1079–1084 (IEEE, 2010).

Metallinou, A., C. Busso, S. Lee and S. Narayanan, “Visual emotion recognition using
compact facial representations and viseme information”, in “Acoustics Speech and
Signal Processing (ICASSP), 2010 IEEE International Conference on”, pp. 2474–
2477 (IEEE, 2010).

Mirowski, P., M. Ranzato and Y. LeCun, “Dynamic auto-encoders for semantic in-
dexing”, in “Proceedings of the NIPS 2010 Workshop on Deep Learning”, pp. 1–9
(2010).

Mohamed, A.-r., G. E. Dahl and G. Hinton, “Acoustic modeling using deep belief
networks”, IEEE Transactions on Audio, Speech, and Language Processing 20, 1,
14–22 (2012).

212

Morgan, N., “Deep and wide: Multiple layers in automatic speech recognition”, IEEE
Transactions on Audio, Speech, and Language Processing 20, 1, 7–13 (2012).

Mower, E., M. J. Mataric and S. Narayanan, “A framework for automatic human emo-
tion classification using emotion profiles”, IEEE Transactions on Audio, Speech,
and Language Processing 19, 5, 1057–1070 (2011).

Muslea, I., S. Minton and C. Knoblock, “Active learning with multiple views”, in
“Journal of Artificial Intelligence Research”, (2006).

Nair, V. and G. E. Hinton, “Rectified linear units improve restricted boltzmann ma-
chines”, in “Proceedings of the 27th international conference on machine learning
(ICML-10)”, pp. 807–814 (2010).

Nasrabadi, N. M., “Pattern recognition and machine learning”, Journal of electronic
imaging 16, 4, 049901 (2007).

Ngiam, J., A. Khosla, M. Kim, J. Nam, H. Lee and A. Y. Ng, “Multimodal deep
learning”, in “Proceedings of the 28th international conference on machine learning
(ICML-11)”, pp. 689–696 (2011).

Pantic, M., G. Caridakis, E. André, J. Kim, K. Karpouzis and S. Kollias, “Multimodal
emotion recognition from low-level cues”, in “Emotion-Oriented Systems”, pp. 115–
132 (Springer, 2011).

Pantic, M., M. Valstar, R. Rademaker and L. Maat, “Web-based database for facial
expression analysis”, in “Multimedia and Expo, 2005. ICME 2005. IEEE Interna-
tional Conference on”, pp. 5–pp (IEEE, 2005).

Pfister, T., K. Simonyan, J. Charles and A. Zisserman, “Deep convolutional neural
networks for efficient pose estimation in gesture videos”, in “Asian Conference on
Computer Vision”, pp. 538–552 (Springer, 2014).

Polzehl, T., S. Sundaram, H. Ketabdar, M. Wagner and F. Metze, “Emotion clas-
sification in children’s speech using fusion of acoustic and linguistic features”, in
“Tenth Annual Conference of the International Speech Communication Associa-
tion”, (2009).

Poultney, C., S. Chopra, Y. L. Cun et al., “Efficient learning of sparse representa-
tions with an energy-based model”, in “Advances in neural information processing
systems”, pp. 1137–1144 (2007).

Qi, G.-J., X.-S. Hua, Y. Rui, J. Tang and H.-J. Zhang, “Two-dimensional active
learning for image classification”, in “Computer Vision and Pattern Recognition,
2008. CVPR 2008. IEEE Conference on”, pp. 1–8 (IEEE, 2008).

Raina, R., A. Battle, H. Lee, B. Packer and A. Y. Ng, “Self-taught learning: transfer
learning from unlabeled data”, in “Proceedings of the 24th international conference
on Machine learning”, pp. 759–766 (ACM, 2007).

213

Ranganathan, H., S. Chakraborty and S. Panchanathan, “Multimodal emotion recog-
nition using deep learning architectures”, in “IEEE Winter Conference on Appli-
cations of Computer Vision (WACV)”, (2016a).

Ranganathan, H., S. Chakraborty and S. Panchanathan, “Transfer of multimodal
emotion features in deep belief networks”, in “Signals, Systems and Computers,
2016 50th Asilomar Conference on”, pp. 449–453 (IEEE, 2016b).

Ranganathan, H., H. Venkateswara, S. Chakraborty and S. Panchanathan, “Deep
active learning for image classification”, in “International Conference on Image
Processing (ICIP 2017)”, (2016c).

Ranzato, M., J. Susskind, V. Mnih and G. Hinton, “On deep generative models with
applications to recognition”, in “IEEE Conference on Computer Vision and Pattern
Recognition (CVPR)”, (2011).

Rosca, M., Networks with Emotions, URL https://www.doc.ic.ac.uk/teaching/
distinguished-projects/2014/mrosca.pdf (2018 (accessed March 9, 2018)).

