20 research outputs found

    DOWNSTREAM RESOURCE ALLOCATION IN DOCSIS 3.0 CHANNEL BONDED NETWORKS

    Get PDF
    Modern broadband internet access cable systems follow the Data Over Cable System Interface Specification (DOCSIS) for data transfer between the individual cable modem (CM) and the Internet. The newest version of DOCSIS, version 3.0, provides an abstraction referred to as bonding groups to help manage bandwidth and to increase bandwidth to each user beyond that available within a single 6MHz. television channel. Channel bonding allows more than one channel to be used by a CM to provide a virtual channel of much greater bandwidth. This combining of channels into bonding groups, especially when channels overlap between more than one bonding group, complicates the resource allocation problem within these networks. The goal of resource allocation in this research is twofold, to provide for fairness among users while at the same time making maximum possible utilization of the available system bandwidth. The problem of resource allocation in computer networks has been widely studied by the academic community. Past work has studied resource allocation in many network types, however application in a DOCSIS channel bonded network has not been explored. This research begins by first developing a definition of fairness in a channel bonded system. After providing a theoretical definition of fairness we implement simulations of different scheduling disciplines and evaluate their performance against this theoretical ideal. The complexity caused by overlapped channels requires even the simplest scheduling algorithms to be modified to work correctly. We then develop an algorithm to maximize the use of the available system bandwidth. The approach involves using competitive analysis techniques and an online algorithm to dynamically reassign flows among the available channels. Bandwidth usage and demand requests are monitored for bandwidth that is underutilized, and demand that is unsatisfied, and real time changes are made to the flow-to-channel mappings to improve the utilization of the total available bandwidth. The contribution of this research is to provide a working definition of fairness in a channel bonded environment, the implementation of several scheduling disciplines and evaluation of their adherence to that definition, and development of an algorithm to improve overall bandwidth utilization of the system

    Software Defined Applications in Cellular and Optical Networks

    Get PDF
    abstract: Small wireless cells have the potential to overcome bottlenecks in wireless access through the sharing of spectrum resources. A novel access backhaul network architecture based on a Smart Gateway (Sm-GW) between the small cell base stations, e.g., LTE eNBs, and the conventional backhaul gateways, e.g., LTE Servicing/Packet Gateways (S/P-GWs) has been introduced to address the bottleneck. The Sm-GW flexibly schedules uplink transmissions for the eNBs. Based on software defined networking (SDN) a management mechanism that allows multiple operator to flexibly inter-operate via multiple Sm-GWs with a multitude of small cells has been proposed. This dissertation also comprehensively survey the studies that examine the SDN paradigm in optical networks. Along with the PHY functional split improvements, the performance of Distributed Converged Cable Access Platform (DCCAP) in the cable architectures especially for the Remote-PHY and Remote-MACPHY nodes has been evaluated. In the PHY functional split, in addition to the re-use of infrastructure with a common FFT module for multiple technologies, a novel cross functional split interaction to cache the repetitive QAM symbols across time at the remote node to reduce the transmission rate requirement of the fronthaul link has been proposed.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    VoIP Packet Delay Techniques: A Survey

    Get PDF
    The continuous development in the field of communication have paved the way for Voice over Internet Protocol (VoIP). VoIP is a group of hardware and software that facilitates people to utilize the Internet as the transmission medium for telephone calls by transmitting voice data in packets using IP instead of using conventional circuit transmissions of the Public Switched Telephone Network (PSTN). At present, VoIP is becoming an important tool for quick communication across the world. There are several Internet telephony applications existing at present. The major disadvantage in VoIP is that the packet delay. In VoIP, the terminology jitter is used to refer the type of packet delay where the delay has a huge setback in the quality of the voice conversation. Several packet delay techniques were proposed in recent years. Some of the important packet delay techniques are discussed in the literature. This survey would definitely help the researchers to carry out their research for providing better communication in VoIP without any delay

