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Abstract. Nodal theorems for generalized modularity matrices ensure that the cluster located by

the positive entries of the leading eigenvector of various modularity matrices induces a connected

subgraph. In this paper we obtain lower bounds for the modularity of that subgraph showing that,

under certain conditions, the nodal domains induced by eigenvectors corresponding to highly

positive eigenvalues of the normalized modularity matrix have indeed positive modularity, that

is, they can be recognized as modules inside the network. Moreover we establish Cheeger-type

inequalities for the cut-modularity of the graph, providing a theoretical support to the common

understanding that highly positive eigenvalues of modularity matrices are related with the possi-

bility of subdividing a network into communities.

1. Introduction

The study of community structures in complex networks is facing a signiÞcant

growth, as observations on real life graphs reveal that many social, biological, and

technological networks are intrinsically divided into clusters. Given a generic graph

describing some kind of relationship among actors of a complex network, community

detection problems basically consist in discovering and revealing the groups (if any) in

which the network is subdivided.

Modularity matrices, the main subject of investigation of the present work, are

a relevant tool in the development of a sound theoretical background of community

detection. Even though a number of modularity matrices has been proposed so far, see

e.g., [9] and the references therein, the original and most popular one was introduced

by Newman and Girvan in [17] and is deÞned as a particular rank-one modiÞcation

of the adjacency matrix. We shall refer to such matrix as the Newman�Girvan (or

unnormalized) modularity matrix, and we will introduce consequently a normalized

version of that matrix.

Spectral algorithms are widely applied to data clustering problems, including Þnd-

ing communities or partitions in graphs and networks. In the latter case, sign patterns

in the entries of certain eigenvectors of Laplacian matrices are exploited to build vertex

subsets, called nodal domains, which often yield excellent solutions to certain combi-

natorial problems related to the optimal partitioning of a given graph.
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Analogously, nodal domains of modularity matrices play a crucial role in the com-

munity detection framework. A nodal domain theorem has been proved for these ma-

trices [8, 9] showing the connectedness properties of nodal domains associated with

their eigenvectors. The main results of this paper show that, under certain conditions,

the nodal domains induced by eigenvectors corresponding to positive eigenvalues of

the normalized modularity matrix have indeed positive modularity, that is, they can

be recognized as modules inside the graph. Moreover, we prove two Cheeger-type

inequalities for the cut-modularity providing a theoretical support to the common un-

derstanding that highly positive eigenvalues of modularity matrices are related with the

possibility of subdividing the graph into communities.

The paper is organized as follows. After Þxing our notation and preliminary re-

sults, in Section 2 we introduce with more detail the modularity based community de-

tection problem, motivating our subsequent investigations. In Section 3 we discuss

the unnormalized and normalized versions of the Newman�Girvan modularity matrix,

summarizing some of their main structural properties, and we present our main results,

concerning the relation between positive eigenvalues of the normalized modularity ma-

trix and modules inside the graph. In Section 4 we prove two Cheeger-type inequali-

ties for the cut-modularity of the graph. Section 5 contains complementary results on

modularity properties of nodal domains corresponding to positive eigenvalues of the

normalized modularity matrix.

1.1. Notations and preliminaries

In the sequel we give a brief review of standard concepts and symbols from alge-

braic graph theory that we will use throughout the paper. We assume that G = (V,E) is

a Þnite, undirected, connected, unweighted graph without multiple edges, where V and

E are the vertex and edge sets, respectively. We will identify V with {1, . . . ,n} . We

denote adjacency of vertices x and y as xy∈ E . For any i∈V , let di denote its degree.

Moreover, we let d = (d1, . . . ,dn)
T , and D = Diag(d1, . . . ,dn) . The average degree is

〈d〉 = (∑n
i=1 di)/n .

The symbols A and A denote the adjacency matrix of G and its normalized

counterpart, that is, A = (ai j) where ai j = 1 if i j ∈ E , and ai j = 0 otherwise; and A =

D−1/2AD−1/2 . In particular, both A and A are symmetric, irreducible, componentwise

nonnegative matrices. The spectral radius of A is denoted by ρ(A) , and � denotes an

all-one vector whose dimension depends on the context.

