120 research outputs found

    User Association in 5G Networks: A Survey and an Outlook

    Get PDF
    26 pages; accepted to appear in IEEE Communications Surveys and Tutorial

    Separation Framework: An Enabler for Cooperative and D2D Communication for Future 5G Networks

    Get PDF
    Soaring capacity and coverage demands dictate that future cellular networks need to soon migrate towards ultra-dense networks. However, network densification comes with a host of challenges that include compromised energy efficiency, complex interference management, cumbersome mobility management, burdensome signaling overheads and higher backhaul costs. Interestingly, most of the problems, that beleaguer network densification, stem from legacy networks' one common feature i.e., tight coupling between the control and data planes regardless of their degree of heterogeneity and cell density. Consequently, in wake of 5G, control and data planes separation architecture (SARC) has recently been conceived as a promising paradigm that has potential to address most of aforementioned challenges. In this article, we review various proposals that have been presented in literature so far to enable SARC. More specifically, we analyze how and to what degree various SARC proposals address the four main challenges in network densification namely: energy efficiency, system level capacity maximization, interference management and mobility management. We then focus on two salient features of future cellular networks that have not yet been adapted in legacy networks at wide scale and thus remain a hallmark of 5G, i.e., coordinated multipoint (CoMP), and device-to-device (D2D) communications. After providing necessary background on CoMP and D2D, we analyze how SARC can particularly act as a major enabler for CoMP and D2D in context of 5G. This article thus serves as both a tutorial as well as an up to date survey on SARC, CoMP and D2D. Most importantly, the article provides an extensive outlook of challenges and opportunities that lie at the crossroads of these three mutually entangled emerging technologies.Comment: 28 pages, 11 figures, IEEE Communications Surveys & Tutorials 201

    Eficiência energética avançada para sistema OFDMA CoMP coordenação multiponto

    Get PDF
    Doutoramento em Engenharia EletrotécnicaThe ever-growing energy consumption in mobile networks stimulated by the expected growth in data tra ffic has provided the impetus for mobile operators to refocus network design, planning and deployment towards reducing the cost per bit, whilst at the same time providing a signifi cant step towards reducing their operational expenditure. As a step towards incorporating cost-eff ective mobile system, 3GPP LTE-Advanced has adopted the coordinated multi-point (CoMP) transmission technique due to its ability to mitigate and manage inter-cell interference (ICI). Using CoMP the cell average and cell edge throughput are boosted. However, there is room for reducing energy consumption further by exploiting the inherent exibility of dynamic resource allocation protocols. To this end packet scheduler plays the central role in determining the overall performance of the 3GPP longterm evolution (LTE) based on packet-switching operation and provide a potential research playground for optimizing energy consumption in future networks. In this thesis we investigate the baseline performance for down link CoMP using traditional scheduling approaches, and subsequently go beyond and propose novel energy e fficient scheduling (EES) strategies that can achieve power-e fficient transmission to the UEs whilst enabling both system energy effi ciency gain and fairness improvement. However, ICI can still be prominent when multiple nodes use common resources with di fferent power levels inside the cell, as in the so called heterogeneous networks (Het- Net) environment. HetNets are comprised of two or more tiers of cells. The rst, or higher tier, is a traditional deployment of cell sites, often referred to in this context as macrocells. The lower tiers are termed small cells, and can appear as microcell, picocells or femtocells. The HetNet has attracted signiffi cant interest by key manufacturers as one of the enablers for high speed data at low cost. Research until now has revealed several key hurdles that must be overcome before HetNets can achieve their full potential: bottlenecks in the backhaul must be alleviated, as well as their seamless interworking with CoMP. In this thesis we explore exactly the latter hurdle, and present innovative ideas on advancing CoMP to work in synergy with HetNet deployment, complemented by a novel resource allocation policy for HetNet tighter interference management. As system level simulator has been used to analyze the proposed algorithm/protocols, and results have concluded that up to 20% energy gain can be observed.O aumento do consumo de energia nas TICs e em particular nas redes de comunicação móveis, estimulado por um crescimento esperado do tráfego de dados, tem servido de impulso aos operadores m oveis para reorientarem os seus projectos de rede, planeamento e implementa ção no sentido de reduzir o custo por bit, o que ao mesmo tempo possibilita um passo signicativo no sentido de reduzir as despesas operacionais. Como um passo no sentido de uma incorporação eficaz em termos destes custos, o sistema móvel 3GPP LTE-Advanced adoptou a técnica de transmissão Coordenação Multi-Ponto (identificada na literatura com a sigla CoMP) devido à sua capacidade de mitigar e gerir Interferência entre Células (sigla ICI na literatura). No entanto a ICI pode ainda ser mais proeminente quando v arios n os no interior da célula utilizam recursos comuns com diferentes níveis de energia, como acontece nos chamados ambientes de redes heterogéneas (sigla Het- Net na literatura). As HetNets são constituídas por duas ou mais camadas de células. A primeira, ou camada superiora, constitui uma implantação tradicional de sítios de célula, muitas vezes referidas neste contexto como macrocells. Os níveis mais baixos são designados por células pequenas, e podem aparecer como microcells, picocells ou femtocells. A HetNet tem atra do grande interesse por parte dos principais fabricantes como sendo facilitador para transmissões de dados de alta velocidade a baixo custo. A investigação tem revelado at e a data, vários dos principais obstáculos que devem ser superados para que as HetNets possam atingir todo o seu potencial: (i) os estrangulamentos no backhaul devem ser aliviados; (ii) bem como sua perfeita interoperabilidade com CoMP. Nesta tese exploramos este ultimo constrangimento e apresentamos ideias inovadoras em como a t ecnica CoMP poder a ser aperfeiçoada por forma a trabalhar em sinergia com a implementação da HetNet, complementado ainda com uma nova perspectiva na alocação de recursos rádio para um controlo e gestão mais apertado de interferência nas HetNets. Com recurso a simulação a níível de sistema para analisar o desempenho dos algoritmos e protocolos propostos, os resultados obtidos concluíram que ganhos at e a ordem dos 20% poderão ser atingidos em termos de eficiência energética

