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ABSTRACT

In the interest of exploiting natural forces for propellant-less spacecraft missions, this

thesis proposes an adaptive control strategy to account for unknown parameters in the

dynamic modeling of a reflectivity-controlled solar sail spacecraft. A Lyapunov-based control

law along with integral concurrent learning is suggested to accomplish and prove global

exponential tracking of the estimated parameters and states of interest, without satisfying

the common persistence of excitation condition, which in most nonlinear systems cannot

be guaranteed a priori. This involves estimating the solar flux or irradiance from the Sun

to account for uncertainty and variation over time in this value. To illustrate potential

applications, two missions are considered: (1) a geostationary debris removal case and (2) an

Earth-Mars interplanetary transfer orbit following a logarithmic spiral reference trajectory.

The proposed formulation demonstrates the benefit of estimating the solar flux using integral

concurrent learning. Results are compared to trajectories with no estimation to illustrate

the need to account for solar flux fluctuations. For near-Earth maneuvers, the steady state

estimation error is recorded as 0.33 W/m2. Similarly, the mean error for an Earth-Mars

transfer is reported as 0.38 W/m2, or equivalently 0.03%. This clearly indicates that the

suggested adaptive control law used to estimate the solar flux accurately approximates its

actual value.
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1 Introduction

In the interest of exploiting natural forces for propellant-less spacecraft missions, nu-

merous solar sail missions are proposed for a wide variety of applications including space

exploration, relay communication, technology demonstration missions, etc [3]. For instance,

NASA’s Near-Earth Asteroid (NEA) Scout Mission, recently onboarded the Space Launch

System (SLS), will help determine the physical properties of a near-Earth asteroid using a

science-grade camera. The NEA Scout is a CubeSat propelled by a solar sail measuring

925 square feet [4]. In parallel, NASA is developing a new deployable structure known as

Advanced Composite Solar Sail System, or ACS3, to demonstrate successful sail packing

and deployment of composite solar sails within low-Earth orbits (Figure 1.1) [1]. NASA is

also conducting research in diffractive lightsails proposed as a new solar sail concept that

would use small gratings embedded in thin films to make a more efficient use of sunlight

without sacrificing maneuverability [5]. However, for many solar sail mission applications,

active control is required for the stability of a desired orbit. For a solar sail of fixed geometry

and characteristic acceleration, active control is unattainable as the only control variables

are given by the sail’s attitude [6–8]. In this context, two proposed solutions to this prob-

lem are considered in the literature among which solar flux fluctuations are often neglected.

One assumes a variable-geometry solar sail model [9], while the second one suggests the

implementation of reflectivity modulation technology for orbital control.

1.1 Background

Reflectivity modulation technology is adopted for active control of solar sails in accor-

dance with previous demonstration missions and applications [2, 6, 7]. A reflectivity control

device (RCD) is a device manufactured from electrochromic materials composed of a thin

layer of liquid crystals [10]. Effectively, upon application of a low electric voltage, crystals

within the film align with the electric field, allowing its reflectivity coefficient to change

from a diffusive to a highly specular state [10]. IKAROS (2010), the world’s first successful

interplanetary solar sail demonstration mission, used RCDs for attitude control [2].
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Recent research on orbital control of solar sails using RCDs assumes real-time measure-

ments of the solar flux are available [8]. Alternatively, in most academic papers, solar flux

fluctuations are often neglected owing to the assumption of a constant solar radiation pres-

sure coefficient. In addition, it is commonly assumed to be a known parameter. However,

motivated by the desire to increase robustness and improve transient performance, as well

as to avoid the implementation of a solar flux measuring device that would only increase the

mission cost and compromise control capabilities, adaptive control along with concurrent

learning (CL) is used to estimate and account for uncertainties and variation over time in

unknown parameters without satisfying the common persistence of excitation (PE) condi-

tion, which for nonlinear systems cannot be guaranteed a priori and is difficult to check

online [11]. More precisely, integral concurrent learning (ICL) is suggested as a modified

CL formulation with better tracking and estimation performance in which estimation of the

states derivatives is not required [12].

Figure 1.1 Advanced Composite Solar Sail System ACS3 concept by NASA [1].
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As recent studies have shown the need to account for solar flux fluctuations [13, 14],

this thesis proposes an adaptive control strategy to account for unknown parameters in the

dynamic modeling of a reflectivity-controlled solar sail spacecraft. This requires determining

the spacecraft’s orientation to achieve a desired maneuver within realistic time compared to

optimal control schemes found in the literature [8, 15]. A Lyapunov-based control law along

with integral concurrent learning is suggested to accomplish and prove global exponential

tracking of the estimated parameters and states of interest, without satisfying the persistence

of excitation condition. This involves estimating the solar flux or irradiance from the Sun to

account for uncertainty and variation over time in this value.

1.2 Problem Statement

Since 1978, absolute radiometers have been onboarded satellites to measure the solar

flux for solar-observation studies [16]. However, as noted in recent literature, there is no

consensus on a single total solar irradiance (TSI) time series as different radiometers measure

inconsistent values. In addition, the long-term TSI variability has not been established as

most radiometers do not exceed more than a decade due to material degradation [16]. As

a result, the solar flux variation due to the 11-year solar cycle has not been accurately

characterized. Indeed, accurate solar flux measurements represent a current challenge in the

scientific community. The Compact Total Irradiance Monitor-Flight Demonstration (CTIM-

FD) mission by NASA is one of the many solar-observation missions in progress that aim to

study solar flux variability. The CTIM-FD mission is currently testing future technology for

TSI measurements [17]. In this sense, a solar flux measurement package part of the attitude

and orbital control system, as proposed in the literature to account for solar flux fluctuations,

would not be ideal. Alternatively, we suggest an adaptive control scheme along with integral

concurrent learning to estimate the irradiance from the Sun.

3



1.3 Objectives

Unlike preliminary research in solar sailing, this thesis presents an integral concurrent

learning approach to estimate the solar flux as opposed to assuming real-time measurements

are available. This thesis aims to prove global exponential tracking of the estimated param-

eters and states of interest. To illustrate potential applications, two missions are considered:

(1) a geostationary debris removal case and (2) an Earth-Mars interplanetary transfer orbit

following a logarithmic spiral reference trajectory. Results are compared to trajectories with

no estimation to illustrate the need to account for solar flux fluctuations.

1.4 Contributions

Within the objectives of this thesis, a summary of the contributions is outlined as follows:

• We present a method to estimate the solar flux using integral concurrent learning.

• To the author’s knowledge, this is the first attempt within academia in estimating

the solar flux using measurable input-to-output data corresponding to the spacecraft’s

state vector.

• A gradient-based control law for the sail’s orientation using Gauss’ variational equa-

tions (GVEs) is developed to guarantee asymptotic stability for near-Earth maneuvers.

• Results are compared to trajectories with no estimation to illustrate the need to account

for solar flux fluctuations.

1.5 Thesis Outline

In Chapter 1, introductory background on reflectivity modulation technology for active

control of solar sails is presented. Adaptive control along with integral concurrent learning

is suggested to estimate the irradiance from the Sun to account for uncertainty and variation

over time in this value. The problem statement is discussed in great detail followed by a

brief summary of the objectives and contributions of this thesis.
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In Chapter 2, an extensive literature review on the total solar irradiance effects on low-

eccentricity and interplanetary orbits is discussed. Similarly, the state of the art in solar

sailing guidance, navigation, and control as well as current challenges in solar-observation

studies are presented. In addition, a review of adaptive control using Lyapunov’s direct

method is addressed followed by theoretical background on integral concurrent learning. A

motivational example is presented for a standard nonlinear system.

In Chapter 3, the spacecraft’s equations of motion used within the control formulation

are presented through the classical and modified equinoctial orbital elements. Moreover, the

optical solar pressure model is introduced along with RCDs. Here, a solar irradiance model

used in simulation to capture the 11-year solar cycle is considered.

In Chapter 4, the Lyapunov control design is derived in addition to an integral concurrent

learning update law for online estimation of the irradiance from the Sun. For this, Gauss’

variational equations are employed to model the time rate of change of the spacecraft’s orbital

elements. Other orbital perturbations due to gravitational effects from neighboring celestial

bodies are considered in the proposed formulation. Briefly, global exponential tracking of

the estimated parameters and states of interest is proved in this chapter.

In Chapter 5, numerical simulations for two sample missions are considered: (1) a geo-

stationary debris removal case and (2) an Earth-Mars interplanetary transfer orbit following

a logarithmic spiral reference trajectory. Results are compared to trajectories with no esti-

mation to illustrate the need to account for solar flux fluctuations.

In Chapter 6, remarkable conclusions and future research that will follow this thesis

are discussed. The potential to use integral concurrent learning for online estimation of

unknown parameters is suggested for solar sailing formation flight maneuvers. Estimation of

the thermo-optical film properties is also proposed and encouraged for future investigations.
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2 Literature Review and Preliminaries

As the interest in solar sailing continues to increase as a cost effective alternative to

traditional propulsion systems, this chapter presents the state of the art in solar sailing

guidance, navigation, and control and current challenges in solar-observation studies. A

review of adaptive control along with integral concurrent learning is also presented in this

chapter.

2.1 Reflectivity Modulation Technology

For a solar sail of fixed geometry and characteristic acceleration, active control is unattain-

able as the only control variables are given by the sail’s attitude [6–8]. In this context, two

proposed solutions to this problem are considered in the literature among which solar flux

fluctuations are often neglected. One assumes a variable-geometry solar sail model [9], while

the second one suggests the implementation of reflectivity modulation technology for orbital

control.

