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Commonly used Proportional-Integral-Derivative based UAV flight controllers are of-
ten seen to provide adequate trajectory-tracking performance only after extensive tuning.
The gains of these controllers are tuned to particular platforms, which makes transferring
controllers from one UAV to other time-intensive. This paper suggests the use of adaptive
controllers in speeding up the process of extracting good control performance from new
UAVs. In particular, it is shown that a concurrent learning adaptive controller improves
the trajectory tracking performance of a quadrotor with baseline linear controller directly
imported from another quadrotors whose inertial characteristics and throttle mapping are
very different. Concurrent learning adaptive control uses specifically selected and online
recorded data concurrently with instantaneous data and is capable of guaranteeing tracking
error and weight error convergence without requiring persistency of excitation. Flight-test
results are presented on indoor quadrotor platforms operated in MIT’s RAVEN environ-
ment. These results indicate the feasibility of rapidly developing high-performance UAV
controllers by using adaptive control to augment a controller transferred from another UAV
with similar control assignment structure.

I. Introduction

Due to their simplicity and reliability, Proportional-Integral-Derivative (PID) based controllers are often
used for developing Unmanned Aerial Vehicle (UAV) autopilots (see e.g. [1, 2, 3, 4, 5]). Well tuned PID
controllers have been shown to yield excellent flight performance on quadrotors in various indoor environ-
ments. Notably, they have been used to perform aggressive maneuvers by various groups.6,7, 8, 5 PID based
controllers however, need significant tuning of the gains for extracting good performance. Furthermore,
since the gains of such controllers are tuned to particular platforms, transferring controllers from one UAV
to other becomes time-intensive. This paper demonstrates that the use of adaptive controllers can speed
up the process of extracting good control performance from new UAVs on which controllers from UAVs
with similar control assignment structure are transferred. In particular, it is shown that a PD controller
augmented with a concurrent learning adaptive controller improves the trajectory tracking performance of
a smaller quadrotor whose controller has been directly imported (without changing gains) from another
quadrotor whose inertial characteristics and throttle mapping are very different. The flight-test results are
presented on indoor quadrotor platforms operated in MIT’s RAVEN environment. These results serve two
purposes, firstly they indicate the feasibility of using adaptive control to rapidly develop high-performance
UAV controllers by adapting controllers from one UAV to another with similar control assignment structure,
and secondly they validate concurrent learning adaptive control on a different platform.

Often, it is difficult or costly to obtain an exact model of system dynamics. Adaptive control is one
promising method that has been used for mitigating modeling error in control design. Particularity, adap-
tive flight control has been widely studied. For example, Calise,9 Johnson,10,11,12 Kannan13,14 and others
have developed model reference adaptive controllers for both fixed wing and rotary wing UAVs. Cao, Yang,
Hovaykiman, and other have developed the L1 adaptive control method.15,16 Lavretsky,17 Nguyen,18 Stein-
berg,19 Jourdan et al.20 and others have extended direct adaptive control methods to fault tolerant control
and developed techniques in composite/hybrid adaptation.
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Chowdhary and Johnson recently developed concurrent learning adaptive controllers, which use online
selected and recorded data concurrently with current data for adaptation. They have shown that concurrent
learning adaptive controllers can guarantee exponential closed loop stability without requiring persistency
of excitation if the plant uncertainty can be parameterized using a set of known basis functions.21,22 Fur-
thermore, it was shown that when the structure of the uncertainty is unknown, concurrent learning neuro-
adaptive controllers can guarantee uniform ultimate boundedness of the tracking error in a neighborhood
of zero and the uniform ultimate boundedness of the neural network weights in a compact neighborhood
of the ideal weights.21,23 It was also shown that the rate of convergence is directly proportional to the
minimum singular value of the history stack and a singular value maximizing data recording algorithm was
also presented.24 Concurrent learning controllers have also been extended to multivariable uncertain linear
dynamical systems.25

