6 research outputs found

    Traffic Control and Quality of Service in Wireless LANs

    Get PDF
    The thesis deals with two aspects of the IEEE 802.11 standard. The first is the so-called “performance anomaly”: the variable bandwidth of the links and the use of multiple transmission rates push the throughput of all stations to align to the slowest one. To tackle this problem we designed and developed a simple channel-aware scheduling algorithm, called DTT, which actualises the proportional fairness concept, thus leading to noteworthy improvements, and in particular to flow isolation. This is achieved by measuring link quality as the time needed to deliver a frame. The resource to share is no longer capacity, but the time the channel is in use. DTT has then been integrated into a prototype Access Point, which is the first working implementation of a scheduler based on proportional fairness. Secondly, we focused on 802.11e networks, which, though enhancing QoS support, still offer scarce reliability of QoS guarantees and suffer from network congestion. We devised two admission control algorithms to assess the maximum number of users allowable to the services while satisfying QoS requirements. Following the studies on DTT, both algorithms centre the admission test on the time occupancy of the medium. The first algorithm builds on an analytical model of the EDCA mode in non-saturation conditions. This closely matches the real behaviour of a network carrying time-sensitive applications, thus overcoming the limits of all previous works, based on saturation models. The second algorithm uses and extends to 802.11e the NUC, a parameter defined and proved effective for 802.11b systems. This scheme needs measures of the actual state of the network. Simulations run within the E-model framework show good accuracy performance for both models

    Contention techniques for opportunistic communication in wireless mesh networks

    Get PDF
    Auf dem Gebiet der drahtlosen Kommunikation und insbesondere auf den tieferen Netzwerkschichten sind gewaltige Fortschritte zu verzeichnen. Innovative Konzepte und Technologien auf der physikalischen Schicht (PHY) gehen dabei zeitnah in zelluläre Netze ein. Drahtlose Maschennetzwerke (WMNs) können mit diesem Innovationstempo nicht mithalten. Die Mehrnutzer-Kommunikation ist ein Grundpfeiler vieler angewandter PHY Technologien, die sich in WMNs nur ungenügend auf die etablierte Schichtenarchitektur abbilden lässt. Insbesondere ist das Problem des Scheduling in WMNs inhärent komplex. Erstaunlicherweise ist der Mehrfachzugriff mit Trägerprüfung (CSMA) in WMNs asymptotisch optimal obwohl das Verfahren eine geringe Durchführungskomplexität aufweist. Daher stellt sich die Frage, in welcher Weise das dem CSMA zugrunde liegende Konzept des konkurrierenden Wettbewerbs (engl. Contention) für die Integration innovativer PHY Technologien verwendet werden kann. Opportunistische Kommunikation ist eine Technik, die die inhärenten Besonderheiten des drahtlosen Kanals ausnutzt. In der vorliegenden Dissertation werden CSMA-basierte Protokolle für die opportunistische Kommunikation in WMNs entwickelt und evaluiert. Es werden dabei opportunistisches Routing (OR) im zustandslosen Kanal und opportunistisches Scheduling (OS) im zustandsbehafteten Kanal betrachtet. Ziel ist es, den Durchsatz von elastischen Paketflüssen gerecht zu maximieren. Es werden Modelle für Überlastkontrolle, Routing und konkurrenzbasierte opportunistische Kommunikation vorgestellt. Am Beispiel von IEEE 802.11 wird illustriert, wie der schichtübergreifende Entwurf in einem Netzwerksimulator prototypisch implementiert werden kann. Auf Grundlage der Evaluationsresultate kann der Schluss gezogen werden, dass die opportunistische Kommunikation konkurrenzbasiert realisierbar ist. Darüber hinaus steigern die vorgestellten Protokolle den Durchsatz im Vergleich zu etablierten Lösungen wie etwa DCF, DSR, ExOR, RBAR und ETT.In the field of wireless communication, a tremendous progress can be observed especially at the lower layers. Innovative physical layer (PHY) concepts and technologies can be rapidly assimilated in cellular networks. Wireless mesh networks (WMNs), on the other hand, cannot keep up with the speed of innovation at the PHY due to their flat and decentralized architecture. Many innovative PHY technologies rely on multi-user communication, so that the established abstraction of the network stack does not work well for WMNs. The scheduling problem in WMNs is inherent complex. Surprisingly, carrier sense multiple access (CSMA) in WMNs is asymptotically utility-optimal even though it has a low computational complexity and does not involve message exchange. Hence, the question arises whether CSMA and the underlying concept of contention allows for the assimilation of advanced PHY technologies into WMNs. In this thesis, we design and evaluate contention protocols based on CSMA for opportunistic communication in WMNs. Opportunistic communication is a technique that relies on multi-user diversity in order to exploit the inherent characteristics of the wireless channel. In particular, we consider opportunistic routing (OR) and opportunistic scheduling (OS) in memoryless and slow fading channels, respectively. We present models for congestion control, routing and contention-based opportunistic communication in WMNs in order to maximize both throughput and fairness of elastic unicast traffic flows. At the instance of IEEE 802.11, we illustrate how the cross-layer algorithms can be implemented within a network simulator prototype. Our evaluation results lead to the conclusion that contention-based opportunistic communication is feasible. Furthermore, the proposed protocols increase both throughput and fairness in comparison to state-of-the-art approaches like DCF, DSR, ExOR, RBAR and ETT