Reflectivity modulation technology is adopted for active control of solar sails in accor-

dance with previous demonstration missions and applications [2, 6–8]. A reflectivity control

device (RCD) is a device manufactured from electrochromic materials composed of a thin

layer of polymer dispersed nematic liquid crystals [10]. Effectively, upon application of a

low electric voltage, nematic crystals within the film align with the electric field, allowing

its reflectivity coefficient to change from a diffusive to a highly specular state [10]. IKAROS

(2010), the world’s first successful interplanetary solar sail demonstration mission, employed

a reflectivity control device for attitude control [2]. By synchronizing the fraction of switched-

on RCDs, the spacecraft was able to change its spinning axis without consuming fuel [18].

RCDs were installed at the periphery of the sail to generate sufficient torque (Figure 2.1).

The trajectory of IKAROS was controlled indirectly by its attitude. IKAROS conveniently

performed a reverse turn of its angular momentum vector relative to the inertial frame while

approaching Venus as part of its mission [2].
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Figure 2.1 Attitude control concept of the IKAROS mission using RCDs [2].

At the present time, a new class of RCDs are under development by the University

of Tokyo and JAXA entitled Advanced-RCD or simply A-RCD [10]. Unlike conventional

RCDs, A-RCDs deflect the light obliquely to generate a toque perpendicular to the sail’s

surface to avoid deformation of the solar sail membrane, also referred as the windmill effect.

An optimal design of the reflection angle at the oblique reflection film is studied in recent

literature for future implementation of an additional degree of freedom [10].

Since the introduction of RCDs for attitude control by its pioneer IKAROS, substantial

research on orbital control has been conducted using RCDs. For instance, in Niccolai et al.

[6], a full state feedback control law is designed with a linear quadratic regulator (LQR)

approach to stabilize an L1-type artificial equilibrium point using RCDs. Similarly in Mu

et al. [7], the application of this technology for solar sail formation flying was investigated

for the purpose of tracking a reference trajectory for a magnetosphere mission. Here, the

relative solar radiation pressure acceleration was linearized to derive a Lyapunov-based con-

trol law followed by a constrained nonlinear predictive controller [7]. It was concluded that

small variations in the control variables given by the fraction of switched-on RCDs and the

spacecraft attitude was sufficient to track a desired orbit [6, 7].
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In Gong and Li [19], RCDs are used to stabilize periodic Halo orbits around Lagrange

points within the restricted three-body problem. Here, a linear quadratic regulator, designed

for a linearized system about a periodic orbit of interest, was compared to a Floquet theory-

based control law. In this study, convergence to a family of Halo orbits was accomplished.

Similarly, in Biggs and Negri [20], an orbit-attitude control scheme is proposed to track an

artificial equilibrium point of the Earth-Moon system. In contrast to Gong and Li [19],

RCDs are both used to control the attitude and orbit of the solar sail simultaneously [20].

Nevertheless, the solar radiation pressure coefficient was assumed to be a constant and known

value.

2.2 Total Solar Irradiance Effect

Recent studies have shown the need to account for solar flux fluctuations [13, 14]. Nev-

ertheless, in most academic papers, solar flux fluctuations are often neglected owing to the

assumption of a constant solar radiation pressure coefficient. In addition, it is commonly

assumed to be a known parameter. As the solar flux is the primary source of momentum

exchange of a solar sail, the effect of the actual solar pressure on low-eccentricity and in-

terplanetary orbits was analyzed in Vulpetti [13, 14] using the time series of the total solar

irradiance (TSI) as opposed to unreliable TSI models. A storm-warning orbit and an Earth-

Mars transfer orbit were considered in these studies.

In Vulpetti [13], interpolation of the daily TSI means was employed within a Fortran-

90 simulation code using the variable-stepsize Adams–Bashforth–Moulton method to study

the effect solar flux fluctuations have on low eccentricity orbits. It was assumed that the

spacecraft was insensitive to TSI changes with periods shorter than 0.25 days based on the

measurable TSI frequency domain from 1978 to 2002 [21]. In addition, the secular variation

of the solar activity was neglected as the solar flux has been shown to increase on average

1.3 W/m2 per century [22]. Since most solar sail missions to consider exhibit operational

times much less than a century, only the variation due to the 11-year solar cycle (0.1´0.2%)

was part of the daily TSI means recorded [13].
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Moreover, as the solar flux measurements given by the PMOD composite TSI time series

are adjusted to 1 AU [23], the spacecraft trajectory was propagated without time delay while

TSI measurements were scaled by the inverse of the square of the distance from the Sun

(AU{rdq2 to reconstruct their true values [13]. Gravitational perturbations from the inner

planets and Jupiter were considered in this study. A circular warning orbit was considered to

observe corona mass ejections that could potentially induce electromagnetic storms. A solar

sail spacecraft was proposed as a means to extend the length of the mission and stabilize

its Halo orbit around the Sun-Earth L1 libration point without consuming fuel. Here, the

spacecraft’s orbital period under variable TSI and constant TSI was compared. Additionally,

the effect gravitational perturbations have on the spacecraft orbit due to the inner planets

and Jupiter was illustrated. Results indicate that solar flux fluctuations as low as 0.1´0.2%

of the mean values produce perturbations 100 times those due to the gravitational interaction

between neighboring planets [13].

Correspondingly, in Vulpetti [14], a heliocentric transfer orbit from Earth to Mars was

considered within the same large high-precision computer code to study the effect solar

flux fluctuations have on the trajectory of a solar sail. The study concluded that solar

flux fluctuations produce large perturbations on the spacecraft trajectory over the mission

time span [14]. This shows the sensitivity of a solar sail to the variation of the solar flux.

The position difference between the trajectory under constant TSI and variable TSI was

plotted showing that if solar flux fluctuations are neglected, a solar sail could be hundreds of

thousand of kilometers away from the target [13]. As a means to circumvent this problem,

the implementation of a solar flux measurement package has been suggested as part of

the attitude and orbital control system. For instance, in Caruso et al. [8], a control law

was developed to counteract solar flux fluctuation on the optimal heliocentric transfer of

a reflectivity-controlled solar sail assuming real-time measurements of the solar flux are

available.

9



For clarification purposes, TSI measurements at a distance of 1 AU are commonly known

as absolute solar flux measurements or, equivalently, absolute TSI measurements in the

literature [16]. Furthermore, the solar flux and the SRP coefficient are often interchangeable

as the SRP coefficient is the solar flux normalized by the speed of light in the vacuum [24].

2.3 Solar Sailing Control with Solar Irradiance Fluctuations

An optimal solar sail control strategy was proposed to counteract both long-term and

short-term variations in the irradiance from the Sun [8]. In this study, the heliocentric orbit-

to-orbit trajectory that aims to minimize flight time was considered. In this section, a brief

summary of the control scheme is discussed. The optical solar pressure model that describes

the spacecraft acceleration based on the thermo-optical film properties was employed. RCDs

were used to adjust the sail’s thrust magnitude. Additionally, the spacecraft cone angle

served as an additional variable of this formulation to guarantee tracking and the existence

of a solution. More precisely, the spacecraft propulsive acceleration was decomposed into its

transverse and radial components in terms of the cone and clock angles relative to the LVLH

frame that denote spacecraft orientation.

Given a reference fraction of switched-on RCDs, a constant reference solar radiation

pressure coefficient, and reference attitude control angles, the transverse and radial compo-

nents of the spacecraft acceleration were constrained to their reference values to obtained

the required fraction of switched-on RCDs that would counteract the variability of the solar

flux from a presumed constant during the preliminary phase of the mission. Ultimately, a

nonlinear sixth-order trigonometric equation solves for the required control variables using

standard numerical algorithms assuming the clock angle equals it reference value. A de-

tailed discussion on the equations that relate to this approach is presented in Chapter 4.

Nevertheless, it was assumed that real-time measurements of the solar flux are available [8].

Furthermore, as this method arises from a mathematical equality, there is no state feedback

in this formulation. Indeed, error due to inaccurate solar flux measurements would result in

the deviation of the spacecraft from its reference trajectory.
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2.4 Total Solar Irradiance Observations

TSI variability is associated to the Sun’s surface magnetic behaviour attributed to a con-

vective phenomenon known as granulation. Granulation is the pattern observed on the Sun’s

surface caused by the convection of plasma just below the photosphere [25]. Additionally,

different regions of the Sun rotate at different speeds. Since the plasma near the equator

rotates much faster than the plasma at the poles, the difference in the rotational speed

causes the magnetic field to flip on average every 11 years [26]. More in detail, since the

Sun’s hydrogen ions tend to travel along the magnetic field lines, some particles of trapped

hot gasses known as sunspots form. This results in irregular but periodic solar activity that

translates to the solar flux variability of interest in this study.

Since 1978, absolute radiometers have been onboarded satellites to measure the solar

flux variation for solar-observation studies to overcome limitations of ground monitoring

[16]. Radiometers onboarded satellites work on the principle of thermal detectors based on

heating a black body due to solar radiation absorption [27]. In a vacuum environment, the

absorbed radiation that results in a temperature gradient equals the voltage difference in

the electrical and optical heating elements. The relationship between these parameters is

commonly adjusted via a correction factor to account for uncertainties. More precisely, this

also accounts for diffraction losses and the Doppler effect [28, 29].