In [4, 5] Michini et al. and Cutler and How present the details of a trajectory generation algorithm and
a PID based controller for a quadrotor built and flown at MIT’s Aerospace Controls Laboratory (ACL).
Their results show that with a well tuned PID, excellent flight performance can be extracted from the
quadrotor platform operating indoors. A relatively smaller sized quadrotor has since been developed at
ACL. The controller from the larger quadrotor (described in [4, 5]) has been directly imported (without
changing the gains) on the smaller quadrotor, and has been shown to enable hovering flight. However,
the throttle mapping of the smaller quadrotor is not known, and neither are the gains tuned to suite the
smaller quadrotor. Therefore, the trajectory tracking performance of the smaller quadrotor with the imported
controller is relatively poor. In this paper, the baseline controller on the smaller quadrotor is augmented with
a concurrent learning adaptive controller and it is demonstrated through flight testing that the concurrent
learning controller significantly improves the trajectory tracking performance over time. The flight tests are
performed in ACL’s RAVEN indoor flight facility.26

Previously, concurrent learning adaptive controllers have been validated on an outdoor rotorcraft plat-
form,27 and on a fixed wing outdoor UAV.23 In both these cases the baseline PD linear controller was
well-tuned, and concurrent learning was shown to improve the performance. In this paper, concurrent learn-
ing adaptive controllers are validated on small-sized quadrotor aircraft for which the baseline PD controller
is not well-tuned. This could be viewed as a more challenging situation for the adaptive controller, because
the control structure does not leverage the robustness of a well-tuned baseline linear controller.

II. Concurrent Learning Model Reference Adaptive Control

The Approximate Model Inversion base MRAC (AMI-MRAC) architecture employed for adaptive control
is discussed in this section. Let Dx ⊂ <n be compact, and Let x(t) be the known state vector, let δ ∈ <n
denote the control input. Note that it is assumed that the dimension of the control input is same as the
dimension of ẍ. This is a reasonable assumption for outer-loop control of a rotorcraft, where the control
required to achieve a desired position can be translated to roll angle, pitch angle, and the throttle input
(it is assumed that heading control is independent of position control, which is a reasonable assumption for
symmetric rotorcraft such as quadrotors). In context of MRAC, this assumption can be viewed as a specific
matching condition. Consider the following system that describes the dynamics of an aircraft:

ẍ(t) = f(x(t), ẋ(t), δ(t)), (1)

In the above equation, the function f , f(0, 0, 0) = 0, is assumed to be Lipschitz continuous in x, ẋ ∈ Dx,
and control input δ is assumed to belong to the set of admissible control inputs consisting of measurable
bounded functions. Therefore, existence and uniqueness of piecewise solutions to (1) are guaranteed. In
addition, a condition on controllability must be assumed. These assumption are typically satisfied by most
aircraft platforms, including quadrotors.

The goal of the AMI-MRAC controller is to track the states of a reference model given by:

ẍrm = frm(xrm, ẋrm, r), (2)

where frm denotes the reference model dynamics which is assumed to be continuously differentiable in
xrm, ẋrm for all xrm, ẋrm ∈ Dx ⊂ <n. The command r(t) is assumed to be bounded and piecewise continuous.
Furthermore, it is assumed that the reference model is chosen such that it has bounded outputs (xrm, ẋrm)
for a bounded input r(t). Often a linear reference model is desirable, however the theory allows for a general
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nonlinear reference model (as is the case in the results presented in Section III) as long as it is bounded-input-
bounded-output stable. It has been shown by Kannan that when the actuators are subjected to saturation,
a nonlinear reference model may be required.14

Since the exact model (1) is usually not available, an approximate model f̂(x, ẋ, δ) which is invertible
with respect to δ is chosen such that