Rothe, R., R. Timofte and L. Van Gool, “Dex: Deep expectation of apparent age
from a single image”, in “Proceedings of the IEEE International Conference on
Computer Vision Workshops”, pp. 10–15 (2015).

Salakhutdinov, R. and H. Larochelle, “Efficient learning of deep boltzmann ma-
chines”, in “Artificial Intelligence and Statistics Conference (AISTATS)”, (2010).

Sanderson, C., “Biometric person recognition: Face, speech and fusion”, in “VDM
Verlag”, (2008).

Schohn, G. and D. Cohn, “Less is more: Active learning with support vector ma-
chines”, in “Proceedings of the International Conference on Machine Learning
(ICML)”, (2000).

Schuller, B., S. Steidl, A. Batliner, E. Nöth, A. Vinciarelli, F. Burkhardt, R. v.
Son, F. Weninger, F. Eyben, T. Bocklet et al., “The interspeech 2012 speaker
trait challenge”, in “Thirteenth Annual Conference of the International Speech
Communication Association”, (2012).

Schulz, H., A. Müller and S. Behnke, “Investigating convergence of restricted boltz-
mann machine learning”, in “NIPS 2010 Workshop on Deep Learning and Unsu-
pervised Feature Learning”, (2010).

Settles, B., “Active learning literature survey”, in “Technical Report 1648, University
of Wisconsin-Madison”, (2010).

Settles, B. and M. Craven, “An analysis of active learning strategies for sequence
labeling tasks”, in “Proceedings of the conference on empirical methods in natural
language processing”, pp. 1070–1079 (Association for Computational Linguistics,
2008).

214

https://www.doc.ic.ac.uk/teaching/distinguished-projects/2014/mrosca.pdf
https://www.doc.ic.ac.uk/teaching/distinguished-projects/2014/mrosca.pdf

Shen, D., J. Zhang, J. Su, G. Zhou and C.-L. Tan, “Multi-criteria-based active learn-
ing for named entity recognition”, in “Proceedings of the 42nd Annual Meeting on
Association for Computational Linguistics”, p. 589 (Association for Computational
Linguistics, 2004).

Sherrah, J. and S. Gong, “Fusion of perceptual cues for robust tracking of head pose
and position”, Pattern Recognition 34, 8, 1565–1572 (2001).

Sivaram, G. S. and H. Hermansky, “Sparse multilayer perceptron for phoneme recog-
nition”, IEEE Transactions on Audio, Speech, and Language Processing 20, 1,
23–29 (2012).

Smolensky, P., “Information processing in dynamical systems: Foundations of har-
mony theory”, Tech. rep., COLORADO UNIV AT BOULDER DEPT OF COM-
PUTER SCIENCE (1986).

Sohn, K., D. Y. Jung, H. Lee and A. O. Hero, “Efficient learning of sparse, distributed,
convolutional feature representations for object recognition”, in “Computer Vision
(ICCV), 2011 IEEE International Conference on”, pp. 2643–2650 (IEEE, 2011).

Srivastava, N., “Improving neural networks with dropout”, University of Toronto 182
(2013).

Srivastava, N. and R. R. Salakhutdinov, “Multimodal learning with deep boltzmann
machines”, in “Advances in neural information processing systems”, pp. 2222–2230
(2012).

Stark, F., C. Hazirbas, R. Triebel and D. Cremers, “Captcha recognition with active
deep learning”, in “Workshop on New Challenges in Neural Computation”, (2015a).

Stark, F., C. Hazırbas, R. Triebel and D. Cremers, “Captcha recognition with active
deep learning”, in “Workshop New Challenges in Neural Computation 2015”, p. 94
(Citeseer, 2015b).

Steidl, S., M. Levit, A. Batliner, E. Noth and H. Niemann, “” of all things the measure
is man” automatic classification of emotions and inter-labeler consistency [speech-
based emotion recognition]”, in “Acoustics, Speech, and Signal Processing, 2005.
Proceedings.(ICASSP’05). IEEE International Conference on”, vol. 1, pp. I–317
(IEEE, 2005).

Stuhlsatz, A., C. Meyer, F. Eyben, T. Zielke, G. Meier and B. Schuller, “Deep neural
networks for acoustic emotion recognition: raising the benchmarks”, in “Acoustics,
speech and signal processing (ICASSP), 2011 IEEE international conference on”,
pp. 5688–5691 (IEEE, 2011).

Sugiyama, M., “Active learning in approximately linear regression based on condi-
tional expectation of generalization error”, Journal of Machine Learning Research
7, Jan, 141–166 (2006).

Sugiyama, M. and S. Nakajima, “Pool-based active learning in approximate linear
regression”, Machine Learning 75, 3, 249–274 (2009).

