8 research outputs found

    Bad Communities with High Modularity

    Full text link
    In this paper we discuss some problematic aspects of Newman's modularity function QN. Given a graph G, the modularity of G can be written as QN = Qf -Q0, where Qf is the intracluster edge fraction of G and Q0 is the expected intracluster edge fraction of the null model, i.e., a randomly connected graph with same expected degree distribution as G. It follows that the maximization of QN must accomodate two factors pulling in opposite directions: Qf favors a small number of clusters and Q0 favors many balanced (i.e., with approximately equal degrees) clusters. In certain cases the Q0 term can cause overestimation of the true cluster number; this is the opposite of the well-known under estimation effect caused by the "resolution limit" of modularity. We illustrate the overestimation effect by constructing families of graphs with a "natural" community structure which, however, does not maximize modularity. In fact, we prove that we can always find a graph G with a "natural clustering" V of G and another, balanced clustering U of G such that (i) the pair (G; U) has higher modularity than (G; V) and (ii) V and U are arbitrarily different.Comment: Significantly improved version of the paper, with the help of L. Pitsouli

    Modularity bounds for clusters located by leading eigenvectors of the normalized modularity matrix

    Get PDF
    Nodal theorems for generalized modularity matrices ensure that the cluster located by the positive entries of the leading eigenvector of various modularity matrices induces a connected subgraph. In this paper we obtain lower bounds for the modularity of that set of nodes showing that, under certain conditions, the nodal domains induced by eigenvectors corresponding to highly positive eigenvalues of the normalized modularity matrix have indeed positive modularity, that is they can be recognized as modules inside the network. Moreover we establish Cheeger-type inequalities for the cut-modularity of the graph, providing a theoretical support to the common understanding that highly positive eigenvalues of modularity matrices are related with the possibility of subdividing a network into communities

    Considerations about multistep community detection

    Full text link
    The problem and implications of community detection in networks have raised a huge attention, for its important applications in both natural and social sciences. A number of algorithms has been developed to solve this problem, addressing either speed optimization or the quality of the partitions calculated. In this paper we propose a multi-step procedure bridging the fastest, but less accurate algorithms (coarse clustering), with the slowest, most effective ones (refinement). By adopting heuristic ranking of the nodes, and classifying a fraction of them as `critical', a refinement step can be restricted to this subset of the network, thus saving computational time. Preliminary numerical results are discussed, showing improvement of the final partition.Comment: 12 page

