63,759 research outputs found

    A broad spectrum protein glycosylation system influences type II protein secretion and associated phenotypes in Vibrio cholerae

    Get PDF
    Protein secretion plays a crucial role for bacterial pathogens, exemplified by facultative human-pathoge

    Bacteriology of select aquatic hosts utilized in lunar sample exposure studies Final report

    Get PDF
    Procedures and immunofluorescent techniques for screening Apollo aquatic test animals for bacterial pathogens after lunar sample exposur

    Mass Spectrometry in the Elucidation of the Glycoproteome of Bacterial Pathogens

    Get PDF
    Presently some three hundred post-translational modifications are known to occur in bacteria in vivo. Many of these modifications play critical roles in the regulation of proteins and control key biological processes. One of the most predominant modifications, N- and O-glycosylations are now known to be present in bacteria (and archaea) although they were long believed to be limited to eukaryotes. In a number of human pathogens these glycans have been found attached to the surfaces of pilin, flagellin and other surface and secreted proteins where it has been demonstrated that they play a role in the virulence of these bacteria. Mass spectrometry characterization of these glycosylation events has been the enabling key technology for these findings. This review will look at the use of mass spectrometry as a key technology for the detection and mapping of these modifications within microorganisms, with particular reference to the human pathogens, Campylobacter jejuni and Mycobacterium tuberculosis. The overall aim of this review will be to give a basic understanding of the current ‘state-of-the-art’ of the key techniques, principles and technologies, including bioinformatics tools, involved in the analysis of the glycosylation modifications

    How old are bacterial pathogens?

    Get PDF
    Only few molecular studies have addressed the age of bacterial pathogens that infected humans before the beginnings of medical bacteriology, but these have provided dramatic insights. The global genetic diversity of Helicobacter pylori, which infects human stomachs, parallels that of its human host. The time to the Most Recent Common Ancestor (tMRCA) of these bacteria approximates that of anatomically modern humans, i.e. at least 100,000 years, after calibrating the evolutionary divergence within H. pylori against major ancient human migrations. Similarly, genomic reconstructions of Mycobacterium tuberculosis, the cause of tuberculosis, from ancient skeletons in South America and mummies in Hungary support estimates of <6,000 years for the tMRCA of M. tuberculosis. Finally, modern global patterns of genetic diversity and ancient DNA studies indicate that during the last 5,000 years plague caused by Yersinia pestis has spread globally on multiple occasions from China and Central Asia. Such tMRCA estimates provide only lower bounds on the ages of bacterial pathogens, and additional studies are needed for realistic upper bounds on how long humans and animals have suffered from bacterial diseases

    Sputum Induction in Children Is Feasible and Useful in a Bustling General Hospital Practice

    Get PDF
    The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: The Jeroen Bosch Hospital funded this study.Peer reviewedPublisher PD

    VFDB: a reference database for bacterial virulence factors

    Get PDF
    Bacterial pathogens continue to impose a major threat to public health worldwide in the 21st century. Intensified studies on bacterial pathogenesis have greatly expanded our knowledge about the mechanisms of the disease processes at the molecular level over the last decades. To facilitate future research, it becomes necessary to form a database collectively presenting the virulence factors (VFs) of various medical significant bacterial pathogens. The aim of virulence factor database (VFDB) (http://www.mgc.ac.cn/VFs/) is to provide such a source for scientists to rapidly access to current knowledge about VFs from various bacterial pathogens. VFDB is comprehensive and user-friendly. One can search VFDB by browsing each genus or by typing keywords. Furthermore, a BLAST search tool against all known VF-related genes is also available. VFDB provides a unified gateway to store, search, retrieve and update information about VFs from various bacterial pathogens
    corecore