    Gestion conjointe de ressources de communication et de calcul pour les réseaux sans fils à base de cloud

    Get PDF
    Mobile Edge Cloud brings the cloud closer to mobile users by moving the cloud computational efforts from the internet to the mobile edge. We adopt a local mobile edge cloud computing architecture, where small cells are empowered with computational and storage capacities. Mobile users’ offloaded computational tasks are executed at the cloud-enabled small cells. We propose the concept of small cells clustering for mobile edge computing, where small cells cooperate in order to execute offloaded computational tasks. A first contribution of this thesis is the design of a multi-parameter computation offloading decision algorithm, SM-POD. The proposed algorithm consists of a series of low complexity successive and nested classifications of computational tasks at the mobile side, leading to local computation, or offloading to the cloud. To reach the offloading decision, SM-POD jointly considers computational tasks, handsets, and communication channel parameters. In the second part of this thesis, we tackle the problem of small cell clusters set up for mobile edge cloud computing for both single-user and multi-user cases. The clustering problem is formulated as an optimization that jointly optimizes the computational and communication resource allocation, and the computational load distribution on the small cells participating in the computation cluster. We propose a cluster sparsification strategy, where we trade cluster latency for higher system energy efficiency. In the multi-user case, the optimization problem is not convex. In order to compute a clustering solution, we propose a convex reformulation of the problem, and we prove that both problems are equivalent. With the goal of finding a lower complexity clustering solution, we propose two heuristic small cells clustering algorithms. The first algorithm is based on resource allocation on the serving small cells where tasks are received, as a first step. Then, in a second step, unserved tasks are sent to a small cell managing unit (SCM) that sets up computational clusters for the execution of these tasks. The main idea of this algorithm is task scheduling at both serving small cells, and SCM sides for higher resource allocation efficiency. The second proposed heuristic is an iterative approach in which serving small cells compute their desired clusters, without considering the presence of other users, and send their cluster parameters to the SCM. SCM then checks for excess of resource allocation at any of the network small cells. SCM reports any load excess to serving small cells that re-distribute this load on less loaded small cells. In the final part of this thesis, we propose the concept of computation caching for edge cloud computing. With the aim of reducing the edge cloud computing latency and energy consumption, we propose caching popular computational tasks for preventing their re-execution. Our contribution here is two-fold: first, we propose a caching algorithm that is based on requests popularity, computation size, required computational capacity, and small cells connectivity. This algorithm identifies requests that, if cached and downloaded instead of being re-computed, will increase the computation caching energy and latency savings. Second, we propose a method for setting up a search small cells cluster for finding a cached copy of the requests computation. The clustering policy exploits the relationship between tasks popularity and their probability of being cached, in order to identify possible locations of the cached copy. The proposed method reduces