    Impact of Symmetries in Graph Clustering

    Get PDF
    Diese Dissertation beschäftigt sich mit der durch die Automorphismusgruppe definierten Symmetrie von Graphen und wie sich diese auf eine Knotenpartition, als Ergebnis von Graphenclustering, auswirkt. Durch eine Analyse von nahezu 1700 Graphen aus verschiedenen Anwendungsbereichen kann gezeigt werden, dass mehr als 70 % dieser Graphen Symmetrien enthalten. Dies bildet einen Gegensatz zum kombinatorischen Beweis, der besagt, dass die Wahrscheinlichkeit eines zufälligen Graphen symmetrisch zu sein bei zunehmender Größe gegen Null geht. Das Ergebnis rechtfertigt damit die Wichtigkeit weiterer Untersuchungen, die auf mögliche Auswirkungen der Symmetrie eingehen. Bei der Analyse werden sowohl sehr kleine Graphen (10 000 000 Knoten/>25 000 000 Kanten) berücksichtigt. Weiterhin wird ein theoretisches Rahmenwerk geschaffen, das zum einen die detaillierte Quantifizierung von Graphensymmetrie erlaubt und zum anderen Stabilität von Knotenpartitionen hinsichtlich dieser Symmetrie formalisiert. Eine Partition der Knotenmenge, die durch die Aufteilung in disjunkte Teilmengen definiert ist, wird dann als stabil angesehen, wenn keine Knoten symmetriebedingt von der einen in die andere Teilmenge abgebildet werden und dadurch die Partition verändert wird. Zudem wird definiert, wie eine mögliche Zerlegbarkeit der Automorphismusgruppe in unabhängige Untergruppen als lokale Symmetrie interpretiert werden kann, die dann nur Auswirkungen auf einen bestimmten Bereich des Graphen hat. Um die Auswirkungen der Symmetrie auf den gesamten Graphen und auf Partitionen zu quantifizieren, wird außerdem eine Entropiedefinition präsentiert, die sich an der Analyse dynamischer Systeme orientiert. Alle Definitionen sind allgemein und können daher für beliebige Graphen angewandt werden. Teilweise ist sogar eine Anwendbarkeit für beliebige Clusteranalysen gegeben, solange deren Ergebnis in einer Partition resultiert und sich eine Symmetrierelation auf den Datenpunkten als Permutationsgruppe angeben lässt. Um nun die tatsächliche Auswirkung von Symmetrie auf Graphenclustering zu untersuchen wird eine zweite Analyse durchgeführt. Diese kommt zum Ergebnis, dass von 629 untersuchten symmetrischen Graphen 72 eine instabile Partition haben. Für die Analyse werden die Definitionen des theoretischen Rahmenwerks verwendet. Es wird außerdem festgestellt, dass die Lokalität der Symmetrie eines Graphen maßgeblich beeinflusst, ob dessen Partition stabil ist oder nicht. Eine hohe Lokalität resultiert meist in einer stabilen Partition und eine stabile Partition impliziert meist eine hohe Lokalität. Bevor die obigen Ergebnisse beschrieben und definiert werden, wird eine umfassende Einführung in die verschiedenen benötigten Grundlagen gegeben. Diese umfasst die formalen Definitionen von Graphen und statistischen Graphmodellen, Partitionen, endlichen Permutationsgruppen, Graphenclustering und Algorithmen dafür, sowie von Entropie. Ein separates Kapitel widmet sich ausführlich der Graphensymmetrie, die durch eine endliche Permutationsgruppe, der Automorphismusgruppe, beschrieben wird. Außerdem werden Algorithmen vorgestellt, die die Symmetrie von Graphen ermitteln können und, teilweise, auch das damit eng verwandte Graphisomorphie Problem lösen. Am Beispiel von Graphenclustering gibt die Dissertation damit Einblicke in mögliche Auswirkungen von Symmetrie in der Datenanalyse, die so in der Literatur bisher wenig bis keine Beachtung fanden

    The modular structure of brain functional connectivity networks: a graph theoretical approach

    Get PDF
    Complex networks theory offers a framework for the analysis of brain functional connectivity as measured by magnetic resonance imaging. Within this approach the brain is represented as a graph comprising nodes connected by links, with nodes corresponding to brain regions and the links to measures of inter-regional interaction. A number of graph theoretical methods have been proposed to analyze the modular structure of these networks. The most widely used metric is Newman's Modularity, which identifies modules within which links are more abundant than expected on the basis of a random network. However, Modularity is limited in its ability to detect relatively small communities, a problem known as ``resolution limit''. As a consequence, unambiguously identifiable modules, like complete sub-graphs, may be unduly merged into larger communities when they are too small compared to the size of the network. This limit, first demonstrated for Newman's Modularity, is quite general and affects, to a different extent, all methods that seek to identify the community structure of a network through the optimization of a global quality function. Hence, the resolution limit may represent a critical shortcoming for the study of brain networks, and is likely to have affected many of the studies reported in the literature. This work pioneers the use of Surprise and Asymptotical Surprise, two quality functions rooted in probability theory that aims at overcoming the resolution limit for both binary and weighted networks. Hereby, heuristics for their optimization are developed and tested, showing that the resulting optimal partitioning can highlight anatomically and functionally plausible modules from brain connectivity datasets, on binary and weighted networks. This novel approach is applied to the partitioning of two different human brain networks that have been extensively characterized in the literature, to address the resolution-limit issue in the study of the brain modular structure. Surprise maximization in human resting state networks revealed the presence of a rich structure of modules with heterogeneous size distribution undetectable by current methods. Moreover, Surprise led to different, more accurate classification of the network's connector hubs, the elements that integrate the brain modules into a cohesive structure. In synthetic networks, Asymptotical Surprise showed high sensitivity and specificity in the detection of ground-truth structures, particularly in the presence of noise and variability such as those observed in experimental functional MRI data. Finally, the methodological advances hereby introduced are shown to be a helpful tool to better discern differences between the modular organization of functional connectivity of healthy subjects and schizophrenic patients. Importantly, these differences may point to new clinical hypotheses on the etiology of schizophrenia, and they would have gone unnoticed with resolution-limited methods. This may call for a revisitation of some of the current models of the modular organization of the healthy and diseased brain