215

Sun, Y., X. Wang and X. Tang, “Deep convolutional network cascade for facial point
detection”, in “Computer Vision and Pattern Recognition (CVPR), 2013 IEEE
Conference on”, pp. 3476–3483 (IEEE, 2013).

Sutskever, I., J. Martens, G. Dahl and G. Hinton, “On the importance of initializa-
tion and momentum in deep learning”, in “International conference on machine
learning”, pp. 1139–1147 (2013).

Szegedy, C., A. Toshev and D. Erhan, “Deep neural networks for object detection”,
in “Advances in neural information processing systems”, pp. 2553–2561 (2013).

Tang, Y. and C. Eliasmith, “Deep networks for robust visual recognition”, in “Pro-
ceedings of the 27th International Conference on Machine Learning (ICML-10)”,
pp. 1055–1062 (Citeseer, 2010).

Tang, Y. and A. Mohamed, “Multiresolution deep belief networks”, in “International
Conference on Artificial Intelligence and Statistics (AISTATS)”, (2012).

Taylor, G. W., G. E. Hinton and S. T. Roweis, “Modeling human motion using
binary latent variables”, in “Advances in neural information processing systems”,
pp. 1345–1352 (2007).

Tieleman, T. and G. Hinton, “Lecture 6.5-rmsprop: Divide the gradient by a run-
ning average of its recent magnitude”, COURSERA: Neural networks for machine
learning 4, 2, 26–31 (2012).

Tong, S. and D. Koller, “Support vector machine active learning with applications to
text classification”, Journal of machine learning research 2, Nov, 45–66 (2001).

Toshev, A. and C. Szegedy, “Deeppose: Human pose estimation via deep neural
networks”, in “Proceedings of the IEEE conference on computer vision and pattern
recognition”, pp. 1653–1660 (2014).

Valstar, M. and M. Pantic, “Induced disgust, happiness and surprise: an addition to
the mmi facial expression database”, in “Proc. 3rd Intern. Workshop on EMOTION
(satellite of LREC): Corpora for Research on Emotion and Affect”, p. 65 (2010).

Ververidis, D. and C. Kotropoulos, “Fast and accurate sequential floating forward
feature selection with the bayes classifier applied to speech emotion recognition”,
signal processing 88, 12, 2956–2970 (2008).

Vincent, P., H. Larochelle, Y. Bengio and P.-A. Manzagol, “Extracting and com-
posing robust features with denoising autoencoders”, in “Proceedings of the 25th
international conference on Machine learning”, pp. 1096–1103 (ACM, 2008).

Vogt, T. and E. André, “Comparing feature sets for acted and spontaneous speech
in view of automatic emotion recognition”, in “Multimedia and Expo, 2005. ICME
2005. IEEE International Conference on”, pp. 474–477 (IEEE, 2005).

Wang, D. and Y. Shang, “A new active labeling method for deep learning”, in “In-
ternational Joint Conference on Neural Networks (IJCNN)”, (2014a).

216

Wang, D. and Y. Shang, “A new active labeling method for deep learning”, in “Neural
Networks (IJCNN), 2014 International Joint Conference on”, pp. 112–119 (IEEE,
2014b).

Wang, J., J. Yang, K. Yu, F. Lv, T. Huang and Y. Gong, “Locality-constrained linear
coding for image classification”, in “Computer Vision and Pattern Recognition
(CVPR), 2010 IEEE Conference on”, pp. 3360–3367 (IEEE, 2010).

Wang, J., Y. Yang, J. Mao, Z. Huang, C. Huang and W. Xu, “Cnn-rnn: A uni-
fied framework for multi-label image classification”, in “Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition”, pp. 2285–2294 (2016).

Wang, M. and X.-S. Hua, “Active learning in multimedia annotation and retrieval:
A survey”, ACM Transactions on Intelligent Systems and Technology (TIST) 2, 2,
10 (2011).

Wang, X., L. Zhang, L. Lin, Z. Liang and W. Zuo, “Deep joint task learning for generic
object extraction”, in “Advances in Neural Information Processing Systems”, pp.
523–531 (2014).

Willett, R., R. Nowak and R. M. Castro, “Faster rates in regression via active learn-
ing”, in “Advances in Neural Information Processing Systems”, pp. 179–186 (2006).

Wimmer, M., B. Schuller, D. Arsic, B. Radig and G. Rigoll, “Low-level fusion of
audio and video feature for multi-modal emotion recognition”, in “Proc. 3rd Int.
Conf. on Computer Vision Theory and Applications VISAPP, Funchal, Madeira,
Portugal”, pp. 145–151 (2008).

Wöllmer, M., A. Metallinou, F. Eyben, B. Schuller and S. Narayanan, “Context-
sensitive multimodal emotion recognition from speech and facial expression using
bidirectional lstm modeling”, in “Proc. INTERSPEECH 2010, Makuhari, Japan”,
pp. 2362–2365 (2010).