δ = f̂−1(x, ẋ, ν), (3)

where ν ∈ <n is the pseudo control input representing the desired acceleration. Note that the choice of the
inversion model should capture the control assignment structure, however the parameter of that mapping
need not be completely known. This is important in guaranteeing that appropriate control inputs are
mapped to appropriate states. For example, the inversion model should capture the fact that pitching of the
quadrotor results in motion along the x direction, although the exact parameters of this relationship need
not be known. It is assumed that for every (x, ẋ, ν) the chosen inversion model returns a unique δ. This can
be realized if the dimension of the input δ is the same as the dimension of ẍ. In many control problems, and
indeed in the quadrotor position control problem studied here, this is true. Hence, the pseudo control input
satisfies

ν = f̂(x, ẋ, δ). (4)

This approximation results in a model error of the form

ẍ = ν + ∆(x, ẋ, δ) (5)

where the model error ∆ : <2n+k → <n is given by

∆(x, ẋ, δ) = f(x, ẋ, δ)− f̂(x, ẋ, δ). (6)

Define the tracking error e ∈ <2n as e(t) = [xrm(t) − x(t)]T , and ė(t) = [ẋrm(t) − ẋ(t)]T . A tracking

control law consisting of a linear feedback part νpd = −[Kp Kd]

(
e

ė

)
, a linear feedforward part νrm = ẍrm,

and an adaptive part νad(x) is chosen to have the following form

ν = νrm + νpd − νad. (7)

To derive the equation for tracking error dynamics note that ë = ẍrm − ẍ = νrm − (ν + ∆) due to (6).

Substituting (7) we see that ë = −νpd + (νad −∆) and then, letting A =

[
0 I

−Kp −Kd

]
, and B =

[
0

I

]
,

the tracking error dynamics are found to be12,14,21,27

ė = Ae+B[νad(x, ẋ, δ)−∆(x, ẋ, δ)]. (8)

The baseline full state feedback controller gains Kp,Kd are chosen such that A is a Hurwitz matrix.
Hence for any positive definite matrix Q ∈ <2n×2n , a unique positive definite solution P ∈ <2n×2n exists to
the Lyapunov equation

0 = ATP + PA+Q. (9)

Letting z = [x, ẋ, δ] ∈ <2n+k, it is assumed that the uncertainty ∆(z) can be approximated using a Single
Hidden Layer (SHL) Neural Network (NN) or a Radial Basis Function (RBF) NN. Here we concentrate on
the RBF-NN case.

RBF-NN have been widely used to represent uncertainties whose basis is not known, but it is known
that the uncertainty ∆(z) is continuous and defined over a compact domain D ⊂ Rn+l.28,29,30 One reason
RBF-NN have received significant popularity is because of their linear-in-parameters structure. When using
RBF-NN, the adaptive element is represented by

νad(z) = WTσ(z), (10)

where W ∈ Rq×n2 and σ(z) = [1, σ2(z), σ3(z), ....., σq(z)]
T is a q dimensional vector of chosen radial basis

functions. For i = 2, 3..., q let ci denote the RBF centroid and µi denote the RBF widths then for each i the
radial basis functions are given as

σi(z) = e−‖z−ci‖
2/µi . (11)
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Appealing to the universal approximation property of Radial Basis Function Neural Networks31 we have
that given a fixed number of radial basis functions q there exists ideal parameters W ∗ ∈ Rq×n2 and a vector
ε̃ ∈ Rn such that the following approximation holds for all z ∈ D ⊂ Rn+l where D is compact

∆(z) = W ∗Tσ(z) + ε̃(z). (12)

Furthermore ε̄ = supz∈D ‖ε̃(z)‖ can be made arbitrarily small given sufficient number of radial basis functions.
We say that this model of the uncertainty is unstructured because the number of RBFs needed and the
location of centers is not always clear. For this case it is well known that the following baseline adaptive law

Ẇ (t) = −ΓWσ(z(t))eT (t)PB (13)

guarantees uniform ultimate boundedness of the tracking error, and guarantees that the adaptive parameters
stay bounded within a neighborhood of the ideal parameters only if the system states are PE (see e.g.
[28,29,32,33]). Note that in this case e(t) 9 0 since ε̄ 6= 0. If the system states are not persistently exciting,
additional modifications such as e-mod,34 σ-mod,35 or projection operator based modifications (see e.g. [36])
are required to guarantee that the adaptive parameters stay bounded around a neighborhood of an a-priori
selected guess of the ideal parameters (usually set to 0), especially in the presence of noise.