    Downstream Bandwidth Management for Emerging DOCSIS-based Networks

    Get PDF
    In this dissertation, we consider the downstream bandwidth management in the context of emerging DOCSIS-based cable networks. The latest DOCSIS 3.1 standard for cable access networks represents a significant change to cable networks. For downstream, the current 6 MHz channel size is replaced by a much larger 192 MHz channel which potentially can provide data rates up to 10 Gbps. Further, the current standard requires equipment to support a relatively new form of active queue management (AQM) referred to as delay-based AQM. Given that more than 50 million households (and climbing) use cable for Internet access, a clear understanding of the impacts of bandwidth management strategies used in these emerging networks is crucial. Further, given the scope of the change provided by emerging cable systems, now is the time to develop and introduce innovative new methods for managing bandwidth. With this motivation, we address research questions pertaining to next generation of cable access networks. The cable industry has had to deal with the problem of a small number of subscribers who utilize the majority of network resources. This problem will grow as access rates increase to gigabits per second. Fundamentally this is a problem on how to manage data flows in a fair manner and provide protection. A well known performance issue in the Internet, referred to as bufferbloat, has received significant attention recently. High throughput network flows need sufficiently large buffer to keep the pipe full and absorb occasional burstiness. Standard practice however has led to equipment offering very large unmanaged buffers that can result in sustained queue levels increasing packet latency. One reason why these problems continue to plague cable access networks is the desire for low complexity and easily explainable (to access network subscribers and to the Federal Communications Commission) bandwidth management. This research begins by evaluating modern delay-based AQM algorithms in downstream DOCSIS 3.0 environments with a focus on fairness and application performance capabilities of single queue AQMs. We are especially interested in delay-based AQM schemes that have been proposed to combat the bufferbloat problem. Our evaluation involves a variety of scenarios that include tiered services and application workloads. Based on our results, we show that in scenarios involving realistic workloads, modern delay-based AQMs can effectively mitigate bufferbloat. However they do not address the other problem related to managing the fairness. To address the combined problem of fairness and bufferbloat, we propose a novel approach to bandwidth management that provides a compromise among the conflicting requirements. We introduce a flow quantization method referred to as adaptive bandwidth binning where flows that are observed to consume similar levels of bandwidth are grouped together with the system managed through a hierarchical scheduler designed to approximate weighted fairness while addressing bufferbloat. Based on a simulation study that considers many system experimental parameters including workloads and network configurations, we provide evidence of the efficacy of the idea. Our results suggest that the scheme is able to provide long term fairness and low delay with a performance close to that of a reference approach based on fair queueing. A further contribution is our idea for replacing `tiered\u27 levels of service based on service rates with tiering based on weights. The application of our bandwidth binning scheme offers a timely and innovative alternative to broadband service that leverages the potential offered by emerging DOCSIS-based cable systems

    Convergence: the next big step

    Get PDF
    Recently, web based multimedia services have gained popularity and have proven themselves to be viable means of communication. This has inspired the telecommunication service providers and network operators to reinvent themselves to try and provide value added IP centric services. There was need for a system which would allow new services to be introduced rapidly with reduced capital expense (CAPEX) and operational expense (OPEX) through increased efficiency in network utilization. Various organizations and standardization agencies have been working together to establish such a system. Internet Protocol Multimedia Subsystem (IMS) is a result of these efforts. IMS is an application level system. It is being developed by 3GPP (3rd Generation Partnership Project) and 3GPP2 (3rd Generation Partnership Project 2) in collaboration with IETF (Internet Engineering Task Force), ITU-T (International Telecommunication Union – Telecommunication Standardization Sector), and ETSI (European Telecommunications Standards Institute) etc. Initially, the main aim of IMS was to bring together the internet and the cellular world, but it has extended to include traditional wire line telecommunication systems as well. It utilizes existing internet protocols such as SIP (Session Initiation Protocol), AAA (Authentication, Authorization and Accounting protocol), and COPS (Common Open Policy Service) etc, and modifies them to meet the stringent requirements of reliable, real time communication systems. The advantages of IMS include easy service quality management (QoS), mobility management, service control and integration. At present a lot of attention is being paid to providing bundled up services in the home environment. Service providers have been successful in providing traditional telephony, high speed internet and cable services in a single package. But there is very little integration among these services. IMS can provide a way to integrate them as well as extend the possibility of various other services to be added to allow increased automation in the home environment. This thesis extends the concept of IMS to provide convergence and facilitate internetworking of the various bundled services available in the home environment; this may include but is not limited to communications (wired and wireless), entertainment, security etc. In this thesis, I present a converged home environment which has a number of elements providing a variety of communication and entertainment services. The proposed network would allow effective interworking of these elements, based on IMS architecture. My aim is to depict the possible advantages of using IMS to provide convergence, automation and integration at the residential level