Wu, J., Introduction to Convolutional Neural Networks, URL https://cs.nju.edu.
cn/wujx/paper/CNN.pdf (2018 (accessed March 9, 2018)).

Wu, J., V. S. Sheng, J. Zhang, P. Zhao and Z. Cui, “Multi-label active learning
for image classification”, in “Image Processing (ICIP), 2014 IEEE International
Conference on”, pp. 5227–5231 (IEEE, 2014).

Xue, X., W. Zhang, J. Zhang, B. Wu, J. Fan and Y. Lu, “Correlative multi-label multi-
instance image annotation”, in “Computer Vision (ICCV), 2011 IEEE International
Conference on”, pp. 651–658 (IEEE, 2011).

Yosinski, J., J. Clune, Y. Bengio and H. Lipson, “How transferable are features in
deep neural networks?”, in “Advances in neural information processing systems”,
pp. 3320–3328 (2014).

Yu, H. and S. Kim, “Passive sampling for regression”, in “Data Mining (ICDM), 2010
IEEE 10th International Conference on”, pp. 1151–1156 (IEEE, 2010).

217

https://cs.nju.edu.cn/wujx/paper/CNN.pdf
https://cs.nju.edu.cn/wujx/paper/CNN.pdf

Zhang, M.-L. and Z.-H. Zhou, “Ml-knn: A lazy learning approach to multi-label
learning”, Pattern recognition 40, 7, 2038–2048 (2007).

Zhang, Z., P. Luo, C. C. Loy and X. Tang, “Facial landmark detection by deep
multi-task learning”, in “European Conference on Computer Vision”, pp. 94–108
(Springer, 2014).

Zhou, S., Q. Chen and X. Wang, “Active deep networks for semi-supervised senti-
ment classification”, in “International Conference on Computational Linguistics”,
(2010a).

Zhou, S., Q. Chen and X. Wang, “Active deep networks for semi-supervised senti-
ment classification”, in “Proceedings of the 23rd International Conference on Com-
putational Linguistics: Posters”, pp. 1515–1523 (Association for Computational
Linguistics, 2010b).

Zhu, J., S. Liao, Z. Lei and S. Z. Li, “Multi-label convolutional neural network
based pedestrian attribute classification”, Image and Vision Computing 58, 224–
229 (2017).

Zhu, S., Z. Shi, C. Sun and S. Shen, “Deep neural network based image annotation”,
Pattern Recognition Letters 65, 103–108 (2015).

Zhu, X., J. Lafferty and Z. Ghahramani, “Combining active learning and semi-
supervised learning using gaussian fields and harmonic functions”, in “ICML 2003
workshop on the continuum from labeled to unlabeled data in machine learning
and data mining”, vol. 3 (2003).

Zliobaite, I., A. Bifet, B. Pfahringer and G. Holmes, “Active learning with drifting
streaming data”, IEEE transactions on neural networks and learning systems 25,
1, 27–39 (2014).

218

APPENDIX A

DERIVATIVE OF THE JOINT OBJECTIVE FUNCTIONS

219

A.0.0.1 Derivation of Multi-class Joint Loss Function

In this section the partial derivative of Equation (5.5) for the backpropagation
algorithm is outlined.

We use the standard backpropagation algorithm to learn the weights of the DBN.
The output of the N -th layer of the network (before the loss) for a data point xi, is

given by the vector hNi . We define pij := fj(xi) = eh
N
ij/
∑

j′ e
hN
ij′ , the probability that

data point xi belongs to class j. The loss in terms of probabilities is given by,

E(Xl, Xu, Yl) = − 1

nl

nl∑
i=1

C∑
j=1

1{yi = j}logpij −
λ

nu

n∑
i=nl+1

C∑
j=1

pijlogpij. (A.1)

During implementation, pij is expressed as pij := e(h
N
ij−mi)/

∑
j′ e

(hN
ij′−mi) where, mi

is the maximum of hNij′ over j′. It is meant to ensure that eh
Nij

does not go out of

bounds and it does not change the value of pij. We represent hNpq as hpq for ease of
notation.

A.0.0.2 Gradient of cross entropy loss

The cross-entropy over a batch of nl data points is represented by L.

L =− 1

nl

nl∑
i=1

C∑
j=1

1{yi = j}logpij

=− 1

nl

nl∑
i=1

C∑
j=1

1{yi = j}log
ehij∑
j′ e

hij′

=− 1

nl

nl∑
i=1

C∑
j=1

1{yi = j}log
e(hij−mi)∑
j′ e

(hij′−mi)

=− 1

nl

nl∑
i=1

C∑
j=1

1{yi = j}
(
(hij −mi)− log

∑
j′

e(hij′−mi)
)

(A.2)

The partial derivative ∂L
∂hpq

is the gradient of L with respect to hpq, which is the q-th

component of the p-th data point in the output of the N -th layer.

