259 research outputs found

    Fog-supported delay-constrained energy-saving live migration of VMs over multiPath TCP/IP 5G connections

    Get PDF
    The incoming era of the fifth-generation fog computing-supported radio access networks (shortly, 5G FOGRANs) aims at exploiting computing/networking resource virtualization, in order to augment the limited resources of wireless devices through the seamless live migration of virtual machines (VMs) toward nearby fog data centers. For this purpose, the bandwidths of the multiple wireless network interface cards of the wireless devices may be aggregated under the control of the emerging MultiPathTCP (MPTCP) protocol. However, due to the fading and mobility-induced phenomena, the energy consumptions of the current state-of-the-art VM migration techniques may still offset their expected benefits. Motivated by these considerations, in this paper, we analytically characterize and implement in software and numerically test the optimal minimum-energy settable-complexity bandwidth manager (SCBM) for the live migration of VMs over 5G FOGRAN MPTCP connections. The key features of the proposed SCBM are that: 1) its implementation complexity is settable on-line on the basis of the target energy consumption versus implementation complexity tradeoff; 2) it minimizes the network energy consumed by the wireless device for sustaining the migration process under hard constraints on the tolerated migration times and downtimes; and 3) by leveraging a suitably designed adaptive mechanism, it is capable to quickly react to (possibly, unpredicted) fading and/or mobility-induced abrupt changes of the wireless environment without requiring forecasting. The actual effectiveness of the proposed SCBM is supported by extensive energy versus delay performance comparisons that cover: 1) a number of heterogeneous 3G/4G/WiFi FOGRAN scenarios; 2) synthetic and real-world workloads; and, 3) MPTCP and wireless connections

    Bandwidth management in live virtual machine migration

    Get PDF
    In this thesis I investigated the bandwidth management problem on live migration of virtual machine in different environment. First part of the thesis is dedicated to intra-data-center bandwidth optimization problem, while in the second part of the document I present the solution for wireless live migration in 5G and edge computing emerging technologies. Live virtual machine migration aims at enabling the dynamic balanced use of the networking/computing physical resources of virtualized data centers, so to lead to reduced energy consumption and improve data centers’ flexibility. However, the bandwidth consumption and latency of current state-of-the-art live VM migration techniques still reduce the experienced benefits to much less than their potential. Motivated by this consideration I analytically characterize and test the optimal bandwidth manager for intra-data-center live migration of VMs. The goal is to min- imize the migration-induced communication energy consumption under service level agreement (SLA)-induced hard constraints on the total migration time, downtime, slowdown of the migrating applications and overall available bandwidth

    Addressing the Challenges in Federating Edge Resources

    Full text link
    This book chapter considers how Edge deployments can be brought to bear in a global context by federating them across multiple geographic regions to create a global Edge-based fabric that decentralizes data center computation. This is currently impractical, not only because of technical challenges, but is also shrouded by social, legal and geopolitical issues. In this chapter, we discuss two key challenges - networking and management in federating Edge deployments. Additionally, we consider resource and modeling challenges that will need to be addressed for a federated Edge.Comment: Book Chapter accepted to the Fog and Edge Computing: Principles and Paradigms; Editors Buyya, Sriram

    QoS-aware service continuity in the virtualized edge

    Get PDF
    5G systems are envisioned to support numerous delay-sensitive applications such as the tactile Internet, mobile gaming, and augmented reality. Such applications impose new demands on service providers in terms of the quality of service (QoS) provided to the end-users. Achieving these demands in mobile 5G-enabled networks represent a technical and administrative challenge. One of the solutions proposed is to provide cloud computing capabilities at the edge of the network. In such vision, services are cloudified and encapsulated within the virtual machines or containers placed in cloud hosts at the network access layer. To enable ultrashort processing times and immediate service response, fast instantiation, and migration of service instances between edge nodes are mandatory to cope with the consequences of user’s mobility. This paper surveys the techniques proposed for service migration at the edge of the network. We focus on QoS-aware service instantiation and migration approaches, comparing the mechanisms followed and emphasizing their advantages and disadvantages. Then, we highlight the open research challenges still left unhandled.publishe

    Edge Computing for Extreme Reliability and Scalability

    Get PDF
    The massive number of Internet of Things (IoT) devices and their continuous data collection will lead to a rapid increase in the scale of collected data. Processing all these collected data at the central cloud server is inefficient, and even is unfeasible or unnecessary. Hence, the task of processing the data is pushed to the network edges introducing the concept of Edge Computing. Processing the information closer to the source of data (e.g., on gateways and on edge micro-servers) not only reduces the huge workload of central cloud, also decreases the latency for real-time applications by avoiding the unreliable and unpredictable network latency to communicate with the central cloud

    A survey on mobility-induced service migration in the fog, edge, and related computing paradigms

    Get PDF
    The final publication is available at ACM via http://dx.doi.org/10.1145/3326540With the advent of fog and edge computing paradigms, computation capabilities have been moved toward the edge of the network to support the requirements of highly demanding services. To ensure that the quality of such services is still met in the event of users’ mobility, migrating services across different computing nodes becomes essential. Several studies have emerged recently to address service migration in different edge-centric research areas, including fog computing, multi-access edge computing (MEC), cloudlets, and vehicular clouds. Since existing surveys in this area focus on either VM migration in general or migration in a single research field (e.g., MEC), the objective of this survey is to bring together studies from different, yet related, edge-centric research fields while capturing the different facets they addressed. More specifically, we examine the diversity characterizing the landscape of migration scenarios at the edge, present an objective-driven taxonomy of the literature, and highlight contributions that rather focused on architectural design and implementation. Finally, we identify a list of gaps and research opportunities based on the observation of the current state of the literature. One such opportunity lies in joining efforts from both networking and computing research communities to facilitate future research in this area.Peer ReviewedPreprin

    Towards green computing in wireless sensor networks: controlled mobility-aided balanced tree approach

    Get PDF
    Virtualization technology has revolutionized the mobile network and widely used in 5G innovation. It is a way of computing that allows dynamic leasing of server capabilities in the form of services like SaaS, PaaS, and IaaS. The proliferation of these services among the users led to the establishment of large-scale cloud data centers that consume an enormous amount of electrical energy and results into high metered bill cost and carbon footprint. In this paper, we propose three heuristic models namely Median Migration Time (MeMT), Smallest Void Detection (SVD) and Maximum Fill (MF) that can reduce energy consumption with minimal variation in SLAs negotiated. Specifically, we derive the cost of running cloud data center, cost optimization problem and resource utilization optimization problem. Power consumption model is developed for cloud computing environment focusing on liner relationship between power consumption and resource utilization. A virtual machine migration technique is considered focusing on synchronization oriented shorter stop-and-copy phase. The complete operational steps as algorithms are developed for energy aware heuristic models including MeMT, SVD and MF. To evaluate proposed heuristic models, we conduct experimentations using PlanetLab server data often ten days and synthetic workload data collected randomly from the similar number of VMs employed in PlanetLab Servers. Through evaluation process, we deduce that proposed approaches can significantly reduce the energy consumption, total VM migration, and host shutdown while maintaining the high system performance
    • …
    corecore