It was shown in [21, 22] that for linearly parameterized uncertainties the requirement on persistency of
excitation can be relaxed if online recorded data is used concurrently with instantaneous data for adaptation.
In particular, for a linearly parameterized representations of the uncertainty, the following theorem can be
proven:21,22,24

Theorem 1. Consider the system given by (1), with the inverse law 3, reference models (2), the tracking
error equation in (8). Assume further that the uncertainty is linearly parameterizable using an appropriate
set of bases over a compact domain D, let, εi(t) = WT (t)φ(xi, δi)− ∆̂(xi, δi), with ∆̂(xi, δi) = ˙̂xi− ν(xi, δi),
where ˙̂xi is the bounded estimate of ẋi. Now consider the following update law for the weights of the RBF
NN

Ẇ = −ΓWσ(z)eTPB − 1

p

p∑
j=1

ΓWb
σ(xi, δi)ε

T
j , (14)

with ΓWb
the learning rate for training on online recorded data, and assume that Z = [φ(z1), ...., φ(zp)]

and rank(Z) = l. Furthermore, let Bα be the largest compact ball in D, and assume x(0) ∈ Bα, define

δ = max(β, 2‖PB‖ε̄
λmin(Q) + pε̄

√
l

λmin(Ω) ), and assume that D is sufficiently large such that m = α−δ is a positive scalar.

If the states xrm of the bounded input bounded output reference model of (2) remains bounded in the compact
ball Bm = {xrm : ‖xrm‖ ≤ m} for all t ≥ 0 then the tracking error e and the weight error W̃ = W −W ∗
are exponentially uniformly ultimately bounded. Furthermore, if the representation in (12) is exact over
the entire operating domain, that is ε̄ = 0, then the tracking error and weight error converge exponentially
fast to a compact ball around the origin for arbitrary initial conditions, with the rate of convergence directly
proportional to the minimum singular value of the history stack matrix Z.

Remark 1. The size of the compact ball around the origin where the weight and tracking error converge
is dependent on the representation error ε̄ and the estimation error ε̆ = maxi ‖ẋi − ˙̂xi‖. The former can be
reduced by choosing appropriate number of RBFs across the operating domain, and the latter can be reduced
by an appropriate implementation of a fixed point smoother. A fixed point smoother uses data before and after
a data point is recorded to form very accurate estimates of ˙̂xi using a forward-backward Kalman filter.37,27

Note that ˙̂x(t) is not needed at a current instant t. Therefore, an appropriate implementation of a fixed point
smoother alleviates the time-delay often observed in estimating ˙̂x(t) with forward Kalman filter (or a low
pass filter) only.

The history stack matrix Z = [φ(z1), ...., φ(zp)] is not a buffer of last p states. It can be updated online by
including data points that are of significant interest over the course of operation. Theoretically, convergence
is guaranteed as soon as the history stack becomes full ranked. New data points could replace existing
data points once the history stack reaches a pre-determined size. It was shown in [24] that the rate of
convergence of the tracking error and weights is directly proportional to the minimum singular value of Z.
This provides a useful metric to determine which data points are most useful for improving convergence.
Consequently, an algorithm for adding points that improve the minimum singular value of Z for the case of
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Figure 1. Two MIT quadrotors equipped to fly in the ACL Real Time Indoor Autonomous Vehicle Test
Environment (RAVEN).26 The baseline controller on both quadrotors is PID. The gains have been tuned
for the bigger quadrotor. The small quadrotor uses gains from the bigger one, resulting in relatively poor
trajectory tracking performance.