∂L

∂hpq
=

1

nl

nl∑
i=1

C∑
j=1

1{yi = j}
(
− I{i=p,j=q}+

e(hiq−mi)∑
j′ e

(hij′−mi)
I{i = p}

)
I{condition} is 1 when the condition is true, else it is 0 (A.3)

=
1

nl

(
− 1{yp = q}+ ppq

)
(A.4)

220

A.0.0.3 Gradient of entropy loss

The entropy over a batch of nu data points is represented by H.

H =− λ

nu

n∑
i=nl+1

C∑
j=1

pijlogpij

=− λ

nu

n∑
i=nl+1

C∑
j=1

ehij∑
j′ e

hij′
log

ehij∑
j′ e

hij′

=
λ

nu

n∑
i=nl+1

C∑
j=1

− e(hij−mi)∑
j′ e

(hij′−mi)
(hij −mi) +

e(hij−mi)∑
j′ e

(hij′−mi)
log
∑
j′

e(hij′−mi) (A.5)

The partial derivative ∂H
∂hpq

is the gradient of H with respect to hpq, which is the q-th

component of the p-th data point in the output of the N -th layer. We will drop the
summation outside and introduce it later.

∂H

∂hpq
=−

∑
j′ e

(hij′−mi)
(
e(hij−mi)(hij −mi) + e(hij−mi)

)
I{i=p,j=q}∑

j′ (e
(hij′−mi))

2

+
e(hij−mi)(hij −mi)e

(hiq−mi)I{i = p}∑
j′ (e

(hij′−mi))
2

+

∑
j′ e

(hij′−mi)
(
e(hij−mi)log

∑
j′ e

(hij′−mi)I{i=p,j=q}+ e(hij−mi)∑
j′ e

(hij′−mi)
e(hiq−mi)I{i = p}

)
∑

j′ (e
(hij′−mi))

2

−
e(hij−mi)log

∑
j′ e

(hij′−mi)e(hiq−mi)I{i = p}∑
j′ (e

(hij′−mi))
2 (A.6)

I{condition} is 1 when the condition is true, else it is 0 (A.7)

=− pij(hij −mi)I{i=p,j=q} − pijI{i=p,j=q}+ pij(hij −mi)piqI{i = p}

+ pijlog
∑
j′

e(hij′−mi)I{i=p,j=q}+ pijpiqI{i = p} − pijlog
∑
j′

e(hij′−mi)piqI{i = p}

(A.8)

221

Reintroducing the summation;

λ
nu

∑n
i=nl+1

∑C
j=1

=
λ

nu

[
− ppq(hpq −mp)− ppq + ppq

C∑
j=1

ppj(hpj −mp) + ppqlog
∑
j′

e(hpj′−mp)

+ ppjppq − log
∑
j′

e(hpj′−mp)ppq

C∑
j=1

ppj

]
(A.9)

since ∑C
j=1 ppj=1

=
λ

nu

[
− ppqhpq − ppqmp + ppq

(C∑
j=1

ppjhpj −
C∑
j=1

ppjmp

)]
(A.10)

=
λ

nu

[
− ppqhpq + ppq

C∑
j=1

ppjhpj

]
(A.11)

=
λ

nu
ppq

[C∑
j=1

ppjhpj − hpq
]

(A.12)

A.0.0.4 Overall gradient

The overall gradient is the sum of the cross-entropy gradient and the entropy
gradient. We outline the derivative of the loss E(.) with respect to hNpq, which is the
q-th component of the p-th data point in the output of the N -th layer as,

∂E

∂hNpq
=

1
nl

(
ppq − 1{yp = q}

)
, p ∈ [1, . . . , nl]

λ
nu
ppq

(∑C
j ppjh

N
pj − hNpq

)
, p ∈ [nl + 1, . . . , n].

(A.13)

During the training procedure, the derivative ∂E/∂hN is backpropagated through the
network in order to update the weights of the network.

222

A.0.0.5 Derivation of Multi-label Joint Loss Function

The joint objective function for deep multi-label active learning for image classi-
fication without label correlation is given by:

L(XL, Xu, Y L) = C(Y L, Ŷ) + λH(Ŷ) (A.14)

where C(Y L, Ŷ) and H(Ŷ) are as in equations (6.1) and (6.2) respectively. λ is a
constant that controls the importance of the entropy loss.