The cardinality of a set S is denoted by |S| . In particular, |V | = n . For any S ⊆
{1, . . . ,n} let �S be its characteristic vector, deÞned as (�S)i = 1 if i∈ S and (�S)i = 0

otherwise. Moreover, we denote by S the complement V \ S , and let volS = ∑i∈S di

be the volume of S . Correspondingly, volV = ∑i∈V di denotes the volume of the whole

graph. For any subsets S,T ⊆V let

e(S,T ) = �
T

S A�T .

For simplicity, we use the shorthands ein(S) = e(S,S) and eout(S) = e(S, S) , so that

ein(S) is twice the number of inner-edges in S and eout(S) is the size of the edge-
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boundary of S . We have also

volS = ein(S)+ eout(S).

A complete multipartite graph G is a graph whose vertices can be partitioned into

pairwise disjoint subsets V1, . . . ,Vk such that an edge exists if and only if its end vertices

belong to different subsets. For k = n we say that G is a complete graph, while for k = 2

and |V1| = 1 we say that G is a star.

2. The community detection problem

The discovery and description of communities in a graph is a central problem in

modern graph analysis. Intuitively, a community (or cluster) is a possibly connected

group of nodes whose internal edges outnumber those with the rest of the network.

However there is no formal deÞnition of community. A survey of several recently pro-

posed deÞnitions can be found in [12], where the deÞnition based on the modularity

quality function is identiÞed as a very relevant one. The modularity function was pro-

posed by Newman and Girvan in [17] as a possible measure to quantify how much a

subset S ⊂V is a �good cluster�. They postulate that S is a cluster of nodes in G if the

difference Q(S) between the actual and the expected number of edges in the subgraph

G(S) is positive. The quantity Q(S) is called modularity of S and is deÞned by the

following equivalent formulas:

Q(S) = ein(S)− (volS)2

volV
=

volSvolS

volV
− eout(S). (1)

Note the equalities Q(S) = Q(S) and Q(V ) = 0. The modularity of a vertex set is one

of the most efÞcient indicators of its consistency as a community in G . For this reason,

we adopt the following deÞnition:

DEFINITION 2.1. A subgraph of G is a module if its vertex set S has positive

modularity. If no ambiguity may occur, S is called a module itself.

The usefulness of the previous deÞnition lies in the fact that, in practice, if G(S) is

a connected module whose size is signiÞcant then it can be recognized as a community.

DeÞnition 2.1 leads naturally to an efÞcient measure of a partitioning of G into

modules. Indeed, let S1, . . . ,Sk be a partition of V into pairwise disjoint subsets. The

normalized modularity of S1, . . . ,Sk is deÞned as

q(S1, . . . ,Sk) =
1

volV

k

∑
i=1

Q(Si). (2)

The normalization factor 1/volV has been introduced in [15, 17] to settle the value of

q in a range independent on G and k and for compatibility with previous works.

The problem of partitioning a graph into an arbitrary number of subgraphs whose

overall modularity is maximized has received a considerable attention, not only in its
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applicative and computational aspects but also from the graph-theoretic point of view

[6, 13]. The main contributions we propose in this work deal with the cut version of

the community detection problem, that is the problem of Þnding a subset S ⊆V having

maximal modularity. To this end, we deÞne the cut-modularity of the graph G as the

quantity

qCut
G = max

S⊆V
q(S, S) =

2

volV
max
S⊆V

Q(S). (3)

It is well known that the optimization of the modularity function (2) presents some

drawbacks when employed for Þnding a partitioning of G into modules, since small

clusters tend to be subsumed by larger ones. Among the many techniques and variants

of the Newman�Girvan modularity that have been devised to tackle this issue, here we

borrow from [1] two weighted versions of the modularity function that play a relevant

role in the subsequent discussion:

• The relative modularity of S ⊆V is Qrel(S) = Q(S)/|S| . This deÞnition is natu-

rally extended to the cut {S, S} as

qrel(S, S) = Qrel(S)+Qrel(S) = Q(S)
n

|S||S|
, (4)

which, in turn, leads to the deÞnition of the relative cut-modularity of G

qRCut
G = max

S⊆V
qrel(S, S).