linearly parameterizable uncertainty was presented there. The main limitation of the linearly parameterized
RBF NN representation of the uncertainty is that the RBF centers need to be preallocated over an estimated
compact domain of operation D. Therefore, if the system evolves outside of D all benefits of using adaptive
control are lost. This can be addressed by evolving the RBF basis to reflect the current domain of operation,
a reproducing kernel Hilbert space approach for accomplishing this was presented in [38]. When the basis
is fixed however, for the above adaptive laws to hold, the reference model and the exogenous reference
commands should be constrained such that the desired trajectory does not leave the domain over which the
neural network approximation is valid. Ensuring that the state remains within a given compact set implies
an upper bound on the adaptation gain (see for example Remark 2 of Theorem-1 in [39]). Finally, note also
that ∆ depends on νad through the pseudocontrol ν, whereas νad has to be designed to cancel ∆. Hence the
existence and uniqueness of a fixed-point-solution for νad = ∆(x, ẋ, νad) is assumed. Sufficient conditions for
this assumption are also available.30,40

III. Flight Test Results on MIT Quadrotors

The Aerospace Controls Laboratory (ACL) at MIT maintains the Real Time Indoor Autonomous Vehicle
Test Environment (RAVEN).26 RAVEN uses a motion capture system41 to obtain accurate estimates of
position and attitude. The quadrotors shown in Figure 1 were developed in-house and are equipped to fly
within the RAVEN environment. A detailed description of the PID-based baseline control architecture and
the corresponding software infrastructure of RAVEN can be found in [5, 42].

A. Hardware Details

The flight experiments in this paper are performed on the smaller of the two quadrotors shown in Figure 1.
This vehicle weighs 96 grams without the battery and measures 18.8 cm from motor to motor. The larger
quadrotor weighs 316 grams and measures 33.3 cm from motor to motor. Both quadrotors utilize standard
hobby brushless motors, speed controllers, and fixed-pitch propellers, all mounted to custom-milled carbon
fiber frames. On-board attitude control is performed on a custom autopilot, with attitude commands being
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calculated at 1000 Hz. Due to limitations of the speed controllers, the smaller quadrotor motors only accept
motor updates at 490 Hz. More details on the autopilot and attitude control can be found in [42].

B. Baseline linear controller and adaptive control augmentation

Let the reference trajectory position (generated by a spline based trajectory generator5) be given by xrm.
The tracking error is defined as e = x−xrm. The desired acceleration ν for the baseline PID control is found
as

ν = Kpe+Kdė+ ẍrm +Ki

∫ t

0

e(τ)dτ + gi, (15)

where Kp,Kd,Ki are the proportional, derivative, and integral gains, and gi is the acceleration due to
gravity expressed in the inertial frame. The acceleration commands are mapped directly into desired thrust,
attitude, and attitude rate values using an inversion model whose details are presented in [5]. The attitude
control loop (inner-loop) consists of a high bandwidth quaternion-based on-board PD controller that uses
attitude and rate estimates to track the desired attitude. See [5, 43, 44] for further details of the inner-loop
control law.

In the results presented here (Section C), adaptation is performed only on the position and velocity
controller (outer-loop) while the inner-loop quaternion-based attitude controller is left unchanged. The
baseline outer-loop controller is augmented using a RBF-NN based MRAC control as described in Section
II. In particular, instead of using (15), the the desire acceleration was found using a control law of the form
(7)

ν = Kpe+Kdė+ ẍrm + gi − νad, (16)

where νad is the output of the adaptive element in (10). Both the adaptive law in (13) and the concurrent
learning adaptive law in (14) were implemented for testing. Projection operators were used to bound the
weights of the baseline MRAC adaptive law,36 however, the limit of the projection operator (200) was not
reached in any of the flights.