    Quality of Service optimisation framework for Next Generation Networks

    Get PDF
    Within recent years, the concept of Next Generation Networks (NGN) has become widely accepted within the telecommunication area, in parallel with the migration of telecommunication networks from traditional circuit-switched technologies such as ISDN (Integrated Services Digital Network) towards packet-switched NGN. In this context, SIP (Session Initiation Protocol), originally developed for Internet use only, has emerged as the major signalling protocol for multimedia sessions in IP (Internet Protocol) based NGN. One of the traditional limitations of IP when faced with the challenges of real-time communications is the lack of quality support at the network layer. In line with NGN specification work, international standardisation bodies have defined a sophisticated QoS (Quality of Service) architecture for NGN, controlling IP transport resources and conventional IP QoS mechanisms through centralised higher layer network elements via cross-layer signalling. Being able to centrally control QoS conditions for any media session in NGN without the imperative of a cross-layer approach would result in a feasible and less complex NGN architecture. Especially the demand for additional network elements would be decreased, resulting in the reduction of system and operational costs in both, service and transport infrastructure. This thesis proposes a novel framework for QoS optimisation for media sessions in SIP-based NGN without the need for cross-layer signalling. One key contribution of the framework is the approach to identify and logically group media sessions that encounter similar QoS conditions, which is performed by applying pattern recognition and clustering techniques. Based on this novel methodology, the framework provides functions and mechanisms for comprehensive resource-saving QoS estimation, adaptation of QoS conditions, and support of Call Admission Control. The framework can be integrated with any arbitrary SIP-IP-based real-time communication infrastructure, since it does not require access to any particular QoS control or monitoring functionalities provided within the IP transport network. The proposed framework concept has been deployed and validated in a prototypical simulation environment. Simulation results show MOS (Mean Opinion Score) improvement rates between 53 and 66 percent without any active control of transport network resources. Overall, the proposed framework comes as an effective concept for central controlled QoS optimisation in NGN without the need for cross-layer signalling. As such, by either being run stand-alone or combined with conventional QoS control mechanisms, the framework provides a comprehensive basis for both the reduction of complexity and mitigation of issues coming along with QoS provision in NGN

    Solution strategies of service fulfilment Operation Support Systems for Next Generation Networks

    Get PDF
    Suomalainen operatiivisten tukijärjestelmien toimittaja tarjoaa ratkaisuja palvelujen aktivointiin, verkkoresurssien hallintaan ja laskutustietojen keruuseen. Nämä ratkaisut ovat pääosin käytössä langattomissa verkoissa. Tässä tutkimuksessa arvioidaan kyseisten ratkaisujen soveltuvuutta palvelutoimitusprosessien automatisointiin tulevaisuuden verkkoympäristöissä. Tarkastelun kohteena ovat runko- ja pääsyverkkojen kiinteät teknologiat, joiden suosio saavuttaa huippunsa seuraavan 5-10 vuoden aikana. Näissä verkoissa palvelujen, kuten yritys-VPN:n tai kuluttajan laajakaistan, aktivointi vaatii monimutkaisen toimitusprosessin, jonka tueksi tarvitaan ensiluokkaista tukijärjestelmää. Teknologiakatsauksen jälkeen tutkimuksessa verrataan viitteellistä tuoteportfoliota saatavilla oleviin operatiivisten tukijärjestelmien arkkitehtuurisiin viitekehyksiin, ja analysoidaan sen soveltuvuus tulevaisuuden verkkoympäristöjen palvelutoimitusprosessin automatisointiin. Myös palvelutoimitusprosessien automatisointiin soveltuvien tukijärjestelmien markkinatilanne arvioidaan, ja tämän perusteella tutkitaan optimaalisinta sovellusstrategiaa. Lopulta voidaan päätellä, että tuoteportfoliolle parhaiten soveltuvin sovellusalue on kuluttajan laajakaistan, ja siihen liittyvien kehittyneempien IP-palveluiden palvelutoimitusprosessien automatisointi.A Finnish Operation Support Systems (OSS) vendor provides solutions for service activation, network inventory and event mediation. These solutions have mostly been deployed in mobile environments. In this thesis it will be studied how feasible it is to use similar solutions for service fulfilment in Next Generation Networks (NGN). NGN is a broad term that describes some key architectural evolutions in telecommunication core and access networks that will be deployed over the next 5 to 10 years. In these networks service, e.g. Triple Play or Virtual Private Network (VPN), activations require an extensive service fulfilment process that must be supported by first-class OSS. After introducing the NGN technologies, the research compares a reference product portfolio to available service fulfilment frameworks and evaluates the applicability. The study analyses the current state of service fulfilment OSS markets and evaluates various solution strategies. Eventually it will be concluded that the most interesting and adequate solution scenario is residential broadband, including value-added IP services