• The normalized modularity of S ⊆ V is deÞned as Qnorm(S) = Q(S)/volS and

that deÞnition can be extended to the cut {S, S} as

qnorm(S, S) = Qnorm(S)+Qnorm(S) = Q(S)
volV

volSvolS
. (5)

As before we deÞne the normalized cut-modularity of the graph G as

qNCut
G = max

S⊆V
qnorm(S, S).

Straightforward computations ensure

2qRCut
G

ndmax
� qCut

G �
qRCut

G

2
,

2qNCut
G

volV
� qCut

G �
qNCut

G

2
.

3. Modularity matrices and their properties

The probably best known methods for detecting a subset whose modularity well

approximates the cut-modularity of G are based on the idea of spectral partitioning and

are related with an important rank-one modiÞcation of the adjacency matrix, known

as the Newman�Girvan modularity matrix. In analogy with graph Laplacians, in this

section we deÞne two different modularity matrices and describe a number of relevant

structural properties.
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3.1. The Newman�Girvan modularity matrix

Given a graph G and the associated adjacency matrix A , the modularity matrix of

G has been introduced in [15] as

M = A− 1

volV
ddT. (6)

Note that we can express Q(S) as

Q(S) = �
T

S M�S. (7)

The following proposition summarizes some basics properties of M :

PROPOSITION 3.1. The matrix M satisÞes the following properties:

1. M is symmetric and M� = 0 .

2. If m1 � . . . � mn are the eigenvalues of M and α1 � . . . � αn those of A then

α1 � m1 � α2 � m2 � . . . � αn � mn .

3. 0 is a simple eigenvalue of M if and only if A is nonsingular.

4. The largest eigenvalue of M is nonnegative, and is zero if and only if G is a

complete multipartite graph.

Proof. Point 1 is revealed by a direct computation. Point 2 is a direct consequence

of the variational characterization of the eigenvalues of symmetric matrices, see e.g.,

[20]. To show point 3 we observe that the multiplicity of the zero eigenvalue of M

is one plus the dimension of the kernel of A . Indeed consider the diagonal matrix

Δ = Diag(1/
√

d1, . . . ,1/
√

dn) and let δ = Δd . Then ΔMΔδ = 0 and ΔAΔδ = δ .

Therefore the multiplicity of the zero eigenvalue of ΔMΔ is the multiplicity of the zero

eigenvalue of ΔAΔ plus one. This proves point 3 as the multiplicity of 0 is invariant

under matrix congruences. Point 4 is a rephrasing of [14, Thm. 1.1] and [2, Thm.

11]. �

The modularity matrix M is at the basis of many spectral methods for community

detection, and the eigenstructure of M can be used to describe clustering properties of

graphs. A number of results relating algebraic properties of M to communities in G

have appeared in recent literature [1, 2, 8, 9, 14]. As it often plays a special role in the

algebraic analysis of the modular structure of G , the largest nonzero eigenvalue of M

deserves a special symbol, borrowed from [8] and therein named algebraic modularity:

mG = max
v∈�n

vT�=0

vTMv

vTv
. (8)

A major motivation behind spectral methods is the intuition that a close relation exists

between mG and the cut-modularity (3), and that the subsets having positive modularity

are related with positive eigenvalues of M . The following theorem summarizes some

important properties of M that have been proven in recent literature, supporting such

intuition, see [2, 8, 14].
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THEOREM 3.2. Let λi(M) denote the i-th largest eigenvalue of M . Then, the

matrix M satisÞes the following properties:

1. mG < ρ(A) and, if d is not an eigenvector of A then mG is simple.

2. If G is not a complete graph or a complete multipartite graph then mG = λ1(M)>
0 . If G is a star then mG = λ2(M) < 0 . Otherwise (that is, if G is a complete

graph or a complete multipartite graph which is not a star) mG = 0 .

3. mG � 2〈d〉qCut
G where 〈d〉 = volV/n is the average degree of G.

4. Let {S1, . . . ,Sk} be a partition that maximizes the quantity in (2), which has

minimal cardinality, and which is made up entirely by modules. Then k−1 does

not exceed the number of positive eigenvalues of M .

