24,097 research outputs found

    Simple heuristics for the assembly line worker assignment and balancing problem

    Full text link
    We propose simple heuristics for the assembly line worker assignment and balancing problem. This problem typically occurs in assembly lines in sheltered work centers for the disabled. Different from the classical simple assembly line balancing problem, the task execution times vary according to the assigned worker. We develop a constructive heuristic framework based on task and worker priority rules defining the order in which the tasks and workers should be assigned to the workstations. We present a number of such rules and compare their performance across three possible uses: as a stand-alone method, as an initial solution generator for meta-heuristics, and as a decoder for a hybrid genetic algorithm. Our results show that the heuristics are fast, they obtain good results as a stand-alone method and are efficient when used as a initial solution generator or as a solution decoder within more elaborate approaches.Comment: 18 pages, 1 figur

    Multi-objective discrete particle swarm optimisation algorithm for integrated assembly sequence planning and assembly line balancing

    Get PDF
    In assembly optimisation, assembly sequence planning and assembly line balancing have been extensively studied because both activities are directly linked with assembly efficiency that influences the final assembly costs. Both activities are categorised as NP-hard and usually performed separately. Assembly sequence planning and assembly line balancing optimisation presents a good opportunity to be integrated, considering the benefits such as larger search space that leads to better solution quality, reduces error rate in planning and speeds up time-to-market for a product. In order to optimise an integrated assembly sequence planning and assembly line balancing, this work proposes a multi-objective discrete particle swarm optimisation algorithm that used discrete procedures to update its position and velocity in finding Pareto optimal solution. A computational experiment with 51 test problems at different difficulty levels was used to test the multi-objective discrete particle swarm optimisation performance compared with the existing algorithms. A statistical test of the algorithm performance indicates that the proposed multi-objective discrete particle swarm optimisation algorithm presents significant improvement in terms of the quality of the solution set towards the Pareto optimal set

    Towards Zero-Waste Furniture Design

    Get PDF
    In traditional design, shapes are first conceived, and then fabricated. While this decoupling simplifies the design process, it can result in inefficient material usage, especially where off-cut pieces are hard to reuse. The designer, in absence of explicit feedback on material usage remains helpless to effectively adapt the design -- even though design variabilities exist. In this paper, we investigate {\em waste minimizing furniture design} wherein based on the current design, the user is presented with design variations that result in more effective usage of materials. Technically, we dynamically analyze material space layout to determine {\em which} parts to change and {\em how}, while maintaining original design intent specified in the form of design constraints. We evaluate the approach on simple and complex furniture design scenarios, and demonstrate effective material usage that is difficult, if not impossible, to achieve without computational support

    A Tuned and Scalable Fast Multipole Method as a Preeminent Algorithm for Exascale Systems

    Full text link
    Among the algorithms that are likely to play a major role in future exascale computing, the fast multipole method (FMM) appears as a rising star. Our previous recent work showed scaling of an FMM on GPU clusters, with problem sizes in the order of billions of unknowns. That work led to an extremely parallel FMM, scaling to thousands of GPUs or tens of thousands of CPUs. This paper reports on a a campaign of performance tuning and scalability studies using multi-core CPUs, on the Kraken supercomputer. All kernels in the FMM were parallelized using OpenMP, and a test using 10^7 particles randomly distributed in a cube showed 78% efficiency on 8 threads. Tuning of the particle-to-particle kernel using SIMD instructions resulted in 4x speed-up of the overall algorithm on single-core tests with 10^3 - 10^7 particles. Parallel scalability was studied in both strong and weak scaling. The strong scaling test used 10^8 particles and resulted in 93% parallel efficiency on 2048 processes for the non-SIMD code and 54% for the SIMD-optimized code (which was still 2x faster). The weak scaling test used 10^6 particles per process, and resulted in 72% efficiency on 32,768 processes, with the largest calculation taking about 40 seconds to evaluate more than 32 billion unknowns. This work builds up evidence for our view that FMM is poised to play a leading role in exascale computing, and we end the paper with a discussion of the features that make it a particularly favorable algorithm for the emerging heterogeneous and massively parallel architectural landscape

    Extreme Scale De Novo Metagenome Assembly

    Full text link
    Metagenome assembly is the process of transforming a set of short, overlapping, and potentially erroneous DNA segments from environmental samples into the accurate representation of the underlying microbiomes's genomes. State-of-the-art tools require big shared memory machines and cannot handle contemporary metagenome datasets that exceed Terabytes in size. In this paper, we introduce the MetaHipMer pipeline, a high-quality and high-performance metagenome assembler that employs an iterative de Bruijn graph approach. MetaHipMer leverages a specialized scaffolding algorithm that produces long scaffolds and accommodates the idiosyncrasies of metagenomes. MetaHipMer is end-to-end parallelized using the Unified Parallel C language and therefore can run seamlessly on shared and distributed-memory systems. Experimental results show that MetaHipMer matches or outperforms the state-of-the-art tools in terms of accuracy. Moreover, MetaHipMer scales efficiently to large concurrencies and is able to assemble previously intractable grand challenge metagenomes. We demonstrate the unprecedented capability of MetaHipMer by computing the first full assembly of the Twitchell Wetlands dataset, consisting of 7.5 billion reads - size 2.6 TBytes.Comment: Accepted to SC1

    A mathematical model and genetic algorithm-based approach for parallel two-sided assembly line balancing problem

    Get PDF
    Copyright © 2015 Taylor & Francis. This is an Accepted Manuscript of an article published by Taylor & Francis in Production Planning & Control on 27 April 2015, available online: http://dx.doi.org/10.1080/09537287.2014.994685Assembly lines are usually constructed as the last stage of the entire production system and efficiency of an assembly line is one of the most important factors which affect the performance of a complex production system. The main purpose of this paper is to mathematically formulate and to provide an insight for modelling the parallel two-sided assembly line balancing problem, where two or more two-sided assembly lines are constructed in parallel to each other. We also propose a new genetic algorithm (GA)-based approach in alternatively to the existing only solution approach in the literature, which is a tabu search algorithm. To the best of our knowledge, this is the first formal presentation of the problem as well as the proposed algorithm is the first attempt to solve the problem with a GA-based approach in the literature. The proposed approach is illustrated with an example to explain the procedures of the algorithm. Test problems are solved and promising results are obtained. Statistical tests are designed to analyse the advantage of line parallelisation in two-sided assembly lines through obtained test results. The response of the overall system to the changes in the cycle times of the parallel lines is also analysed through test problems for the first time in the literature
    • …
    corecore