    Visible light and device-to-device communications: system analysis and implementation

    Get PDF
    Mención internacional en el título de doctorRadio-frequency based wireless communications have revolutionized our society. Thanks to the important wireless communication technologiesWi-Fi, LTE, and so on, people can now enjoy high data rate and perversive connection while surfing the Internet. However, new problems and demands are rising in today’s wireless networks. Increasing capacity demands are requiring more bandwidth and various wireless radio technologies are exacerbating the spectrum problem. Now technologies and paradigms are needed to meet these needs. In this thesis, I investigate two technologies towards this direction: Visible Light Communication (VLC) and Device-to-Device (D2D) communication. Although more and more researchers are becoming interested in VLC, the lacking of an opensource platform for VLC research is perverting the fast investigations of VLC. To solve this problem, I design, implement, and evaluate the first open-source platform OpenVLC for embedded VLC research. OpenVLC employs cost-efficient and off-the-shelf optical components and electronics to provide a research platform. The software solutions are developed as a Linux driver and can easily connect to the TCP/IP layers. This allows for the adoption of various Linux diagnostic tools to evaluate the VLC’s properties and performance. Based on OpenVLC, I propose a new MAC protocol that enable the intra-frame bidirectional transmissions in networks of visible LEDs. The method adopts only a single LED at each node for both transmission and reception. Through this technology, the system’s throughput can be improved a lot and the hidden-node problem can be alleviated greatly. Motivated by the envision of the Internet of lights, I study how to provide stable visible light links in VLC. I identify the limitations and tradeoff of two different types of optical receivers photodiode and LED, and design and implement a new optical data link layer that was resilient to dynamic environments. On the other hands, to meet the increasing demands, small cells are proposed and deployed in latest cellular networks. As a result, the number of users served by each cell is decreasing. As the opportunistic gain increases as a concave function of active users, in small cells and when dynamic traffic load are considered, the opportunistic gain will lost. To recoup the opportunistic gain, I propose a base-station transparent method based on D2D communication to dispatch traffic among devices. Dynamic programming is used to find the optimal dispatching policy. The results show this method can improve the average packet transfer delay greatly. To increase the opportunistic gain by a further step, I propose a base-station initiated policy to solve the same problem. An algorithm is therefore designed and implemented, and its performance shows that it can reduce the frame loss ratio significantly.This work has been supported by IMDEA Networks InstitutePrograma Oficial de Doctorado en Ingeniería TelemáticaPresidente: Thiemo Voigt.- Secretario: Pablo Serrano Yáñez-Mingot.- Vocal: David Malon

    Radio Communications

    Get PDF
    In the last decades the restless evolution of information and communication technologies (ICT) brought to a deep transformation of our habits. The growth of the Internet and the advances in hardware and software implementations modified our way to communicate and to share information. In this book, an overview of the major issues faced today by researchers in the field of radio communications is given through 35 high quality chapters written by specialists working in universities and research centers all over the world. Various aspects will be deeply discussed: channel modeling, beamforming, multiple antennas, cooperative networks, opportunistic scheduling, advanced admission control, handover management, systems performance assessment, routing issues in mobility conditions, localization, web security. Advanced techniques for the radio resource management will be discussed both in single and multiple radio technologies; either in infrastructure, mesh or ad hoc networks

    Backlog Estimation for Uplink/Downlink Fairness in Unsaturated Bidirectional CSMA Networks

    No full text

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of-the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: quality-of-service and video communication, routing protocol and cross-layer design. A few interesting problems about security and delay-tolerant networks are also discussed. This book is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks
    corecore