5. Let u be an eigenvector associated with mG such that dTu � 0 . If mG is simple

and it is not an eigenvalue of A then the subgraph induced by the subset S+ =
{i | ui � 0} is connected.

For any S ⊆V let vS = �S − |S|
n
� . The following identities are readily obtained:

vT

S �= 0, vT

S vS =
|S||S|

n
, vT

S MvS = Q(S), qrel(S, S) =
vT

S MvS

vT

S vS

.

Hence, the combinatorial problem of Þnding the cut {S, S} with largest relative modu-

larity has a natural continuous relaxation in the maximization of the Rayleigh quotient

vTMv/vTv over the subspace orthogonal to � , that is, the algebraic modularity deÞned

in (8). We have the immediate consequence

qRCut
G � mG.

3.2. The normalized modularity matrix

In analogy with the normalized Laplacian matrix of a graph, we deÞne the nor-

malized modularity matrix of G as

M = D−1/2MD−1/2 = A − 1

volV
δδT

where δ = (
√

d1, . . . ,
√

dn)
T and M is as in (6). The matrix M appeared recently in

the community detection literature, and in various other network related questions as

the analysis of quasi-randomness properties of graphs with given degree sequences, see

[1, 4, 9] and [3, Chap. 5]. Several basics properties of M can be immediately observed;

we collect some of them hereafter.

PROPOSITION 3.3. The matrix M satisÞes the following properties:

1. M has a zero eigenvalue with corresponding eigenvector δ .
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2. M v = A v for all vectors v orthogonal to δ .

3. The eigenvalues of M belong to the interval [−1,1] . Moreover, 0 is a simple

eigenvalue of M if and only if A is nonsingular.

4. If G is connected then 1 is not an eigenvalue of M . Furthermore, if G is not

bipartite then −1 is not an eigenvalue of M .

Proof. Straightforward computations show that A δ = δ and M δ = 0. Since

A � O and δ � 0, Perron�Frobenius theory leads us to deduce that ρ(A ) = 1 is

an eigenvalue of A . Therefore, if A = ∑n
i=1 λiqiq

T

i is a spectral decomposition of A

with the eigenvalues in nonincreasing order, λ1 � . . . � λn , then we can assume λ1 = 1,

|λi| � 1 for i > 1, and q1 parallel to δ . In particular, δδT/volV is the orthogonal

projector on the eigenspace spanned by q1 , since δTδ = volV . Consequently, M =

∑n
i=2 λiqiq

T

i is a spectral decomposition of M and we easily deduce points 2 and 3.

Incidentally, this proves that M and A are simultaneously diagonalizable. If G is

connected then A is irreducible and λ1 is simple, that is 1 > λ2 . Furthermore, if

G is not bipartite then A is also primitive and |λi| < 1 for i > 1, and the proof is

complete. �

The normalized modularity (5) of a cut {S, S} can be naturally deÞned in terms of

M . In fact, given any S ⊆V , consider the vector

vS = D1/2(�S − c�), c = volS/volV. (9)

Simple computations prove that

δT vS = 0, vT

S vS =
volSvolS

volV
.

Moreover,

vT

S M vS

vT

S vS

=
(�S − c�)TM(�S − c�)

vT

S vS

=
�

T

S M�S

volSvolS
volV = qnorm(S, S).

It follows that the problem of computing the normalized cut-modularity of G can be

stated in terms of M . Indeed, if Vn is the set of n -vectors having the form (9) for some

S ⊂V , then

qNCut
G = max

v∈Vn

vTM v

vTv
(10)

and of course, if �v is the vector realizing the maximum in (10), then the set �S = {i |
�vi > 0} deÞnes the optimal cut. As for the unnormalized case, we deÞne the normalized

algebraic modularity:

µG = max
v∈�n

vTδ=0

vTM v

vTv
. (11)
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Note that (11) is a relaxed version of (10). In particular,

qNCut
G � µG. (12)

Since M is real symmetric, µG coincides with the largest eigenvalue of M after

deßation of the invariant subspace spanned by δ . Therefore, if −1 � µn � · · · � µ1 � 1

are the eigenvalues of M , then µ1 = max{0,µG} . Furthermore, since M and M are

congruent matrices, point 2 of Theorem 3.2 leads us to the following result:

COROLLARY 3.4. If G is not a star then µG = µ1 , the largest eigenvalue of M .

