40 research outputs found

    Mixed-signal integrated circuits design and validation for automotive electronics applications

    Get PDF
    Automotive electronics is a fast growing market. In a field primarily dominated by mechanical or hydraulic systems, over the past few decades there has been exponential growth in the number of electronic components incorporated into automobiles. Partly thanks to the advance in high voltage smart power processes in nowadays cars is possible to integrate both power/high voltage electronics and analog/digital signal processing circuitry thus allowing to replace a lot of mechanical systems with electro-mechanical or fully electronic ones. High level modeling of complex electronic systems is gaining importance relatively to design space exploration, enabling shorter design and verification cycles, allowing reduced time-to-market. A high level model of a resistor string DAC to evaluate nonlinearities has been developed in MATLAB environment. As a test case for the model, a 10 bit resistive DAC in 0.18um is designed and the results were compared with the traditional transistor level approach. Then we face the analysis and design of a fundamental block: the bandgap voltage reference. Automotive requirements are tough, so the design of the voltage reference includes a pre-regulation part of the battery voltage that allows to enhance overall performances. Moreover an analog integrated driver for an automotive application whose architecture exploits today’s trends of analog-digital integration allowing a greater range of flexibility allowing high configurability and fast prototipization is presented. We covered also the mixed-signal verification approach. In fact, as complexity increases and mixed-signal systems become more and more pervasive, test and verification often tend to be the bottleneck in terms of time effort. A complete flow for mixed-signal verification using VHDL-AMS modeling and Python scripting is presented as an alternative to complex transistor level simulations. Finally conclusions are drawn

    Hard macrocells for DC/DC converter in automotive embedded mechatronic systems

    Get PDF
    A novel configurable DC/DC converter architecture, to be integrated as hard macrocell in automotive embedded systems, is proposed in the paper. It aims at realizing an intelligent voltage regulator. With respect to the state of the art, the challenge is the integration into an automotive-qualified chip of several advanced features like dithering of switching frequency, nested control loops with both current and voltage feedback, asynchronous hysteretic control for low power mode, slope control of the power FET gate driver, and diagnostic block against out-of-range current or voltage or temperature conditions. Moreover, the converter macrocell can be connected to the in-vehicle digital network, exchanging with the main vehicle control unit status/diagnostic flags and commands. The proposed design can be configured to work both in step-up and step-down modes, to face a very wide operating input voltage range from 2.5 to 60 V and absolute range from −0.3 to 70 V. The main target is regulating all voltages required in the emerging hybrid/electric vehicles where, besides the conventional 12 V DC bus, also a 48 V DC bus is present. The proposed design supports also digital configurability of the output regulated voltage, through a programmable divider, and of the coefficients of the proportional-integrative controller inside the nested control loops. Fabricated in 0.35 μm CMOS technology, experimental measurements prove that the IC can operate in harsh automotive environments since it meets stringent requirements in terms of electrostatic discharge (ESD) protection, operating temperature range, out-of-range current, or voltage condition

    Advances in Solid State Circuit Technologies

    Get PDF
    This book brings together contributions from experts in the fields to describe the current status of important topics in solid-state circuit technologies. It consists of 20 chapters which are grouped under the following categories: general information, circuits and devices, materials, and characterization techniques. These chapters have been written by renowned experts in the respective fields making this book valuable to the integrated circuits and materials science communities. It is intended for a diverse readership including electrical engineers and material scientists in the industry and academic institutions. Readers will be able to familiarize themselves with the latest technologies in the various fields

    Topical Workshop on Electronics for Particle Physics

    Get PDF
    The purpose of the workshop was to present results and original concepts for electronics research and development relevant to particle physics experiments as well as accelerator and beam instrumentation at future facilities; to review the status of electronics for the LHC experiments; to identify and encourage common efforts for the development of electronics; and to promote information exchange and collaboration in the relevant engineering and physics communities

    Topical Workshop on Electronics for Particle Physics

    Get PDF

    Comunicações ópticas por câmera para sistemas de assistência à condução

    Get PDF
    Communications, whatever its type, is a pillar of our modern society. More specifically, communications by visible light, that show numerous advantages, from electromagnetic spectral efficiency and regulation freedom to energy saving (since it combine illumination and communication). As such, the automotive world is interested in this technology, in particularly, its application into the Intelligent Transport System (ITS). The objective of this work relies on the study and development of a demonstrator able to support VLC communication means in V2V (Vehicle to Vehicle) scenario, making use of the LED luminaries already implemented in nowadays cars. Since the outdoor implementation is one of the requirements, reception based in OCC (Optical Camera Communication) is a viable solution in this conditions. Also the signal processing/decoding is performed by a CNN (Convolutional Neural Network), this type of algorithm shows a huge decoding flexibility and resilience, which benefits the transmission system performance. All the project was done in collaboration with the integrated circuits systems group of Instituto de Telecomunicações de Aveiro and Exatronic Lda company, based in Aveiro and specialized in innovation and investigation (I+I), engineering and manufacturing of electronics.As comunicações, qualquer que seja o seu tipo, mostram-se como um pilar fundamental para a sociedade. Especificamente as comunicações por luz visível, que apresentam inúmeras vantagens, desde a eficiência espectral e mais liberdade de regulamentação, até à energética pois alia duas caracteristicas distintas (iluminação e comunicação) numa só. Como tal, o mundo automóvel apresenta-se como um dos posíveis interessados na aplicação desta tecnologia, mais propriamente a aplicação como parte integrante do sistema inteligente de transportes (ITS). Este trabalho tem como objectivo o estudo e desenvolvimento de um demonstrador capaz de estabelecer um link de comunicação V2V (Vehicle to vehicle) por meio da modulação da luz visivel emitida pelas iluminárias LED já equipadas actualmente nos veículos. Sendo a implementação exterior um dos requerimentos deste sistema, a rececção através de OCC (Optical Camera Communication) mostra-se assim uma solução viável. Assim como o processamento do sinal recebido, que é efectuado por meio de CNNs (Convolutional Neural Networks), que mostram flexibilidade e resiliência, o que benefecia a capacidade do sistema de transmissão. Todo o projecto foi realizado em colaboração com o grupo de circuitos integrados do Instituto de Telecomunicações de Aveiro e a empresa Exatronic Lda, sediada em Aveiro, e especializada em inovação, investigação (I+I), engenharia e produção de eletrónica.Mestrado em Engenharia Eletrónica e Telecomunicaçõe

    Bandgap Voltage Reference IC for HV Automotive Applications with Pseudo-regulated Bias and Service Regulator

    No full text
    The paper presents a Bandgap Voltage Reference (BGR) implemented in TSMC 0.25μm BCD technology for an automotive application. To withstand a car’s battery large voltage variations, from 5 V to 40 V, the circuit features an embedded pseudo-regulator providing a stable bias current for the bandgap core. High-voltage (HV) MOS count has been kept low thus allowing the design of a compact BGR with an area of 0.118 mm2. The BGR has been designed to operate in automotive extended temperature range (-40°C to 150°C) and it provides a stable voltage of 1.21 V, which is also used as reference for a cascade 3.7 V linear regulator. Measurements carried on fabricated IC samples prove the effectiveness of the BGR design in terms of supported input voltage variations and operating temperature range, temperature drift, line regulation and PSRR performanc
    corecore