8 research outputs found

    Line-distortion, Bandwidth and Path-length of a graph

    Full text link
    We investigate the minimum line-distortion and the minimum bandwidth problems on unweighted graphs and their relations with the minimum length of a Robertson-Seymour's path-decomposition. The length of a path-decomposition of a graph is the largest diameter of a bag in the decomposition. The path-length of a graph is the minimum length over all its path-decompositions. In particular, we show: - if a graph GG can be embedded into the line with distortion kk, then GG admits a Robertson-Seymour's path-decomposition with bags of diameter at most kk in GG; - for every class of graphs with path-length bounded by a constant, there exist an efficient constant-factor approximation algorithm for the minimum line-distortion problem and an efficient constant-factor approximation algorithm for the minimum bandwidth problem; - there is an efficient 2-approximation algorithm for computing the path-length of an arbitrary graph; - AT-free graphs and some intersection families of graphs have path-length at most 2; - for AT-free graphs, there exist a linear time 8-approximation algorithm for the minimum line-distortion problem and a linear time 4-approximation algorithm for the minimum bandwidth problem

    Computing minimum distortion embeddings into a path for bipartite permutation graphs and threshold graphs

    Get PDF
    AbstractThe problem of computing minimum distortion embeddings of a given graph into a line (path) was introduced in 2004 and has quickly attracted significant attention with subsequent results appearing at recent stoc and soda conferences. So far, all such results concern approximation algorithms or exponential-time exact algorithms. We give the first polynomial-time algorithms for computing minimum distortion embeddings of graphs into a path when the input graphs belong to specific graph classes. In particular, we solve this problem in polynomial time for bipartite permutation graphs and threshold graphs. For both graph classes, the distortion can be arbitrarily large. The graphs that we consider are unweighted

    Bandwidth of bipartite permutation graphs in polynomial time

    No full text
    Bandwidth of bipartite permutation graphs in polynomial time

    Bandwidth of bipartite permutation graphs in polynomial time

    Get PDF
    AbstractWe give the first polynomial-time algorithm that computes the bandwidth of bipartite permutation graphs. Bandwidth is an NP-complete graph layout problem that is notorious for its difficulty even on small graph classes. For example, it remains NP-complete on caterpillars of hair length at most 3, a very restricted subclass of trees. Much attention has been given to designing approximation algorithms for computing the bandwidth, as it is NP-hard to approximate the bandwidth of general graphs with a constant factor guarantee. The problem is considered important even for approximation on restricted classes, with several distinguished results in this direction. Prior to our work, polynomial-time algorithms for exact computation of bandwidth were known only for caterpillars of hair length at most 2, chain graphs, cographs, and most interestingly, interval graphs
    corecore