    MMB & DFT 2014 : Proceedings of the International Workshops ; Modeling, Analysis and Management of Social Networks and their Applications (SOCNET 2014) & Demand Modeling and Quantitative Analysis of Future Generation Energy Networks and Energy-Efficient Systems (FGENET 2014)

    Get PDF
    At present, a comprehensive set of measurement, modeling, analysis, simulation, and performance evaluation techniques are employed to investigate complex networks. A direct transfer of the developed engineering methodologies to related analysis and design tasks in next-generation energy networks, energy-efficient systems and social networks is enabled by a common mathematical foundation. The International Workshop on "Demand Modeling and Quantitative Analysis of Future Generation Energy Networks and Energy-Efficient Systems" (FGENET 2014) and the International Workshop on "Modeling, Analysis and Management of Social Networks and their Applications" (SOCNET 2014) were held on March 19, 2014, at University of Bamberg in Germany as satellite symposia of the 17th International GI/ITG Conference on "Measurement, Modelling and Evaluation of Computing Systems" and "Dependability and Fault-Tolerance" (MMB & DFT 2014). They dealt with current research issues in next-generation energy networks, smart grid communication architectures, energy-efficient systems, social networks and social media. The Proceedings of MMB & DFT 2014 International Workshops summarizes the contributions of 3 invited talks and 13 reviewed papers and intends to stimulate the readers’ future research in these vital areas of modern information societies.Gegenwärtig wird eine reichhaltige Klasse von Verfahren zur Messung, Modellierung, Analyse, Simulation und Leistungsbewertung komplexer Netze eingesetzt. Die unmittelbare Übertragung entwickelter Ingenieurmethoden auf verwandte Analyse- und Entwurfsaufgaben in Energienetzen der nächsten Generation, energieeffizienten Systemen und sozialen Netzwerken wird durch eine gemeinsame mathematische Basis ermöglicht. Die Internationalen Workshops "Demand Modeling and Quantitative Analysis of Future Generation Energy Net-works and Energy-Efficient Systems" (FGENET 2014) und "Modeling, Analysis and Management of Social Networks and their Applications" (SOCNET 2014) wurden am 19. März 2014 als angegliederte Symposien der 17. Internationalen GI/ITG Konferenz "Measurement, Modelling and Evaluation of Computing Systems" und "Dependability and Fault-Tolerance" (MMB & DFT 2014) an der Otto-Friedrich-Universität Bamberg in Deutschland veranstaltet. Es wurden aktuelle Forschungsfragen in Energienetzen der nächsten Generation, Smart Grid Kommunikationsarchitekturen, energieeffizienten Systemen, sozialen Netzwerken und sozialen Medien diskutiert. Der Tagungsband der Internationalen Workshops MMB & DFT 2014 fasst die Inhalte von 3 eingeladenen Vorträgen und 13 begutachteten Beiträgen zusammen und beabsichtigt, den Lesern Anregungen für ihre eigenen Forschungen auf diesen lebenswichtigen Gebieten moderner Informationsgesellschaften zu vermitteln
    corecore