Moreover, µG > 0 if and only if G is not a complete graph or a complete multipartite

graph.

4. Cheeger-type inequalities

As we already discussed above, both heuristics and intuition suggest that µG quan-

tiÞes the cut-modularity of the graph, and can be used to approximate qNCut
G . While the

upper bound qNCut
G � µG has been shown in (12) by simple arguments, a converse rela-

tion, bounding qNCut
G from below in terms of µG , is not that easy. In fact, it is possible

that µG > 0 while qNCut
G < 0, as shown experimentally in [2]. Theorems 4.1 and 4.3

contribute to this question stating lower (and upper) bounds of qNCut
G in terms of spec-

tral properties of M .

The conductance (or sparsity, or Cheeger constant) hG is one of the best known

topological invariants of a graph G , deÞned as follows: For S ⊂V let

h(S) =
eout(S)

min{volS,volS}
and hG = minS⊂V h(S) . Such quantity plays a fundamental role in graph partitioning

problems [16, Chap. 11], in isoperimetric problems [3, Chap. 2], mixing properties of

random walks, combinatorics, and in various other areas of mathematics and computer

science. A renowned result in graph theory, known as Cheeger inequality, relates the

conductance of G and the smallest positive eigenvalue of the normalized Laplacian

matrix L = I−A .

If 0 = λ1 < λ2 � . . . � λn � 2 are the eigenvalues of L , the Cheeger inequality

states that
1
2
λ2 � hG �

√
2λ2.

Chung [3] improved the upper bound to hG �
√

λ2(2−λ2) . Let v be an eigenvector of

L corresponding to λ2 and consider the equality L = I−A = I−M + δδT/δTδ .

Since L δ = 0, we have δTv = 0. By Courant�s minimax principle and (11),

λ2 = min
v:δTv=0

vTL v

vTv
= 1− max

v:δTv=0

vTM v

vTv
= 1− µG.

In particular, from Corollary 3.4 we obtain that, if G is not a star then 1−λ2 is the

largest eigenvalue of M . A direct application of the Cheeger inequality yields the

following estimates for qNCut
G .
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THEOREM 4.1. Let µ1 be the largest eigenvalue of M . If G is not a star then

1−2

√

1− µ2
1 � qNCut

G � µ1.

Proof. Recalling (1) and (5), we have

qnorm(S, S) =
volV

volSvolS
Q(S)

= 1− volV

volSvolS
eout(S) � 1−2h(S),

since volV/volSvolS � 2/min{volS,volS} . By maximizing over S we eventually get

qNCut
G = max

S⊂V
qnorm(S, S) � 1−2hG � 1−2

√

(1− µG)(1+ µG).

By hypothesis, µG = µ1 . The upper bound comes from (12). �

Extensive research on Cheeger-type results by many authors suggests that no sub-

stantial improvements on the lower bound in Theorem 4.1 can be obtained without

additional information on G , although explicit examples of graph sequences proving

optimality of that bound are not known. However, the forthcoming result shows that

1−µ1 can be a much better estimate to 1−qNCut
G than expected when the entries of an

eigenvector of µ1 cluster around two values. We will make use of the following lemma,

whose simple proof is omitted for brevity:

LEMMA 4.2. If ∑n
i=1 αi = 0 then ∑i:αi>0 αi = 1

2 ∑n
i=1 |αi| .

THEOREM 4.3. Let µ1 be the largest eigenvalue of M . Suppose that µ1 has an

eigenvector x without zero entries. Then there exists a constant C > 0 , not depending

on µ1 , such that

1−C(1− µ1) � qNCut
G .

Proof. Let v be an eigenvector of M corresponding to µ1 and let z = D−1/2v .

Note that v is orthogonal to the vector δ = (
√

d1, . . . ,
√

dn)
T , since the latter is an

eigenvector of M associated to 0. Consequently, z is orthogonal to the degree vector:

dTz = δTD1/2z = δTv = 0. Hence,

µ1 =
vTM v

vTv
=

vTA v

vTv
=

zTAv

zTDz
= 1− zTLz

zTDz
,

where L = D−A is the Laplacian matrix of G . We have

zTLz = ∑
i j∈E

(zi − z j)
2,
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where the sum runs over the edges of the graph, each edge being counted only once.