The controllers were separated into three different loops corresponding to x, y, z positions. The input to
the RBF NN (10) for each of the loops was zx = [x, ẋ, ~q], zy = [y, ẏ, ~q], zz = [z, ż, ~q], where ~q is the attitude
quaternion. Note the slight abuse of notation where z denotes both the vertical position and input to the
RBF NN. The separation of the position loops is motivated by the symmetric nature of the quadrotor flight
platform. Note, however, that the controller adapts on the attitude quaternion for all three loops. This
presents the controller with sufficient information to account for attitude based couplings.

C. Flight-Test results

In the following results, baseline PID refers to the outerloop PID controller on the smaller quadrotors with
gains directly transferred from the bigger (well-tuned) quadrotor. MRAC refers to the adaptive law in (13)
with a projection operator for bounding weights, and CL-MRAC refers to Concurrent Learning - MRAC of
Theorem 1. The vehicle performs five sets of three figure 8 maneuvers with a small pause in between. The
MRAC learning rate was initialized to ΓW = 2 whereas the learning rate of the part of the adaptive law
that trains on online recorded data with CL-MRAC was set to ΓWb

= 0.5. Traditionally, MRAC learning
rates are kept constant in adaptive control as suggested by deterministic Lyapunov based stability analysis
typically performed. However, classical stochastic stability results by Ljung,45 Benveniste,46 and Borkar47

for example, indicate that driving the learning rate to zero is required for guaranteeing convergence in
presence of noise. However, doing this would eventually remove presence of adaptation, so, as is often done
in practice, the practical fix here was to decay the learning rate to a small positive constant. The learning
rates were decayed by dividing it by 1.5 for ΓW , and 2 for ΓWb

after every set of three figure 8 maneuvers.
The MRAC learning rate was lower bounded to 0.5 and ΓWb

was lower bounded to 0.001. The motivation
behind the decaying learning rate is that due to presence of noise e(t) or ε(t) can never be identically equal
to zero, hence over-learning or unnecessary oscillations may be observed close to the origin if the learning
rate is too high.

In addition to the learning rate, another tuning knob for MRAC and CL-MRAC is the number and
location of RBF centers. For the results here a set of 50 RBF centers were randomly distributed using a
uniform distribution in the 6 dimensional space in which z was expected to evolve. The centers for the
position and velocity for the x, y axes were spread across [−2, 2]. For the vertical z axes the position was
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Figure 2. Trajectory tracking performance of the baseline PID controller transferred from another quadrotor
with different inertial and motor characteristics. It can be seen that the controller is unable to track the
commanded trajectory accurately.

spread across [-.5,-.5], and the velocity was spread across [-0.6,0.6]. The centers for quaternions for all axes
were spread across [−1, 1]. The bandwidth of the RBF was set to 1. The location and hyperparameters of
the RBF were not optimized. It should be noted that the location of the centers can affect the accuracy and
numerical performance of the RBF-NN, future work will involve adaptive center placement algorithms such
as those described by Kingravi et al.38 and Chowdhary et al.48 The final tuning knob is the selection/removal
criterion for recorded point. The simple last-point-difference technique was used to record data points that

satisfied ‖σ(x(t))−σ(xk)‖
σ(x(t)) ≥ 0.01,24 where k is the index of last recorded data point. The size of the history

stack was set to the number of RBFs, which was 51 (since a bias term is also included). Once the history
stack was full, any new points were added by removing the oldest recorded point. Estimates of ẍ were found
using Kalman filter based techniques, and any known delay in estimates was accounted for.