However, as noted in recent literature, there is no consensus on a single total solar irra-

diance time series as different radiometers measure inconsistent values due to measurement

accuracy, absolute calibration, and altitude corrections [16]. In addition, the long-term TSI

variability has not been established as most radiometers do not exceed more than a decade

due to material degradation [16]. As a result, the solar flux variation due to the 11-year solar

cycle has not been accurately characterized. Composite TSI measurements from multiple

instruments are used to reconstruct the long-term variation in this value [23]. However, the

stability difference in all sources of uncertainty leads to unreliable TSI measurements and

models.
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Indeed, accurate solar flux measurements represent a current challenge in the scientific

community. The Compact Total Irradiance Monitor-Flight Demonstration (CTIM-FD) mis-

sion by NASA is one of the many solar-observation missions in progress that aim to study

solar flux variability. The CTIM-FD mission is currently testing future technology for TSI

measurements [17]. In addition, the Brazilian Galileo Solar Space Telescope (GSST) aims

to study the Sun’s evolution of its magnetic structure as well as its impact on the Earth’s

atmosphere and climate [16].

As reported in Carlesso et al. [16], the accuracy improvement in modern radiometers

originates from new material development, data acquisition, feed-forward control systems,

and precision aperture location [30]. In this context, modern radiometers are strictly required

to feature higher accuracy, stability, and moderate cadence compared to their predecessors.

However, it is still unknown and subject of study to characterize the limitations of current

technologies. In this sense, a solar flux measurement package part of the attitude and orbital

control system, as proposed in the literature to account for solar flux fluctuations, would not

be ideal as it would only increase the mission cost and compromise control capabilities.

Alternatively, we suggest an adaptive control scheme along with integral concurrent learning

that relies on an accurate solar sail model to estimate the irradiance from the Sun.

2.5 Adaptive Control Preliminaries

Within the scope of control theory, adaptive control emerges as a control method to

account for uncertainties in dynamical systems [31]. Such uncertainties include external

disturbances to the system’s model as well as variation in the system’s parameters. In

general there are two substantial techniques to compensate for such unknown variations.

One approach involves a disturbance rejection scheme through a linear combination of known

basis functions. Here, the adaptive control policy is formulated to determine, often but not

necessarily always, any linear combination of the basis functions to cancel out the disturbance

[31].
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Another approach involves the convergences of ideal trajectories by estimation of the

respective control gains of the control policy that are required to track a reference model

while compensating for unknown parameters within the system’s state space representation.

This approach is commonly referred to as model reference adaptive control (MRAC). In

this sense, a family of control strategies suitable for multiple system’s structures arises as

a combination of these two methods. For instance, the adaptive output feedback regulator

and the MRAC with disturbance rejection [31].

Normally, the control law is considered to be indirect if it uses estimated parameters that

are constantly being updated. Otherwise, the control law is considered to be direct [31]. To

guarantee convergence of the estimated parameters to their true values, one would need to

evaluate the persistence of excitation (PE) condition. In simple words, the persistence of

excitation condition provides the means to determine whether or not the system’s response

contains enough information to uniquely estimate the uncertain parameters [32]. In general,

for a generic linear system, we require N{2 number of distinct frequencies in the input

signal to guarantee the convergence of the estimated parameters to their true values, where

N denotes the number of uncertain parameters. However, for nonlinear systems, a similar

statement is not easily defined. In fact, the PE condition for nonlinear systems cannot be

guaranteed a priori and is difficult to check online. In addition, it often compromises guidance

as regularly the spacecraft dynamics do not satisfy the PE condition. In mathematical terms,

the PE condition for dynamical systems is formally described by the following theorem [32].

Theorem 1.1: Persistence of Excitation for Dynamical Systems

A dynamical system is persistently excited if D α ą 0 and T ą 0 such that

t`T
ż

t

ypτqyT
pτq dτ ą αINˆN @ t (2.1)

where yptq is a vector function used for parameters estimation and I is the identity matrix.
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As a result, concurrent learning (CL) is used to estimate and account for uncertainties

and variation over time in unknown parameters without satisfying the common persistence

of excitation condition. More precisely, integral concurrent learning (ICL) is suggested as

a modified CL formulation with better tracking and estimation performance in which esti-

mation of the states derivatives is not required [12]. To better illustrate this, let us briefly

discuss Lyapunov’s direct and indirect methods, which serve as the foundation to most

adaptive control strategies including integral concurrent learning.

2.5.1 Lyapunov Indirect Method

Lyapunov’s indirect method, applicable only for time-invariant systems, involves the

linearization of a nonlinear system about an equilibrium point to study the system’s stability

within a neighborhood of the equilibrium based on the eigenvalues of the state matrix σpAq “

tλuni´1. More precisely, the following conclusions can be made based on the eigenvalues of

the state matrix A [31].

• If the state matrix A is Hurwitz, meaning Repλiq ă 0 @ λ “ 1, 2, ..., n, then the

system is locally asymptotically stable in the neighborhood of the equilibrium point.

• If Repλiq ą 0 for any λ “ 1, 2, ..., n, then the equilibrium point is unstable for the

nonlinear system.

• If Repλiq ď 0 @ λ “ 1, 2, ..., n, we cannot draw any conclusions about the equilibrium

point of the nonlinear system.

Consequently, for nonlinear systems, as is the case of the governing equations of a solar

sail, we often required a more powerful method to determine stability properties.
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2.5.2 Lyapunov Direct Method

Lyapunov’s direct method serves as a energy-based principle that determines the stability

of a nonlinear system based on the response of a user-defined scalar positive definite function

V pxptqq to the evolution of the states over time xptq. Such evolution of V pxptqq is determined

by the negative definiteness of its continuous first order time derivative [31].

• if 9V pxptqq ď 0 @ xptq ‰ 0 and ∥ x ∥ă R P ℜ`, then the origin is locally stable

@ ∥ xptq ∥ă R.

• if 9V pxptqq ă 0 @ xptq ‰ 0 and ∥ xptq ∥ă R P ℜ`, then the origin is locally asymp-

totically stable @ ∥ xptq ∥ă R.

• Additionally, if 9V pxptqq ă 0 @ xptq ‰ 0 and V pxptqq is radially unbounded, then the

origin is globally asymptotically stable.

However, if your choice of V pxptqq fails to prove stability for any of these conditions, no

conclusion can be made about the stability of the equilibrium. Moreover, we often require

Barbalat’s Lemma to further extend the stability conclusion about the states or tracking

error to the origin.

Theorem 1.2: Barbalat’s Lemma

Barbalat’s Lemma states that if the Lyapunov’s candidate function is bounded and it

first derivative is uniformly continuous (e.i., :V is bounded), then 9V pxptqq Ñ 0 as t Ñ 8.

This sometimes implies that the states, or equivalently, the tracking error converges to the

origin [31]. Alternatively, all trajectories are bounded if:

• W1pxq ď V px, tq ď W2pxq.

• 9V px, tq ď ´W3pxq ď 0 for some W3pxq ą 0.

whereW1pxq andW2pxq are positive definite decrescent functions. Furthermore, W3pxq Ñ 0

as t Ñ 8, which sometimes implies that x Ñ 0 as t Ñ 8, if W3pxq is uniformly continues.
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In fact, integral concurrent learning uses the principles of Lyapunov’s direct method to

guarantee global asymptotic tracking of the estimated parameters and states in conjunction

with Barbalat’s Lemma. More in detail, derivation of the respective update law that dictates

the rate of adaptation of the uncertain parameters is partially derived from Lyapunov’s direct

method. A motivational example is presented to show how one can relax the PE condition

and still guarantee parameter convergence.

2.6 Integral Concurrent Learning

Integral concurrent learning is an online adaptive update scheme that guarantees con-

vergence of uncertain parameters without the persistence of excitation condition. More

precisely, integral concurrent learning is suggested as a modified CL formulation with better

tracking and estimation performance in which estimation of the states derivatives is not

required [12]. Recorded data are exploited in the update law while numerical integration is

used to determine the relationship between the estimation error and the measurable states

available. In this way, the update law results in negative definite error terms in the Lyapunov

analysis. An online verifiable finite excitation condition based on the minimum eigenvalue

of the summation serves as a real-time convergence criteria [12].

In contrast to other adaptive control schemes, integral concurrent learning is suitable for

countless numbers of engineering problems disregarding the system’s structure and dimen-

sions. However, to properly apply the fundamental theorem of calculus to the equations of

motion to model the relationship between the estimation error and the measurable states

available, we require the uncertain parameters to be scalar constants [12]. Additionally, a

dependent linear parameterization of the uncertain parameters, given a finite set of basis

functions, is necessary. Integral concurrent learning fails given an independent set of uncer-

tain parameters that would perturb the system by different means. For instance, one might

not use integral concurrent learning to simultaneously estimate the uncertain parameters

within the SRP acceleration of a solar sail while estimating the harmonic coefficients of the

Earth’s gravitational potential function.
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To the author’s knowledge, integral concurrent learning has only been used for online

estimation of spacecraft systems to account for uncertainties in a differential drag-based

device and in the mechanical properties of flexible spacecraft. More in detail, in Riano-

Rios et al. [33], an integral concurrent learning update law was implemented to estimate

the atmospheric density, drag coefficient, and physical properties of a differential drag-based

spacecraft to perform formation flight maneuvers and rendezvous applications for cases in

which we might not know the chief’s acceleration. Moreover, recent research shows the

application of integral concurrent learning to estimate the stiffness of flexible spacecraft

structures using Kane’s equation [34].

To better illustrate the fundamental idea of integral concurrent learning, we consider a

motivational example for a standard nonlinear system. Here, we consider a modification

of the system found in Parikh et al. [12]. However, in contrast to Parikh’s work, we will

excite the system to a different reference input signal to show the benefit of using integral

concurrent learning to relax the persistence of excitation condition.

2.6.1 Motivational Example

For demonstration purposes, we consider the following time-varying nonlinear system

model in state space form.

