6,401 research outputs found

    Synthese, Assemblierung und intrazellulÀrer Transport von Mitgliedern der cys-loop- und P2X-Familie liganden-gesteuerter IonenkanÀle

    Get PDF
    The results presented here strongly indicate that ubiquitination of the recombinant human alpha1 GlyR at the plasma membrane of Xenopus oocytes is involved in receptor internalisation and degradation. Ubiquitination of the human alpha1 GlyR has been demonstrated by radio-iodination of plasma membrane-boundalpha1 GlyRs, whose subunits differed in molecular weight by additional 7, 14 or 21 kDa, corresponding to the molecular weights of one, two and three conjugated ubiquitin molecules, respectively, and by co-isolation of the non-tagged human alpha1 GlyR through hexahistidyl-tagged ubiquitin. Ubiquitin conjugated GlyRs where prominent at the plasma membrane, but could be hardly detected in total cell homogenates, indicating that ubiquitination takes place exclusively at the plasma membrane. Ubiquitination of the alpha1 GlyR at the plasma membrane was no longer detectable when the ten lysine residues of the cytoplasmic loop between transmembrane segments M3 and M4 were replaced by arginines. Despite this proteolytic cleavage continued to take place at the same extent as with the wild type alpha1 GlyR, suggesting that removal of GlyRs from the plasma membrane and routing to lysosomes for degradation were not dependent on ubiquitination. Also replacing a tyrosine in position 339, which was speculated to be part of an additional endocytosis motif, did not lead to a significant reduction of cleavage of the GlyR alpha1 subunits. However, a mutant lacking both, ubiquitination sites and 339Y, was significantly less processed. These results may suggest that the GlyR alpha1 subunit harbors at least two endocytosis motifs, which may act independently to regulate the density of alpha1 GlyR. Apparently, each of the two signals may be capable of compensating entirely the loss of the other. Part two of this Dissertation demonstrates that the correct topology of the glycine receptor alpha1 subunit depends critically on six positively charged residues within a basic cluster, RFRRKRR, located in the large cytoplasmic loop following the C-terminal end of M3. Neutralization of one or more charges of this cluster, but not of other charged residues in the M3-M4 loop, led to an aberrant translocation into the endoplasmic reticulum lumen of the M3-M4 loop. However, when two of the three basic charges located in the ectodomain linking M2 and M3 were neutralized, in addition to two charges of the basic cluster, endoplasmic reticulum disposition of the M3-M4 loop was prevented. We conclude that a high density of basic residues C-terminal to M3 is required to compensate for the presence of positively charged residues in the M2-M3 ectodomain, which otherwise impair correct membrane integration of the M3 segment. Part three of this Dissertation describes my contribution (blue native PAGE analysis of metabolically labeled alpha7 and 5HT3A receptors and the examination of the glycosylation state of metabolically labeled alpha7 subunits) to a work on the limited assembly capacity of Xenopus oocytes for nicotinic alpha7 subunits. While 5HT3A subunits combined efficiently to pentamers, alpha7 subunits existed in various assembly states including trimers, tetramers, pentamers, and aggregates. Only alpha7 subunits that completed the assembly process to homopentamers acquired complex-type carbohydrates and appeared at the cell surface. We conclude that Xenopus oocytes have a limited capacity to guide the assembly of alpha7 subunits, but not 5HT3A subunits to homopentamers. Accordingly, ER retention of imperfectly assembled alpha7 subunits rather than inefficient routing of fully assembled alpha7 receptors to the cell surface limits surface expression levels of alpha7 nicotinic acetylcholine receptors. Part four of this Dissertation describes my contribution (the biochemical analysis of the human P2X2 and P2X6 subtypes) to studies on the quaternary structure of P2X receptors. Armaz Aschrafi, the main author of the paper showed that subsequent to isolation under non-denaturing conditions from Xenopus oocytes the His-rP2X2 protein migrated on blue native PAGE predominantly in an aggregated form. The only discrete protein band detectable could be assigned to homotrimers of the His-rP2X2 subunit. Because of the exceptional assembly-behaviour of the rP2X2 protein compared to the rP2X1, rP2X3, rP2X4 and rP2X5 proteins, its human orthologue was investigated in the same manner. In contrast to rP2X2 subunits, hP2X2 subunits migrated under virtually identical conditions in a single defined assembly state, which could be clearly assigned to a trimer. P2X6 subunits represent the sole P2X subtype that is unable to form functional homomeric receptors in Xenopus oocytes. The blue native PAGE analysis of metabolically labeled hP2X6 receptors and the examination of the glycosylation state revealed that hP2X6 subunits form tetramers and aggregates that are not exported to the plasma membrane of Xenopus oocytes

    Structure and Function Predictions of the Msa Protein in \u3ci\u3eStaphylococcus aureus\u3c/i\u3e