the search cluster size while guaranteeing a minimum cache hit probability.Cette thèse porte sur le paradigme « Mobile Edge cloud» qui rapproche le cloud des utilisateurs mobiles et qui déploie une architecture de clouds locaux dans les terminaisons du réseau. Les utilisateurs mobiles peuvent désormais décharger leurs tâches de calcul pour qu’elles soient exécutées par les femto-cellules (FCs) dotées de capacités de calcul et de stockage. Nous proposons ainsi un concept de regroupement de FCs dans des clusters de calculs qui participeront aux calculs des tâches déchargées. A cet effet, nous proposons, dans un premier temps, un algorithme de décision de déportation de tâches vers le cloud, nommé SM-POD. Cet algorithme prend en compte les caractéristiques des tâches de calculs, des ressources de l’équipement mobile, et de la qualité des liens de transmission. SM-POD consiste en une série de classifications successives aboutissant à une décision de calcul local, ou de déportation de l’exécution dans le cloud.Dans un deuxième temps, nous abordons le problème de formation de clusters de calcul à mono-utilisateur et à utilisateurs multiples. Nous formulons le problème d’optimisation relatif qui considère l’allocation conjointe des ressources de calculs et de communication, et la distribution de la charge de calcul sur les FCs participant au cluster. Nous proposons également une stratégie d’éparpillement, dans laquelle l’efficacité énergétique du système est améliorée au prix de la latence de calcul. Dans le cas d’utilisateurs multiples, le problème d’optimisation d’allocation conjointe de ressources n’est pas convexe. Afin de le résoudre, nous proposons une reformulation convexe du problème équivalente à la première puis nous proposons deux algorithmes heuristiques dans le but d’avoir un algorithme de formation de cluster à complexité réduite. L’idée principale du premier est l’ordonnancement des tâches de calculs sur les FCs qui les reçoivent. Les ressources de calculs sont ainsi allouées localement au niveau de la FC. Les tâches ne pouvant pas être exécutées sont, quant à elles, envoyées à une unité de contrôle (SCM) responsable de la formation des clusters de calculs et de leur exécution. Le second algorithme proposé est itératif et consiste en une formation de cluster au niveau des FCs ne tenant pas compte de la présence d’autres demandes de calculs dans le réseau. Les propositions de cluster sont envoyées au SCM qui évalue la distribution des charges sur les différentes FCs. Le SCM signale tout abus de charges pour que les FCs redistribuent leur excès dans des cellules moins chargées.Dans la dernière partie de la thèse, nous proposons un nouveau concept de mise en cache des calculs dans l’Edge cloud. Afin de réduire la latence et la consommation énergétique des clusters de calculs, nous proposons la mise en cache de calculs populaires pour empêcher leur réexécution. Ici, notre contribution est double : d’abord, nous proposons un algorithme de mise en cache basé, non seulement sur la popularité des tâches de calculs, mais aussi sur les tailles et les capacités de calculs demandés, et la connectivité des FCs dans le réseau. L’algorithme proposé identifie les tâches aboutissant à des économies d’énergie et de temps plus importantes lorsqu’elles sont téléchargées d’un cache au lieu d’être recalculées. Nous proposons ensuite d’exploiter la relation entre la popularité des tâches et la probabilité de leur mise en cache, pour localiser les emplacements potentiels de leurs copies. La méthode proposée est basée sur ces emplacements, et permet de former des clusters de recherche de taille réduite tout en garantissant de retrouver une copie en cache