9xptq “ fpxptq, tq ` uptq (2.2)

where xptq P ℜn is the system’s states and uptq P ℜn the system’s input. We assume the

system’s uncertain parameters θ P ℜm are linearly parameterized from the regressor matrix

Y pxptq, tq P ℜnˆm such that

9xptq “ Y px, tqθ ` uptq (2.3)

17



As common practice, we start by defining a positive definite scalar value Lyapunov can-

didate function as follows.

V peptq,∆θptqq “
1

2
eT

ptqKeptq `
1

2
∆θT

ptqΓ´1∆θptq ą 0 (2.4)

where eptq fi xptq ´ xdptq and ∆θptq fi θ ´ θ̂ptq are the tracking and estimation error,

respectively. Here, θ̂ptq are the estimated parameters and xdptq are the desired states.

Γ P ℜmˆm is a positive definite control gain matrix used to adjust the rate of adaptation

of θ̂ptq, while K P ℜnˆn is a positive definite state feedback control gain matrix. From

here, assuming the uncertain parameters θ are constant, we differentiate the tracking and

estimation errors to obtain the following expressions.

∆ 9θptq “ ´
9̂
θptq (2.5)

9eptq “ 9xptq ´ 9xdptq (2.6)

By differentiating Equation (2.4) and rearranging after substituting for the error and

system’s dynamics in Equation (2.3), (2.5), and (2.6), we obtain the following Lyapunov

function time derivative.

9V peptq,∆θptqq “ rY pxptq, tqθ̂ ` u ´ 9xdptqs
Te ` ∆θT

rpY pxptq, tqTeptq ´ Γ´1 9̂
θptqs (2.7)

We remove the unknown estimation error dependency in Equation (2.7) by forcing the second

term in this equation to be equal to zero while solving for the required update law.

9̂
θptq “ ΓY pxptq, tqTeptq (2.8)
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Additionally, to initially guarantee boundedness of both states and estimated parameters

using the Lyapunov direct method, we design the following control policy.

uptq fi 9xdptq ´ Y pxptqqθ̂ptq ´ Keptq (2.9)

Then, the Lyapunov function time derivative becomes the following:

9V peptq,∆θptqq “ ´eT
ptqKeptq ď 0 (2.10)

Even though V peptq,∆θptqq is radially unbounded, global asymptotic tracking is not

guaranteed at first as the Lyapunov function time derivative is not negative definite. How-

ever, by further extending the stability analysis using Barbalat’s Lemma, we conclude that

eptq Ñ 0 as t Ñ 8. For a visual representation, consider the following desired trajectory.

xdptq “

»

—

–

10p1 ´ e´0.1tq

4p1 ´ e´0.1tq

fi

ffi

fl

(2.11)

Additionally, assume the regression matrix and uncertain parameters are the following:

Y pxptq, tqθ “

»

—

–

x31ptq sin px2ptqq 0 0

0 x2ptq sin ptq x1ptq x1ptqx2ptq ´ t

fi

ffi

fl

»

—

—

—

—

—

—

—

–

5

10

15

20

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(2.12)

By selecting Γ “ 3I4ˆ4 and K “ I2ˆ2, where I is the identity matrix, we observed that

some of the estimated parameters do not converge to their true values (Figure 2.2). Further-

more, tracking to the reference trajectory is not perfect as the control scheme does not result

in a valid linear combination of the regressor matrix to compensate for the unknown param-

eters (Figure 2.3). For this example, the states and estimated parameters were initialized to

zero in a Matlab simulation code.
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Figure 2.2 Estimated parameters given Lyapunov-based update law.

Figure 2.3 System’s states under Lyapunov-based dynamics.

However, in an attempt to improve transient performance and increase robustness, inte-

gral concurrent learning is introduced to the original update law given by Equation (2.8).

9̂
θptq “ ΓY pxptq, tqTeptq ` kICLΓ

N
ÿ

i“1

YT
i Yi∆θ (2.13)
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Here, KICL is a matrix control gain used to weight the ICL component of the update law

against the Lyapunov-based term. If we assume that the system is sufficiently excited over

a finite duration of time T P ℜ such that

λmin

#

N
ÿ

i“1

YT
i Yi∆θ

+

ě λ̄ @ t ě T (2.14)

then global asymptotic tracking of the estimated parameters is guaranteed by Theorem 4.10

in the work of Khalil [32]. Here, λmint¨u is the minimum eigenvalue of the summation

and λ̄ P ℜ` is an user-defined threshold. Nevertheless, the update law is Equation (2.13)

depends on the estimation error, which is intuitively unknown for practical implementation.

Therefore, a novel approach whose principles rely upon the fundamental theorem of calculus

facilitates an expression of the update law that only depends on measurable input-to-output

data. For this, we proceed to integrate Equation (2.3) for the time window rt ´ ∆t, ts.

t
ż

t´∆t

9xpτq dτ “

t
ż

t´∆t

Y pxpτq, τqθ dτ `

t
ż

t´∆t

upτq dτ (2.15)

Consequently, by applying the fundamental theorem of calculus, we obtain the following:

xptq ´ xpt ´ ∆tq “ Yptqθ ` Uptq (2.16)

where Yptq and Uptq are defined as follows

Yptiq “

t
ż

t´∆t

Y pxpτq, τq dτ (2.17)

Uptiq “

t
ż

t´∆t

upτq dτ (2.18)
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Notice that we can pull out from the integral the uncertain parameters θ as they are

assumed to be constant. Therefore, after substituting θ “ ∆θ ` θ̂, we obtain an equivalent

expression of the update law in Equation (2.13) that only depends on the current and previous

measured states that accumulate within the summation to relax the persistence of excitation

condition to a finite excitation condition.

9̂
θptq “ ΓY pxptq, tqTeptq ` kICLΓ

N
ÿ

i“1

YT
i pxptiq ´ xpti ´ ∆tq ´ U ´ Yθ̂q (2.19)

A Matlab simulation of the system considered in the previous example, initialized to the

same initial conditions, shows the system’s response for a choice of KICL “ 0.2I. Here, we

now observed better tracking as the estimates converge to their true values.

Figure 2.4 System’s states under Lyapunov-based dynamics with ICL.
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Figure 2.5 Estimated parameters given Lyapunov-based update law with ICL.
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3 Dynamic Modeling

3.1 The Two-Body Equations of Motion

The spacecraft’s equations of motion can be expressed in the Earth-Centered Inertial

(ECI) coordinate system given by the following equation. Equivalently, without loss of gen-

erality, the Heliocentric Inertial (HCI) reference frame is commonly used for interplanetary

missions.

:r “ ´
µ

r3
r ` asrp ` ad (3.1)

Here, r is the spacecraft position vector and µ is the gravitational parameter of the

primary body. asrp is the spacecraft acceleration due to solar radiation pressure while ad

is the disturbance due to other orbital perturbations such as the gravitational effects due to

neighboring celestial bodies.

3.2 Classical Orbital Elements

For convenience, the spacecraft’s state vector is expressed in terms of the classical orbital

elements qptq: semi-major axis (a), eccentricity (e), inclination (i), right ascension of the

ascending node (Ω), argument of periapsis (ω), and true anomaly (υ). Gauss’ variational

equations (GVEs) provides the time rate of change of the orbital elements as a function of

the disturbance acceleration [24], including solar radiation pressure.

da

dt
“

2

n
?
1 ´ e2

”

e sin pυqPr `
p

r
Ps

ı

(3.2a)

de

dt
“

?
1 ´ e2

na

„

sin pυqPr `

ˆ

cos pυq `
e ` cos pυq

1 ` e cos pυq

˙

Ps

ȷ

(3.2b)

di

dt
“

r cos puq

na2
?
1 ´ e2

Pw (3.2c)
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dΩ

dt
“

r sin puq

na2 sin piq
?
1 ´ e2

Pw (3.2d)

dω

dt
“

?
1 ´ e2

nae

„

´ cos pυqPr ` sin pυq

ˆ

1 `
r

p

˙

Ps

ȷ

´
r cot piq sin puq

h
Pw (3.2e)

dυ

dt
“
p cos pυq

eh
Pr ´ pp ` rq sin pυqPs `

h

r2
(3.2f)

where u is the argument of latitude, h is the magnitude of angular momentum, n is the mean

motion, and p is the orbit’s semi-latus rectum. The disturbance acceleration is described in

the Local-Vertical-Local-Horizontal (LVLH) coordinate system centered at the spacecraft’s

center of mass along the in-track (Pr), cross-track (Ps), and normal components (Pw) as

illustrated in Figure 3.1.

Figure 3.1 LVLH reference frame relative to ECI coordinate system.
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3.3 Local-Vertical-Local-Horizontal Reference Frame

More precisely, the disturbance acceleration along the in-track r̂, cross-track ŝ, and

normal components ŵ is computed from the spacecraft position r and velocity v vectors as

expressed in the Earth-Centered Inertial reference frame [35]. This coordinate transformation

denotes a right-hand basis system as follows.

r̂ “
r

∥ r ∥
(3.3a)

ŵ “
r ˆ v

∥ r ˆ v ∥
(3.3b)

ŝ “ ŵ ˆ r̂ “
pr ˆ vq ˆ r

∥ pr ˆ vq ˆ r ∥
(3.3c)

In this sense, Q denotes the transformation matrix. Consequently, the spacecraft’s non-

two-body perturbations, often modeled in the Earth-Centered Inertial coordinate system,

are readily available from Equation (3.5).