C(Y L, Ŷ) =− 1

nl

nl∑
n=1

M∑
m=1

[ynm log (ŷnm)

+ (1− ynm) log (1− ŷnm)]. (A.15)

H(Ŷ) =− 1

nu

nl+nu∑
n=nl+1

M∑
m=1

[ŷnm log (ŷnm)

+ (1− ŷnm) log (1− ŷnm)]. (A.16)

The Sigmoid function is applied on the activation hNnm, where hNnm is the nth compo-
nent of the mth data point in the output of the N th layer. Therefore we have,

ŷnm =

(
1

1 + e−hNnm

)
(A.17)

We compute the derivative of the joint objective function L(.) with respect to hNpq,

which is the qth component of the pth data point in the output of the N th layer. We
observe that,

∂

∂hNpq

{
ynm log (ŷnm) + (1− ynm) log (1− ŷnm)

}
= 0, for (n,m) 6= (p, q) (A.18)

and

∂

∂hNpq

{
ŷnm log (ŷnm) + (1− ŷnm) log (1− ŷnm)

}
= 0, for(n,m) 6= (p, q) (A.19)

First, let us compute,

∂ log(ŷpq)

∂hNpq
=

∂

∂hNpq

[
− log(1 + e−h

N
pq)
]

=
e−h

N
pq

1 + e−h
N
pq

= e−h
N
pq ŷpq = 1− ŷpq (A.20)

223

∂ log (1− ŷpq)
∂hNpq

=
∂

∂hNpq

[
log e−h

N
pq − log(1 + e−h

N
pq)
]

=− 1 +
e−h

N
pq

1 + e−h
N
pq

=− (1− e−hNpq ŷpq) = −ŷpq (A.21)

∂ŷpq
∂hNpq

=− e−hNpq ŷ2pq = ŷpq(1− ŷpq) (A.22)

A.0.0.6 Gradient of Sigmoid Cross Entropy Loss

Substituting from equation (A.20) and (A.21), we get

∂C
∂hNpq

=− 1

nl

[nl∑
n=1

M∑
m=1

∂

∂hNpq

{
ynm log (ŷnm)

+ (1− ynm) log (1− ŷnm)

}]
=− 1

nl

[
∂

∂hNpq

{
ypq log (ŷpq)

+ (1− ypq) log (1− ŷpq)
}]

=− 1

nl
[ypq(1− ŷpq) + (1− ypq)(−ŷpq)]

=− 1

nl
(ypq − ŷpq) for 1 ≤ p ≤ nl, 1 ≤ q ≤M, (A.23)

224

A.0.0.7 Gradient of the Multilabel Entropy Loss

Similarly, using equations (A.19), (A.20), (A.21) and (A.22) we get,

∂H(Ŷ)

∂hNpq
=− 1

nu

[nl+nu∑
n=nl+1

M∑
m=1

∂

∂hNpq

{
ŷnm log (ŷnm)

+ (1− ŷnm) log (1− ŷnm)

}]
=− 1

nu

[
∂

∂hNpq

{
ŷpq log (ŷpq)

+ (1− ŷpq) log (1− ŷpq)
}]

=− 1

nu

[
ŷpq(1− ŷpq) + ŷpq(1− ŷpq) log ŷpq

+ (1− ŷpq)(−ŷpq)− ŷpq(1− ŷpq) log (1− ŷpq)
]

=− 1

nu

[
ŷpq(1− ŷpq) log

(
ŷpq

1− ŷpq

)]
for nl + 1 ≤ p ≤ nl + nu, 1 ≤ q ≤M, (A.24)

A.0.0.8 Overall Gradient

Summarizing equations (A.23) and (A.24), we get the derivative to the joint loss
function L(.) with respect to hNpq as,

∂L
∂hNpq

=

− 1
nl

[ypq − ŷpq],
1 ≤ p ≤ nl, 1 ≤ q ≤M

− λ
nu

[
ŷpq(1− ŷpq) log

(
ŷpq

1−ŷpq

)]
,

nl + 1 ≤ p ≤ nl + nu, 1 ≤ q ≤M

(A.25)

225

A.0.0.9 Derivation of Joint Loss Function for Regression

The gradient of the joint objective function for deep active regression is given by:

∇φJ (φ,X l, Y l, Xu) = ∇φL(φ;X l, Y l) + λ∇φU(φ;Xu) (A.26)

To keep the notation simple, let

∇φJ = ∇φJ1 + λ∇φJ2 (A.27)

where
J1 = L(φ;X l, Y l) and J2 = U(φ;Xu),

A.0.0.10 Gradient of Standard L2 Loss

∇φJ1 =
∂J1

∂φ
=

{
∂J1

∂φ1

,
∂J1

∂φ2

, · · · , ∂J1

∂φl

}
(A.28)

Here,

∂J1

∂φ1

= − 2

n′l

n′l∑
i=1

(yi − ŷi)
∂g(xi;φ)

∂φ1

∂J1

∂φ2

= − 2

n′l

n′l∑
i=1

(yi − ŷi)
∂g(xi;φ)