On the other hand,

zTDz =
n

∑
i=1

diz
2
i .

For notational simplicity, let s = volS , s = vol S , and ν = s+ s = volV . Consider the

nodal domain S = {i : vi � 0} and let x be the vector x = p�S +q�
S

which minimizes

the weighted distance

‖D1/2(x− z)‖2
2 =

n

∑
i=1

di(xi − zi)
2 = ∑

i∈S

di(p− zi)
2 + ∑

i∈S

di(q− zi)
2.

Simple computations show that the minimum is attained when

p =
(

∑
i∈S

dizi

)

/s, q =
(

∑
i∈S

dizi

)

/s .

Observe that p and q are weighted averages of the values zi for i ∈ S and i ∈ S ,

respectively. With the notation c = ∑i∈S dizi , from the orthogonality condition dTz = 0

and Lemma 4.2 we deduce that p = c/s and q =−c/s . For later reference, we remark

the identities

p−q =
cν

ss
, p2s+q2 s = ν

(cν)2

(ss )2
. (13)

Note that, apart of a constant, the vector D1/2x coincides with the vector in (9). It is

not hard to recognize that, if G is disconnected then the vector D1/2x is an eigenvector

of M associated to the eigenvalue 1. Our subsequent arguments are based on the

intuition that, if z is a small perturbation of x then S is weakly linked to S . Let r � 1

be a number such that

r−1 � zi/xi � r, i = 1, . . . ,n.

In fact, if zi > 0 then xi = p > 0, whereas zi < 0 implies xi = q < 0. Hence, if

i j ∈ E is an edge joining a node in S with a node in S we have |zi − z j| � (p−q)/r .

Consequently,

zTLz = ∑
i j∈E

(zi − z j)
2
� r−2(p−q)2eout(S),

by neglecting all contributions from edges lying entirely inside S or S . Moreover,

zTDz =
n

∑
i=1

diz
2
i � r2

(

∑
i∈S

p2di + ∑
i∈S

p2di

)

= r2(p2s+q2 s).

Consider the equality eout(S) = (1−qnorm(S, S))ss/ν . Using (13) and simplifying we

get

1− µ =
zTLz

zTDz
�

1

r4ν
eout(S) =

ss

r4ν2
(1−qnorm(S, S)) �

1

4r4
(1−qNCut

G ),

owing to ss/ν2 � 1
4
. �
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5. Modules from nodal domains

Theorems 4.1 and 4.3 prove that if µG is sufÞciently close to 1 then the cut-

modularity of G is positive and thus there exists a bipartition of V into {S, S} such

that both G(S) and G(S) are modules. Of course such bipartition is not unique in

the general case. The forthcoming theorems strengthen this claim by showing that, if

a positive eigenvalue µ of M is large enough, then we can explicitly exhibit a cut

{S, S} with positive modularity, by deÞning it in terms of a nodal domain induced by

an eigenvector corresponding to µ .

Given a nonzero vector v∈�n the subgraph G(S) induced by the set S = {i : vi �

0} is a nodal domain of v [5, 7]. This fundamental deÞnition admits obvious variations

(for example, inequality can be strict, or reversed) and, since the seminal papers by

Fiedler [10, 11], it has become a major tool for spectral methods in community detection

and graph partitioning [15, 18, 19]. If v is an eigenvector corresponding to µG , it has

been shown in [9] that S = {i : vi � 0} induces a connected subgraph G(S) . The

following Theorems 5.1 and 5.2 provide additional information on G(S) as they show

that, if µG is large enough, then the subgraph G(S) is a module.

THEOREM 5.1. Let v be a normalized eigenvector of M corresponding to a pos-

itive eigenvalue µ , that is, M v = µv with ‖v‖2 = 1 . Let S = {i | vi � 0} . If

µ >
(volS)2 +(volS)2

volV
max
i∈V

v2
i

di

then Q(S) > 0 .

