2,536 research outputs found

    The linear pencil approach to rational interpolation

    Full text link
    It is possible to generalize the fruitful interaction between (real or complex) Jacobi matrices, orthogonal polynomials and Pade approximants at infinity by considering rational interpolants, (bi-)orthogonal rational functions and linear pencils zB-A of two tridiagonal matrices A, B, following Spiridonov and Zhedanov. In the present paper, beside revisiting the underlying generalized Favard theorem, we suggest a new criterion for the resolvent set of this linear pencil in terms of the underlying associated rational functions. This enables us to generalize several convergence results for Pade approximants in terms of complex Jacobi matrices to the more general case of convergence of rational interpolants in terms of the linear pencil. We also study generalizations of the Darboux transformations and the link to biorthogonal rational functions. Finally, for a Markov function and for pairwise conjugate interpolation points tending to infinity, we compute explicitly the spectrum and the numerical range of the underlying linear pencil.Comment: 22 page

    Polynomial eigenvalue solver based on tropically scaled Lagrange linearization

    Get PDF
    We propose an algorithm to solve polynomial eigenvalue problems via linearization combining several ingredients: a specific choice of linearization, which is constructed using input from tropical algebra and the notion of well-separated tropical roots, an appropriate scaling applied to the linearization and a modified stopping criterion for the QZQZ iterations that takes advantage of the properties of our scaled linearization. Numerical experiments suggest that our polynomial eigensolver computes all the finite and well-conditioned eigenvalues to high relative accuracy even when they are very different in magnitude.status: publishe

    A structure-preserving doubling algorithm for Lur'e equations

    Get PDF
    We introduce a numerical method for the numerical solution of the Lur'e equations, a system of matrix equations that arises, for instance, in linear-quadratic infinite time horizon optimal control. We focus on small-scale, dense problems. Via a Cayley transformation, the problem is transformed to the discrete-time case, and the structural infinite eigenvalues of the associated matrix pencil are deflated. The deflated problem is associated with a symplectic pencil with several Jordan blocks of eigenvalue 1 and even size, which arise from the nontrivial Kronecker chains at infinity of the original problem. For the solution of this modified problem, we use the structure-preserving doubling algorithm. Implementation issues such as the choice of the parameter γ in the Cayley transform are discussed. The most interesting feature of this method, with respect to the competing approaches, is the absence of arbitrary rank decisions, which may be ill-posed and numerically troublesome. The numerical examples presented confirm the effectiveness of this method

    Perturbation, extraction and refinement of invariant pairs for matrix polynomials

    Get PDF
    Generalizing the notion of an eigenvector, invariant subspaces are frequently used in the context of linear eigenvalue problems, leading to conceptually elegant and numerically stable formulations in applications that require the computation of several eigenvalues and/or eigenvectors. Similar benefits can be expected for polynomial eigenvalue problems, for which the concept of an invariant subspace needs to be replaced by the concept of an invariant pair. Little has been known so far about numerical aspects of such invariant pairs. The aim of this paper is to fill this gap. The behavior of invariant pairs under perturbations of the matrix polynomial is studied and a first-order perturbation expansion is given. From a computational point of view, we investigate how to best extract invariant pairs from a linearization of the matrix polynomial. Moreover, we describe efficient refinement procedures directly based on the polynomial formulation. Numerical experiments with matrix polynomials from a number of applications demonstrate the effectiveness of our extraction and refinement procedures
    corecore