∂φ2

· · · = · · ·
· · · = · · ·
· · · = · · ·

∂J1

∂φl
= − 2

n′l

n′l∑
i=1

(yi − ŷi)
∂g(xi;φ)

∂φl
(A.29)

A.0.0.11 Gradient of EMOC Loss

We have

∇φJ2 =
∂J2

∂φ
=

{
∂J2

∂φ1

,
∂J2

∂φ2

, · · · , ∂J2

∂φl

}
(A.30)

We observe that

∂J2

∂φj
=
∑
x′∈Xu

Ex
∂

∂φj

∣∣∣∣∇φg(x;φ)>∇φL(φ; (x′, ȳ′))
∣∣∣∣
1

=
∑
x′∈Xu

Ex (Qj), ∀j ∈ {1, 2, · · · , l}. (A.31)

226

where

Qj =
∂

∂φj

∣∣∣∣∇φg(x;φ)>∇φL(φ; (x′, ȳ′))
∣∣∣∣
1

(A.32)

The product ∇φg(x;φ)>∇φL(φ; (x′, ȳ′)) in equation (A.32) is a scalar product that
yields a scalar z = z (x, x′, φ, ȳ′). When ∇φg(x;φ) and ∇φL(φ; (x′, ȳ′)) are non-zero,
||z|| is zero if and only if the two gradient vectors are orthogonal. In such a case, we
may change ȳ′ accordingly, so that it is different from zero. We have:

∂||z||
∂φ

=

{
∂z

∂φ
if z > 0

− ∂z
∂φ

if z < 0
(A.33)

Hence, when z > 0

Qj =
∂

∂φj

[
∇φg(x;φ)>∇φL(φ; (x′, ȳ′))

]
= Qj1 +Qj2 (A.34)

where

Qj1 =
∂

∂φj

(
∇φg(x;φ)>

)
∇φL(φ; (x′, ȳ′)) (A.35)

and

Qj2 = ∇φg(x;φ)>
∂

∂φj
(∇φL(φ; (x′, ȳ′))) (A.36)

First we compute Qj1 as the inner product of

∂

∂φj

(
∂g

∂φ1

,
∂g

∂φ2

, · · · , ∂g
∂φl

)
and

[(−2)(ȳ′ − g(x′;φ))∇φg(x′;φ)] .

Note: We are computing Qj1 for a single x′ ∈ Xu.
Next we compute Qj2 as the inner product of(
∂g
∂φ1

, ∂g
∂φ2

, · · · , ∂g
∂φl

)
and

(−2)

[
(ȳ′ − g(x′;φ))

∂

∂φj
∇φg(x′;φ)−

(
∂g

∂φj

)
∇φg(x′;φ)

]
.

We have used the product rule for differentiation in computing the derivative
∂
∂φi

(∇φL(φ; (x′, ȳ′))) as

(−2)

[
(ȳ′ − g(x′;φ))

∂

∂φj
∇φg(x′;φ)−

(
∂g

∂φj

)
∇φg(x′;φ)

]
.

Here,
∂

∂φj
(∇φg(x′;φ)) =

(
∂2g

∂φj∂φ1

,
∂2g

∂φj∂φ2

, ...,
∂2g

∂φj∂φl

)
(A.37)

227

and
∂g

∂φj
(∇φg(x′;φ)) =

∂g

∂φj

(
∂g

∂φ1

,
∂g

∂φ2

, · · · , ∂g
∂φl

)
(A.38)

Similarly when z < 0, we have:

Qj = −(Qj1 +Qj2) (A.39)

We compute Qj1 + Qj2 for a fixed x′ ∈ Xu and for all x ∈ X l. Then we com-
pute the expected value Ex(Qj). We do this for every x′ ∈ Xu and then compute∑
x′∈Xu

Ex(Qj), ∀j ∈ {1, 2, . . . , l} to get ∇φJ2.

A.0.0.12 Overall Gradient

The overall gradient of the joint objective function for deep active regression is
given by:

∇φJ = ∇φJ1 +∇φJ2.

228

APPENDIX B

PERMISSION STATEMENTS FROM CO-AUTHORS

229

Permission for including co-authored material in this dissertation was obtained
from co-authors, Prof. Sethuraman Panchanathan, Dr. Shayok Chakraborty and Dr.
Hemanth Venkateswara.