Proof. Recalling Proposition 3.3, we have that v is orthogonal to δ , which implies

in turn M v = A v and µ = vTM v = vTA v . DeÞne the set I+ = (S× S)∪ (S× S) .
Note that viv j � 0 whenever (i, j) ∈ I+ . Using entrywise nonnegativity of A we

obtain

µ = vT
A v � ∑

(i, j)∈I+

viv jAi j �

(

max
i∈V

|vi|
δi

)2

∑
(i, j)∈I+

δiδ jAi j.

Since δiδ jAi j = Ai j , the rightmost summations yield

∑
(i, j)∈I+

Ai j = �
T

S A�S +�
T

S
A�

S
= ein(S)+ ein(S).

Let us set C2 = (maxi∈V |vi|/δi)
2 . Owing to the equalities Q(S)= ein(S)−(volS)2/volV

and Q(S) = Q(S) we have

µ � C2
(

ein(S)+ ein(S)
)

= C2
(

2Q(S)+
(volS)2 +(volS)2

volV

)

.

By rearranging terms,

2C2Q(S) � µ −C2 (volS)2 +(volS)2

volV
,
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and the claim follows. �

With respect to the quantity maxi v
2
i /di appearing in the preceding theorem, con-

sider that if G is k -regular (that is, di = k for every i ∈V ) then vi = n−
1
2 and volV =

kn . After simple passages the lower bound for µ becomes (|S|2 + |S|2)/n2 , a number

which is strictly smaller than 1.

THEOREM 5.2. Let v be any real eigenvector of M corresponding to a positive

eigenvalue µ , that is, M v = µv. Let S = {i | vi � 0} and let cosθ be the cosine of the

acute angle between the vectors |v| = (|v1|, . . . , |vn|)T and δ = (
√

d1, . . . ,
√

dn)
T . If

µ +1 > 4
volSvolS

(volV )2

1

cos2 θ

then Q(S) > 0 .

Proof. Let s = D1/2
�S , that is

si =

{

δi vi � 0,

0 otherwise.

Observe that ‖s‖2
2 = ∑i∈S di = volS and δTs = volS too. Since δTv = 0 there exist

scalars α , β , γ such that we have the orthogonal decomposition

s = α
1

‖δ‖2

δ + β
1

‖v‖2

v+ γw (14)

for some normalized vector w ∈�n orthogonal to both δ and v . The coefÞcients in

(14) own the following explicit formulas:

α =
1

‖δ‖2

δTs =
volS√
volV

, β =
vTs

‖v‖2

,

and moreover,

γ2 = ‖s‖2
2−α2−β 2 = volS− (volS)2

volV
−β 2

=
volSvolS

volV
−β 2.

Owing to the fact that the spectrum of M is included in [−1,1] and the assumption

‖w‖2 = 1 we have wTMw � −1. Hence, from (14) we obtain

Q(S) = �
T

S M�S = sTM s

� α2 ·0+ β 2 µ − γ2 = β 2(µ +1)− volSvolS

volV
.
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Thus, if

µ +1 >
volSvolS

β 2 volV

then Q(S) > 0. Moreover, from δTv = 0 and Lemma 4.2 we obtain

cosθ =
∑i∈V δi|vi|
‖v‖2‖δ‖2

=
2∑i∈S δivi

‖v‖2

√
volV

= 2
vTs

‖v‖2

√
volV

,

whence β = 1
2
(cosθ )

√
volV and the proof is complete. �

From the straightforward bound

volSvolS/(volV )2 � 1
4

and the equality cos−2 θ −1 = tan2 θ , we derive the following condition.

COROLLARY 5.3. In the same notations of Theorem 5.2, if µ > tan2 θ then

Q(S) > 0 .

6. Concluding remarks

Community detection is a major task in modern complex network analysis and the

matrix approach to such problem is quite popular and powerful. In this work we formu-

late the modularity of a cut in terms of a quadratic form associated with the normalized

modularity matrix, and we provide theoretical supports to the common understanding

that highly positive eigenvalues of the normalized modularity matrix imply the presence

of communities in G . In particular we show that, if that matrix has an eigenvalue close

to 1 then the nodal domains corresponding to that eigenvalue have positive modularity

and, moreover, can produce good estimates of the optimal cut-modularity.
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