Figure 2 shows the trajectory tracking performance of the baseline outer-loop PID controller. It can be
seen that the position tracking is poor, although the vehicle is stable. Figure 3 shows that MRAC improves
the position tracking performance, however, the vehicle is not able to track the extremities of the commanded
position. It can be seen that MRAC’s performance does not show any significant improvement over time.
Figure 4 shows that CL-MRAC tracking performance gets better over time and is significantly better than
that of PID. Figure 5 compares the Root Mean Square (RMS) error of CL-MRAC, MRAC, and PID on the
same plot for the three axes. It can be seen that the CL-MRAC exhibits the lowest RMS tracking error in
x and y axes.
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Figure 3. Trajectory tracking performance with MRAC adaptive law of (13) with projection operator. The
tracking performance has improved over PID, however, the vehicle is unable to track the extremities of the
commanded figure 8 maneuver accurately. Furthermore, little improvement in performance over the long term
is observed.
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Figure 4. Trajectory tracking performance with CL-MRAC shows significant improvement over PID. Further-
more, results indicate that CL-MRAC gets better at tracking the trajectory over time. The results indicate
the feasibility of using adaptive control techniques to rapidly transfer controllers from one UAV to another.
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Figure 5. Comparison of RMS tracking error for the three controllers. CL-MRAC controller has significantly
less RMS error in horizontal position tracking.

Figure 6 shows the velocity tracking performance of the PID controller is significantly lacking. It is seen
in Figure 7 that the velocity tracking performance is improved with MRAC, although the vehicle is not able
to track the rapid change in velocities at the extremities of the figure 8 maneuver. Figure 8 shows however,
that the velocity tracking performance with CL-MRAC improves over time, and the vehicle learns to track
the commanded velocity with little over-/under-shoot over time.

Figure 9 compares the difference between the estimated modeling error (∆̂(t) = ˙̂x(t) − ν(t)) and the
output of the RBF-NN adaptive element νad(t). It can be seen that the RBF-NN with MRAC shows slight
improvement over time in its prediction of the modeling error. This relates directly to the slight improvement
seen in MRAC’s performance. Figure 10 shows that CL-MRAC’s estimate of the modeling error improves
significantly over time, until it is able to predict the modeling error much more accurately than MRAC.
This is one reason behind the long-term performance improvement seen with CL-MRAC. Both controllers
capture the trim in the altitude loop very accurately.

These results indicate that adaptation can be used to improve tracking performance of UAVs whose
controllers have been transferred from other UAVs with similar control assignment but different inertial and
force generation properties. Furthermore, these results together confirm the long term learning ability of
CL-MRAC, which is due to its judicious use of online recorded data, thereby validating the claims in [22,21]
on a new platform.
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Figure 6. Velocity tracking performance of the baseline PID controller transferred from another quadrotor
with different inertial and motor characteristics. The controller is unable to track the velocity commands
corresponding to the commanded trajectory accurately.
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Figure 7. Velocity tracking performance of MRAC. Tracking performance improves over PID.
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Figure 8. Velocity tracking performance of CL-MRAC. Tracking performance is significantly better than
PID, and improvement over long-term is seen over MRAC.

IV. Conclusion

It was shown that adaptive control can be used to speed-up the transfer of controllers from one UAV to
another with similar control assignment structure. In particular, it was shown that a concurrent learning
adaptive controller improves the trajectory tracking performance of a quadrotor with baseline controller
directly imported from another (bigger) quadrotor whose inertial characteristics and throttle mapping are
very different. The claims were supported through flight-test results in MIT’s RAVEN indoor test environ-
ment. A set of repeating maneuvers were used to verify long-term learning properties of concurrent learning
controllers. However, prior results have indicated that performance improvement should be observed even if
the commands are not repetitive. Future work will concentrate on validating the techniques through testing
on trajectories that are more typical of a UAV mission, and investigating how the flight envelope of the UAV
could be extended in light of the improved tracking capability.
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Figure 9. Comparison of estimated modeling error with the output of the RBF-NN adaptive element when
using MRAC. Little improvement in the ability of the RBF-NN to predict the modeling error is seen over
time.
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Figure 10. Comparison of estimated modeling error with the output of the RBF-NN adaptive element when
using CL-MRAC. The RBF-NN adaptive element learns to predict the modeling error fairly accurately over
time when trained with CL-MRAC; the improved prediction leads to better tracking as seen in Figures 4 and
8. These results indicate the presence of long-term learning.
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