    Get PDF
    Background Staphylococcus aureus is a human pathogen that causes a wide variety of life-threatening infections using a large number of virulence factors. One of the major global regulators used by S. aureus is the staphylococcal accessory regulator (sarA). We have identified and characterized a new gene (modulator of sarA: msa) that modulates the expression of sarA. Genetic and functional analysis shows that msa has a global effect on gene expression in S. aureus. However, the mechanism of Msa function is still unknown. Function predictions of Msa are complicated by the fact that it does not have a homologous partner in any other organism. This work aims at predicting the structure and function of the Msa protein. Results Preliminary sequence analysis showed that Msa is a putative membrane protein. It would therefore be very difficult to purify and crystallize Msa in order to acquire structure information about this protein. We have used several computational tools to predict the physico-chemical properties, secondary structural features, topology, 3D tertiary structure, binding sites, motifs/patterns/domains and cellular location. We have built a consensus that is derived from analysis using different algorithms to predict several structural features. We confirm that Msa is a putative membrane protein with three transmembrane regions. We also predict that Msa has phosphorylation sites and binding sites suggesting functions in signal transduction. Conclusion Based on our predictions we hypothesise that Msa is a novel signal transducer that might be involved in the interaction of the S. aureus with its environment

    Pentocin KCA1: a novel circular bacteriocin gene encoded in the genome of Lactobacillus pentosus KCA1 with putative basic property

    Get PDF
    Background: The use of bacteriocin and bacterial strains that produces the antimicrobial peptide has shown to possess potential applications in the conferment of health benefits on the host. We isolated and carried out comprehensive genome sequence analysis of the first Lactobacillus pentosus KCA1 of human origin encoding genes for the biosynthesis of antimicrobial bacteriocin peptide. Due to the growing number of antimicrobial resistance, the need for developing alternatives to traditional antibiotics is now more germane.Aims: To describe the first circular bacteriocin predicted in the genome sequence of Lactobacillus pentosus KCA1 isolated from the vagina of a healthy Nigerian Ibo woman using in silico bioinformatic tools.Methods: The translated open reading frame (ORF) coding pentocin KCA1 was compared with the non-redundant database (nrdb) using BLASTp for protein similarity search. Clustalw algorithm was used for alignment with other published circular bacteriocins.Results: The genome of L. pentosus KCA1 contains a 7-gene cluster, chromosomally encoded for biosynthesis of a predicted circular bacteriocin. The bacteriocin designated as “pentocin KCA1” is synthesized as a precursor gene consisting of 273 nucleotide base sequence encoding the translated product of pentocin KCA1 with 91 amino acid residues in length. The peptide is cleaved off between asparagine (Asn33) and isoleucine (Ile34) to produce the 58 amino acid pentocin KCA1 as an outer membrane peptide. The mature pentocin KCA1 has a high proportion of basic (positively charged-Lysine, Histidine and Asparagine) to acidic (negatively charged-Glutamate and Aspartate) amino acids in the ratio of 8:0.Conclusions: Off the 11 circular bacteriocins known to date, amino acid residue asparagine (8.62%) is utilized more in the biosynthesis of pentocin KCA1. The mature putative circular pentocin KCA1 consists of four alpha-helical structures and has a high proportion of basic amino acid residues when compared with other circular bacteriocins, thereby suggesting that pentocin KCA1 is a circular bacteriocin peptide with strong basic property. The relevance of this basic property lends credence for investigation in subsequent functional studies.Keywords: Circular bacteriocin, Pentocin KCA1, Lactobacilli, Antimicrobial peptid

    HHomp—prediction and classification of outer membrane proteins

    Get PDF
    Outer membrane proteins (OMPs) are the transmembrane proteins found in the outer membranes of Gram-negative bacteria, mitochondria and plastids. Most prediction methods have focused on analogous features, such as alternating hydrophobicity patterns. Here, we start from the observation that almost all ÎČ-barrel OMPs are related by common ancestry. We identify proteins as OMPs by detecting their homologous relationships to known OMPs using sequence similarity. Given an input sequence, HHomp builds a profile hidden Markov model (HMM) and compares it with an OMP database by pairwise HMM comparison, integrating OMP predictions by PROFtmb. A crucial ingredient is the OMP database, which contains profile HMMs for over 20 000 putative OMP sequences. These were collected with the exhaustive, transitive homology detection method HHsenser, starting from 23 representative OMPs in the PDB database. In a benchmark on TransportDB, HHomp detects 63.5% of the true positives before including the first false positive. This is 70% more than PROFtmb, four times more than BOMP and 10 times more than TMB-Hunt. In Escherichia coli, HHomp identifies 57 out of 59 known OMPs and correctly assigns them to their functional subgroups. HHomp can be accessed at http://toolkit.tuebingen.mpg.de/hhomp
    • 

    corecore