39,345 research outputs found

    Concurrent Learning Adaptive Model Predictive Control with Pseudospectral Implementation

    Full text link
    This paper presents a control architecture in which a direct adaptive control technique is used within the model predictive control framework, using the concurrent learning based approach, to compensate for model uncertainties. At each time step, the control sequences and the parameter estimates are both used as the optimization arguments, thereby undermining the need for switching between the learning phase and the control phase, as is the case with hybrid-direct-indirect control architectures. The state derivatives are approximated using pseudospectral methods, which are vastly used for numerical optimal control problems. Theoretical results and numerical simulation examples are used to establish the effectiveness of the architecture.Comment: 21 pages, 13 figure

    Experimental Results of Concurrent Learning Adaptive Controllers

    Get PDF
    Commonly used Proportional-Integral-Derivative based UAV flight controllers are often seen to provide adequate trajectory-tracking performance only after extensive tuning. The gains of these controllers are tuned to particular platforms, which makes transferring controllers from one UAV to other time-intensive. This paper suggests the use of adaptive controllers in speeding up the process of extracting good control performance from new UAVs. In particular, it is shown that a concurrent learning adaptive controller improves the trajectory tracking performance of a quadrotor with baseline linear controller directly imported from another quadrotors whose inertial characteristics and throttle mapping are very di fferent. Concurrent learning adaptive control uses specifi cally selected and online recorded data concurrently with instantaneous data and is capable of guaranteeing tracking error and weight error convergence without requiring persistency of excitation. Flight-test results are presented on indoor quadrotor platforms operated in MIT's RAVEN environment. These results indicate the feasibility of rapidly developing high-performance UAV controllers by using adaptive control to augment a controller transferred from another UAV with similar control assignment structure.United States. Office of Naval Research. Multidisciplinary University Research Initiative (Grant N000141110688)National Science Foundation (U.S.). Graduate Research Fellowship Program (Grant 0645960)Boeing Scientific Research Laboratorie

    Sparse Wide-Area Control of Power Systems using Data-driven Reinforcement Learning

    Full text link
    In this paper we present an online wide-area oscillation damping control (WAC) design for uncertain models of power systems using ideas from reinforcement learning. We assume that the exact small-signal model of the power system at the onset of a contingency is not known to the operator and use the nominal model and online measurements of the generator states and control inputs to rapidly converge to a state-feedback controller that minimizes a given quadratic energy cost. However, unlike conventional linear quadratic regulators (LQR), we intend our controller to be sparse, so its implementation reduces the communication costs. We, therefore, employ the gradient support pursuit (GraSP) optimization algorithm to impose sparsity constraints on the control gain matrix during learning. The sparse controller is thereafter implemented using distributed communication. Using the IEEE 39-bus power system model with 1149 unknown parameters, it is demonstrated that the proposed learning method provides reliable LQR performance while the controller matched to the nominal model becomes unstable for severely uncertain systems.Comment: Submitted to IEEE ACC 2019. 8 pages, 4 figure

    Solar Sailing Adaptive Control Using Integral Concurrent Learning for Solar Flux Estimation

    Get PDF
    In the interest of exploiting natural forces for propellant-less spacecraft missions, this thesis proposes an adaptive control strategy to account for unknown parameters in the dynamic modeling of a reflectivity-controlled solar sail spacecraft. A Lyapunov-based control law along with integral concurrent learning is suggested to accomplish and prove global exponential tracking of the estimated parameters and states of interest, without satisfying the common persistence of excitation condition, which in most nonlinear systems cannot be guaranteed a priori. This involves estimating the solar flux or irradiance from the Sun to account for uncertainty and variation over time in this value. To illustrate potential applications, two missions are considered: (1) a geostationary debris removal case and (2) an Earth-Mars interplanetary transfer orbit following a logarithmic spiral reference trajectory. The proposed formulation demonstrates the benefit of estimating the solar flux using integral concurrent learning. Results are compared to trajectories with no estimation to illustrate the need to account for solar flux fluctuations

    Solar Sailing Adaptive Control Using Integral Concurrent Learning for Solar Flux Estimation

    Get PDF
    In the interest of exploiting natural forces for propellant-less spacecraft missions, this investigation proposes an adaptive control strategy to account for unknown parameters in the dynamic modeling of a reflectivity-controlled solar sail spacecraft. A Lyapunov-based control law along with integral concurrent learning is suggested to accomplish and prove global exponential tracking of the estimated parameters and states of interest, without satisfying the common persistence of excitation condition, which in most nonlinear systems cannot be guaranteed a priori. This involves estimating the solar flux or irradiance from the Sun to account for uncertainty and variation over time in this value. To illustrate potential applications, two missions are considered: (1) a geostationary debris removal case and (2) an Earth-Mars interplanetary transfer orbit following a logarithmic spiral reference trajectory. The proposed formulation demonstrates the benefit of estimating the solar flux using integral concurrent learning. Results are compared to trajectories with no estimation to illustrate the need to account for the actual solar flux

    Concurrent Learning-Based Neuro-Adaptive Robust Tracking Control of Wheeled Mobile Robot: An Event-Triggered Design

    Get PDF
    In this paper, an event-based neuro-adaptive robust tracking controller for a perturbed and networked differential drive mobile robot (DMR) is designed with concurrent learning. A radial basis function neural network, which approximates an unknown perturbation, is used to design an adaptive sliding mode controller (SMC). The RBFNN weights and SMC parameters are estimated online using an adaptive tuning law to ensure performance with reduced chattering. To improve the convergence of RBFNN weight estimation error, a concurrent learning-based adaptive law is derived, which uses measured online and recorded data. Further, a suitable triggering condition is designed to achieve a reduced number of control computations while minimizing network resources without sacrificing the stability of the sampled data closed-loop control system. A finite sampling frequency is guaranteed for the designed triggering condition by establishing a positive lower bound on the inter-event execution time which is equivalent to the Zeno-free behavior of the system. Finally, the proposed event-based neuro-adaptive robust controller is implemented on a practical system (Q-bot 2e) to show the effectiveness of the proposed design
    • …
    corecore