Qpr,vq “

„

r̂ ŝ ŵ

ȷ

(3.4)

"

r̂ ŝ ŵ

*T

“ QT

"

x̂ ŷ ẑ

*T

(3.5)

3.4 Modified Equinoctial Orbital Elements

To avoid singularities in GVEs due to circular orbits (e “ 0) and equatorial orbits

(i “ 0˝, 180˝), the modified equinoctial orbital elements (MEOE) are often used for trajectory

analysis and optimization problems [36–38]. The following set of equations, valid for circular,

elliptical, and hyperbolic orbits, provide the relationship between MEOE and COE.
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p “ ap1 ´ e2q (3.6a)

f “ e cos pω ` Ωq (3.6b)

g “ e sin pω ` Ωq (3.6c)

h “ tan

ˆ

i

2

˙

cos pΩq (3.6d)

k “ tan

ˆ

i

2

˙

sinpΩq (3.6e)

L “ Ω ` ω ` θ (3.6f)

Here, L denotes the true longitude. In this sense, the spacecraft dynamics are described

by the following first-order time-varying nonlinear equations of orbital motion [36].

qmptq “

„

p f g h k L

ȷT

(3.7)

dqm

dt
“ ApqmqP ` b (3.8)

Analogously to GVEs, they provide the time rate of change of the modified equinoctial

orbital elements as a function of the disturbance acceleration acting on the spacecraft. For

simplicity, we define the state vector and its corresponding dynamics in matrix form where

A and b are defined as follows.
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A “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0
2p

w

c

p

µ
0

c

µ

p
sin pLq

c

µ

p

1

w
rw ` 1 cos pLq ` f s

c

µ

p

g

w
rh sin pLq ´ k cos pLqs

´

c

µ

p
cos pLq

c

µ

p
rw ` 1 sin pLq ` gs

c

µ

p

f

w
rh sin pLq ´ k cos pLqs

0 0

c

µ

p

s2 cos pLq

2w

0 0

c

µ

p

s2 sin pLq

2w

0 0

c

µ

p
rh sin pLq ´ k cos pLqs

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(3.9)

b “

„

0 0 0 0 0
?
µp

ˆ

w

p

˙2ȷT

(3.10)

Here, α, s, and w are auxiliary variables defined in Appendix A.

3.5 Orbital Perturbations

The orbital perturbations to considered in this study include the gravitational effects due

to neighboring celestial bodies in addition to gravitational perturbations due to the Earth’s

oblateness when applicable. In this section, we present the mathematical expressions required

to model these perturbations in simulation.

3.5.1 Solar and Lunar Gravity

Given the geocentric equatorial position of the three-body system considered, the absolute

acceleration due to the mutual interaction among them provides the acceleration acting on

the spacecraft due to the third body [35]. Here, we separately consider the Moon $ and

the Sun d as the third body. For instance, let r${S be the Moon’s position vector relative

to the spacecraft and µ$ be the Moon’s gravitational parameter. The Moon’s geocentric

position r$ is captured through a low-precision algorithm using the formulas presented in

The Astronomical Almanac [39]. In the context, the acceleration due to the Moon’s gravity

is obtained as
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a$ “ µ$

˜

r${S

r3${S

´
r$
r3$

¸

(3.11)

Similarly, one might characterize the gravitational pull from the Sun. However, for near-

Earth applications, as the spacecraft distance to the Sun is virtually equal to the Earth-Sun

distance, a mathematical manipulation of this equation is required to accurately compute

the difference between these two values using a finite precision computer. To this extent, the

Sun’s gravitational influence on the spacecraft is rewritten in an equivalent form to minimize

roundoff error [35].

ad “
µd

r3
d{s

rF pψqrd ´ rs (3.12)

where µd is the Sun’s gravitational parameter, rd{s is the Sun’s relative position to the

spacecraft given its inertial position rd, while F pψq and ψ are defined as follows.

F pψq “
ψ2 ´ 3ψ ` 3

1 ` p1 ´ ψq3{2
ψ (3.13)

ψ “
r ¨ p2rd ´ rq

r2d
(3.14)

3.5.2 Earth’s Harmonics

The Earth’s non-two-body effect is captured through the second zonal and tesseral har-

monics using the following gravitational potential function [15, 24].

U “
µC

r

ˆ

RC

r

˙2 „

3C2,2
x2 ` y2

r
´

1

2
C2,0

ˆ

1 ´ 3
z2

r2

˙ȷ

(3.15)
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Here, µC is the Earth’s gravitational parameter and RC is the Earth’s mean radius.

tx y zuT denotes the Cartesian components of the position vector. C2,2 and C2,0 are the

second tesseral and zonal harmonic coefficients that capture the Earth’s oblateness and

irregularities due to non-spherical regions.

3.6 Optical Solar Pressure Model

For the purpose of this research, the following model, adopted from Reference [3] and

modified a posteriori in Reference [8] with reflectivity modulation technology, features RCDs

for active control of a solar sail considering the optical solar pressure model (Figure 3.2).

asrp “
V PsrpAtot cos pϕincq

m

ˆ

AU

rd

˙2

rb1êd ` pb2 cos pϕincq ` b3qn̂s (3.16)

Here, m is the spacecraft’s mass, Psrp is the local time-varying solar radiation pressure

coefficient at a distance of 1 AU, êd is the Sun’s position unit vector, V is the shadow

coefficient given by the conical shadow model [24], ϕinc is the sail’s incidence angle, and rd

is the sail’s distance from the Sun. {b1, b2, b3} are the dimensionless force coefficients defined

in terms of the thermo-optical film properties.

Figure 3.2 Solar sail illustration of sunlight reflection for a flat plate model.
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b1 “ 1 ´ r̃s (3.17a)

b2 “ 2r̃s (3.17b)

b3 “ Bf r̃p1 ´ sq ` p1 ´ r̃q
ϵfBf ´ ϵbBb

ϵf ` ϵb
(3.17c)

where r̃ is the reflection coefficient, s is the fraction of photons specularly reflected, Bf (or

Bb) is the non-Lambertian coefficient of the front (or back) surface, and ϵf (or ϵb) is the film

emissivity of the front (or back) surface.

3.6.1 Reflectivity Control Device

As explained in Caruso et al. [8], it is assumed that sunlight is diffusively reflected when

the device is switched-off and specularly reflected in its on-state (Figure 3.3). It is assumed

that only a small fraction of the total sail area Atot has RCDs installed. Consequently, we

defined As as the aluminized film area and Aon
RCD as the area covered by switched-on RCDs.

In this sense, assuming the optical properties of the aluminized film area coincide with those

of the switched-on RCDs, we introduce f P rAs{Atot, 1s as the reflectivity modulation ratio,

defined as the fraction of the sail area in highly reflective mode. In practice, assuming there

are sufficiently many small RCDs, f can vary accordingly from As{Atot to 1 continuously.

f “
As ` Aon

RCD

Atot

(3.18)

f “ As{Atot would imply that all RCDs are switched-off. On the other hand, f “ 1

physically denotes that all RCDs are switched-on and that the entire sail area experiences

specular-dominant reflection. In this context, the reflectivity modulation ratio along with

the sail’s orientation, denoted by the sail’s surface normal vector opposite to the Sun n̂
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(Figure 3.2), constitute the two control variables of this formulation to independently adjust

the thrust magnitude and direction, respectively. The dimensionless force coefficients bi,

with i “ t1, 2, 3u, in the presence of RCDs now become

bi “ fboni ` p1 ´ fqboffi (3.19)

In the presented work, the thermo-optical film properties of the NEA Scout mission are

used to calculate the dimensionless force coefficients characteristic of the highly reflective

mode [40]. Instead, for the switched-off RCDs, Lambertian diffusion is assumed [24] (Ta-

ble 3.1).

Figure 3.3 Solar sail schematic with reflectivity modulation technology.
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Table 3.1 Thermo-optical film properties

Description Symbol Switched-On State Switched-Off State

Reflection Coefficient r̃ 0.91 1

Fraction of Photons Specularly Reflected s 0.89 0

Non-Lambertian Coefficient (Front) Bf 0.79 2/3

Non-Lambertian Coefficient (Back) Bb 0.67 „

Emissivity (Front) ϵf 0.025 „

Emissivity (Back) ϵb 0.27 „

3.6.2 Solar Irradiance Model

Inspired by the results of Riano-Rios et al. [33], where the atmospheric density of a dif-

ferential drag-based spacecraft was modeled using its two principal Fourier components, the

true solar radiation pressure coefficient is modeled as a linear combination of two parameters

at a certain frequency. More precisely, one can assume a sinusoid of period of 11 years to

characterize the solar flux variation due to the solar cycle.

Psrp “
P̄srp

c
´
P̃srp

c
cos

ˆ

2πd

4017.75

˙

(3.20)

where the mean P̄srp and amplitude P̃srp are constants. d is the number of days since

December 1st of 2019, coinciding with the beginning of the current 25th solar cycle, while c

denotes the speed of light in vacuum.

In this context, Equation (3.20) could be linearly parameterized to account for the un-

certain parameters in following integral concurrent learning formulation. However, better

tracking and estimation performance is obtained when modeling the solar flux as a single

unknown constant as the solar flux variation due to the Solar cycle is characterized by a

low-frequency response. In addition, this results in less computational effort. It is part of

future research to include the stochastic behaviour within the solar flux model to account

for a more realistic case.
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4 Lyapunov-Based Control Design

In this chapter, a Lyapunov-based control policy is derived in addition to an integral

concurrent learning update law for online estimation of the irradiance from the Sun. Here,

global exponential tracking of the estimated parameter and states of interest is proved for

two sample missions: (1) a geostationary debris removal case and (2) an Earth-Mars inter-

planetary transfer orbit following a logarithmic spiral reference trajectory.