    Energy-Efficient Resource Allocation in Cloud and Fog Radio Access Networks

    Get PDF
    PhD ThesisWith the development of cloud computing, radio access networks (RAN) is migrating to fully or partially centralised architecture, such as Cloud RAN (C- RAN) or Fog RAN (F-RAN). The novel architectures are able to support new applications with the higher throughput, the higher energy e ciency and the better spectral e ciency performance. However, the more complex energy consumption features brought by these new architectures are challenging. In addition, the usage of Energy Harvesting (EH) technology and the computation o oading in novel architectures requires novel resource allocation designs.This thesis focuses on the energy e cient resource allocation for Cloud and Fog RAN networks. Firstly, a joint user association (UA) and power allocation scheme is proposed for the Heterogeneous Cloud Radio Access Networks with hybrid energy sources where Energy Harvesting technology is utilised. The optimisation problem is designed to maximise the utilisation of the renewable energy source. Through solving the proposed optimisation problem, the user association and power allocation policies are derived together to minimise the grid power consumption. Compared to the conventional UAs adopted in RANs, green power harvested by renewable energy source can be better utilised so that the grid power consumption can be greatly reduced with the proposed scheme. Secondly, a delay-aware energy e cient computation o oading scheme is proposed for the EH enabled F-RANs, where for access points (F-APs) are supported by renewable energy sources. The uneven distribution of the harvested energy brings in dynamics of the o oading design and a ects the delay experienced by users. The grid power minimisation problem is formulated. Based on the solutions derived, an energy e cient o oading decision algorithm is designed. Compared to SINR-based o oading scheme, the total grid power consumption of all F-APs can be reduced signi cantly with the proposed o oading decision algorithm while meeting the latency constraint. Thirdly, an energy-e cient computation o oading for mobile applications with shared data is investigated in a multi-user fog computing network. Taking the advantage of shared data property of latency-critical applications such as virtual reality (VR) and augmented reality (AR) into consideration, the energy minimisation problem is formulated. Then the optimal computation o oading and communications resources allocation policy is proposed which is able to minimise the overall energy consumption of mobile users and cloudlet server. Performance analysis indicates that the proposed policy outperforms other o oading schemes in terms of energy e ciency. The research works conducted in this thesis and the thorough performance analysis have revealed some insights on energy e cient resource allocation design in Cloud and Fog RANs

    Evolution Toward 5G Mobile Networks - A Survey on Enabling Technologies

    Get PDF
    In this paper, an extensive review has been carried out on the trends of existing as well as proposed potential enabling technologies that are expected to shape the fifth generation (5G) mobile wireless networks. Based on the classification of the trends, we develop a 5G network architectural evolution framework that comprises three evolutionary directions, namely, (1) radio access network node and performance enabler, (2) network control programming platform, and (3) backhaul network platform and synchronization. In (1), we discuss node classification including low power nodes in emerging machine-type communications, and network capacity enablers, e.g., millimeter wave communications and massive multiple-input multiple-output. In (2), both logically distributed cell/device-centric platforms, and logically centralized conventional/wireless software defined networking control programming approaches are discussed. In (3), backhaul networks and network synchronization are discussed. A comparative analysis for each direction as well as future evolutionary directions and challenges toward 5G networks are discussed. This survey will be helpful for further research exploitations and network operators for a smooth evolution of their existing networks toward 5G networks

    A survey on hybrid beamforming techniques in 5G : architecture and system model perspectives

    Get PDF
    The increasing wireless data traffic demands have driven the need to explore suitable spectrum regions for meeting the projected requirements. In the light of this, millimeter wave (mmWave) communication has received considerable attention from the research community. Typically, in fifth generation (5G) wireless networks, mmWave massive multiple-input multiple-output (MIMO) communications is realized by the hybrid transceivers which combine high dimensional analog phase shifters and power amplifiers with lower-dimensional digital signal processing units. This hybrid beamforming design reduces the cost and power consumption which is aligned with an energy-efficient design vision of 5G. In this paper, we track the progress in hybrid beamforming for massive MIMO communications in the context of system models of the hybrid transceivers' structures, the digital and analog beamforming matrices with the possible antenna configuration scenarios and the hybrid beamforming in heterogeneous wireless networks. We extend the scope of the discussion by including resource management issues in hybrid beamforming. We explore the suitability of hybrid beamforming methods, both, existing and proposed till first quarter of 2017, and identify the exciting future challenges in this domain
    • …
    corecore