2,139 research outputs found

    Engineering calculations for communications systems planning

    Get PDF
    The single entry interference problem is treated for frequency sharing between the broadcasting satellite and intersatellite services near 23 GHz. It is recommended that very long (more than 120 longitude difference) intersatellite hops be relegated to the unshared portion of the band. When this is done, it is found that suitable orbit assignments can be determined easily with the aid of a set of universal curves. An attempt to develop synthesis procedures for optimally assigning frequencies and orbital slots for the broadcasting satellite service in region 2 was initiated. Several discrete programming and continuous optimization techniques are discussed

    A Loran-C prototype navigation receiver for general aviation

    Get PDF
    Prototype equipment was developed for flight evaluation which provides enroute navigation in both latitude-longitude and rho-theta coordinates. The nonprecision approach capabilities of this equipment was evaluated. The antenna/preamplifier coupler, the RF processor, tracking loop hardware, tracking loop software, and the video output are discussed. Laboratory and flight test results are evaluated

    Experimental Designs for Observing the Hong-Ou-Mandel Manifolds Using Silicon Micro-Ring Resonators

    Get PDF
    We propose three experimental designs for observing the Hong-Ou-Mandel Manifolds using silicon micro-ring resonators. These experimental designs tackle the challenges of producing and coupling identical photon pairs to be incident on a silicon micro-ring resonator, and they describe methods of photon observation. We experimentally characterized a silicon micro-ring resonator with Mach-Zehnder Interferometer couplers. We modified the Hong-Ou-Mandel Manifold theory to include these realistic Mach-Zehnder Interferometer couplers, and computationally predict new manifold structures based on experimental power transmission spectrum comparisons. We also characterized a packaged foundry-fabricated silicon spiral photon pair source to be used as a possible identical photon pair source

    SPS phase control system performance via analytical simulation

    Get PDF
    A solar power satellite transmission system which incorporates automatic beam forming, steering, and phase control is discussed. The phase control concept centers around the notation of an active retrodirective phased array as a means of pointing the beam to the appropriate spot on Earth. The transmitting antenna (spacetenna) directs the high power beam so that it focuses on the ground-based receiving antenna (rectenna). A combination of analysis and computerized simulation was conducted to determine the far field performance of the reference distribution system, and the beam forming and microwave power generating systems

    Independence Number and Disjoint Theta Graphs

    Get PDF
    The goal of this paper is to find vertex disjoint even cycles in graphs. For this purpose, define a θ-graph to be a pair of vertices u,v with three internally disjoint paths joining u to v. Given an independence number α and a fixed integer k, the results contained in this paper provide sharp bounds on the order f(k,α) of a graph with independence number α(G)≤α which contains no k disjoint θ-graphs. Since every θ-graph contains an even cycle, these results provide k disjoint even cycles in graphs of order at least f(k,α)+1. We also discuss the relationship between this problem and a generalized ramsey problem involving sets of graphs

    A delayed choice quantum eraser explained by the transactional interpretation of quantum mechanics

    Full text link
    This paper explains the delayed choice quantum eraser of Kim et al. in terms of the transactional interpretation of quantum mechanics by John Cramer. It is kept deliberately mathematically simple to help explain the transactional technique. The emphasis is on a clear understanding of how the instantaneous "collapse" of the wave function due to a measurement at a specific time and place may be reinterpreted as a gradual collapse over the entire path of the photon and over the entire transit time from slit to detector. This is made possible by the use of a retarded offer wave, which is thought to travel from the slits (or rather the small region within the parametric crystal where down-conversion takes place) to the detector and an advanced counter wave traveling backward in time from the detector to the slits. The point here is to make clear how simple the Cramer transactional picture is and how much more intuitive the collapse of the wave function becomes if viewed in this way. Also any confusion about possible retro-causal signaling is put to rest. A delayed choice quantum eraser does not require any sort of backward in time communication. This paper makes the point that it is preferable to use the Transactional Interpretation (TI) over the usual Copenhagen Interpretation (CI) for a more intuitive understanding of the quantum eraser delayed choice experiment. Both methods give exactly the same end results and can be used interchangeably.Comment: 24 pages 4 figures, fifth draf

    Maturation trajectories of cortical resting-state networks depend on the mediating frequency band

    Full text link
    The functional significance of resting state networks and their abnormal manifestations in psychiatric disorders are firmly established, as is the importance of the cortical rhythms in mediating these networks. Resting state networks are known to undergo substantial reorganization from childhood to adulthood, but whether distinct cortical rhythms, which are generated by separable neural mechanisms and are often manifested abnormally in psychiatric conditions, mediate maturation differentially, remains unknown. Using magnetoencephalography (MEG) to map frequency band specific maturation of resting state networks from age 7 to 29 in 162 participants (31 independent), we found significant changes with age in networks mediated by the beta (13–30 Hz) and gamma (31–80 Hz) bands. More specifically, gamma band mediated networks followed an expected asymptotic trajectory, but beta band mediated networks followed a linear trajectory. Network integration increased with age in gamma band mediated networks, while local segregation increased with age in beta band mediated networks. Spatially, the hubs that changed in importance with age in the beta band mediated networks had relatively little overlap with those that showed the greatest changes in the gamma band mediated networks. These findings are relevant for our understanding of the neural mechanisms of cortical maturation, in both typical and atypical development.This work was supported by grants from the Nancy Lurie Marks Family Foundation (TK, SK, MGK), Autism Speaks (TK), The Simons Foundation (SFARI 239395, TK), The National Institute of Child Health and Development (R01HD073254, TK), National Institute for Biomedical Imaging and Bioengineering (P41EB015896, 5R01EB009048, MSH), and the Cognitive Rhythms Collaborative: A Discovery Network (NFS 1042134, MSH). (Nancy Lurie Marks Family Foundation; Autism Speaks; SFARI 239395 - Simons Foundation; R01HD073254 - National Institute of Child Health and Development; P41EB015896 - National Institute for Biomedical Imaging and Bioengineering; 5R01EB009048 - National Institute for Biomedical Imaging and Bioengineering; NFS 1042134 - Cognitive Rhythms Collaborative: A Discovery Network