4.1 Geostationary Debris Removal Mission

For demonstration purposes, in the interest of increasing the semimajor axis by 377 km

while keeping the eccentricity below 0.003 for a geostationary debris removal mission, we

consider the semimajor axis a for active control as it is well known from the literature that

only one orbital element can be controlled at a time [15]. We define a positive definite

Lyapunov candidate function as

V p∆a,∆Psrpq fi
1

2
∆a2 `

1

2
γ´1∆P 2

srp ą 0 (4.1)

where ∆a fi a ´ ad and ∆Psrp fi Psrp ´ P̂srp are the tracking and estimation errors, re-

spectively. Here, ad is the desired semimajor axis, while γ P ℜ is a positive scalar constant

control gain used to adjust the adaptation rate of the estimated parameter. By differenti-

ating Equation (4.1), and substituting Equations (3.2a) and (3.16), we obtain the following

expression after some algebraic manipulation.

9V “
AtotcospϕincqP̂srp∆az

T
a ũ

m
`

˜

Atot cos pϕincq∆az
T
a ũ

m
´

9̂
Psrp

γ

¸

∆Psrp (4.2)

where zT
a is the GVE gradient of the orbital element of interest readily available from Equa-

tion (3.2a), and ũ is an auxiliary control variable defined as follows to facilitate readability

and the subsequent control design.
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zT
a “

2

n
?
1 ´ e2

„

e sin pυq
p

r
0

ȷ

(4.3)

ũ fi b1êd ` pb2 cos pϕincq ` b3qn̂ (4.4)

From Equation (4.2), the update law
9̂
Psrp is designed to remove the estimation error de-

pendency as well as to guarantee global exponential tracking of the unknown SRP coefficient

using an integral concurrent learning formulation suitable for the dynamics’ structure.

9̂
Psrp fi

Atot cos pϕincqγ∆az
T
a ũ

m
` γkICL

N
ÿ

i“1

Yi

”

aptiq ´ apti ´ ∆tq ´ Ui ´ YiP̂srp

ı

(4.5)

where kICL P ℜ is a positive scalar constant control gain and N P Z` is the number of

input-output data pairs recorded. Ui “ Uiptq and Yi “ Yiptq are defined as

Yiptq “

t
ż

t´∆t

zT
a pqpτq, τqypτq dτ (4.6)

Uiptq “

t
ż

t´∆t

zT
a pqpτq, τqudpτq dτ (4.7)

where yptq is the known SRP acceleration decoupled from the unknown solar flux while

∆t P ℜ is a positive constant denoting the integration time window. The concurrent learning

term in Equation (4.5) represents saved data. Yiptq is the integral term that solely considers

solar radiation pressure input while Uiptq accounts for other orbital perturbations. For

accurate solar flux estimation, high-precision algorithms of the most dominant gravitational

perturbations as well as atmospheric drag are required when applicable.
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yptq “
V Atot cos pϕincq

m

ˆ

AU

rd

˙2

rb1êd ` pb2 cos pϕincq ` b3qn̂s (4.8)

For a detailed discussion on how to numerically integrate Equations (4.6) and (4.7) as

well as on how to properly record data points for an optimal convergence rate, refer to Refer-

ences [11] and [12]. In short, sufficiently many different data pairs are required for accurate

parameter estimation. One could define the minimum deviation between consecutive data

pairs as a threshold to guarantee a diverse set. Alternatively, input-to-output data should

be recorded to maximize the minimum eigenvalue of the summation as this value dictates

the convergence rate of the estimates. However, this last method often adds more com-

plexity and computational time based on storage capacity. In this sense, the update law in

Equation (4.5) can be rewritten in an equivalent analysis form. This form of the update

law suggests that if sufficiently rich input-to-output data are recorded,
ř

Y2
i will be positive

definite.

9̂
Psrp “

Atot cos pϕincqγ∆az
T
a ũ

m
` γkICL

N
ÿ

i“1

Y2
i∆Psrp (4.9)

To obtain this version of the update law, we integrate the spacecraft equation of motion

that considers the time rate of change of the semimajor axis for the time window rt´∆t, ts.

t
ż

t´∆t

9apτq dτ “

t
ż

t´∆t

Psrpz
T
a pτqypτq dτ `

t
ż

t´∆t

zT
a pτqudpτq dτ (4.10)

Consequently, we obtain the following relationship that relates the SRP coefficient to the

measurable semimajor axis.

aptq ´ apt ´ ∆tq “ YptqPsrp ` Uptq (4.11)
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In practice, one can estimate the semimajor axis given orbit determination algorithms

that compute the spacecraft position and velocity vectors. Given this expression, we substi-

tute Psrp “ P̂srp ` ∆Psrp as defined previously. If we assumed that the system is sufficiently

excited over a finite duration of time T P ℜ such that

N
ÿ

i“1

Y2
i ě λ̄ @ t ě T (4.12)

then global asymptotic tracking of the estimated parameters is guaranteed by Theorem 4.10

in the work of Khalil [32]. Here, λ̄ P ℜ` is an user-defined threshold. In this sense, 9V can

be upper bounded as follows given the update law in Equation (4.9).

9V ď
Atot cos pϕincqP̂srp∆az

T
a ũ

m
(4.13)

Consequently, the following control law is designed for the sail’s unit normal vector

denoting the spacecraft attitude to guarantee a negative semi-definite Lyapunov function

time derivative.

n̂ “ ´
mpzT

a zaq´1zak∆a

P̂srpAtot

(4.14)

where k P ℜ is a positive constant control gain designed to constrain the surface normal

vector to be unitary. The term b1êd within the auxiliary control input ũ is neglected owing

to the assumption of an ideal solar sail model. This is done to simplify the analysis and

guarantee a feasible solution. With this choice of the control law given by Equation (4.14),

by invoking Barbalat’s Lemma while assuming bounded eccentricity, we can prove global

asymptotic tracking of the semimajor axis a for any value of the reflectivity modulation

ratio f .
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9V ď ´k cos2 pϕincq∆a
2

ď 0 @ ∆a ‰ 0 (4.15)

Notice that the solar radiation pressure force exerted on the spacecraft acts in the opposite

direction of the Sun. Thus, we restrict ϕinc P r´
π

2
,
π

2
s. As part of the control logic, when the

required sail’s orientation gives rise to an unattainable configuration, the sail’s surface normal

vector is aligned perpendicular to the Sun
´

ϕinc “
π

2

¯

such that the solar radiation pressure

acceleration is zero. Additionally in this formulation, the control law for the reflectivity

modulation ratio is adopted from Reference [8] to counteract the variation in the solar flux

using RCDs. In short, the required sail’s cone angle α and reflectivity modulation ratio are

obtained using standard numerical schemes to match a desired reference trajectory assuming

the clock angle δ equals its reference value. The same control scheme is used in the following

Earth-Mars interplanetary transfer orbit considering a logarithmic spiral trajectory as the

reference. The reference time-variant dimensionless acceleration along the transverse and

radial directions in terms of f̄ , the reference reflectivity modulation ratio, and αref , the

reference cone angle, are the following according to Caruso et al. [8].

ãrefr “ f̄ bon1 cos pαref
q ` p1 ´ f̄qboff1 cos pαref

q

`rf̄ bon2 ` p1 ´ f̄qboff2 s cos3 pαref
q

`rf̄ bon3 ` p1 ´ f̄qboff3 s cos2 pαref
q

(4.16)

ãreft “ cos pαref
q sin pαref

qtrf̄ bon2 ` p1 ´ f̄qboff2 s cosαref
` f̄ bon3 ` p1 ´ f̄qboff3 u (4.17)

Moreover, one can solve numerically for the required cone angle that would counteract

the unknown solar flux component estimated by the ICL update law. For this, we solve

Equation (4.18) using Newton’s method.
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´K2
6 cos

6
pαq ` 2pK1 ´ K7qK6 cos

5
pαq

`rK2
6 ´ pK1 ´ K7q

2
` 2K2K6 ´ K2

4 s cos4 pαq

`r´2pK1 ´ K7qpK2 ` K6q ´ 2K4K5s cos
3

pαq

`r´2K2K6 ´ K2
2 ´ k25 ´ 2K3K4s cos

2
pαq

`r2K2pK1 ´ K7q ´ 2K3K5s cos pαq ` pK2
2 ´ K2

3q “ 0

(4.18)

Here, Ki, for i “ 1, ..., 7, is defined as follows based on the dimensionless reference ac-

celeration and the presumed value of the solar flux W̄ during the preliminary phase of the

mission. Moreover, W is the estimated solar flux at any given time t provided by the integral

concurrent learning update law.

K1 “
W̄

W
ãrefr pbon2 ´ boff2 q (4.19a)

K2 “
W̄

W
ãrefr pbon3 ´ boff3 q (4.19b)

K3 “
W̄

W
ãreft pbon1 ´ boff1 q (4.19c)

K4 “
W̄

W
ãreft pbon2 ´ boff2 q (4.19d)

K5 “
W̄

W
ãreft pbon3 ´ boff3 q (4.19e)

K6 “ boff1 bon2 ´ bon1 b
off
2 (4.19f)
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K7 “ boff1 bon3 ´ bon1 b
off
3 (4.19g)

Ultimately, the reflectivity modulation ratio that provides the fraction of switched-on RCDs

to account for solar flux fluctuations is given by

f “
pW̄ {W qãrefr ´ pboff1 cos pαq ` boff2 cos3 pαq ` boff3 cos2 pαqq

pbon1 ´ boff1 q cos pαq ` pbon2 ´ boff2 q cos3 pαq ` pbon3 ´ boff3 q cos2 pαq
(4.20)

4.2 Application to Earth-Mars Transfer Orbit

For an interplanetary Earth-Mars mission, consider a logarithmic spiral reference trajec-

tory [3]. Here, the spacecraft attitude is fixed relative to the LVLH reference frame as the

cone angle α P r0, π{2s is constant and the clock angle is zero. The cone angle is defined as

the angle between the surface normal vector and the in-track direction.

n̂ “

„

cos pαq sin pαq 0

ȷT

(4.21)

In this sense, considering Equation (4.1) as a valid scalar positive definite Lyapunov

candidate function and the update law given by Equation (4.5), analogously to the geosta-

tionary debris removal case, the Lyapunov function time derivative is upper bounded while

estimation of the solar flux is guaranteed.