    Optimização de recursos para difusão em redes de próxima geração

    Get PDF
    Doutoramento em ElectrotecniaEsta tese aborda o problema de optimização de recursos de rede, na entrega de Serviços de Comunicação em Grupo, em Redes de Próxima Geração que suportem tecnologias de difusão. De acordo com esta problemática, são feitas propostas que levam em atenção a evolução espectável das redes 3G em Redes Heterogéneas de Próxima Geração que incluam tecnologias de difusão tais como o DVB. A optimização de recursos em Comunicações em Grupo é apresentada como um desafio vertical que deve cruzar diversas camadas. As optimizações aqui propostas cobrem tanto a interface entre Aplicação e a Plataforma de Serviços para a disponibilização de serviços de comunicação em grupo, como as abstracções e mapeamentos feitos na interface entre a Rede Central e a Rede de Acesso Rádio. As optimizações propostas nesta tese, assumem que o caminho evolutivo na direcção de uma Rede de Próxima Geração é feito através do IP. Em primeiro lugar são endereçadas as optimizações entre a Aplicação e a Plataforma de Serviços que já podem ser integradas nas redes 3G existentes. Estas optimizações podem potenciar o desenvolvimento de novas e inovadoras aplicações, que através do uso de mecanismos de distribuição em difusão podem fazer um uso mais eficiente dos recursos de rede. De seguida são apresentadas optimizações ao nível da interface entre a Rede Central e a Rede de Acesso Rádio que abordam a heterogeneidade das redes futuras assim como a necessidade de suportar tecnologias de difusão. É ainda considerada a possibilidade de aumentar a qualidade de serviço de serviços de difusão através do mapeamento do IP multicast em portadoras unidireccionais. Por forma a validar todas estas optimizações, vários protótipos foram desenvolvidos com base num router avançado para redes de acesso de próxima geração. As funcionalidades e arquitectura de software desse router são também aqui apresentadas.This thesis addresses the problem of optimizing network resource usage, for the delivery of Group Services, in Next Generation Networks featuring broadcast technologies. In this scope, proposals are made according to the expected evolution of 3G networks into Next Generation Heterogeneous Networks that include broadcast technologies such as DVB. Group Communication resource optimization is considered a vertical challenge that must cross several layers. The optimizations here proposed cover both Application to Service Platform interfaces for group communication services, and Core Network to Radio Access Network interface abstractions and mappings. The proposed optimizations are also presented taking into consideration network evolution path towards an All-IP based Next Generation Network. First it is addressed the Application to Service Platform optimization, which can already be deployed over 3G networks. This optimization could potentiate the development of new and innovative applications that through the use of broadcast/multicast service delivery mechanisms could be more efficient network wise. Next proposals are made on the Core Network to Radio Access Network interfaces that address the heterogeneity of future networks and consider the need to support broadcast networks. It is also considered the possibility to increase the Quality of Service of broadcast/multicast services based on the dynamic mapping of IP multicast into unicast radio bearers. In order to validate these optimizations, several prototypes were built based on an advanced access router for next generation networks. Such access router functionalities and software architecture are also presented here
    corecore