    Micromachined Scanning Devices for 3D Acoustic Imaging

    Get PDF
    Acoustic imaging (including ultrasound and photoacoustic imaging) refers to a class of imaging methods that use high-frequency sound (ultrasound) waves to generate contrast images for the interrogated media. It provides 3D spatial distribution of structural, mechanical, and even compositional properties in different materials. To conduct 3D ultrasound imaging, 2D ultrasound transducer arrays followed by multi-channel high-frequency data acquisition (DAQ) systems are frequently used. However, as the quantity and density of the transducer elements and also the DAQ channels increase, the acoustic imaging system becomes complex, bulky, expensive, and also power consuming. This situation is especially true for 3D imaging systems, where a 2D transducer array with hundreds or even thousands of elements could be involved. To address this issue, the objective of this research is to achieve new micromachined scanning devices to enable fast and versatile 2D ultrasound signal acquisition for 3D image reconstruction without involving complex physical transducer arrays and DAQ electronics. The new micromachined scanning devices studied in this research include 1) a water-immersible scanning mirror microsystem, 2) a micromechanical scanning transducer, and 3) a multi-layer linear transducer array. Especially, the water-immersible scanning mirror microsystem is capable of scanning focused ultrasound beam (from a single-element transducer) in two dimensions for 3D high-resolution acoustic microscopy. The micromechanical scanning transducer is capable of sending and receiving ultrasound signal from a single-element transducer to a 2D array of locations for 3D acoustic tomography. The multi-layer linear transducer array allows a unique electronic scanning scheme to simulate the functioning of a much larger 2D transducer array for 3D acoustic tomography. The design, fabrication and testing of the above three devices have been successfully accomplished and their applications in 3D acoustic microscopy and tomography have been demonstrated

    Simulations of Implementation of Advanced Communication Technologies

    Get PDF
    Wireless communication systems have seen significant advancements with the introduction of 3G, 4G, and 5G mobile standards. Since the simulation of entire systems is complex and may not allow evaluation of the impact of individual techniques, this thesis presents techniques and results for simulating the performance of advanced signaling techniques used in 3G, 4G, and 5G systems, including Code division multiple access (CDMA), Multiple Input Multiple Output (MIMO) systems, and Low-Density Parity Check (LDPC) codes. One implementation issue that is explored is the use of quantized Analog to Digital Converter (ADC) outputs and their impact on system performance. Code division multiple access (CDMA) is a popular wireless technique, but its effectiveness is limited by factors such as multiple access interference (MAI) and the near far effect (NFE). The joint effect of sampling and quantization on the analog-digital converter (ADC) at the receiver\u27s front end has also been evaluated for different quantization bits. It has been demonstrated that 4 bits is the minimum ADC resolution sensitivity required for a reliable connection for a quantized signal with 3- and 6-dB power levels in noisy and interference-prone environments. The demand for high data rate, reliable transmission, low bit error rate, and maximum transmission with low power has increased in wireless systems. Multiple Input Multiple Output (MIMO) systems with multiple antennas at both the transmitter and receiver side can meet these requirements by exploiting diversity and multipath propagation. The focus of MIMO systems is on improving reliability and maximizing throughput. Performance analysis of single input single output (SISO), single input multiple output (SIMO), multiple input single output (MISO), and MIMO systems is conducted using Alamouti space time block code (STBC) and Maximum Ratio Combining (MRC) technique used for transmit and receive diversity for Rayleigh fading channel under AWGN environment for BPSK and QPSK modulation schemes. Spatial Multiplexing (SM) is used to enhance spectral efficiency without additional bandwidth and power requirements. Minimum mean square error (MMSE) method is used for signal detection at the receiver end due to its low complexity and better performance. The performance of MIMO SM technique is compared for different antenna configurations and modulation schemes, and the MMSE detector is employed at the receiving end. Advanced error correction techniques for channel coding are necessary to meet the demand for Mobile Internet in 5G wireless communications, particularly for the Internet of Things. Low Density Parity Check (LDPC) codes are used for error correction in 5G, offering high coding gain, high throughput, low latency, low power dissipation, low complexity, and rate compatibility. LDPC codes use base matrices of 5G New Radio (NR) for LDPC encoding, and a soft decision decoding algorithm is used for efficient Frame Error Rate (FER) performance. The performance of LDPC codes is assessed using a soft decision decoding layered message passing algorithm, with BPSK modulation and AWGN channel. Furthermore, the effects of quantization on LDPC codes are analyzed for both small and large numbers of quantization bits
    • …
    corecore