300 research outputs found

    A Tutorial on Nonorthogonal Multiple Access for 5G and Beyond

    Full text link
    Today's wireless networks allocate radio resources to users based on the orthogonal multiple access (OMA) principle. However, as the number of users increases, OMA based approaches may not meet the stringent emerging requirements including very high spectral efficiency, very low latency, and massive device connectivity. Nonorthogonal multiple access (NOMA) principle emerges as a solution to improve the spectral efficiency while allowing some degree of multiple access interference at receivers. In this tutorial style paper, we target providing a unified model for NOMA, including uplink and downlink transmissions, along with the extensions tomultiple inputmultiple output and cooperative communication scenarios. Through numerical examples, we compare the performances of OMA and NOMA networks. Implementation aspects and open issues are also detailed.Comment: 25 pages, 10 figure

    Cooperative diversity schemes for wireless communication systems

    Get PDF
    Mestrado em Engenharia Electrónica e TelecomunicaçõesA presente dissertação insere-se na área das comunicações sem fios, ou mais especificamente na temática da diversidade cooperativa. Neste trabalho é feito o estudo, implementação e avaliação do desempenho de esquemas de diversidade cooperativa de baixa complexidade para sistemas de comunicação móvel. Estes esquemas são mapeados em modelos de simulação baseados em OFDMA e são completamente simulados em CoCentric System Studio. Os resultados obtidos com os modelos desenvolvidos mostram que os esquemas de diversidade cooperativa atenuam os efeitos do desvanecimento induzido pela propagação multipercurso, aumentando desta forma a capacidade e cobertura dos sistemas wireless. Os ganhos são particularmente altos quando as perdas de percurso são consideráveis, como é o caso das zonas urbanas densas. ABSTRACT: This dissertation is inserted into the wireless communication, or more specifically, into the cooperative diversity field. within this thesis, the performance of low-complexity cooperative diversity schemes projected for mobile communication systems are studied, implemented and evaluated. These schemes are mapped into simulation models based on OFDMA and are fully simulated in the CoCentric System Studio environment. The obtained results show that the proposed cooperative schemes for the uplink communication mitigate fading induced by multipath propagation, thereby increasing the capacity and coverage of wireless systems. Cooperation gains are particularly high when multipath losses are considerable, as is the case for dense urban regions

    Diversity techniques for broadband wireless communications: performance enhancement and analysis

    Get PDF
    The diversity techniques have been proven to be effective for next generation broadband wireless communications, and are the focus of this thesis. The diversity techniques can be broadly categorized into three types: Space, Time, and Frequency. In this thesis, we are mainly concerned with frequency and space diversity techniques. Orthogonal Frequency Division Multiplexing (OFDM) is a frequency diversity technique which offers several benefits such as easier digital implementation, immunity to multipath channels, low complexity channel equalization, etc. Despite these desirable features, there are few inherent problems in OFDM such as high peak-to-average power ratio (PAPR). High PAPR demands large dynamic range in the transmitted chain such as digital to analog converter (DAC) and power amplifier (PA). Unless pre-processed, the transmitted signal gets distorted due to quantization errors and inter-modulation. In the initial stage of PhD candidature, the author focused on PAPR reduction techniques. A simple modification on conventional iterative clipping and filtering (ICF) technique was proposed which has less computational complexity. The power savings achievable from clipping and filtering method was considered next. Furthermore the ICF is compared with another distortion-less PAPR reduction technique called Selective Mapping (SLM) based on power savings. Finally, impact of clipping and filtering on the channel estimation was analyzed. Space diversity seeks to exploit the multi-path characteristics of wireless channels to improve the performance. The simplest form of the space diversity is the receive diversity where two or more antennas with sufficient spacing collect independent copies of the same transmitted signal, which contributes to better signal reception. In this thesis new analytical expressions for spectral efficiency, capacity, and error rates were presented for adaptive systems with channel estimation error. Beamforming (steering signal towards desired receiver) is another useful technique in multiple-antenna systems to further improve the system performance. MRT (Maximal Ratio Transmission) or MIMO-MRC is such system where the transmitter, based on channel feedback from the receiver, uses weighting factors to steer the transmitted signal. Closed form expressions for symbol error rates were derived for MRT system with channel estimation error. The results were extended to evaluate closed form expressions of error rates for Rectangular QAM. Antenna correlation was considered in another contribution on MRC systems. Relay and Cooperative networks represent another form of spatial diversity and have recently attracted significant research attention. These networks rely on intermediate nodes called "relays" to establish communication between the source and the destination. In addition to coverage extension, the relay networks have shown to offer cooperative diversity when there is a direct link or multiple relays. The first contribution is to analyze a dual-hop amplify-forward relay networks with dissimilar fading scenarios. Next error rates of Rectangular QAM for decode-forward selection relay system are derived. Multiple antenna at relay is included to analyze the benefits of dual spatial diversity over Rayleigh and Nakagami fading channels. Antenna selection is a cost-effective way to exploit the antenna diversity. General Order Antenna Selection (GOAS), based on Ordered Statistics, is used to evaluate signal statistics for a MIMO relay network

    Power Allocation and Cooperative Diversity in Two-Way Non-Regenerative Cognitive Radio Networks

    Full text link
    In this paper, we investigate the performance of a dual-hop block fading cognitive radio network with underlay spectrum sharing over independent but not necessarily identically distributed (i.n.i.d.) Nakagami-mm fading channels. The primary network consists of a source and a destination. Depending on whether the secondary network which consists of two source nodes have a single relay for cooperation or multiple relays thereby employs opportunistic relay selection for cooperation and whether the two source nodes suffer from the primary users' (PU) interference, two cases are considered in this paper, which are referred to as Scenario (a) and Scenario (b), respectively. For the considered underlay spectrum sharing, the transmit power constraint of the proposed system is adjusted by interference limit on the primary network and the interference imposed by primary user (PU). The developed new analysis obtains new analytical results for the outage capacity (OC) and average symbol error probability (ASEP). In particular, for Scenario (a), tight lower bounds on the OC and ASEP of the secondary network are derived in closed-form. In addition, a closed from expression for the end-to-end OC of Scenario (a) is achieved. With regards to Scenario (b), a tight lower bound on the OC of the secondary network is derived in closed-form. All analytical results are corroborated using Monte Carlo simulation method

    Directional Relays for Multi-Hop Cooperative Cognitive Radio Networks

    Get PDF
    In this paper, we investigate power allocation and beamforming in a relay assisted cognitive radio (CR) network. Our objective is to maximize the performance of the CR network while limiting interference in the direction of the primary users (PUs). In order to achieve these goals, we first consider joint power allocation and beamforming for cognitive nodes in direct links. Then, we propose an optimal power allocation strategy for relay nodes in indirect transmissions. Unlike the conventional cooperative relaying networks, the applied relays are equipped with directional antennas to further reduce the interference to PUs and meet the CR network requirements. The proposed approach employs genetic algorithm (GA) to solve the optimization problems. Numerical simulation results illustrate the quality of service (QoS) satisfaction in both primary and secondary networks. These results also show that notable improvements are achieved in the system performance if the conventional omni-directional relays are replaced with directional ones
    corecore