9V ď
Atot cos pϕincqP̂srp∆az

T
a ũ

m
(4.22)

Here, ∆a is a negative scalar value as the spacecraft is increasing its semimajor axis from

a lower (Earth) to a higher orbit (Mars). The inner product zT
a ũ is expanded to point out

the contribution of each term.
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zT
a ũ “

2e sin pvq

n
?
1 ´ e2

pb1 ` b2 cos
2

pαq ` b3 cos pαqq

`
2p

nr
?
1 ´ e2

pb2 cos pαq sin pαq ` b3 sin pαqq

(4.23)

As the eccentricity is relatively small compared to the ratio of the orbit’s semi-latus rec-

tum to its radius, the first term in Equation (4.23) is neglected. As a result, the Lyapunov

time derivative is proven to be negative definite throughout the entire interplanetary ma-

neuver. As it is commonly done in the literature, the excess velocity is neglected and only

the interplanetary arc is considered [3].

9V ď ´
Atot cos pϕincq | ∆a | zT

a P̂srp

m

„

2p

nr
?
1 ´ e2

pb2 cos pαq sin pαq ` b3 sin pαqq

ȷ

(4.24)
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5 Numerical Simulations and Discussion

In this chapter, numerical simulations for two sample missions are considered to test the

control formulation and estimation performance: (1) a geostationary debris removal case

and (2) an Earth-Mars interplanetary transfer orbit following a logarithmic spiral reference

trajectory. Results are compared to trajectories with no estimation to illustrate the need to

account for solar flux fluctuations.

5.1 Geostationary Debris Removal Mission

For demonstration purposes, a Lyapunov-based adaptive control along with integral con-

current learning is simulated in Matlab for a geostationary solar sail spacecraft. It is desired

to increase its semimajor axis by 377 km while keeping its eccentricity bellow 0.003. This

is an example of a geostationary debris removal application using solar sails in accordance

with the IADC Space Debris Mitigation Guidelines [41]. The solar sail to consider features

a mass of 1050 kg and a total surface area of 800 m2. It is assumed that 20% of the sail

area has RCDs installed. The unknown solar flux was initialized to 1500 W/m2. In reality,

the true values of the solar flux time-varying model were adopted as P̄srp “ 1367 W/m2 and

P̃srp “ 0.6835 W/m2. The disturbing accelerations include the Earth’s oblateness captured

by the second zonal and tesseral harmonics in addition to solar and lunar gravity to simulate

the gravitational effect of neighboring celestial bodies. The control gains were selected as

γ “ 10´20 and kICL “ 1010, while λ̄ was set to 1 ˆ 10´3. The reference trajectory given by

Equation (4.14) was integrated simultaneously with the spacecraft’s state vector. At each

time step, the required cone angle and reflectivity modulation ratio was obtained using the

current estimated solar flux giving a reference value of P ref
srp “ 1375 W/m2. The algorithm

adopted from Reference [8] was employed assuming a reference reflectivity modulation ra-

tio of f̄ “ 0.9. The same reference values were used for the interplanetary transfer orbit

introduced in the next section.
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The same adaptive control formulation discussed in this thesis was also considered for the

eccentricity control of the spacecraft after the first phase of the maneuver was completed (i.e.,

the semimajor axis control phase). As shown in Figures 5.1 and 5.3, the Lyapunov-based

adaptive control law tracks the desired reference for both orbital elements one at a time within

220 days. Additionally, as a means to illustrate the benefit of estimating the solar flux using

integral concurrent learning, results are compared to trajectories with no ICL estimation

(i.e., kICL “ 0). As expected, as time progresses, the deviation of the trajectory without

estimation becomes more predominant relative to its reference. For instance, Figure 5.2 and

Figure 5.4 show the residual steady state error in the semimajor axis and eccentricity for

all cases considered in this study, respectively. However, a more significant deviation from

the reference trajectory is observed for the next case in which we consider an Earth-Mars

transfer orbit.

Nevertheless, as illustrated in Figure 5.5, the estimated parameter converges to its true

value in about 2 days to correctly model the time-varying solar flux model given by Equa-

tion (3.20). The residual steady state estimation error is recorded as 0.33 W/m2. This

clearly indicates that the proposed ICL formulation used to estimate the solar flux accu-

rately approximates its actual value even for an uneducated initial guess as it is 1500 W/m2.

Moreover, over the full length of the mission, the mean estimation error is computed as 0.34

W/m2 or equivalently 0.02%. It is important to note that better estimation was observed

with smaller time steps within the simulation code to integrate the state vector. Figure 5.6

shows the constantly increasing behavior of
ř

Y2
i during the first phase of the maneuver.

This indicates that the ICL terms given by Equations (4.6) and (4.7) integrate sufficiently

rich data to accurately estimate the unknown solar flux.
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Figure 5.1 Semimajor axis for a GEO debris removal mission.

Figure 5.2 Semimajor axis steady state response for a GEO debris removal mission.
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Figure 5.3 Eccentricity for a GEO debris removal mission.

Figure 5.4 Eccentricity steady state response for a GEO debris removal mission.
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Figure 5.5 Solar flux estimation for GEO debris removal mission.

Figure 5.6 History stack of
ř

Y2
i for GEO debris removal mission.
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5.2 Application to Earth-Mars Transfer Orbit

The proposed control system is tested with an additional application mission to better

illustrate the need to account for the variation in the solar flux. The Lyapunov-based update

law derived in this thesis is used to estimate the solar flux given a logarithmic spiral trajectory

in which the reference cone angle is considered to be αref “ 35.17˝. This value of the cone

angle was obtained following the optimal control problem in Reference [3] for an ideal solar

sail to minimize flight time. An ephemeris-free interplanetary transfer orbit from Earth to

Mars is illustrated as a means to show the benefit of estimating the solar flux. Here, the

modified equinoctial orbital elements were used to describe the spacecraft state vector for

numerical integration of the equations of motion. To avoid propagation of error within the

simulation, the estimates’ adaptation rate was set to zero after 73 days in simulation time.

Similarly to the geostationary debris removal mission, the unknown solar flux was initialized

to 1500 W/m2. The true values of the solar flux time-varying model were simulated as P̄srp “

1367 W/m2 and P̃srp “ 0.6835 W/m2. The control gains were selected as γ “ 10´40 and

kICL “ 1020. It is assumed the solar sail features the same area-to-mass ratio as of the NEA

Scout Atot{m “ 6.07 m2/kg, and that 20% of the sail area has RCDs installed.

Figure 5.7 shows the logarithmic spiral trajectory with ICL estimation (kICL “ 1030) and

with no adaptation (kICL “ 0) compared to a reference. A closer view by Figure 5.8 points

out the deviation of the trajectories considered in this study. This confirms that, given

a wrong guess of the solar flux, the solar sail can significantly deviate from its reference.

Figure 5.9 shows the ICL estimation of the unknown parameter. Here, the mean error is

reported as 0.38 W/m2, or equivalently 0.03%. The estimated solar flux converges to its true

value within 15 days. The convergence criteria was set to 2 W/m2.
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Figure 5.7 Earth-Mars transfer orbit.

Figure 5.8 Earth-Mars transfer orbit at final target.
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Figure 5.9 Solar flux estimation for Earth-Mars transfer orbit.

Figure 5.10 Close view solar flux estimation for Earth-Mars transfer orbit.
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6 Conclusions and Future Work

Motivated by the desire to increase robustness and improve transient performance, the

proposed adaptive control formulation demonstrates the benefit of estimating the solar flux

using integral concurrent learning without satisfying the persistence of excitation condition.

Results were compared to trajectories with no estimation to illustrate the need to account for

solar flux fluctuations. Two missions were considered: (1) a geostationary debris removal case

and (2) an Earth-Mars interplanetary transfer orbit following a logarithmic spiral reference

trajectory. For near-Earth maneuvers, the steady state estimation error is recorded as 0.33

W/m2. Similarly, the mean error for an Earth-Mars transfer is reported as 0.38 W/m2, or

equivalently 0.03%. This clearly indicates that the suggested adaptive control law used to

estimate the solar flux accurately approximates its actual value.

Future research should include the stochastic solar flux behaviour within the estimation

model. The potential to use integral concurrent learning for online estimation of unknown

parameters is suggested for solar sailing formation flight maneuvers. Estimation of the

thermo-optical film properties is also proposed and encouraged for future investigations. In

this thesis, the stochastic solar flux variation was neglected as well as measurement noise in

the orbital and attitude states of the solar sail. Additionally, the optical solar pressure model

that captures the acceleration due to solar radiation pressure based on the thermo-optical film

properties was assumed to be an exact representation of the spacecraft’s dynamics. In this

context, an extensive robustness to noise analysis is required to assess and test modifications

to the control policy for future real-life applications in which one would need to estimate

the solar flux to track a desired reference trajectory. This includes the implementation of

robust adaptive control modifications such as the well-known sigma and e-modifications.