230

	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	Goals and Motivation
	Major Contributions
	Additional Contributions
	Dissertation Outline
	Previously Published Work

	LITERATURE SURVEY
	Benchmark Emotion Recognition Datasets
	Multimodal Emotion Recognition Models
	Transfer of Emotion Features between Deep Models
	Multi-class Image Classification using Deep Models
	Multi-class Active Learning
	Multi-label lmage Classification using Deep Models
	Multi-label Active Learning
	Deep Models for Regression
	Active Learning for Regression
	Deep Active Learning

	DEEP LEARNING MODELS
	Artificial Neural Networks, (ANNs)
	The Error Function
	 The Back-Propagation Algorithm
	Overfitting

	Restricted Boltzmann Machines, (RBMs)
	 Training an RBM: Contrastive Divergence

	Deep Belief Networks, (DBNs)
	Greedy Pre-Training in Deep Belief Networks
	Generating Data from a DBN
	Stacked RBMs and Deep Belief Networks

	 Stacked Auto-Associators, (SAs)
	Convolutional Neural Networks, (CNNs)
	Notation
	Architecture
	Forward Propagation
	Stochastic Gradient Descent, (SGD)
	Back Propagation
	ReLU Layer
	Convolution Layer
	Update Parameters
	Gradient Computation
	Pooling layer
	Fully Connected Layer

	Recurrent Neural Networks, (RNNs)
	Long Short-Term Memory Networks, (LSTMs)
	LSTM Equations
	Backpropagation Through Time, (BPTT)

	Summary

	DEEP MODELS FOR MULTIMODAL EMOTION RECOGNITION
	Database for Holistic Emotion Recognition
	 emoFBVP Database
	 Apparatus and Setup For Data Collection
	Data Capture Procedure
	Properties of emoFBVP Database
	Conclusions

	Deep Belief Networks for Emotion Recognition
	Multimodal Emotion Recognition Model
	 Unsupervised Feature Learning
	Supervised Feature Selection
	Feature Extraction - emoFBVP Database

	Experiments
	 Baseline Model
	 DemoFV DBN Models
	 Results for DemoFV DBN
	 DemoBV DBN Models
	 Results for DemoBV DBN
	 DemoFBV DBN Models
	 Results for DemoFBV DBN
	 DemoFBVP DBN Models
	 Results for DemoFBVP DBN
	Results on Standard Emotion Corpora
	 Conclusions

	Convolutional Deep Belief Networks for Emotion Recognition
	Results for CDBN Models
	Conclusions

	Auto-associators for Emotion Recognition
	 Feature Learning Methods
	 Experiments
	 Results
	 Conclusions

	Transfer of Emotion-Rich Features between Deep Belief Networks
	emoDBN Models
	emosource DBN model
	emotarget and emotargetft DBN models
	Parameter Selection

	Experiments and Results
	Results when emosource is trained on emoFBVP dataset
	Results when emosource is trained on Mind Reading dataset
	Results when emosource is trained on MMI dataset
	Results when emosource is trained on Cohn Kanade dataset
	Layer-wise Summary of the Results
	Conclusions

	Summary

	DEEP ACTIVE LEARNING FOR SINGLE-LABEL IMAGE CLASSIFICATION
	Active Learning Models
	Definition
	Active Learning Scenarios
	Query Strategies
	An Example of Active Learning

	Deep Active Learning Models
	Proposed Framework
	Cross-entropy Loss for Labeled Data
	Entropy - Measure of Uncertainty
	Joint Loss for Active Learning
	Computing the Gradient
	Active Learning Network Architecture and Training

	Experiments and Results
	Implementation Details
	Datasets and Experimental Setup
	Comparison Baselines
	Active Learning Performance

	Conclusion and Future Work
	Summary

	DEEP ACTIVE LEARNING FOR MULTI-LABEL IMAGE CLASSIFICATION
	Proposed Framework
	Multi-Label Active Learning Without Label Correlation
	Sigmoid Cross-Entropy Loss for Labeled Data
	Entropy Loss for Unlabeled Data
	Joint Objective for Multi-label Active Learning
	Training and Implementation Details

	Multi-Label Deep Active Learning With Label Correlation
	Loss on Labeled Data
	Loss on Unlabeled Data
	Joint Objective for Training

	Experiments and Results
	Summary

	DEEP ACTIVE LEARNING FOR IMAGE REGRESSION
	Related Work
	Deep Learning for Regression
	Active Learning for Regression
	Deep Active Learning for Regression

	Proposed Framework
	Loss on Labeled Data
	Principle of Expected Model Output Change (EMOC)
	Loss on Unlabeled Data
	Novel Joint Objective Function
	Gradient of Objective Function

	Experiments and Results
	Implementation Details
	Datasets and Experimental Setup
	Comparison Baselines and Evaluation Metrics
	Active Learning Performance
	Study of the Active Sampling Criterion
	Visual Illustration of the Selected Samples

	Conclusions

	FUTURE DIRECTIONS
	Multimodal Emotion Recognition
	Deep Active Learning Models for all Label Spaces

	SUMMARY
	Summary of Contributions
	Conference Submissions
	Workshop Poster Presentations

	BIBLIOGRAPHY
	DERIVATIVE OF THE JOINT OBJECTIVE FUNCTIONS
	PERMISSION STATEMENTS FROM CO-AUTHORS