As a means to account for a realistic evaluation through a high-fidelity simulation, future

research should include radiometric tracking techniques for deep-space navigation to properly

model in simulation measurement noise.

50



REFERENCES

[1] NASA, “Advanced Composite Solar Sail System: Using Sunlight to Power Deep

Space Exploration,” 2021. URL https://www.nasa.gov/directorates/spacetech/small

spacecraft/ACS3.

[2] Tsuda, Y., Mori, O., Funase, R., Sawada, H., Yamamoto, T., Saiki, T., Endo, T.,

Yonekura, K., Hoshino, H., and Kawaguchi, J., “Achievement of IKAROS-Japanese

Deep Space Solar Sail Demonstration Mission,” Acta Astronautica, Vol. 82, No. 2, 2013,

pp. 183–188. https://doi.org/10.1016/j.actaastro.2012.03.032.

[3] Mclnnes, C. R., Solar Sailing: Technology, Dynamics and Mission Applications, 1st ed.,

Springer-Verlag Berlin Heidelberg, New York, 1999.

[4] NASA, “NEA Scout,” 2022. URL https://www.nasa.gov/content/nea-scout.

[5] NASA, “Diffractive Lightsails,” 2019. URL https://www.nasa.gov/directorates/

spacetech/niac/2019 Phase I Phase II/Diffractive Lightsails/.

[6] Niccolai, L., Mengali, G., Quarta, A. A., and Caruso, A., “Feedback Control Law

of Solar Sail with Variable Surface Reflectivity at Sun-Earth Collinear Equilibrium

Points,” Aerospace Science and Technology, Vol. 106, No. 2, 2020, pp. 183–188. https:

//doi.org/10.1016/j.ast.2020.106144.

[7] Mu, J., Gong, S., and Li, J., “Reflectivity-Controlled Solar Sail Formation Flying for

Magnetosphere Mission,” Aerospace Science and Technology, Vol. 30, No. 1, 2013, pp.

339–348. https://doi.org/10.1016/j.ast.2013.09.002.

[8] Caruso, A., Mengali, G., Quarta, A. A., and Niccolai, L., “Solar Sail Optimal Control

with Solar Irradiance Fluctuations,” Advances in Space Research, Vol. 67, No. 9, 2021,

pp. 2776–2783. https://doi.org/10.1016/j.asr.2020.05.037.

51

https://www.nasa.gov/directorates/spacetech/small_spacecraft/ACS3
https://www.nasa.gov/directorates/spacetech/small_spacecraft/ACS3
https://doi.org/10.1016/j.actaastro.2012.03.032
https://www.nasa.gov/content/nea-scout
https://www.nasa.gov/directorates/spacetech/niac/2019_Phase_I_Phase_II/Diffractive_Lightsails/
https://www.nasa.gov/directorates/spacetech/niac/2019_Phase_I_Phase_II/Diffractive_Lightsails/
https://doi.org/10.1016/j.ast.2020.106144
https://doi.org/10.1016/j.ast.2020.106144
https://doi.org/10.1016/j.ast.2013.09.002
https://doi.org/10.1016/j.asr.2020.05.037


[9] Ceriotti, M., Harkness, P., and McRobb, M., “Variable-Geometry Solar Sailing: The

Possibilities of the Quasi-Rhombic Pyramid,” Advances in Solar Sailing, Springer, 2014,

pp. 899–919. https://doi.org/10.1007/978-3-642-34907-2 54.

[10] Ishida, H., Chujo, T., Mori, O., and Kawaguchi, J., “Optimal Design of Advanced Re-

flectivity Control Device for Solar Sails Considering Polarization Properties of Liquid

Crystal,” Proceedings of the 26th International Symposium on Space Flight Dynamics,

2017. URL https://issfd.org/ISSFD 2017/paper/ISTS-2017-d-061 ISSFD-2017-061.

pdf.

[11] Chowdhary, G., “Concurrent Learning for Convergence in Adaptive Control without

Persistency of Excitation,” Ph.D. thesis, Georgia Institute of Technology, 2010.

[12] Parikh, A., Kamalapurkar, R., and Dixon, W. E., “Integral Concurrent Learning: Adap-

tive Control with Parameter Convergence Using Finite Excitation,” International Jour-

nal of Adaptive Control and Signal Processing, Vol. 33, No. 12, 2018, pp. 1775–1787.

https://doi.org/10.1002/acs.2945.

[13] Vulpetti, G., “Effect of the Total Solar Irradiance Variations on Solar-Sail Low-

Eccentricity Orbits,” Acta Astronautica, Vol. 67, No. 1-2, 2010, pp. 279–283. https:

//doi.org/10.1016/j.actaastro.2010.02.004.

[14] Vulpetti, G., “Total Solar Irradiance Fluctuation Effects on Sailcraft-Mars Rendezvous,”

Acta Astronautica, Vol. 68, No. 5-6, 2011, pp. 644–650. https://doi.org/10.1016/j.

actaastro.2010.01.010.

[15] Kelly, P., and Bevilacqua, R., “An Optimized Analytical Solution for Geostationary

Debris Removal Using Solar Sails,” Acta Astronautica, Vol. 162, No. 12, 2019, pp. 72–

86. https://doi.org/10.1016/j.actaastro.2019.05.055.

[16] Carlesso, F., Barbosa, A. R., Antunes Vieira, L. E., Dal Lago, A., et al., “Solar

Irradiance Variability Monitor for the Galileo Solar Space Telescope Mission: Con-

52

https://doi.org/10.1007/978-3-642-34907-2_54
https://issfd.org/ISSFD_2017/paper/ISTS-2017-d-061__ISSFD-2017-061.pdf
https://issfd.org/ISSFD_2017/paper/ISTS-2017-d-061__ISSFD-2017-061.pdf
https://doi.org/10.1002/acs.2945
https://doi.org/10.1016/j.actaastro.2010.02.004
https://doi.org/10.1016/j.actaastro.2010.02.004
https://doi.org/10.1016/j.actaastro.2010.01.010
https://doi.org/10.1016/j.actaastro.2010.01.010
https://doi.org/10.1016/j.actaastro.2019.05.055


cept and Challenges,” Frontiers in Physics, , No. 9, 2022, pp. 189–203. https:

//doi.org/10.3389/fphy.2022.869738.

[17] Harber, D., Castleman, Z., Drake, G., Van Dreser, S., Farber, N., Heuerman, K., Miller,

M., Rutkowski, J., Sims, A., Sprunck, J., et al., “Compact Total Irradiance Monitor

Flight Demonstration,” CubeSats and SmallSats for Remote Sensing III, Vol. 11131,

2019, pp. 97–104. https://doi.org/10.1117/12.2531308.

[18] Funase, R., Shirasawa, Y., Mimasu, Y., Mori, O., Tsuda, Y., Saiki, T., and Kawaguchi,

J., “On-Orbit Verification of Fuel-Free Attitude Control System for Spinning Solar Sail

Utilizing Solar Radiation Pressure,” Advances in Space Research, Vol. 48, No. 11, 2011,

pp. 1740–1746. https://doi.org/10.1016/j.asr.2011.02.022.

[19] Gong, S., and Li, J., “Solar Sail Halo Orbit Control Using Reflectivity Control Devices,”

Transactions of the Japan Society for Aeronautical and Space Sciences, Vol. 57, No. 5,

2014, pp. 279–288. https://doi.org/10.2322/tjsass.57.279.

[20] Biggs, J. D., and Negri, A., “Orbit-Attitude Control in a Circular Restricted Three-Body

Problem Using Distributed Reflectivity Devices,” Journal of Guidance, Control, and

Dynamics, Vol. 42, No. 12, 2019, pp. 2712–2721. https://doi.org/10.2514/1.G004493.
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A Modified Equinoctial Orbital Elements

A.1 Position and Velocity Vectors

The spacecraft position and velocity vectors can be expressed in terms of the modified

equinoctial orbital elements. In this way, the LVLH basis are conveniently obtained to

construct the required transformation matrix Q.

r “

»

—

—

—

—

–

r
s2

rcos pLq ` α2 cos pLq ` 2hk sin pLqs

r
s2

rsin pLq ´ α2 sin pLq ` 2hk cos pLqs

2
s2

rh sin pLq ´ k cos pLqs

fi

ffi

ffi

ffi

ffi

fl

(A.1)

v “

»

—

—

—

—

–

´ 1
s2

µ
p
rsin pLq ` α2 sin pLq ´ 2hk cos pLq ` g ´ 2fhk ` α2gs

´ 1
s2

µ
p
r´ cos pLq ` α2 cos pLq ´ 2hk sin pLq ´ f ` 2ghk ` α2f s

2
s2

b

µ
p
rh cos pLq ` k sin pLq ` fh ` gks

fi

ffi

ffi

ffi

ffi

fl

(A.2)

Here, α, s, and w are auxiliary variables used to facilitate readability. r is the spacecraft

distance from the Earth.

r “
p

w
(A.3)

α2
“ h2 ´ k2 (A.4)

s2 “ 1 ` h2 ` k2 (A.5)

w “ 1 ` f cos pLq ` g sin pLq (A.6)
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A.2 Classical Orbital Elements

The classical orbital elements required by the control and update policy are readily

available given the modified equinoctial orbital elements as follows.

a “ p{p1 ´ f 2
´ g2q (A.7a)

e “
a

f 2 ` g2 (A.7b)

i “ 2 tan´1
p
?
h2 ` k2q (A.7c)

ω “ tan´1
pg{fq (A.7d)

Ω “ tan´1
2 pk, hq (A.7e)

θ “ L ´ tan´1
pg{fq (A.7f)
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